xref: /openbmc/linux/security/security.c (revision 98de59bf)
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *	This program is free software; you can redistribute it and/or modify
9  *	it under the terms of the GNU General Public License as published by
10  *	the Free Software Foundation; either version 2 of the License, or
11  *	(at your option) any later version.
12  */
13 
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/integrity.h>
20 #include <linux/ima.h>
21 #include <linux/evm.h>
22 #include <linux/fsnotify.h>
23 #include <linux/mman.h>
24 #include <linux/mount.h>
25 #include <linux/personality.h>
26 #include <net/flow.h>
27 
28 #define MAX_LSM_EVM_XATTR	2
29 
30 /* Boot-time LSM user choice */
31 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
32 	CONFIG_DEFAULT_SECURITY;
33 
34 static struct security_operations *security_ops;
35 static struct security_operations default_security_ops = {
36 	.name	= "default",
37 };
38 
39 static inline int __init verify(struct security_operations *ops)
40 {
41 	/* verify the security_operations structure exists */
42 	if (!ops)
43 		return -EINVAL;
44 	security_fixup_ops(ops);
45 	return 0;
46 }
47 
48 static void __init do_security_initcalls(void)
49 {
50 	initcall_t *call;
51 	call = __security_initcall_start;
52 	while (call < __security_initcall_end) {
53 		(*call) ();
54 		call++;
55 	}
56 }
57 
58 /**
59  * security_init - initializes the security framework
60  *
61  * This should be called early in the kernel initialization sequence.
62  */
63 int __init security_init(void)
64 {
65 	printk(KERN_INFO "Security Framework initialized\n");
66 
67 	security_fixup_ops(&default_security_ops);
68 	security_ops = &default_security_ops;
69 	do_security_initcalls();
70 
71 	return 0;
72 }
73 
74 void reset_security_ops(void)
75 {
76 	security_ops = &default_security_ops;
77 }
78 
79 /* Save user chosen LSM */
80 static int __init choose_lsm(char *str)
81 {
82 	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
83 	return 1;
84 }
85 __setup("security=", choose_lsm);
86 
87 /**
88  * security_module_enable - Load given security module on boot ?
89  * @ops: a pointer to the struct security_operations that is to be checked.
90  *
91  * Each LSM must pass this method before registering its own operations
92  * to avoid security registration races. This method may also be used
93  * to check if your LSM is currently loaded during kernel initialization.
94  *
95  * Return true if:
96  *	-The passed LSM is the one chosen by user at boot time,
97  *	-or the passed LSM is configured as the default and the user did not
98  *	 choose an alternate LSM at boot time.
99  * Otherwise, return false.
100  */
101 int __init security_module_enable(struct security_operations *ops)
102 {
103 	return !strcmp(ops->name, chosen_lsm);
104 }
105 
106 /**
107  * register_security - registers a security framework with the kernel
108  * @ops: a pointer to the struct security_options that is to be registered
109  *
110  * This function allows a security module to register itself with the
111  * kernel security subsystem.  Some rudimentary checking is done on the @ops
112  * value passed to this function. You'll need to check first if your LSM
113  * is allowed to register its @ops by calling security_module_enable(@ops).
114  *
115  * If there is already a security module registered with the kernel,
116  * an error will be returned.  Otherwise %0 is returned on success.
117  */
118 int __init register_security(struct security_operations *ops)
119 {
120 	if (verify(ops)) {
121 		printk(KERN_DEBUG "%s could not verify "
122 		       "security_operations structure.\n", __func__);
123 		return -EINVAL;
124 	}
125 
126 	if (security_ops != &default_security_ops)
127 		return -EAGAIN;
128 
129 	security_ops = ops;
130 
131 	return 0;
132 }
133 
134 /* Security operations */
135 
136 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
137 {
138 	return security_ops->ptrace_access_check(child, mode);
139 }
140 
141 int security_ptrace_traceme(struct task_struct *parent)
142 {
143 	return security_ops->ptrace_traceme(parent);
144 }
145 
146 int security_capget(struct task_struct *target,
147 		     kernel_cap_t *effective,
148 		     kernel_cap_t *inheritable,
149 		     kernel_cap_t *permitted)
150 {
151 	return security_ops->capget(target, effective, inheritable, permitted);
152 }
153 
154 int security_capset(struct cred *new, const struct cred *old,
155 		    const kernel_cap_t *effective,
156 		    const kernel_cap_t *inheritable,
157 		    const kernel_cap_t *permitted)
158 {
159 	return security_ops->capset(new, old,
160 				    effective, inheritable, permitted);
161 }
162 
163 int security_capable(const struct cred *cred, struct user_namespace *ns,
164 		     int cap)
165 {
166 	return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
167 }
168 
169 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
170 			     int cap)
171 {
172 	return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
173 }
174 
175 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
176 {
177 	return security_ops->quotactl(cmds, type, id, sb);
178 }
179 
180 int security_quota_on(struct dentry *dentry)
181 {
182 	return security_ops->quota_on(dentry);
183 }
184 
185 int security_syslog(int type)
186 {
187 	return security_ops->syslog(type);
188 }
189 
190 int security_settime(const struct timespec *ts, const struct timezone *tz)
191 {
192 	return security_ops->settime(ts, tz);
193 }
194 
195 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
196 {
197 	return security_ops->vm_enough_memory(mm, pages);
198 }
199 
200 int security_bprm_set_creds(struct linux_binprm *bprm)
201 {
202 	return security_ops->bprm_set_creds(bprm);
203 }
204 
205 int security_bprm_check(struct linux_binprm *bprm)
206 {
207 	int ret;
208 
209 	ret = security_ops->bprm_check_security(bprm);
210 	if (ret)
211 		return ret;
212 	return ima_bprm_check(bprm);
213 }
214 
215 void security_bprm_committing_creds(struct linux_binprm *bprm)
216 {
217 	security_ops->bprm_committing_creds(bprm);
218 }
219 
220 void security_bprm_committed_creds(struct linux_binprm *bprm)
221 {
222 	security_ops->bprm_committed_creds(bprm);
223 }
224 
225 int security_bprm_secureexec(struct linux_binprm *bprm)
226 {
227 	return security_ops->bprm_secureexec(bprm);
228 }
229 
230 int security_sb_alloc(struct super_block *sb)
231 {
232 	return security_ops->sb_alloc_security(sb);
233 }
234 
235 void security_sb_free(struct super_block *sb)
236 {
237 	security_ops->sb_free_security(sb);
238 }
239 
240 int security_sb_copy_data(char *orig, char *copy)
241 {
242 	return security_ops->sb_copy_data(orig, copy);
243 }
244 EXPORT_SYMBOL(security_sb_copy_data);
245 
246 int security_sb_remount(struct super_block *sb, void *data)
247 {
248 	return security_ops->sb_remount(sb, data);
249 }
250 
251 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
252 {
253 	return security_ops->sb_kern_mount(sb, flags, data);
254 }
255 
256 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
257 {
258 	return security_ops->sb_show_options(m, sb);
259 }
260 
261 int security_sb_statfs(struct dentry *dentry)
262 {
263 	return security_ops->sb_statfs(dentry);
264 }
265 
266 int security_sb_mount(char *dev_name, struct path *path,
267                        char *type, unsigned long flags, void *data)
268 {
269 	return security_ops->sb_mount(dev_name, path, type, flags, data);
270 }
271 
272 int security_sb_umount(struct vfsmount *mnt, int flags)
273 {
274 	return security_ops->sb_umount(mnt, flags);
275 }
276 
277 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
278 {
279 	return security_ops->sb_pivotroot(old_path, new_path);
280 }
281 
282 int security_sb_set_mnt_opts(struct super_block *sb,
283 				struct security_mnt_opts *opts)
284 {
285 	return security_ops->sb_set_mnt_opts(sb, opts);
286 }
287 EXPORT_SYMBOL(security_sb_set_mnt_opts);
288 
289 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
290 				struct super_block *newsb)
291 {
292 	security_ops->sb_clone_mnt_opts(oldsb, newsb);
293 }
294 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
295 
296 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
297 {
298 	return security_ops->sb_parse_opts_str(options, opts);
299 }
300 EXPORT_SYMBOL(security_sb_parse_opts_str);
301 
302 int security_inode_alloc(struct inode *inode)
303 {
304 	inode->i_security = NULL;
305 	return security_ops->inode_alloc_security(inode);
306 }
307 
308 void security_inode_free(struct inode *inode)
309 {
310 	integrity_inode_free(inode);
311 	security_ops->inode_free_security(inode);
312 }
313 
314 int security_inode_init_security(struct inode *inode, struct inode *dir,
315 				 const struct qstr *qstr,
316 				 const initxattrs initxattrs, void *fs_data)
317 {
318 	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
319 	struct xattr *lsm_xattr, *evm_xattr, *xattr;
320 	int ret;
321 
322 	if (unlikely(IS_PRIVATE(inode)))
323 		return 0;
324 
325 	memset(new_xattrs, 0, sizeof new_xattrs);
326 	if (!initxattrs)
327 		return security_ops->inode_init_security(inode, dir, qstr,
328 							 NULL, NULL, NULL);
329 	lsm_xattr = new_xattrs;
330 	ret = security_ops->inode_init_security(inode, dir, qstr,
331 						&lsm_xattr->name,
332 						&lsm_xattr->value,
333 						&lsm_xattr->value_len);
334 	if (ret)
335 		goto out;
336 
337 	evm_xattr = lsm_xattr + 1;
338 	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
339 	if (ret)
340 		goto out;
341 	ret = initxattrs(inode, new_xattrs, fs_data);
342 out:
343 	for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
344 		kfree(xattr->name);
345 		kfree(xattr->value);
346 	}
347 	return (ret == -EOPNOTSUPP) ? 0 : ret;
348 }
349 EXPORT_SYMBOL(security_inode_init_security);
350 
351 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
352 				     const struct qstr *qstr, char **name,
353 				     void **value, size_t *len)
354 {
355 	if (unlikely(IS_PRIVATE(inode)))
356 		return -EOPNOTSUPP;
357 	return security_ops->inode_init_security(inode, dir, qstr, name, value,
358 						 len);
359 }
360 EXPORT_SYMBOL(security_old_inode_init_security);
361 
362 #ifdef CONFIG_SECURITY_PATH
363 int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
364 			unsigned int dev)
365 {
366 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
367 		return 0;
368 	return security_ops->path_mknod(dir, dentry, mode, dev);
369 }
370 EXPORT_SYMBOL(security_path_mknod);
371 
372 int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
373 {
374 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
375 		return 0;
376 	return security_ops->path_mkdir(dir, dentry, mode);
377 }
378 EXPORT_SYMBOL(security_path_mkdir);
379 
380 int security_path_rmdir(struct path *dir, struct dentry *dentry)
381 {
382 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
383 		return 0;
384 	return security_ops->path_rmdir(dir, dentry);
385 }
386 
387 int security_path_unlink(struct path *dir, struct dentry *dentry)
388 {
389 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
390 		return 0;
391 	return security_ops->path_unlink(dir, dentry);
392 }
393 EXPORT_SYMBOL(security_path_unlink);
394 
395 int security_path_symlink(struct path *dir, struct dentry *dentry,
396 			  const char *old_name)
397 {
398 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
399 		return 0;
400 	return security_ops->path_symlink(dir, dentry, old_name);
401 }
402 
403 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
404 		       struct dentry *new_dentry)
405 {
406 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
407 		return 0;
408 	return security_ops->path_link(old_dentry, new_dir, new_dentry);
409 }
410 
411 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
412 			 struct path *new_dir, struct dentry *new_dentry)
413 {
414 	if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
415 		     (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
416 		return 0;
417 	return security_ops->path_rename(old_dir, old_dentry, new_dir,
418 					 new_dentry);
419 }
420 EXPORT_SYMBOL(security_path_rename);
421 
422 int security_path_truncate(struct path *path)
423 {
424 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
425 		return 0;
426 	return security_ops->path_truncate(path);
427 }
428 
429 int security_path_chmod(struct path *path, umode_t mode)
430 {
431 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
432 		return 0;
433 	return security_ops->path_chmod(path, mode);
434 }
435 
436 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
437 {
438 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
439 		return 0;
440 	return security_ops->path_chown(path, uid, gid);
441 }
442 
443 int security_path_chroot(struct path *path)
444 {
445 	return security_ops->path_chroot(path);
446 }
447 #endif
448 
449 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
450 {
451 	if (unlikely(IS_PRIVATE(dir)))
452 		return 0;
453 	return security_ops->inode_create(dir, dentry, mode);
454 }
455 EXPORT_SYMBOL_GPL(security_inode_create);
456 
457 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
458 			 struct dentry *new_dentry)
459 {
460 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
461 		return 0;
462 	return security_ops->inode_link(old_dentry, dir, new_dentry);
463 }
464 
465 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
466 {
467 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
468 		return 0;
469 	return security_ops->inode_unlink(dir, dentry);
470 }
471 
472 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
473 			    const char *old_name)
474 {
475 	if (unlikely(IS_PRIVATE(dir)))
476 		return 0;
477 	return security_ops->inode_symlink(dir, dentry, old_name);
478 }
479 
480 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
481 {
482 	if (unlikely(IS_PRIVATE(dir)))
483 		return 0;
484 	return security_ops->inode_mkdir(dir, dentry, mode);
485 }
486 EXPORT_SYMBOL_GPL(security_inode_mkdir);
487 
488 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
489 {
490 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
491 		return 0;
492 	return security_ops->inode_rmdir(dir, dentry);
493 }
494 
495 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
496 {
497 	if (unlikely(IS_PRIVATE(dir)))
498 		return 0;
499 	return security_ops->inode_mknod(dir, dentry, mode, dev);
500 }
501 
502 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
503 			   struct inode *new_dir, struct dentry *new_dentry)
504 {
505         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
506             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
507 		return 0;
508 	return security_ops->inode_rename(old_dir, old_dentry,
509 					   new_dir, new_dentry);
510 }
511 
512 int security_inode_readlink(struct dentry *dentry)
513 {
514 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
515 		return 0;
516 	return security_ops->inode_readlink(dentry);
517 }
518 
519 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
520 {
521 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
522 		return 0;
523 	return security_ops->inode_follow_link(dentry, nd);
524 }
525 
526 int security_inode_permission(struct inode *inode, int mask)
527 {
528 	if (unlikely(IS_PRIVATE(inode)))
529 		return 0;
530 	return security_ops->inode_permission(inode, mask);
531 }
532 
533 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
534 {
535 	int ret;
536 
537 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
538 		return 0;
539 	ret = security_ops->inode_setattr(dentry, attr);
540 	if (ret)
541 		return ret;
542 	return evm_inode_setattr(dentry, attr);
543 }
544 EXPORT_SYMBOL_GPL(security_inode_setattr);
545 
546 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
547 {
548 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
549 		return 0;
550 	return security_ops->inode_getattr(mnt, dentry);
551 }
552 
553 int security_inode_setxattr(struct dentry *dentry, const char *name,
554 			    const void *value, size_t size, int flags)
555 {
556 	int ret;
557 
558 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
559 		return 0;
560 	ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
561 	if (ret)
562 		return ret;
563 	return evm_inode_setxattr(dentry, name, value, size);
564 }
565 
566 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
567 				  const void *value, size_t size, int flags)
568 {
569 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
570 		return;
571 	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
572 	evm_inode_post_setxattr(dentry, name, value, size);
573 }
574 
575 int security_inode_getxattr(struct dentry *dentry, const char *name)
576 {
577 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
578 		return 0;
579 	return security_ops->inode_getxattr(dentry, name);
580 }
581 
582 int security_inode_listxattr(struct dentry *dentry)
583 {
584 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
585 		return 0;
586 	return security_ops->inode_listxattr(dentry);
587 }
588 
589 int security_inode_removexattr(struct dentry *dentry, const char *name)
590 {
591 	int ret;
592 
593 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
594 		return 0;
595 	ret = security_ops->inode_removexattr(dentry, name);
596 	if (ret)
597 		return ret;
598 	return evm_inode_removexattr(dentry, name);
599 }
600 
601 int security_inode_need_killpriv(struct dentry *dentry)
602 {
603 	return security_ops->inode_need_killpriv(dentry);
604 }
605 
606 int security_inode_killpriv(struct dentry *dentry)
607 {
608 	return security_ops->inode_killpriv(dentry);
609 }
610 
611 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
612 {
613 	if (unlikely(IS_PRIVATE(inode)))
614 		return -EOPNOTSUPP;
615 	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
616 }
617 
618 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
619 {
620 	if (unlikely(IS_PRIVATE(inode)))
621 		return -EOPNOTSUPP;
622 	return security_ops->inode_setsecurity(inode, name, value, size, flags);
623 }
624 
625 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
626 {
627 	if (unlikely(IS_PRIVATE(inode)))
628 		return 0;
629 	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
630 }
631 
632 void security_inode_getsecid(const struct inode *inode, u32 *secid)
633 {
634 	security_ops->inode_getsecid(inode, secid);
635 }
636 
637 int security_file_permission(struct file *file, int mask)
638 {
639 	int ret;
640 
641 	ret = security_ops->file_permission(file, mask);
642 	if (ret)
643 		return ret;
644 
645 	return fsnotify_perm(file, mask);
646 }
647 
648 int security_file_alloc(struct file *file)
649 {
650 	return security_ops->file_alloc_security(file);
651 }
652 
653 void security_file_free(struct file *file)
654 {
655 	security_ops->file_free_security(file);
656 }
657 
658 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
659 {
660 	return security_ops->file_ioctl(file, cmd, arg);
661 }
662 
663 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
664 {
665 	/*
666 	 * Does we have PROT_READ and does the application expect
667 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
668 	 */
669 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
670 		return prot;
671 	if (!(current->personality & READ_IMPLIES_EXEC))
672 		return prot;
673 	/*
674 	 * if that's an anonymous mapping, let it.
675 	 */
676 	if (!file)
677 		return prot | PROT_EXEC;
678 	/*
679 	 * ditto if it's not on noexec mount, except that on !MMU we need
680 	 * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case
681 	 */
682 	if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
683 #ifndef CONFIG_MMU
684 		unsigned long caps = 0;
685 		struct address_space *mapping = file->f_mapping;
686 		if (mapping && mapping->backing_dev_info)
687 			caps = mapping->backing_dev_info->capabilities;
688 		if (!(caps & BDI_CAP_EXEC_MAP))
689 			return prot;
690 #endif
691 		return prot | PROT_EXEC;
692 	}
693 	/* anything on noexec mount won't get PROT_EXEC */
694 	return prot;
695 }
696 
697 int security_mmap_file(struct file *file, unsigned long prot,
698 			unsigned long flags)
699 {
700 	int ret;
701 	ret = security_ops->mmap_file(file, prot,
702 					mmap_prot(file, prot), flags);
703 	if (ret)
704 		return ret;
705 	return ima_file_mmap(file, prot);
706 }
707 
708 int security_mmap_addr(unsigned long addr)
709 {
710 	return security_ops->mmap_addr(addr);
711 }
712 
713 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
714 			    unsigned long prot)
715 {
716 	return security_ops->file_mprotect(vma, reqprot, prot);
717 }
718 
719 int security_file_lock(struct file *file, unsigned int cmd)
720 {
721 	return security_ops->file_lock(file, cmd);
722 }
723 
724 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
725 {
726 	return security_ops->file_fcntl(file, cmd, arg);
727 }
728 
729 int security_file_set_fowner(struct file *file)
730 {
731 	return security_ops->file_set_fowner(file);
732 }
733 
734 int security_file_send_sigiotask(struct task_struct *tsk,
735 				  struct fown_struct *fown, int sig)
736 {
737 	return security_ops->file_send_sigiotask(tsk, fown, sig);
738 }
739 
740 int security_file_receive(struct file *file)
741 {
742 	return security_ops->file_receive(file);
743 }
744 
745 int security_file_open(struct file *file, const struct cred *cred)
746 {
747 	int ret;
748 
749 	ret = security_ops->file_open(file, cred);
750 	if (ret)
751 		return ret;
752 
753 	return fsnotify_perm(file, MAY_OPEN);
754 }
755 
756 int security_task_create(unsigned long clone_flags)
757 {
758 	return security_ops->task_create(clone_flags);
759 }
760 
761 void security_task_free(struct task_struct *task)
762 {
763 	security_ops->task_free(task);
764 }
765 
766 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
767 {
768 	return security_ops->cred_alloc_blank(cred, gfp);
769 }
770 
771 void security_cred_free(struct cred *cred)
772 {
773 	security_ops->cred_free(cred);
774 }
775 
776 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
777 {
778 	return security_ops->cred_prepare(new, old, gfp);
779 }
780 
781 void security_transfer_creds(struct cred *new, const struct cred *old)
782 {
783 	security_ops->cred_transfer(new, old);
784 }
785 
786 int security_kernel_act_as(struct cred *new, u32 secid)
787 {
788 	return security_ops->kernel_act_as(new, secid);
789 }
790 
791 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
792 {
793 	return security_ops->kernel_create_files_as(new, inode);
794 }
795 
796 int security_kernel_module_request(char *kmod_name)
797 {
798 	return security_ops->kernel_module_request(kmod_name);
799 }
800 
801 int security_task_fix_setuid(struct cred *new, const struct cred *old,
802 			     int flags)
803 {
804 	return security_ops->task_fix_setuid(new, old, flags);
805 }
806 
807 int security_task_setpgid(struct task_struct *p, pid_t pgid)
808 {
809 	return security_ops->task_setpgid(p, pgid);
810 }
811 
812 int security_task_getpgid(struct task_struct *p)
813 {
814 	return security_ops->task_getpgid(p);
815 }
816 
817 int security_task_getsid(struct task_struct *p)
818 {
819 	return security_ops->task_getsid(p);
820 }
821 
822 void security_task_getsecid(struct task_struct *p, u32 *secid)
823 {
824 	security_ops->task_getsecid(p, secid);
825 }
826 EXPORT_SYMBOL(security_task_getsecid);
827 
828 int security_task_setnice(struct task_struct *p, int nice)
829 {
830 	return security_ops->task_setnice(p, nice);
831 }
832 
833 int security_task_setioprio(struct task_struct *p, int ioprio)
834 {
835 	return security_ops->task_setioprio(p, ioprio);
836 }
837 
838 int security_task_getioprio(struct task_struct *p)
839 {
840 	return security_ops->task_getioprio(p);
841 }
842 
843 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
844 		struct rlimit *new_rlim)
845 {
846 	return security_ops->task_setrlimit(p, resource, new_rlim);
847 }
848 
849 int security_task_setscheduler(struct task_struct *p)
850 {
851 	return security_ops->task_setscheduler(p);
852 }
853 
854 int security_task_getscheduler(struct task_struct *p)
855 {
856 	return security_ops->task_getscheduler(p);
857 }
858 
859 int security_task_movememory(struct task_struct *p)
860 {
861 	return security_ops->task_movememory(p);
862 }
863 
864 int security_task_kill(struct task_struct *p, struct siginfo *info,
865 			int sig, u32 secid)
866 {
867 	return security_ops->task_kill(p, info, sig, secid);
868 }
869 
870 int security_task_wait(struct task_struct *p)
871 {
872 	return security_ops->task_wait(p);
873 }
874 
875 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
876 			 unsigned long arg4, unsigned long arg5)
877 {
878 	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
879 }
880 
881 void security_task_to_inode(struct task_struct *p, struct inode *inode)
882 {
883 	security_ops->task_to_inode(p, inode);
884 }
885 
886 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
887 {
888 	return security_ops->ipc_permission(ipcp, flag);
889 }
890 
891 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
892 {
893 	security_ops->ipc_getsecid(ipcp, secid);
894 }
895 
896 int security_msg_msg_alloc(struct msg_msg *msg)
897 {
898 	return security_ops->msg_msg_alloc_security(msg);
899 }
900 
901 void security_msg_msg_free(struct msg_msg *msg)
902 {
903 	security_ops->msg_msg_free_security(msg);
904 }
905 
906 int security_msg_queue_alloc(struct msg_queue *msq)
907 {
908 	return security_ops->msg_queue_alloc_security(msq);
909 }
910 
911 void security_msg_queue_free(struct msg_queue *msq)
912 {
913 	security_ops->msg_queue_free_security(msq);
914 }
915 
916 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
917 {
918 	return security_ops->msg_queue_associate(msq, msqflg);
919 }
920 
921 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
922 {
923 	return security_ops->msg_queue_msgctl(msq, cmd);
924 }
925 
926 int security_msg_queue_msgsnd(struct msg_queue *msq,
927 			       struct msg_msg *msg, int msqflg)
928 {
929 	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
930 }
931 
932 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
933 			       struct task_struct *target, long type, int mode)
934 {
935 	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
936 }
937 
938 int security_shm_alloc(struct shmid_kernel *shp)
939 {
940 	return security_ops->shm_alloc_security(shp);
941 }
942 
943 void security_shm_free(struct shmid_kernel *shp)
944 {
945 	security_ops->shm_free_security(shp);
946 }
947 
948 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
949 {
950 	return security_ops->shm_associate(shp, shmflg);
951 }
952 
953 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
954 {
955 	return security_ops->shm_shmctl(shp, cmd);
956 }
957 
958 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
959 {
960 	return security_ops->shm_shmat(shp, shmaddr, shmflg);
961 }
962 
963 int security_sem_alloc(struct sem_array *sma)
964 {
965 	return security_ops->sem_alloc_security(sma);
966 }
967 
968 void security_sem_free(struct sem_array *sma)
969 {
970 	security_ops->sem_free_security(sma);
971 }
972 
973 int security_sem_associate(struct sem_array *sma, int semflg)
974 {
975 	return security_ops->sem_associate(sma, semflg);
976 }
977 
978 int security_sem_semctl(struct sem_array *sma, int cmd)
979 {
980 	return security_ops->sem_semctl(sma, cmd);
981 }
982 
983 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
984 			unsigned nsops, int alter)
985 {
986 	return security_ops->sem_semop(sma, sops, nsops, alter);
987 }
988 
989 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
990 {
991 	if (unlikely(inode && IS_PRIVATE(inode)))
992 		return;
993 	security_ops->d_instantiate(dentry, inode);
994 }
995 EXPORT_SYMBOL(security_d_instantiate);
996 
997 int security_getprocattr(struct task_struct *p, char *name, char **value)
998 {
999 	return security_ops->getprocattr(p, name, value);
1000 }
1001 
1002 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
1003 {
1004 	return security_ops->setprocattr(p, name, value, size);
1005 }
1006 
1007 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1008 {
1009 	return security_ops->netlink_send(sk, skb);
1010 }
1011 
1012 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1013 {
1014 	return security_ops->secid_to_secctx(secid, secdata, seclen);
1015 }
1016 EXPORT_SYMBOL(security_secid_to_secctx);
1017 
1018 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1019 {
1020 	return security_ops->secctx_to_secid(secdata, seclen, secid);
1021 }
1022 EXPORT_SYMBOL(security_secctx_to_secid);
1023 
1024 void security_release_secctx(char *secdata, u32 seclen)
1025 {
1026 	security_ops->release_secctx(secdata, seclen);
1027 }
1028 EXPORT_SYMBOL(security_release_secctx);
1029 
1030 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1031 {
1032 	return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1033 }
1034 EXPORT_SYMBOL(security_inode_notifysecctx);
1035 
1036 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1037 {
1038 	return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1039 }
1040 EXPORT_SYMBOL(security_inode_setsecctx);
1041 
1042 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1043 {
1044 	return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1045 }
1046 EXPORT_SYMBOL(security_inode_getsecctx);
1047 
1048 #ifdef CONFIG_SECURITY_NETWORK
1049 
1050 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1051 {
1052 	return security_ops->unix_stream_connect(sock, other, newsk);
1053 }
1054 EXPORT_SYMBOL(security_unix_stream_connect);
1055 
1056 int security_unix_may_send(struct socket *sock,  struct socket *other)
1057 {
1058 	return security_ops->unix_may_send(sock, other);
1059 }
1060 EXPORT_SYMBOL(security_unix_may_send);
1061 
1062 int security_socket_create(int family, int type, int protocol, int kern)
1063 {
1064 	return security_ops->socket_create(family, type, protocol, kern);
1065 }
1066 
1067 int security_socket_post_create(struct socket *sock, int family,
1068 				int type, int protocol, int kern)
1069 {
1070 	return security_ops->socket_post_create(sock, family, type,
1071 						protocol, kern);
1072 }
1073 
1074 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1075 {
1076 	return security_ops->socket_bind(sock, address, addrlen);
1077 }
1078 
1079 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1080 {
1081 	return security_ops->socket_connect(sock, address, addrlen);
1082 }
1083 
1084 int security_socket_listen(struct socket *sock, int backlog)
1085 {
1086 	return security_ops->socket_listen(sock, backlog);
1087 }
1088 
1089 int security_socket_accept(struct socket *sock, struct socket *newsock)
1090 {
1091 	return security_ops->socket_accept(sock, newsock);
1092 }
1093 
1094 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1095 {
1096 	return security_ops->socket_sendmsg(sock, msg, size);
1097 }
1098 
1099 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1100 			    int size, int flags)
1101 {
1102 	return security_ops->socket_recvmsg(sock, msg, size, flags);
1103 }
1104 
1105 int security_socket_getsockname(struct socket *sock)
1106 {
1107 	return security_ops->socket_getsockname(sock);
1108 }
1109 
1110 int security_socket_getpeername(struct socket *sock)
1111 {
1112 	return security_ops->socket_getpeername(sock);
1113 }
1114 
1115 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1116 {
1117 	return security_ops->socket_getsockopt(sock, level, optname);
1118 }
1119 
1120 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1121 {
1122 	return security_ops->socket_setsockopt(sock, level, optname);
1123 }
1124 
1125 int security_socket_shutdown(struct socket *sock, int how)
1126 {
1127 	return security_ops->socket_shutdown(sock, how);
1128 }
1129 
1130 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1131 {
1132 	return security_ops->socket_sock_rcv_skb(sk, skb);
1133 }
1134 EXPORT_SYMBOL(security_sock_rcv_skb);
1135 
1136 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1137 				      int __user *optlen, unsigned len)
1138 {
1139 	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1140 }
1141 
1142 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1143 {
1144 	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1145 }
1146 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1147 
1148 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1149 {
1150 	return security_ops->sk_alloc_security(sk, family, priority);
1151 }
1152 
1153 void security_sk_free(struct sock *sk)
1154 {
1155 	security_ops->sk_free_security(sk);
1156 }
1157 
1158 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1159 {
1160 	security_ops->sk_clone_security(sk, newsk);
1161 }
1162 EXPORT_SYMBOL(security_sk_clone);
1163 
1164 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1165 {
1166 	security_ops->sk_getsecid(sk, &fl->flowi_secid);
1167 }
1168 EXPORT_SYMBOL(security_sk_classify_flow);
1169 
1170 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1171 {
1172 	security_ops->req_classify_flow(req, fl);
1173 }
1174 EXPORT_SYMBOL(security_req_classify_flow);
1175 
1176 void security_sock_graft(struct sock *sk, struct socket *parent)
1177 {
1178 	security_ops->sock_graft(sk, parent);
1179 }
1180 EXPORT_SYMBOL(security_sock_graft);
1181 
1182 int security_inet_conn_request(struct sock *sk,
1183 			struct sk_buff *skb, struct request_sock *req)
1184 {
1185 	return security_ops->inet_conn_request(sk, skb, req);
1186 }
1187 EXPORT_SYMBOL(security_inet_conn_request);
1188 
1189 void security_inet_csk_clone(struct sock *newsk,
1190 			const struct request_sock *req)
1191 {
1192 	security_ops->inet_csk_clone(newsk, req);
1193 }
1194 
1195 void security_inet_conn_established(struct sock *sk,
1196 			struct sk_buff *skb)
1197 {
1198 	security_ops->inet_conn_established(sk, skb);
1199 }
1200 
1201 int security_secmark_relabel_packet(u32 secid)
1202 {
1203 	return security_ops->secmark_relabel_packet(secid);
1204 }
1205 EXPORT_SYMBOL(security_secmark_relabel_packet);
1206 
1207 void security_secmark_refcount_inc(void)
1208 {
1209 	security_ops->secmark_refcount_inc();
1210 }
1211 EXPORT_SYMBOL(security_secmark_refcount_inc);
1212 
1213 void security_secmark_refcount_dec(void)
1214 {
1215 	security_ops->secmark_refcount_dec();
1216 }
1217 EXPORT_SYMBOL(security_secmark_refcount_dec);
1218 
1219 int security_tun_dev_create(void)
1220 {
1221 	return security_ops->tun_dev_create();
1222 }
1223 EXPORT_SYMBOL(security_tun_dev_create);
1224 
1225 void security_tun_dev_post_create(struct sock *sk)
1226 {
1227 	return security_ops->tun_dev_post_create(sk);
1228 }
1229 EXPORT_SYMBOL(security_tun_dev_post_create);
1230 
1231 int security_tun_dev_attach(struct sock *sk)
1232 {
1233 	return security_ops->tun_dev_attach(sk);
1234 }
1235 EXPORT_SYMBOL(security_tun_dev_attach);
1236 
1237 #endif	/* CONFIG_SECURITY_NETWORK */
1238 
1239 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1240 
1241 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1242 {
1243 	return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1244 }
1245 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1246 
1247 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1248 			      struct xfrm_sec_ctx **new_ctxp)
1249 {
1250 	return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1251 }
1252 
1253 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1254 {
1255 	security_ops->xfrm_policy_free_security(ctx);
1256 }
1257 EXPORT_SYMBOL(security_xfrm_policy_free);
1258 
1259 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1260 {
1261 	return security_ops->xfrm_policy_delete_security(ctx);
1262 }
1263 
1264 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1265 {
1266 	return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1267 }
1268 EXPORT_SYMBOL(security_xfrm_state_alloc);
1269 
1270 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1271 				      struct xfrm_sec_ctx *polsec, u32 secid)
1272 {
1273 	if (!polsec)
1274 		return 0;
1275 	/*
1276 	 * We want the context to be taken from secid which is usually
1277 	 * from the sock.
1278 	 */
1279 	return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1280 }
1281 
1282 int security_xfrm_state_delete(struct xfrm_state *x)
1283 {
1284 	return security_ops->xfrm_state_delete_security(x);
1285 }
1286 EXPORT_SYMBOL(security_xfrm_state_delete);
1287 
1288 void security_xfrm_state_free(struct xfrm_state *x)
1289 {
1290 	security_ops->xfrm_state_free_security(x);
1291 }
1292 
1293 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1294 {
1295 	return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1296 }
1297 
1298 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1299 				       struct xfrm_policy *xp,
1300 				       const struct flowi *fl)
1301 {
1302 	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1303 }
1304 
1305 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1306 {
1307 	return security_ops->xfrm_decode_session(skb, secid, 1);
1308 }
1309 
1310 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1311 {
1312 	int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1313 
1314 	BUG_ON(rc);
1315 }
1316 EXPORT_SYMBOL(security_skb_classify_flow);
1317 
1318 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1319 
1320 #ifdef CONFIG_KEYS
1321 
1322 int security_key_alloc(struct key *key, const struct cred *cred,
1323 		       unsigned long flags)
1324 {
1325 	return security_ops->key_alloc(key, cred, flags);
1326 }
1327 
1328 void security_key_free(struct key *key)
1329 {
1330 	security_ops->key_free(key);
1331 }
1332 
1333 int security_key_permission(key_ref_t key_ref,
1334 			    const struct cred *cred, key_perm_t perm)
1335 {
1336 	return security_ops->key_permission(key_ref, cred, perm);
1337 }
1338 
1339 int security_key_getsecurity(struct key *key, char **_buffer)
1340 {
1341 	return security_ops->key_getsecurity(key, _buffer);
1342 }
1343 
1344 #endif	/* CONFIG_KEYS */
1345 
1346 #ifdef CONFIG_AUDIT
1347 
1348 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1349 {
1350 	return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1351 }
1352 
1353 int security_audit_rule_known(struct audit_krule *krule)
1354 {
1355 	return security_ops->audit_rule_known(krule);
1356 }
1357 
1358 void security_audit_rule_free(void *lsmrule)
1359 {
1360 	security_ops->audit_rule_free(lsmrule);
1361 }
1362 
1363 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1364 			      struct audit_context *actx)
1365 {
1366 	return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1367 }
1368 
1369 #endif /* CONFIG_AUDIT */
1370