xref: /openbmc/linux/security/security.c (revision 9726bfcd)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8  * Copyright (C) 2016 Mellanox Technologies
9  */
10 
11 #define pr_fmt(fmt) "LSM: " fmt
12 
13 #include <linux/bpf.h>
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/lsm_hooks.h>
20 #include <linux/integrity.h>
21 #include <linux/ima.h>
22 #include <linux/evm.h>
23 #include <linux/fsnotify.h>
24 #include <linux/mman.h>
25 #include <linux/mount.h>
26 #include <linux/personality.h>
27 #include <linux/backing-dev.h>
28 #include <linux/string.h>
29 #include <linux/msg.h>
30 #include <net/flow.h>
31 
32 #define MAX_LSM_EVM_XATTR	2
33 
34 /* How many LSMs were built into the kernel? */
35 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
36 
37 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
38 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
39 
40 static struct kmem_cache *lsm_file_cache;
41 static struct kmem_cache *lsm_inode_cache;
42 
43 char *lsm_names;
44 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
45 
46 /* Boot-time LSM user choice */
47 static __initdata const char *chosen_lsm_order;
48 static __initdata const char *chosen_major_lsm;
49 
50 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
51 
52 /* Ordered list of LSMs to initialize. */
53 static __initdata struct lsm_info **ordered_lsms;
54 static __initdata struct lsm_info *exclusive;
55 
56 static __initdata bool debug;
57 #define init_debug(...)						\
58 	do {							\
59 		if (debug)					\
60 			pr_info(__VA_ARGS__);			\
61 	} while (0)
62 
63 static bool __init is_enabled(struct lsm_info *lsm)
64 {
65 	if (!lsm->enabled)
66 		return false;
67 
68 	return *lsm->enabled;
69 }
70 
71 /* Mark an LSM's enabled flag. */
72 static int lsm_enabled_true __initdata = 1;
73 static int lsm_enabled_false __initdata = 0;
74 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
75 {
76 	/*
77 	 * When an LSM hasn't configured an enable variable, we can use
78 	 * a hard-coded location for storing the default enabled state.
79 	 */
80 	if (!lsm->enabled) {
81 		if (enabled)
82 			lsm->enabled = &lsm_enabled_true;
83 		else
84 			lsm->enabled = &lsm_enabled_false;
85 	} else if (lsm->enabled == &lsm_enabled_true) {
86 		if (!enabled)
87 			lsm->enabled = &lsm_enabled_false;
88 	} else if (lsm->enabled == &lsm_enabled_false) {
89 		if (enabled)
90 			lsm->enabled = &lsm_enabled_true;
91 	} else {
92 		*lsm->enabled = enabled;
93 	}
94 }
95 
96 /* Is an LSM already listed in the ordered LSMs list? */
97 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
98 {
99 	struct lsm_info **check;
100 
101 	for (check = ordered_lsms; *check; check++)
102 		if (*check == lsm)
103 			return true;
104 
105 	return false;
106 }
107 
108 /* Append an LSM to the list of ordered LSMs to initialize. */
109 static int last_lsm __initdata;
110 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
111 {
112 	/* Ignore duplicate selections. */
113 	if (exists_ordered_lsm(lsm))
114 		return;
115 
116 	if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
117 		return;
118 
119 	/* Enable this LSM, if it is not already set. */
120 	if (!lsm->enabled)
121 		lsm->enabled = &lsm_enabled_true;
122 	ordered_lsms[last_lsm++] = lsm;
123 
124 	init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
125 		   is_enabled(lsm) ? "en" : "dis");
126 }
127 
128 /* Is an LSM allowed to be initialized? */
129 static bool __init lsm_allowed(struct lsm_info *lsm)
130 {
131 	/* Skip if the LSM is disabled. */
132 	if (!is_enabled(lsm))
133 		return false;
134 
135 	/* Not allowed if another exclusive LSM already initialized. */
136 	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
137 		init_debug("exclusive disabled: %s\n", lsm->name);
138 		return false;
139 	}
140 
141 	return true;
142 }
143 
144 static void __init lsm_set_blob_size(int *need, int *lbs)
145 {
146 	int offset;
147 
148 	if (*need > 0) {
149 		offset = *lbs;
150 		*lbs += *need;
151 		*need = offset;
152 	}
153 }
154 
155 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
156 {
157 	if (!needed)
158 		return;
159 
160 	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
161 	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
162 	/*
163 	 * The inode blob gets an rcu_head in addition to
164 	 * what the modules might need.
165 	 */
166 	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
167 		blob_sizes.lbs_inode = sizeof(struct rcu_head);
168 	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
169 	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
170 	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
171 	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
172 }
173 
174 /* Prepare LSM for initialization. */
175 static void __init prepare_lsm(struct lsm_info *lsm)
176 {
177 	int enabled = lsm_allowed(lsm);
178 
179 	/* Record enablement (to handle any following exclusive LSMs). */
180 	set_enabled(lsm, enabled);
181 
182 	/* If enabled, do pre-initialization work. */
183 	if (enabled) {
184 		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
185 			exclusive = lsm;
186 			init_debug("exclusive chosen: %s\n", lsm->name);
187 		}
188 
189 		lsm_set_blob_sizes(lsm->blobs);
190 	}
191 }
192 
193 /* Initialize a given LSM, if it is enabled. */
194 static void __init initialize_lsm(struct lsm_info *lsm)
195 {
196 	if (is_enabled(lsm)) {
197 		int ret;
198 
199 		init_debug("initializing %s\n", lsm->name);
200 		ret = lsm->init();
201 		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
202 	}
203 }
204 
205 /* Populate ordered LSMs list from comma-separated LSM name list. */
206 static void __init ordered_lsm_parse(const char *order, const char *origin)
207 {
208 	struct lsm_info *lsm;
209 	char *sep, *name, *next;
210 
211 	/* LSM_ORDER_FIRST is always first. */
212 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
213 		if (lsm->order == LSM_ORDER_FIRST)
214 			append_ordered_lsm(lsm, "first");
215 	}
216 
217 	/* Process "security=", if given. */
218 	if (chosen_major_lsm) {
219 		struct lsm_info *major;
220 
221 		/*
222 		 * To match the original "security=" behavior, this
223 		 * explicitly does NOT fallback to another Legacy Major
224 		 * if the selected one was separately disabled: disable
225 		 * all non-matching Legacy Major LSMs.
226 		 */
227 		for (major = __start_lsm_info; major < __end_lsm_info;
228 		     major++) {
229 			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
230 			    strcmp(major->name, chosen_major_lsm) != 0) {
231 				set_enabled(major, false);
232 				init_debug("security=%s disabled: %s\n",
233 					   chosen_major_lsm, major->name);
234 			}
235 		}
236 	}
237 
238 	sep = kstrdup(order, GFP_KERNEL);
239 	next = sep;
240 	/* Walk the list, looking for matching LSMs. */
241 	while ((name = strsep(&next, ",")) != NULL) {
242 		bool found = false;
243 
244 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
245 			if (lsm->order == LSM_ORDER_MUTABLE &&
246 			    strcmp(lsm->name, name) == 0) {
247 				append_ordered_lsm(lsm, origin);
248 				found = true;
249 			}
250 		}
251 
252 		if (!found)
253 			init_debug("%s ignored: %s\n", origin, name);
254 	}
255 
256 	/* Process "security=", if given. */
257 	if (chosen_major_lsm) {
258 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
259 			if (exists_ordered_lsm(lsm))
260 				continue;
261 			if (strcmp(lsm->name, chosen_major_lsm) == 0)
262 				append_ordered_lsm(lsm, "security=");
263 		}
264 	}
265 
266 	/* Disable all LSMs not in the ordered list. */
267 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
268 		if (exists_ordered_lsm(lsm))
269 			continue;
270 		set_enabled(lsm, false);
271 		init_debug("%s disabled: %s\n", origin, lsm->name);
272 	}
273 
274 	kfree(sep);
275 }
276 
277 static void __init lsm_early_cred(struct cred *cred);
278 static void __init lsm_early_task(struct task_struct *task);
279 
280 static void __init ordered_lsm_init(void)
281 {
282 	struct lsm_info **lsm;
283 
284 	ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
285 				GFP_KERNEL);
286 
287 	if (chosen_lsm_order) {
288 		if (chosen_major_lsm) {
289 			pr_info("security= is ignored because it is superseded by lsm=\n");
290 			chosen_major_lsm = NULL;
291 		}
292 		ordered_lsm_parse(chosen_lsm_order, "cmdline");
293 	} else
294 		ordered_lsm_parse(builtin_lsm_order, "builtin");
295 
296 	for (lsm = ordered_lsms; *lsm; lsm++)
297 		prepare_lsm(*lsm);
298 
299 	init_debug("cred blob size     = %d\n", blob_sizes.lbs_cred);
300 	init_debug("file blob size     = %d\n", blob_sizes.lbs_file);
301 	init_debug("inode blob size    = %d\n", blob_sizes.lbs_inode);
302 	init_debug("ipc blob size      = %d\n", blob_sizes.lbs_ipc);
303 	init_debug("msg_msg blob size  = %d\n", blob_sizes.lbs_msg_msg);
304 	init_debug("task blob size     = %d\n", blob_sizes.lbs_task);
305 
306 	/*
307 	 * Create any kmem_caches needed for blobs
308 	 */
309 	if (blob_sizes.lbs_file)
310 		lsm_file_cache = kmem_cache_create("lsm_file_cache",
311 						   blob_sizes.lbs_file, 0,
312 						   SLAB_PANIC, NULL);
313 	if (blob_sizes.lbs_inode)
314 		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
315 						    blob_sizes.lbs_inode, 0,
316 						    SLAB_PANIC, NULL);
317 
318 	lsm_early_cred((struct cred *) current->cred);
319 	lsm_early_task(current);
320 	for (lsm = ordered_lsms; *lsm; lsm++)
321 		initialize_lsm(*lsm);
322 
323 	kfree(ordered_lsms);
324 }
325 
326 /**
327  * security_init - initializes the security framework
328  *
329  * This should be called early in the kernel initialization sequence.
330  */
331 int __init security_init(void)
332 {
333 	int i;
334 	struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
335 
336 	pr_info("Security Framework initializing\n");
337 
338 	for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
339 	     i++)
340 		INIT_HLIST_HEAD(&list[i]);
341 
342 	/* Load LSMs in specified order. */
343 	ordered_lsm_init();
344 
345 	return 0;
346 }
347 
348 /* Save user chosen LSM */
349 static int __init choose_major_lsm(char *str)
350 {
351 	chosen_major_lsm = str;
352 	return 1;
353 }
354 __setup("security=", choose_major_lsm);
355 
356 /* Explicitly choose LSM initialization order. */
357 static int __init choose_lsm_order(char *str)
358 {
359 	chosen_lsm_order = str;
360 	return 1;
361 }
362 __setup("lsm=", choose_lsm_order);
363 
364 /* Enable LSM order debugging. */
365 static int __init enable_debug(char *str)
366 {
367 	debug = true;
368 	return 1;
369 }
370 __setup("lsm.debug", enable_debug);
371 
372 static bool match_last_lsm(const char *list, const char *lsm)
373 {
374 	const char *last;
375 
376 	if (WARN_ON(!list || !lsm))
377 		return false;
378 	last = strrchr(list, ',');
379 	if (last)
380 		/* Pass the comma, strcmp() will check for '\0' */
381 		last++;
382 	else
383 		last = list;
384 	return !strcmp(last, lsm);
385 }
386 
387 static int lsm_append(char *new, char **result)
388 {
389 	char *cp;
390 
391 	if (*result == NULL) {
392 		*result = kstrdup(new, GFP_KERNEL);
393 		if (*result == NULL)
394 			return -ENOMEM;
395 	} else {
396 		/* Check if it is the last registered name */
397 		if (match_last_lsm(*result, new))
398 			return 0;
399 		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
400 		if (cp == NULL)
401 			return -ENOMEM;
402 		kfree(*result);
403 		*result = cp;
404 	}
405 	return 0;
406 }
407 
408 /**
409  * security_add_hooks - Add a modules hooks to the hook lists.
410  * @hooks: the hooks to add
411  * @count: the number of hooks to add
412  * @lsm: the name of the security module
413  *
414  * Each LSM has to register its hooks with the infrastructure.
415  */
416 void __init security_add_hooks(struct security_hook_list *hooks, int count,
417 				char *lsm)
418 {
419 	int i;
420 
421 	for (i = 0; i < count; i++) {
422 		hooks[i].lsm = lsm;
423 		hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
424 	}
425 	if (lsm_append(lsm, &lsm_names) < 0)
426 		panic("%s - Cannot get early memory.\n", __func__);
427 }
428 
429 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
430 {
431 	return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
432 					    event, data);
433 }
434 EXPORT_SYMBOL(call_blocking_lsm_notifier);
435 
436 int register_blocking_lsm_notifier(struct notifier_block *nb)
437 {
438 	return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
439 						nb);
440 }
441 EXPORT_SYMBOL(register_blocking_lsm_notifier);
442 
443 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
444 {
445 	return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
446 						  nb);
447 }
448 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
449 
450 /**
451  * lsm_cred_alloc - allocate a composite cred blob
452  * @cred: the cred that needs a blob
453  * @gfp: allocation type
454  *
455  * Allocate the cred blob for all the modules
456  *
457  * Returns 0, or -ENOMEM if memory can't be allocated.
458  */
459 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
460 {
461 	if (blob_sizes.lbs_cred == 0) {
462 		cred->security = NULL;
463 		return 0;
464 	}
465 
466 	cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
467 	if (cred->security == NULL)
468 		return -ENOMEM;
469 	return 0;
470 }
471 
472 /**
473  * lsm_early_cred - during initialization allocate a composite cred blob
474  * @cred: the cred that needs a blob
475  *
476  * Allocate the cred blob for all the modules
477  */
478 static void __init lsm_early_cred(struct cred *cred)
479 {
480 	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
481 
482 	if (rc)
483 		panic("%s: Early cred alloc failed.\n", __func__);
484 }
485 
486 /**
487  * lsm_file_alloc - allocate a composite file blob
488  * @file: the file that needs a blob
489  *
490  * Allocate the file blob for all the modules
491  *
492  * Returns 0, or -ENOMEM if memory can't be allocated.
493  */
494 static int lsm_file_alloc(struct file *file)
495 {
496 	if (!lsm_file_cache) {
497 		file->f_security = NULL;
498 		return 0;
499 	}
500 
501 	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
502 	if (file->f_security == NULL)
503 		return -ENOMEM;
504 	return 0;
505 }
506 
507 /**
508  * lsm_inode_alloc - allocate a composite inode blob
509  * @inode: the inode that needs a blob
510  *
511  * Allocate the inode blob for all the modules
512  *
513  * Returns 0, or -ENOMEM if memory can't be allocated.
514  */
515 int lsm_inode_alloc(struct inode *inode)
516 {
517 	if (!lsm_inode_cache) {
518 		inode->i_security = NULL;
519 		return 0;
520 	}
521 
522 	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
523 	if (inode->i_security == NULL)
524 		return -ENOMEM;
525 	return 0;
526 }
527 
528 /**
529  * lsm_task_alloc - allocate a composite task blob
530  * @task: the task that needs a blob
531  *
532  * Allocate the task blob for all the modules
533  *
534  * Returns 0, or -ENOMEM if memory can't be allocated.
535  */
536 static int lsm_task_alloc(struct task_struct *task)
537 {
538 	if (blob_sizes.lbs_task == 0) {
539 		task->security = NULL;
540 		return 0;
541 	}
542 
543 	task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
544 	if (task->security == NULL)
545 		return -ENOMEM;
546 	return 0;
547 }
548 
549 /**
550  * lsm_ipc_alloc - allocate a composite ipc blob
551  * @kip: the ipc that needs a blob
552  *
553  * Allocate the ipc blob for all the modules
554  *
555  * Returns 0, or -ENOMEM if memory can't be allocated.
556  */
557 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
558 {
559 	if (blob_sizes.lbs_ipc == 0) {
560 		kip->security = NULL;
561 		return 0;
562 	}
563 
564 	kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
565 	if (kip->security == NULL)
566 		return -ENOMEM;
567 	return 0;
568 }
569 
570 /**
571  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
572  * @mp: the msg_msg that needs a blob
573  *
574  * Allocate the ipc blob for all the modules
575  *
576  * Returns 0, or -ENOMEM if memory can't be allocated.
577  */
578 static int lsm_msg_msg_alloc(struct msg_msg *mp)
579 {
580 	if (blob_sizes.lbs_msg_msg == 0) {
581 		mp->security = NULL;
582 		return 0;
583 	}
584 
585 	mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
586 	if (mp->security == NULL)
587 		return -ENOMEM;
588 	return 0;
589 }
590 
591 /**
592  * lsm_early_task - during initialization allocate a composite task blob
593  * @task: the task that needs a blob
594  *
595  * Allocate the task blob for all the modules
596  */
597 static void __init lsm_early_task(struct task_struct *task)
598 {
599 	int rc = lsm_task_alloc(task);
600 
601 	if (rc)
602 		panic("%s: Early task alloc failed.\n", __func__);
603 }
604 
605 /*
606  * Hook list operation macros.
607  *
608  * call_void_hook:
609  *	This is a hook that does not return a value.
610  *
611  * call_int_hook:
612  *	This is a hook that returns a value.
613  */
614 
615 #define call_void_hook(FUNC, ...)				\
616 	do {							\
617 		struct security_hook_list *P;			\
618 								\
619 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
620 			P->hook.FUNC(__VA_ARGS__);		\
621 	} while (0)
622 
623 #define call_int_hook(FUNC, IRC, ...) ({			\
624 	int RC = IRC;						\
625 	do {							\
626 		struct security_hook_list *P;			\
627 								\
628 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
629 			RC = P->hook.FUNC(__VA_ARGS__);		\
630 			if (RC != 0)				\
631 				break;				\
632 		}						\
633 	} while (0);						\
634 	RC;							\
635 })
636 
637 /* Security operations */
638 
639 int security_binder_set_context_mgr(struct task_struct *mgr)
640 {
641 	return call_int_hook(binder_set_context_mgr, 0, mgr);
642 }
643 
644 int security_binder_transaction(struct task_struct *from,
645 				struct task_struct *to)
646 {
647 	return call_int_hook(binder_transaction, 0, from, to);
648 }
649 
650 int security_binder_transfer_binder(struct task_struct *from,
651 				    struct task_struct *to)
652 {
653 	return call_int_hook(binder_transfer_binder, 0, from, to);
654 }
655 
656 int security_binder_transfer_file(struct task_struct *from,
657 				  struct task_struct *to, struct file *file)
658 {
659 	return call_int_hook(binder_transfer_file, 0, from, to, file);
660 }
661 
662 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
663 {
664 	return call_int_hook(ptrace_access_check, 0, child, mode);
665 }
666 
667 int security_ptrace_traceme(struct task_struct *parent)
668 {
669 	return call_int_hook(ptrace_traceme, 0, parent);
670 }
671 
672 int security_capget(struct task_struct *target,
673 		     kernel_cap_t *effective,
674 		     kernel_cap_t *inheritable,
675 		     kernel_cap_t *permitted)
676 {
677 	return call_int_hook(capget, 0, target,
678 				effective, inheritable, permitted);
679 }
680 
681 int security_capset(struct cred *new, const struct cred *old,
682 		    const kernel_cap_t *effective,
683 		    const kernel_cap_t *inheritable,
684 		    const kernel_cap_t *permitted)
685 {
686 	return call_int_hook(capset, 0, new, old,
687 				effective, inheritable, permitted);
688 }
689 
690 int security_capable(const struct cred *cred,
691 		     struct user_namespace *ns,
692 		     int cap,
693 		     unsigned int opts)
694 {
695 	return call_int_hook(capable, 0, cred, ns, cap, opts);
696 }
697 
698 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
699 {
700 	return call_int_hook(quotactl, 0, cmds, type, id, sb);
701 }
702 
703 int security_quota_on(struct dentry *dentry)
704 {
705 	return call_int_hook(quota_on, 0, dentry);
706 }
707 
708 int security_syslog(int type)
709 {
710 	return call_int_hook(syslog, 0, type);
711 }
712 
713 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
714 {
715 	return call_int_hook(settime, 0, ts, tz);
716 }
717 
718 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
719 {
720 	struct security_hook_list *hp;
721 	int cap_sys_admin = 1;
722 	int rc;
723 
724 	/*
725 	 * The module will respond with a positive value if
726 	 * it thinks the __vm_enough_memory() call should be
727 	 * made with the cap_sys_admin set. If all of the modules
728 	 * agree that it should be set it will. If any module
729 	 * thinks it should not be set it won't.
730 	 */
731 	hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
732 		rc = hp->hook.vm_enough_memory(mm, pages);
733 		if (rc <= 0) {
734 			cap_sys_admin = 0;
735 			break;
736 		}
737 	}
738 	return __vm_enough_memory(mm, pages, cap_sys_admin);
739 }
740 
741 int security_bprm_set_creds(struct linux_binprm *bprm)
742 {
743 	return call_int_hook(bprm_set_creds, 0, bprm);
744 }
745 
746 int security_bprm_check(struct linux_binprm *bprm)
747 {
748 	int ret;
749 
750 	ret = call_int_hook(bprm_check_security, 0, bprm);
751 	if (ret)
752 		return ret;
753 	return ima_bprm_check(bprm);
754 }
755 
756 void security_bprm_committing_creds(struct linux_binprm *bprm)
757 {
758 	call_void_hook(bprm_committing_creds, bprm);
759 }
760 
761 void security_bprm_committed_creds(struct linux_binprm *bprm)
762 {
763 	call_void_hook(bprm_committed_creds, bprm);
764 }
765 
766 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
767 {
768 	return call_int_hook(fs_context_dup, 0, fc, src_fc);
769 }
770 
771 int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
772 {
773 	return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
774 }
775 
776 int security_sb_alloc(struct super_block *sb)
777 {
778 	return call_int_hook(sb_alloc_security, 0, sb);
779 }
780 
781 void security_sb_free(struct super_block *sb)
782 {
783 	call_void_hook(sb_free_security, sb);
784 }
785 
786 void security_free_mnt_opts(void **mnt_opts)
787 {
788 	if (!*mnt_opts)
789 		return;
790 	call_void_hook(sb_free_mnt_opts, *mnt_opts);
791 	*mnt_opts = NULL;
792 }
793 EXPORT_SYMBOL(security_free_mnt_opts);
794 
795 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
796 {
797 	return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
798 }
799 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
800 
801 int security_sb_remount(struct super_block *sb,
802 			void *mnt_opts)
803 {
804 	return call_int_hook(sb_remount, 0, sb, mnt_opts);
805 }
806 EXPORT_SYMBOL(security_sb_remount);
807 
808 int security_sb_kern_mount(struct super_block *sb)
809 {
810 	return call_int_hook(sb_kern_mount, 0, sb);
811 }
812 
813 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
814 {
815 	return call_int_hook(sb_show_options, 0, m, sb);
816 }
817 
818 int security_sb_statfs(struct dentry *dentry)
819 {
820 	return call_int_hook(sb_statfs, 0, dentry);
821 }
822 
823 int security_sb_mount(const char *dev_name, const struct path *path,
824                        const char *type, unsigned long flags, void *data)
825 {
826 	return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
827 }
828 
829 int security_sb_umount(struct vfsmount *mnt, int flags)
830 {
831 	return call_int_hook(sb_umount, 0, mnt, flags);
832 }
833 
834 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
835 {
836 	return call_int_hook(sb_pivotroot, 0, old_path, new_path);
837 }
838 
839 int security_sb_set_mnt_opts(struct super_block *sb,
840 				void *mnt_opts,
841 				unsigned long kern_flags,
842 				unsigned long *set_kern_flags)
843 {
844 	return call_int_hook(sb_set_mnt_opts,
845 				mnt_opts ? -EOPNOTSUPP : 0, sb,
846 				mnt_opts, kern_flags, set_kern_flags);
847 }
848 EXPORT_SYMBOL(security_sb_set_mnt_opts);
849 
850 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
851 				struct super_block *newsb,
852 				unsigned long kern_flags,
853 				unsigned long *set_kern_flags)
854 {
855 	return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
856 				kern_flags, set_kern_flags);
857 }
858 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
859 
860 int security_add_mnt_opt(const char *option, const char *val, int len,
861 			 void **mnt_opts)
862 {
863 	return call_int_hook(sb_add_mnt_opt, -EINVAL,
864 					option, val, len, mnt_opts);
865 }
866 EXPORT_SYMBOL(security_add_mnt_opt);
867 
868 int security_move_mount(const struct path *from_path, const struct path *to_path)
869 {
870 	return call_int_hook(move_mount, 0, from_path, to_path);
871 }
872 
873 int security_inode_alloc(struct inode *inode)
874 {
875 	int rc = lsm_inode_alloc(inode);
876 
877 	if (unlikely(rc))
878 		return rc;
879 	rc = call_int_hook(inode_alloc_security, 0, inode);
880 	if (unlikely(rc))
881 		security_inode_free(inode);
882 	return rc;
883 }
884 
885 static void inode_free_by_rcu(struct rcu_head *head)
886 {
887 	/*
888 	 * The rcu head is at the start of the inode blob
889 	 */
890 	kmem_cache_free(lsm_inode_cache, head);
891 }
892 
893 void security_inode_free(struct inode *inode)
894 {
895 	integrity_inode_free(inode);
896 	call_void_hook(inode_free_security, inode);
897 	/*
898 	 * The inode may still be referenced in a path walk and
899 	 * a call to security_inode_permission() can be made
900 	 * after inode_free_security() is called. Ideally, the VFS
901 	 * wouldn't do this, but fixing that is a much harder
902 	 * job. For now, simply free the i_security via RCU, and
903 	 * leave the current inode->i_security pointer intact.
904 	 * The inode will be freed after the RCU grace period too.
905 	 */
906 	if (inode->i_security)
907 		call_rcu((struct rcu_head *)inode->i_security,
908 				inode_free_by_rcu);
909 }
910 
911 int security_dentry_init_security(struct dentry *dentry, int mode,
912 					const struct qstr *name, void **ctx,
913 					u32 *ctxlen)
914 {
915 	return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
916 				name, ctx, ctxlen);
917 }
918 EXPORT_SYMBOL(security_dentry_init_security);
919 
920 int security_dentry_create_files_as(struct dentry *dentry, int mode,
921 				    struct qstr *name,
922 				    const struct cred *old, struct cred *new)
923 {
924 	return call_int_hook(dentry_create_files_as, 0, dentry, mode,
925 				name, old, new);
926 }
927 EXPORT_SYMBOL(security_dentry_create_files_as);
928 
929 int security_inode_init_security(struct inode *inode, struct inode *dir,
930 				 const struct qstr *qstr,
931 				 const initxattrs initxattrs, void *fs_data)
932 {
933 	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
934 	struct xattr *lsm_xattr, *evm_xattr, *xattr;
935 	int ret;
936 
937 	if (unlikely(IS_PRIVATE(inode)))
938 		return 0;
939 
940 	if (!initxattrs)
941 		return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
942 				     dir, qstr, NULL, NULL, NULL);
943 	memset(new_xattrs, 0, sizeof(new_xattrs));
944 	lsm_xattr = new_xattrs;
945 	ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
946 						&lsm_xattr->name,
947 						&lsm_xattr->value,
948 						&lsm_xattr->value_len);
949 	if (ret)
950 		goto out;
951 
952 	evm_xattr = lsm_xattr + 1;
953 	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
954 	if (ret)
955 		goto out;
956 	ret = initxattrs(inode, new_xattrs, fs_data);
957 out:
958 	for (xattr = new_xattrs; xattr->value != NULL; xattr++)
959 		kfree(xattr->value);
960 	return (ret == -EOPNOTSUPP) ? 0 : ret;
961 }
962 EXPORT_SYMBOL(security_inode_init_security);
963 
964 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
965 				     const struct qstr *qstr, const char **name,
966 				     void **value, size_t *len)
967 {
968 	if (unlikely(IS_PRIVATE(inode)))
969 		return -EOPNOTSUPP;
970 	return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
971 			     qstr, name, value, len);
972 }
973 EXPORT_SYMBOL(security_old_inode_init_security);
974 
975 #ifdef CONFIG_SECURITY_PATH
976 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
977 			unsigned int dev)
978 {
979 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
980 		return 0;
981 	return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
982 }
983 EXPORT_SYMBOL(security_path_mknod);
984 
985 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
986 {
987 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
988 		return 0;
989 	return call_int_hook(path_mkdir, 0, dir, dentry, mode);
990 }
991 EXPORT_SYMBOL(security_path_mkdir);
992 
993 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
994 {
995 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
996 		return 0;
997 	return call_int_hook(path_rmdir, 0, dir, dentry);
998 }
999 
1000 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1001 {
1002 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1003 		return 0;
1004 	return call_int_hook(path_unlink, 0, dir, dentry);
1005 }
1006 EXPORT_SYMBOL(security_path_unlink);
1007 
1008 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1009 			  const char *old_name)
1010 {
1011 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1012 		return 0;
1013 	return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1014 }
1015 
1016 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1017 		       struct dentry *new_dentry)
1018 {
1019 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1020 		return 0;
1021 	return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1022 }
1023 
1024 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1025 			 const struct path *new_dir, struct dentry *new_dentry,
1026 			 unsigned int flags)
1027 {
1028 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1029 		     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1030 		return 0;
1031 
1032 	if (flags & RENAME_EXCHANGE) {
1033 		int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1034 					old_dir, old_dentry);
1035 		if (err)
1036 			return err;
1037 	}
1038 
1039 	return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1040 				new_dentry);
1041 }
1042 EXPORT_SYMBOL(security_path_rename);
1043 
1044 int security_path_truncate(const struct path *path)
1045 {
1046 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1047 		return 0;
1048 	return call_int_hook(path_truncate, 0, path);
1049 }
1050 
1051 int security_path_chmod(const struct path *path, umode_t mode)
1052 {
1053 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1054 		return 0;
1055 	return call_int_hook(path_chmod, 0, path, mode);
1056 }
1057 
1058 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1059 {
1060 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1061 		return 0;
1062 	return call_int_hook(path_chown, 0, path, uid, gid);
1063 }
1064 
1065 int security_path_chroot(const struct path *path)
1066 {
1067 	return call_int_hook(path_chroot, 0, path);
1068 }
1069 #endif
1070 
1071 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1072 {
1073 	if (unlikely(IS_PRIVATE(dir)))
1074 		return 0;
1075 	return call_int_hook(inode_create, 0, dir, dentry, mode);
1076 }
1077 EXPORT_SYMBOL_GPL(security_inode_create);
1078 
1079 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1080 			 struct dentry *new_dentry)
1081 {
1082 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1083 		return 0;
1084 	return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1085 }
1086 
1087 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1088 {
1089 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1090 		return 0;
1091 	return call_int_hook(inode_unlink, 0, dir, dentry);
1092 }
1093 
1094 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1095 			    const char *old_name)
1096 {
1097 	if (unlikely(IS_PRIVATE(dir)))
1098 		return 0;
1099 	return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1100 }
1101 
1102 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1103 {
1104 	if (unlikely(IS_PRIVATE(dir)))
1105 		return 0;
1106 	return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1107 }
1108 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1109 
1110 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1111 {
1112 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1113 		return 0;
1114 	return call_int_hook(inode_rmdir, 0, dir, dentry);
1115 }
1116 
1117 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1118 {
1119 	if (unlikely(IS_PRIVATE(dir)))
1120 		return 0;
1121 	return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1122 }
1123 
1124 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1125 			   struct inode *new_dir, struct dentry *new_dentry,
1126 			   unsigned int flags)
1127 {
1128         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1129             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1130 		return 0;
1131 
1132 	if (flags & RENAME_EXCHANGE) {
1133 		int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1134 						     old_dir, old_dentry);
1135 		if (err)
1136 			return err;
1137 	}
1138 
1139 	return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1140 					   new_dir, new_dentry);
1141 }
1142 
1143 int security_inode_readlink(struct dentry *dentry)
1144 {
1145 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1146 		return 0;
1147 	return call_int_hook(inode_readlink, 0, dentry);
1148 }
1149 
1150 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1151 			       bool rcu)
1152 {
1153 	if (unlikely(IS_PRIVATE(inode)))
1154 		return 0;
1155 	return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1156 }
1157 
1158 int security_inode_permission(struct inode *inode, int mask)
1159 {
1160 	if (unlikely(IS_PRIVATE(inode)))
1161 		return 0;
1162 	return call_int_hook(inode_permission, 0, inode, mask);
1163 }
1164 
1165 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1166 {
1167 	int ret;
1168 
1169 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1170 		return 0;
1171 	ret = call_int_hook(inode_setattr, 0, dentry, attr);
1172 	if (ret)
1173 		return ret;
1174 	return evm_inode_setattr(dentry, attr);
1175 }
1176 EXPORT_SYMBOL_GPL(security_inode_setattr);
1177 
1178 int security_inode_getattr(const struct path *path)
1179 {
1180 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1181 		return 0;
1182 	return call_int_hook(inode_getattr, 0, path);
1183 }
1184 
1185 int security_inode_setxattr(struct dentry *dentry, const char *name,
1186 			    const void *value, size_t size, int flags)
1187 {
1188 	int ret;
1189 
1190 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1191 		return 0;
1192 	/*
1193 	 * SELinux and Smack integrate the cap call,
1194 	 * so assume that all LSMs supplying this call do so.
1195 	 */
1196 	ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
1197 				flags);
1198 
1199 	if (ret == 1)
1200 		ret = cap_inode_setxattr(dentry, name, value, size, flags);
1201 	if (ret)
1202 		return ret;
1203 	ret = ima_inode_setxattr(dentry, name, value, size);
1204 	if (ret)
1205 		return ret;
1206 	return evm_inode_setxattr(dentry, name, value, size);
1207 }
1208 
1209 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1210 				  const void *value, size_t size, int flags)
1211 {
1212 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1213 		return;
1214 	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1215 	evm_inode_post_setxattr(dentry, name, value, size);
1216 }
1217 
1218 int security_inode_getxattr(struct dentry *dentry, const char *name)
1219 {
1220 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1221 		return 0;
1222 	return call_int_hook(inode_getxattr, 0, dentry, name);
1223 }
1224 
1225 int security_inode_listxattr(struct dentry *dentry)
1226 {
1227 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1228 		return 0;
1229 	return call_int_hook(inode_listxattr, 0, dentry);
1230 }
1231 
1232 int security_inode_removexattr(struct dentry *dentry, const char *name)
1233 {
1234 	int ret;
1235 
1236 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1237 		return 0;
1238 	/*
1239 	 * SELinux and Smack integrate the cap call,
1240 	 * so assume that all LSMs supplying this call do so.
1241 	 */
1242 	ret = call_int_hook(inode_removexattr, 1, dentry, name);
1243 	if (ret == 1)
1244 		ret = cap_inode_removexattr(dentry, name);
1245 	if (ret)
1246 		return ret;
1247 	ret = ima_inode_removexattr(dentry, name);
1248 	if (ret)
1249 		return ret;
1250 	return evm_inode_removexattr(dentry, name);
1251 }
1252 
1253 int security_inode_need_killpriv(struct dentry *dentry)
1254 {
1255 	return call_int_hook(inode_need_killpriv, 0, dentry);
1256 }
1257 
1258 int security_inode_killpriv(struct dentry *dentry)
1259 {
1260 	return call_int_hook(inode_killpriv, 0, dentry);
1261 }
1262 
1263 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1264 {
1265 	struct security_hook_list *hp;
1266 	int rc;
1267 
1268 	if (unlikely(IS_PRIVATE(inode)))
1269 		return -EOPNOTSUPP;
1270 	/*
1271 	 * Only one module will provide an attribute with a given name.
1272 	 */
1273 	hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1274 		rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1275 		if (rc != -EOPNOTSUPP)
1276 			return rc;
1277 	}
1278 	return -EOPNOTSUPP;
1279 }
1280 
1281 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1282 {
1283 	struct security_hook_list *hp;
1284 	int rc;
1285 
1286 	if (unlikely(IS_PRIVATE(inode)))
1287 		return -EOPNOTSUPP;
1288 	/*
1289 	 * Only one module will provide an attribute with a given name.
1290 	 */
1291 	hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1292 		rc = hp->hook.inode_setsecurity(inode, name, value, size,
1293 								flags);
1294 		if (rc != -EOPNOTSUPP)
1295 			return rc;
1296 	}
1297 	return -EOPNOTSUPP;
1298 }
1299 
1300 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1301 {
1302 	if (unlikely(IS_PRIVATE(inode)))
1303 		return 0;
1304 	return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1305 }
1306 EXPORT_SYMBOL(security_inode_listsecurity);
1307 
1308 void security_inode_getsecid(struct inode *inode, u32 *secid)
1309 {
1310 	call_void_hook(inode_getsecid, inode, secid);
1311 }
1312 
1313 int security_inode_copy_up(struct dentry *src, struct cred **new)
1314 {
1315 	return call_int_hook(inode_copy_up, 0, src, new);
1316 }
1317 EXPORT_SYMBOL(security_inode_copy_up);
1318 
1319 int security_inode_copy_up_xattr(const char *name)
1320 {
1321 	return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
1322 }
1323 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1324 
1325 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1326 				  struct kernfs_node *kn)
1327 {
1328 	return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1329 }
1330 
1331 int security_file_permission(struct file *file, int mask)
1332 {
1333 	int ret;
1334 
1335 	ret = call_int_hook(file_permission, 0, file, mask);
1336 	if (ret)
1337 		return ret;
1338 
1339 	return fsnotify_perm(file, mask);
1340 }
1341 
1342 int security_file_alloc(struct file *file)
1343 {
1344 	int rc = lsm_file_alloc(file);
1345 
1346 	if (rc)
1347 		return rc;
1348 	rc = call_int_hook(file_alloc_security, 0, file);
1349 	if (unlikely(rc))
1350 		security_file_free(file);
1351 	return rc;
1352 }
1353 
1354 void security_file_free(struct file *file)
1355 {
1356 	void *blob;
1357 
1358 	call_void_hook(file_free_security, file);
1359 
1360 	blob = file->f_security;
1361 	if (blob) {
1362 		file->f_security = NULL;
1363 		kmem_cache_free(lsm_file_cache, blob);
1364 	}
1365 }
1366 
1367 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1368 {
1369 	return call_int_hook(file_ioctl, 0, file, cmd, arg);
1370 }
1371 
1372 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1373 {
1374 	/*
1375 	 * Does we have PROT_READ and does the application expect
1376 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
1377 	 */
1378 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1379 		return prot;
1380 	if (!(current->personality & READ_IMPLIES_EXEC))
1381 		return prot;
1382 	/*
1383 	 * if that's an anonymous mapping, let it.
1384 	 */
1385 	if (!file)
1386 		return prot | PROT_EXEC;
1387 	/*
1388 	 * ditto if it's not on noexec mount, except that on !MMU we need
1389 	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1390 	 */
1391 	if (!path_noexec(&file->f_path)) {
1392 #ifndef CONFIG_MMU
1393 		if (file->f_op->mmap_capabilities) {
1394 			unsigned caps = file->f_op->mmap_capabilities(file);
1395 			if (!(caps & NOMMU_MAP_EXEC))
1396 				return prot;
1397 		}
1398 #endif
1399 		return prot | PROT_EXEC;
1400 	}
1401 	/* anything on noexec mount won't get PROT_EXEC */
1402 	return prot;
1403 }
1404 
1405 int security_mmap_file(struct file *file, unsigned long prot,
1406 			unsigned long flags)
1407 {
1408 	int ret;
1409 	ret = call_int_hook(mmap_file, 0, file, prot,
1410 					mmap_prot(file, prot), flags);
1411 	if (ret)
1412 		return ret;
1413 	return ima_file_mmap(file, prot);
1414 }
1415 
1416 int security_mmap_addr(unsigned long addr)
1417 {
1418 	return call_int_hook(mmap_addr, 0, addr);
1419 }
1420 
1421 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1422 			    unsigned long prot)
1423 {
1424 	return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1425 }
1426 
1427 int security_file_lock(struct file *file, unsigned int cmd)
1428 {
1429 	return call_int_hook(file_lock, 0, file, cmd);
1430 }
1431 
1432 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1433 {
1434 	return call_int_hook(file_fcntl, 0, file, cmd, arg);
1435 }
1436 
1437 void security_file_set_fowner(struct file *file)
1438 {
1439 	call_void_hook(file_set_fowner, file);
1440 }
1441 
1442 int security_file_send_sigiotask(struct task_struct *tsk,
1443 				  struct fown_struct *fown, int sig)
1444 {
1445 	return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1446 }
1447 
1448 int security_file_receive(struct file *file)
1449 {
1450 	return call_int_hook(file_receive, 0, file);
1451 }
1452 
1453 int security_file_open(struct file *file)
1454 {
1455 	int ret;
1456 
1457 	ret = call_int_hook(file_open, 0, file);
1458 	if (ret)
1459 		return ret;
1460 
1461 	return fsnotify_perm(file, MAY_OPEN);
1462 }
1463 
1464 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1465 {
1466 	int rc = lsm_task_alloc(task);
1467 
1468 	if (rc)
1469 		return rc;
1470 	rc = call_int_hook(task_alloc, 0, task, clone_flags);
1471 	if (unlikely(rc))
1472 		security_task_free(task);
1473 	return rc;
1474 }
1475 
1476 void security_task_free(struct task_struct *task)
1477 {
1478 	call_void_hook(task_free, task);
1479 
1480 	kfree(task->security);
1481 	task->security = NULL;
1482 }
1483 
1484 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1485 {
1486 	int rc = lsm_cred_alloc(cred, gfp);
1487 
1488 	if (rc)
1489 		return rc;
1490 
1491 	rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1492 	if (unlikely(rc))
1493 		security_cred_free(cred);
1494 	return rc;
1495 }
1496 
1497 void security_cred_free(struct cred *cred)
1498 {
1499 	/*
1500 	 * There is a failure case in prepare_creds() that
1501 	 * may result in a call here with ->security being NULL.
1502 	 */
1503 	if (unlikely(cred->security == NULL))
1504 		return;
1505 
1506 	call_void_hook(cred_free, cred);
1507 
1508 	kfree(cred->security);
1509 	cred->security = NULL;
1510 }
1511 
1512 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1513 {
1514 	int rc = lsm_cred_alloc(new, gfp);
1515 
1516 	if (rc)
1517 		return rc;
1518 
1519 	rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1520 	if (unlikely(rc))
1521 		security_cred_free(new);
1522 	return rc;
1523 }
1524 
1525 void security_transfer_creds(struct cred *new, const struct cred *old)
1526 {
1527 	call_void_hook(cred_transfer, new, old);
1528 }
1529 
1530 void security_cred_getsecid(const struct cred *c, u32 *secid)
1531 {
1532 	*secid = 0;
1533 	call_void_hook(cred_getsecid, c, secid);
1534 }
1535 EXPORT_SYMBOL(security_cred_getsecid);
1536 
1537 int security_kernel_act_as(struct cred *new, u32 secid)
1538 {
1539 	return call_int_hook(kernel_act_as, 0, new, secid);
1540 }
1541 
1542 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1543 {
1544 	return call_int_hook(kernel_create_files_as, 0, new, inode);
1545 }
1546 
1547 int security_kernel_module_request(char *kmod_name)
1548 {
1549 	int ret;
1550 
1551 	ret = call_int_hook(kernel_module_request, 0, kmod_name);
1552 	if (ret)
1553 		return ret;
1554 	return integrity_kernel_module_request(kmod_name);
1555 }
1556 
1557 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1558 {
1559 	int ret;
1560 
1561 	ret = call_int_hook(kernel_read_file, 0, file, id);
1562 	if (ret)
1563 		return ret;
1564 	return ima_read_file(file, id);
1565 }
1566 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1567 
1568 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1569 				   enum kernel_read_file_id id)
1570 {
1571 	int ret;
1572 
1573 	ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1574 	if (ret)
1575 		return ret;
1576 	return ima_post_read_file(file, buf, size, id);
1577 }
1578 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1579 
1580 int security_kernel_load_data(enum kernel_load_data_id id)
1581 {
1582 	int ret;
1583 
1584 	ret = call_int_hook(kernel_load_data, 0, id);
1585 	if (ret)
1586 		return ret;
1587 	return ima_load_data(id);
1588 }
1589 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1590 
1591 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1592 			     int flags)
1593 {
1594 	return call_int_hook(task_fix_setuid, 0, new, old, flags);
1595 }
1596 
1597 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1598 {
1599 	return call_int_hook(task_setpgid, 0, p, pgid);
1600 }
1601 
1602 int security_task_getpgid(struct task_struct *p)
1603 {
1604 	return call_int_hook(task_getpgid, 0, p);
1605 }
1606 
1607 int security_task_getsid(struct task_struct *p)
1608 {
1609 	return call_int_hook(task_getsid, 0, p);
1610 }
1611 
1612 void security_task_getsecid(struct task_struct *p, u32 *secid)
1613 {
1614 	*secid = 0;
1615 	call_void_hook(task_getsecid, p, secid);
1616 }
1617 EXPORT_SYMBOL(security_task_getsecid);
1618 
1619 int security_task_setnice(struct task_struct *p, int nice)
1620 {
1621 	return call_int_hook(task_setnice, 0, p, nice);
1622 }
1623 
1624 int security_task_setioprio(struct task_struct *p, int ioprio)
1625 {
1626 	return call_int_hook(task_setioprio, 0, p, ioprio);
1627 }
1628 
1629 int security_task_getioprio(struct task_struct *p)
1630 {
1631 	return call_int_hook(task_getioprio, 0, p);
1632 }
1633 
1634 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1635 			  unsigned int flags)
1636 {
1637 	return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1638 }
1639 
1640 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1641 		struct rlimit *new_rlim)
1642 {
1643 	return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1644 }
1645 
1646 int security_task_setscheduler(struct task_struct *p)
1647 {
1648 	return call_int_hook(task_setscheduler, 0, p);
1649 }
1650 
1651 int security_task_getscheduler(struct task_struct *p)
1652 {
1653 	return call_int_hook(task_getscheduler, 0, p);
1654 }
1655 
1656 int security_task_movememory(struct task_struct *p)
1657 {
1658 	return call_int_hook(task_movememory, 0, p);
1659 }
1660 
1661 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1662 			int sig, const struct cred *cred)
1663 {
1664 	return call_int_hook(task_kill, 0, p, info, sig, cred);
1665 }
1666 
1667 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1668 			 unsigned long arg4, unsigned long arg5)
1669 {
1670 	int thisrc;
1671 	int rc = -ENOSYS;
1672 	struct security_hook_list *hp;
1673 
1674 	hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1675 		thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1676 		if (thisrc != -ENOSYS) {
1677 			rc = thisrc;
1678 			if (thisrc != 0)
1679 				break;
1680 		}
1681 	}
1682 	return rc;
1683 }
1684 
1685 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1686 {
1687 	call_void_hook(task_to_inode, p, inode);
1688 }
1689 
1690 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1691 {
1692 	return call_int_hook(ipc_permission, 0, ipcp, flag);
1693 }
1694 
1695 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1696 {
1697 	*secid = 0;
1698 	call_void_hook(ipc_getsecid, ipcp, secid);
1699 }
1700 
1701 int security_msg_msg_alloc(struct msg_msg *msg)
1702 {
1703 	int rc = lsm_msg_msg_alloc(msg);
1704 
1705 	if (unlikely(rc))
1706 		return rc;
1707 	rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1708 	if (unlikely(rc))
1709 		security_msg_msg_free(msg);
1710 	return rc;
1711 }
1712 
1713 void security_msg_msg_free(struct msg_msg *msg)
1714 {
1715 	call_void_hook(msg_msg_free_security, msg);
1716 	kfree(msg->security);
1717 	msg->security = NULL;
1718 }
1719 
1720 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1721 {
1722 	int rc = lsm_ipc_alloc(msq);
1723 
1724 	if (unlikely(rc))
1725 		return rc;
1726 	rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1727 	if (unlikely(rc))
1728 		security_msg_queue_free(msq);
1729 	return rc;
1730 }
1731 
1732 void security_msg_queue_free(struct kern_ipc_perm *msq)
1733 {
1734 	call_void_hook(msg_queue_free_security, msq);
1735 	kfree(msq->security);
1736 	msq->security = NULL;
1737 }
1738 
1739 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1740 {
1741 	return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1742 }
1743 
1744 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1745 {
1746 	return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1747 }
1748 
1749 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1750 			       struct msg_msg *msg, int msqflg)
1751 {
1752 	return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1753 }
1754 
1755 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1756 			       struct task_struct *target, long type, int mode)
1757 {
1758 	return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1759 }
1760 
1761 int security_shm_alloc(struct kern_ipc_perm *shp)
1762 {
1763 	int rc = lsm_ipc_alloc(shp);
1764 
1765 	if (unlikely(rc))
1766 		return rc;
1767 	rc = call_int_hook(shm_alloc_security, 0, shp);
1768 	if (unlikely(rc))
1769 		security_shm_free(shp);
1770 	return rc;
1771 }
1772 
1773 void security_shm_free(struct kern_ipc_perm *shp)
1774 {
1775 	call_void_hook(shm_free_security, shp);
1776 	kfree(shp->security);
1777 	shp->security = NULL;
1778 }
1779 
1780 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1781 {
1782 	return call_int_hook(shm_associate, 0, shp, shmflg);
1783 }
1784 
1785 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1786 {
1787 	return call_int_hook(shm_shmctl, 0, shp, cmd);
1788 }
1789 
1790 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1791 {
1792 	return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1793 }
1794 
1795 int security_sem_alloc(struct kern_ipc_perm *sma)
1796 {
1797 	int rc = lsm_ipc_alloc(sma);
1798 
1799 	if (unlikely(rc))
1800 		return rc;
1801 	rc = call_int_hook(sem_alloc_security, 0, sma);
1802 	if (unlikely(rc))
1803 		security_sem_free(sma);
1804 	return rc;
1805 }
1806 
1807 void security_sem_free(struct kern_ipc_perm *sma)
1808 {
1809 	call_void_hook(sem_free_security, sma);
1810 	kfree(sma->security);
1811 	sma->security = NULL;
1812 }
1813 
1814 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1815 {
1816 	return call_int_hook(sem_associate, 0, sma, semflg);
1817 }
1818 
1819 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1820 {
1821 	return call_int_hook(sem_semctl, 0, sma, cmd);
1822 }
1823 
1824 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1825 			unsigned nsops, int alter)
1826 {
1827 	return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1828 }
1829 
1830 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1831 {
1832 	if (unlikely(inode && IS_PRIVATE(inode)))
1833 		return;
1834 	call_void_hook(d_instantiate, dentry, inode);
1835 }
1836 EXPORT_SYMBOL(security_d_instantiate);
1837 
1838 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
1839 				char **value)
1840 {
1841 	struct security_hook_list *hp;
1842 
1843 	hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
1844 		if (lsm != NULL && strcmp(lsm, hp->lsm))
1845 			continue;
1846 		return hp->hook.getprocattr(p, name, value);
1847 	}
1848 	return -EINVAL;
1849 }
1850 
1851 int security_setprocattr(const char *lsm, const char *name, void *value,
1852 			 size_t size)
1853 {
1854 	struct security_hook_list *hp;
1855 
1856 	hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
1857 		if (lsm != NULL && strcmp(lsm, hp->lsm))
1858 			continue;
1859 		return hp->hook.setprocattr(name, value, size);
1860 	}
1861 	return -EINVAL;
1862 }
1863 
1864 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1865 {
1866 	return call_int_hook(netlink_send, 0, sk, skb);
1867 }
1868 
1869 int security_ismaclabel(const char *name)
1870 {
1871 	return call_int_hook(ismaclabel, 0, name);
1872 }
1873 EXPORT_SYMBOL(security_ismaclabel);
1874 
1875 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1876 {
1877 	return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1878 				seclen);
1879 }
1880 EXPORT_SYMBOL(security_secid_to_secctx);
1881 
1882 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1883 {
1884 	*secid = 0;
1885 	return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1886 }
1887 EXPORT_SYMBOL(security_secctx_to_secid);
1888 
1889 void security_release_secctx(char *secdata, u32 seclen)
1890 {
1891 	call_void_hook(release_secctx, secdata, seclen);
1892 }
1893 EXPORT_SYMBOL(security_release_secctx);
1894 
1895 void security_inode_invalidate_secctx(struct inode *inode)
1896 {
1897 	call_void_hook(inode_invalidate_secctx, inode);
1898 }
1899 EXPORT_SYMBOL(security_inode_invalidate_secctx);
1900 
1901 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1902 {
1903 	return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1904 }
1905 EXPORT_SYMBOL(security_inode_notifysecctx);
1906 
1907 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1908 {
1909 	return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
1910 }
1911 EXPORT_SYMBOL(security_inode_setsecctx);
1912 
1913 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1914 {
1915 	return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
1916 }
1917 EXPORT_SYMBOL(security_inode_getsecctx);
1918 
1919 #ifdef CONFIG_SECURITY_NETWORK
1920 
1921 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1922 {
1923 	return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
1924 }
1925 EXPORT_SYMBOL(security_unix_stream_connect);
1926 
1927 int security_unix_may_send(struct socket *sock,  struct socket *other)
1928 {
1929 	return call_int_hook(unix_may_send, 0, sock, other);
1930 }
1931 EXPORT_SYMBOL(security_unix_may_send);
1932 
1933 int security_socket_create(int family, int type, int protocol, int kern)
1934 {
1935 	return call_int_hook(socket_create, 0, family, type, protocol, kern);
1936 }
1937 
1938 int security_socket_post_create(struct socket *sock, int family,
1939 				int type, int protocol, int kern)
1940 {
1941 	return call_int_hook(socket_post_create, 0, sock, family, type,
1942 						protocol, kern);
1943 }
1944 
1945 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
1946 {
1947 	return call_int_hook(socket_socketpair, 0, socka, sockb);
1948 }
1949 EXPORT_SYMBOL(security_socket_socketpair);
1950 
1951 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1952 {
1953 	return call_int_hook(socket_bind, 0, sock, address, addrlen);
1954 }
1955 
1956 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1957 {
1958 	return call_int_hook(socket_connect, 0, sock, address, addrlen);
1959 }
1960 
1961 int security_socket_listen(struct socket *sock, int backlog)
1962 {
1963 	return call_int_hook(socket_listen, 0, sock, backlog);
1964 }
1965 
1966 int security_socket_accept(struct socket *sock, struct socket *newsock)
1967 {
1968 	return call_int_hook(socket_accept, 0, sock, newsock);
1969 }
1970 
1971 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1972 {
1973 	return call_int_hook(socket_sendmsg, 0, sock, msg, size);
1974 }
1975 
1976 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1977 			    int size, int flags)
1978 {
1979 	return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
1980 }
1981 
1982 int security_socket_getsockname(struct socket *sock)
1983 {
1984 	return call_int_hook(socket_getsockname, 0, sock);
1985 }
1986 
1987 int security_socket_getpeername(struct socket *sock)
1988 {
1989 	return call_int_hook(socket_getpeername, 0, sock);
1990 }
1991 
1992 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1993 {
1994 	return call_int_hook(socket_getsockopt, 0, sock, level, optname);
1995 }
1996 
1997 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1998 {
1999 	return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2000 }
2001 
2002 int security_socket_shutdown(struct socket *sock, int how)
2003 {
2004 	return call_int_hook(socket_shutdown, 0, sock, how);
2005 }
2006 
2007 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2008 {
2009 	return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2010 }
2011 EXPORT_SYMBOL(security_sock_rcv_skb);
2012 
2013 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2014 				      int __user *optlen, unsigned len)
2015 {
2016 	return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2017 				optval, optlen, len);
2018 }
2019 
2020 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2021 {
2022 	return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2023 			     skb, secid);
2024 }
2025 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2026 
2027 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2028 {
2029 	return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2030 }
2031 
2032 void security_sk_free(struct sock *sk)
2033 {
2034 	call_void_hook(sk_free_security, sk);
2035 }
2036 
2037 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2038 {
2039 	call_void_hook(sk_clone_security, sk, newsk);
2040 }
2041 EXPORT_SYMBOL(security_sk_clone);
2042 
2043 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2044 {
2045 	call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
2046 }
2047 EXPORT_SYMBOL(security_sk_classify_flow);
2048 
2049 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2050 {
2051 	call_void_hook(req_classify_flow, req, fl);
2052 }
2053 EXPORT_SYMBOL(security_req_classify_flow);
2054 
2055 void security_sock_graft(struct sock *sk, struct socket *parent)
2056 {
2057 	call_void_hook(sock_graft, sk, parent);
2058 }
2059 EXPORT_SYMBOL(security_sock_graft);
2060 
2061 int security_inet_conn_request(struct sock *sk,
2062 			struct sk_buff *skb, struct request_sock *req)
2063 {
2064 	return call_int_hook(inet_conn_request, 0, sk, skb, req);
2065 }
2066 EXPORT_SYMBOL(security_inet_conn_request);
2067 
2068 void security_inet_csk_clone(struct sock *newsk,
2069 			const struct request_sock *req)
2070 {
2071 	call_void_hook(inet_csk_clone, newsk, req);
2072 }
2073 
2074 void security_inet_conn_established(struct sock *sk,
2075 			struct sk_buff *skb)
2076 {
2077 	call_void_hook(inet_conn_established, sk, skb);
2078 }
2079 EXPORT_SYMBOL(security_inet_conn_established);
2080 
2081 int security_secmark_relabel_packet(u32 secid)
2082 {
2083 	return call_int_hook(secmark_relabel_packet, 0, secid);
2084 }
2085 EXPORT_SYMBOL(security_secmark_relabel_packet);
2086 
2087 void security_secmark_refcount_inc(void)
2088 {
2089 	call_void_hook(secmark_refcount_inc);
2090 }
2091 EXPORT_SYMBOL(security_secmark_refcount_inc);
2092 
2093 void security_secmark_refcount_dec(void)
2094 {
2095 	call_void_hook(secmark_refcount_dec);
2096 }
2097 EXPORT_SYMBOL(security_secmark_refcount_dec);
2098 
2099 int security_tun_dev_alloc_security(void **security)
2100 {
2101 	return call_int_hook(tun_dev_alloc_security, 0, security);
2102 }
2103 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2104 
2105 void security_tun_dev_free_security(void *security)
2106 {
2107 	call_void_hook(tun_dev_free_security, security);
2108 }
2109 EXPORT_SYMBOL(security_tun_dev_free_security);
2110 
2111 int security_tun_dev_create(void)
2112 {
2113 	return call_int_hook(tun_dev_create, 0);
2114 }
2115 EXPORT_SYMBOL(security_tun_dev_create);
2116 
2117 int security_tun_dev_attach_queue(void *security)
2118 {
2119 	return call_int_hook(tun_dev_attach_queue, 0, security);
2120 }
2121 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2122 
2123 int security_tun_dev_attach(struct sock *sk, void *security)
2124 {
2125 	return call_int_hook(tun_dev_attach, 0, sk, security);
2126 }
2127 EXPORT_SYMBOL(security_tun_dev_attach);
2128 
2129 int security_tun_dev_open(void *security)
2130 {
2131 	return call_int_hook(tun_dev_open, 0, security);
2132 }
2133 EXPORT_SYMBOL(security_tun_dev_open);
2134 
2135 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2136 {
2137 	return call_int_hook(sctp_assoc_request, 0, ep, skb);
2138 }
2139 EXPORT_SYMBOL(security_sctp_assoc_request);
2140 
2141 int security_sctp_bind_connect(struct sock *sk, int optname,
2142 			       struct sockaddr *address, int addrlen)
2143 {
2144 	return call_int_hook(sctp_bind_connect, 0, sk, optname,
2145 			     address, addrlen);
2146 }
2147 EXPORT_SYMBOL(security_sctp_bind_connect);
2148 
2149 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2150 			    struct sock *newsk)
2151 {
2152 	call_void_hook(sctp_sk_clone, ep, sk, newsk);
2153 }
2154 EXPORT_SYMBOL(security_sctp_sk_clone);
2155 
2156 #endif	/* CONFIG_SECURITY_NETWORK */
2157 
2158 #ifdef CONFIG_SECURITY_INFINIBAND
2159 
2160 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2161 {
2162 	return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2163 }
2164 EXPORT_SYMBOL(security_ib_pkey_access);
2165 
2166 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2167 {
2168 	return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2169 }
2170 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2171 
2172 int security_ib_alloc_security(void **sec)
2173 {
2174 	return call_int_hook(ib_alloc_security, 0, sec);
2175 }
2176 EXPORT_SYMBOL(security_ib_alloc_security);
2177 
2178 void security_ib_free_security(void *sec)
2179 {
2180 	call_void_hook(ib_free_security, sec);
2181 }
2182 EXPORT_SYMBOL(security_ib_free_security);
2183 #endif	/* CONFIG_SECURITY_INFINIBAND */
2184 
2185 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2186 
2187 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2188 			       struct xfrm_user_sec_ctx *sec_ctx,
2189 			       gfp_t gfp)
2190 {
2191 	return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2192 }
2193 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2194 
2195 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2196 			      struct xfrm_sec_ctx **new_ctxp)
2197 {
2198 	return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2199 }
2200 
2201 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2202 {
2203 	call_void_hook(xfrm_policy_free_security, ctx);
2204 }
2205 EXPORT_SYMBOL(security_xfrm_policy_free);
2206 
2207 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2208 {
2209 	return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2210 }
2211 
2212 int security_xfrm_state_alloc(struct xfrm_state *x,
2213 			      struct xfrm_user_sec_ctx *sec_ctx)
2214 {
2215 	return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2216 }
2217 EXPORT_SYMBOL(security_xfrm_state_alloc);
2218 
2219 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2220 				      struct xfrm_sec_ctx *polsec, u32 secid)
2221 {
2222 	return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2223 }
2224 
2225 int security_xfrm_state_delete(struct xfrm_state *x)
2226 {
2227 	return call_int_hook(xfrm_state_delete_security, 0, x);
2228 }
2229 EXPORT_SYMBOL(security_xfrm_state_delete);
2230 
2231 void security_xfrm_state_free(struct xfrm_state *x)
2232 {
2233 	call_void_hook(xfrm_state_free_security, x);
2234 }
2235 
2236 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2237 {
2238 	return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2239 }
2240 
2241 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2242 				       struct xfrm_policy *xp,
2243 				       const struct flowi *fl)
2244 {
2245 	struct security_hook_list *hp;
2246 	int rc = 1;
2247 
2248 	/*
2249 	 * Since this function is expected to return 0 or 1, the judgment
2250 	 * becomes difficult if multiple LSMs supply this call. Fortunately,
2251 	 * we can use the first LSM's judgment because currently only SELinux
2252 	 * supplies this call.
2253 	 *
2254 	 * For speed optimization, we explicitly break the loop rather than
2255 	 * using the macro
2256 	 */
2257 	hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2258 				list) {
2259 		rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
2260 		break;
2261 	}
2262 	return rc;
2263 }
2264 
2265 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2266 {
2267 	return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2268 }
2269 
2270 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
2271 {
2272 	int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
2273 				0);
2274 
2275 	BUG_ON(rc);
2276 }
2277 EXPORT_SYMBOL(security_skb_classify_flow);
2278 
2279 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
2280 
2281 #ifdef CONFIG_KEYS
2282 
2283 int security_key_alloc(struct key *key, const struct cred *cred,
2284 		       unsigned long flags)
2285 {
2286 	return call_int_hook(key_alloc, 0, key, cred, flags);
2287 }
2288 
2289 void security_key_free(struct key *key)
2290 {
2291 	call_void_hook(key_free, key);
2292 }
2293 
2294 int security_key_permission(key_ref_t key_ref,
2295 			    const struct cred *cred, unsigned perm)
2296 {
2297 	return call_int_hook(key_permission, 0, key_ref, cred, perm);
2298 }
2299 
2300 int security_key_getsecurity(struct key *key, char **_buffer)
2301 {
2302 	*_buffer = NULL;
2303 	return call_int_hook(key_getsecurity, 0, key, _buffer);
2304 }
2305 
2306 #endif	/* CONFIG_KEYS */
2307 
2308 #ifdef CONFIG_AUDIT
2309 
2310 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2311 {
2312 	return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2313 }
2314 
2315 int security_audit_rule_known(struct audit_krule *krule)
2316 {
2317 	return call_int_hook(audit_rule_known, 0, krule);
2318 }
2319 
2320 void security_audit_rule_free(void *lsmrule)
2321 {
2322 	call_void_hook(audit_rule_free, lsmrule);
2323 }
2324 
2325 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2326 {
2327 	return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2328 }
2329 #endif /* CONFIG_AUDIT */
2330 
2331 #ifdef CONFIG_BPF_SYSCALL
2332 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2333 {
2334 	return call_int_hook(bpf, 0, cmd, attr, size);
2335 }
2336 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2337 {
2338 	return call_int_hook(bpf_map, 0, map, fmode);
2339 }
2340 int security_bpf_prog(struct bpf_prog *prog)
2341 {
2342 	return call_int_hook(bpf_prog, 0, prog);
2343 }
2344 int security_bpf_map_alloc(struct bpf_map *map)
2345 {
2346 	return call_int_hook(bpf_map_alloc_security, 0, map);
2347 }
2348 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2349 {
2350 	return call_int_hook(bpf_prog_alloc_security, 0, aux);
2351 }
2352 void security_bpf_map_free(struct bpf_map *map)
2353 {
2354 	call_void_hook(bpf_map_free_security, map);
2355 }
2356 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2357 {
2358 	call_void_hook(bpf_prog_free_security, aux);
2359 }
2360 #endif /* CONFIG_BPF_SYSCALL */
2361