1 /* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/capability.h> 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/kernel.h> 18 #include <linux/security.h> 19 #include <linux/integrity.h> 20 #include <linux/ima.h> 21 #include <linux/evm.h> 22 #include <linux/fsnotify.h> 23 #include <linux/mman.h> 24 #include <linux/mount.h> 25 #include <linux/personality.h> 26 #include <linux/backing-dev.h> 27 #include <net/flow.h> 28 29 #define MAX_LSM_EVM_XATTR 2 30 31 /* Boot-time LSM user choice */ 32 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] = 33 CONFIG_DEFAULT_SECURITY; 34 35 static struct security_operations *security_ops; 36 static struct security_operations default_security_ops = { 37 .name = "default", 38 }; 39 40 static inline int __init verify(struct security_operations *ops) 41 { 42 /* verify the security_operations structure exists */ 43 if (!ops) 44 return -EINVAL; 45 security_fixup_ops(ops); 46 return 0; 47 } 48 49 static void __init do_security_initcalls(void) 50 { 51 initcall_t *call; 52 call = __security_initcall_start; 53 while (call < __security_initcall_end) { 54 (*call) (); 55 call++; 56 } 57 } 58 59 /** 60 * security_init - initializes the security framework 61 * 62 * This should be called early in the kernel initialization sequence. 63 */ 64 int __init security_init(void) 65 { 66 printk(KERN_INFO "Security Framework initialized\n"); 67 68 security_fixup_ops(&default_security_ops); 69 security_ops = &default_security_ops; 70 do_security_initcalls(); 71 72 return 0; 73 } 74 75 void reset_security_ops(void) 76 { 77 security_ops = &default_security_ops; 78 } 79 80 /* Save user chosen LSM */ 81 static int __init choose_lsm(char *str) 82 { 83 strncpy(chosen_lsm, str, SECURITY_NAME_MAX); 84 return 1; 85 } 86 __setup("security=", choose_lsm); 87 88 /** 89 * security_module_enable - Load given security module on boot ? 90 * @ops: a pointer to the struct security_operations that is to be checked. 91 * 92 * Each LSM must pass this method before registering its own operations 93 * to avoid security registration races. This method may also be used 94 * to check if your LSM is currently loaded during kernel initialization. 95 * 96 * Return true if: 97 * -The passed LSM is the one chosen by user at boot time, 98 * -or the passed LSM is configured as the default and the user did not 99 * choose an alternate LSM at boot time. 100 * Otherwise, return false. 101 */ 102 int __init security_module_enable(struct security_operations *ops) 103 { 104 return !strcmp(ops->name, chosen_lsm); 105 } 106 107 /** 108 * register_security - registers a security framework with the kernel 109 * @ops: a pointer to the struct security_options that is to be registered 110 * 111 * This function allows a security module to register itself with the 112 * kernel security subsystem. Some rudimentary checking is done on the @ops 113 * value passed to this function. You'll need to check first if your LSM 114 * is allowed to register its @ops by calling security_module_enable(@ops). 115 * 116 * If there is already a security module registered with the kernel, 117 * an error will be returned. Otherwise %0 is returned on success. 118 */ 119 int __init register_security(struct security_operations *ops) 120 { 121 if (verify(ops)) { 122 printk(KERN_DEBUG "%s could not verify " 123 "security_operations structure.\n", __func__); 124 return -EINVAL; 125 } 126 127 if (security_ops != &default_security_ops) 128 return -EAGAIN; 129 130 security_ops = ops; 131 132 return 0; 133 } 134 135 /* Security operations */ 136 137 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 138 { 139 return security_ops->ptrace_access_check(child, mode); 140 } 141 142 int security_ptrace_traceme(struct task_struct *parent) 143 { 144 return security_ops->ptrace_traceme(parent); 145 } 146 147 int security_capget(struct task_struct *target, 148 kernel_cap_t *effective, 149 kernel_cap_t *inheritable, 150 kernel_cap_t *permitted) 151 { 152 return security_ops->capget(target, effective, inheritable, permitted); 153 } 154 155 int security_capset(struct cred *new, const struct cred *old, 156 const kernel_cap_t *effective, 157 const kernel_cap_t *inheritable, 158 const kernel_cap_t *permitted) 159 { 160 return security_ops->capset(new, old, 161 effective, inheritable, permitted); 162 } 163 164 int security_capable(const struct cred *cred, struct user_namespace *ns, 165 int cap) 166 { 167 return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT); 168 } 169 170 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns, 171 int cap) 172 { 173 return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT); 174 } 175 176 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 177 { 178 return security_ops->quotactl(cmds, type, id, sb); 179 } 180 181 int security_quota_on(struct dentry *dentry) 182 { 183 return security_ops->quota_on(dentry); 184 } 185 186 int security_syslog(int type) 187 { 188 return security_ops->syslog(type); 189 } 190 191 int security_settime(const struct timespec *ts, const struct timezone *tz) 192 { 193 return security_ops->settime(ts, tz); 194 } 195 196 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 197 { 198 return security_ops->vm_enough_memory(mm, pages); 199 } 200 201 int security_bprm_set_creds(struct linux_binprm *bprm) 202 { 203 return security_ops->bprm_set_creds(bprm); 204 } 205 206 int security_bprm_check(struct linux_binprm *bprm) 207 { 208 int ret; 209 210 ret = security_ops->bprm_check_security(bprm); 211 if (ret) 212 return ret; 213 return ima_bprm_check(bprm); 214 } 215 216 void security_bprm_committing_creds(struct linux_binprm *bprm) 217 { 218 security_ops->bprm_committing_creds(bprm); 219 } 220 221 void security_bprm_committed_creds(struct linux_binprm *bprm) 222 { 223 security_ops->bprm_committed_creds(bprm); 224 } 225 226 int security_bprm_secureexec(struct linux_binprm *bprm) 227 { 228 return security_ops->bprm_secureexec(bprm); 229 } 230 231 int security_sb_alloc(struct super_block *sb) 232 { 233 return security_ops->sb_alloc_security(sb); 234 } 235 236 void security_sb_free(struct super_block *sb) 237 { 238 security_ops->sb_free_security(sb); 239 } 240 241 int security_sb_copy_data(char *orig, char *copy) 242 { 243 return security_ops->sb_copy_data(orig, copy); 244 } 245 EXPORT_SYMBOL(security_sb_copy_data); 246 247 int security_sb_remount(struct super_block *sb, void *data) 248 { 249 return security_ops->sb_remount(sb, data); 250 } 251 252 int security_sb_kern_mount(struct super_block *sb, int flags, void *data) 253 { 254 return security_ops->sb_kern_mount(sb, flags, data); 255 } 256 257 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 258 { 259 return security_ops->sb_show_options(m, sb); 260 } 261 262 int security_sb_statfs(struct dentry *dentry) 263 { 264 return security_ops->sb_statfs(dentry); 265 } 266 267 int security_sb_mount(char *dev_name, struct path *path, 268 char *type, unsigned long flags, void *data) 269 { 270 return security_ops->sb_mount(dev_name, path, type, flags, data); 271 } 272 273 int security_sb_umount(struct vfsmount *mnt, int flags) 274 { 275 return security_ops->sb_umount(mnt, flags); 276 } 277 278 int security_sb_pivotroot(struct path *old_path, struct path *new_path) 279 { 280 return security_ops->sb_pivotroot(old_path, new_path); 281 } 282 283 int security_sb_set_mnt_opts(struct super_block *sb, 284 struct security_mnt_opts *opts) 285 { 286 return security_ops->sb_set_mnt_opts(sb, opts); 287 } 288 EXPORT_SYMBOL(security_sb_set_mnt_opts); 289 290 void security_sb_clone_mnt_opts(const struct super_block *oldsb, 291 struct super_block *newsb) 292 { 293 security_ops->sb_clone_mnt_opts(oldsb, newsb); 294 } 295 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 296 297 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) 298 { 299 return security_ops->sb_parse_opts_str(options, opts); 300 } 301 EXPORT_SYMBOL(security_sb_parse_opts_str); 302 303 int security_inode_alloc(struct inode *inode) 304 { 305 inode->i_security = NULL; 306 return security_ops->inode_alloc_security(inode); 307 } 308 309 void security_inode_free(struct inode *inode) 310 { 311 integrity_inode_free(inode); 312 security_ops->inode_free_security(inode); 313 } 314 315 int security_inode_init_security(struct inode *inode, struct inode *dir, 316 const struct qstr *qstr, 317 const initxattrs initxattrs, void *fs_data) 318 { 319 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 320 struct xattr *lsm_xattr, *evm_xattr, *xattr; 321 int ret; 322 323 if (unlikely(IS_PRIVATE(inode))) 324 return 0; 325 326 memset(new_xattrs, 0, sizeof new_xattrs); 327 if (!initxattrs) 328 return security_ops->inode_init_security(inode, dir, qstr, 329 NULL, NULL, NULL); 330 lsm_xattr = new_xattrs; 331 ret = security_ops->inode_init_security(inode, dir, qstr, 332 &lsm_xattr->name, 333 &lsm_xattr->value, 334 &lsm_xattr->value_len); 335 if (ret) 336 goto out; 337 338 evm_xattr = lsm_xattr + 1; 339 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 340 if (ret) 341 goto out; 342 ret = initxattrs(inode, new_xattrs, fs_data); 343 out: 344 for (xattr = new_xattrs; xattr->name != NULL; xattr++) { 345 kfree(xattr->name); 346 kfree(xattr->value); 347 } 348 return (ret == -EOPNOTSUPP) ? 0 : ret; 349 } 350 EXPORT_SYMBOL(security_inode_init_security); 351 352 int security_old_inode_init_security(struct inode *inode, struct inode *dir, 353 const struct qstr *qstr, char **name, 354 void **value, size_t *len) 355 { 356 if (unlikely(IS_PRIVATE(inode))) 357 return -EOPNOTSUPP; 358 return security_ops->inode_init_security(inode, dir, qstr, name, value, 359 len); 360 } 361 EXPORT_SYMBOL(security_old_inode_init_security); 362 363 #ifdef CONFIG_SECURITY_PATH 364 int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode, 365 unsigned int dev) 366 { 367 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 368 return 0; 369 return security_ops->path_mknod(dir, dentry, mode, dev); 370 } 371 EXPORT_SYMBOL(security_path_mknod); 372 373 int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode) 374 { 375 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 376 return 0; 377 return security_ops->path_mkdir(dir, dentry, mode); 378 } 379 EXPORT_SYMBOL(security_path_mkdir); 380 381 int security_path_rmdir(struct path *dir, struct dentry *dentry) 382 { 383 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 384 return 0; 385 return security_ops->path_rmdir(dir, dentry); 386 } 387 388 int security_path_unlink(struct path *dir, struct dentry *dentry) 389 { 390 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 391 return 0; 392 return security_ops->path_unlink(dir, dentry); 393 } 394 EXPORT_SYMBOL(security_path_unlink); 395 396 int security_path_symlink(struct path *dir, struct dentry *dentry, 397 const char *old_name) 398 { 399 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 400 return 0; 401 return security_ops->path_symlink(dir, dentry, old_name); 402 } 403 404 int security_path_link(struct dentry *old_dentry, struct path *new_dir, 405 struct dentry *new_dentry) 406 { 407 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 408 return 0; 409 return security_ops->path_link(old_dentry, new_dir, new_dentry); 410 } 411 412 int security_path_rename(struct path *old_dir, struct dentry *old_dentry, 413 struct path *new_dir, struct dentry *new_dentry) 414 { 415 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 416 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 417 return 0; 418 return security_ops->path_rename(old_dir, old_dentry, new_dir, 419 new_dentry); 420 } 421 EXPORT_SYMBOL(security_path_rename); 422 423 int security_path_truncate(struct path *path) 424 { 425 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 426 return 0; 427 return security_ops->path_truncate(path); 428 } 429 430 int security_path_chmod(struct path *path, umode_t mode) 431 { 432 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 433 return 0; 434 return security_ops->path_chmod(path, mode); 435 } 436 437 int security_path_chown(struct path *path, uid_t uid, gid_t gid) 438 { 439 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 440 return 0; 441 return security_ops->path_chown(path, uid, gid); 442 } 443 444 int security_path_chroot(struct path *path) 445 { 446 return security_ops->path_chroot(path); 447 } 448 #endif 449 450 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 451 { 452 if (unlikely(IS_PRIVATE(dir))) 453 return 0; 454 return security_ops->inode_create(dir, dentry, mode); 455 } 456 EXPORT_SYMBOL_GPL(security_inode_create); 457 458 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 459 struct dentry *new_dentry) 460 { 461 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 462 return 0; 463 return security_ops->inode_link(old_dentry, dir, new_dentry); 464 } 465 466 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 467 { 468 if (unlikely(IS_PRIVATE(dentry->d_inode))) 469 return 0; 470 return security_ops->inode_unlink(dir, dentry); 471 } 472 473 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 474 const char *old_name) 475 { 476 if (unlikely(IS_PRIVATE(dir))) 477 return 0; 478 return security_ops->inode_symlink(dir, dentry, old_name); 479 } 480 481 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 482 { 483 if (unlikely(IS_PRIVATE(dir))) 484 return 0; 485 return security_ops->inode_mkdir(dir, dentry, mode); 486 } 487 EXPORT_SYMBOL_GPL(security_inode_mkdir); 488 489 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 490 { 491 if (unlikely(IS_PRIVATE(dentry->d_inode))) 492 return 0; 493 return security_ops->inode_rmdir(dir, dentry); 494 } 495 496 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 497 { 498 if (unlikely(IS_PRIVATE(dir))) 499 return 0; 500 return security_ops->inode_mknod(dir, dentry, mode, dev); 501 } 502 503 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 504 struct inode *new_dir, struct dentry *new_dentry) 505 { 506 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 507 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 508 return 0; 509 return security_ops->inode_rename(old_dir, old_dentry, 510 new_dir, new_dentry); 511 } 512 513 int security_inode_readlink(struct dentry *dentry) 514 { 515 if (unlikely(IS_PRIVATE(dentry->d_inode))) 516 return 0; 517 return security_ops->inode_readlink(dentry); 518 } 519 520 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd) 521 { 522 if (unlikely(IS_PRIVATE(dentry->d_inode))) 523 return 0; 524 return security_ops->inode_follow_link(dentry, nd); 525 } 526 527 int security_inode_permission(struct inode *inode, int mask) 528 { 529 if (unlikely(IS_PRIVATE(inode))) 530 return 0; 531 return security_ops->inode_permission(inode, mask); 532 } 533 534 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 535 { 536 int ret; 537 538 if (unlikely(IS_PRIVATE(dentry->d_inode))) 539 return 0; 540 ret = security_ops->inode_setattr(dentry, attr); 541 if (ret) 542 return ret; 543 return evm_inode_setattr(dentry, attr); 544 } 545 EXPORT_SYMBOL_GPL(security_inode_setattr); 546 547 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 548 { 549 if (unlikely(IS_PRIVATE(dentry->d_inode))) 550 return 0; 551 return security_ops->inode_getattr(mnt, dentry); 552 } 553 554 int security_inode_setxattr(struct dentry *dentry, const char *name, 555 const void *value, size_t size, int flags) 556 { 557 int ret; 558 559 if (unlikely(IS_PRIVATE(dentry->d_inode))) 560 return 0; 561 ret = security_ops->inode_setxattr(dentry, name, value, size, flags); 562 if (ret) 563 return ret; 564 return evm_inode_setxattr(dentry, name, value, size); 565 } 566 567 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 568 const void *value, size_t size, int flags) 569 { 570 if (unlikely(IS_PRIVATE(dentry->d_inode))) 571 return; 572 security_ops->inode_post_setxattr(dentry, name, value, size, flags); 573 evm_inode_post_setxattr(dentry, name, value, size); 574 } 575 576 int security_inode_getxattr(struct dentry *dentry, const char *name) 577 { 578 if (unlikely(IS_PRIVATE(dentry->d_inode))) 579 return 0; 580 return security_ops->inode_getxattr(dentry, name); 581 } 582 583 int security_inode_listxattr(struct dentry *dentry) 584 { 585 if (unlikely(IS_PRIVATE(dentry->d_inode))) 586 return 0; 587 return security_ops->inode_listxattr(dentry); 588 } 589 590 int security_inode_removexattr(struct dentry *dentry, const char *name) 591 { 592 int ret; 593 594 if (unlikely(IS_PRIVATE(dentry->d_inode))) 595 return 0; 596 ret = security_ops->inode_removexattr(dentry, name); 597 if (ret) 598 return ret; 599 return evm_inode_removexattr(dentry, name); 600 } 601 602 int security_inode_need_killpriv(struct dentry *dentry) 603 { 604 return security_ops->inode_need_killpriv(dentry); 605 } 606 607 int security_inode_killpriv(struct dentry *dentry) 608 { 609 return security_ops->inode_killpriv(dentry); 610 } 611 612 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 613 { 614 if (unlikely(IS_PRIVATE(inode))) 615 return -EOPNOTSUPP; 616 return security_ops->inode_getsecurity(inode, name, buffer, alloc); 617 } 618 619 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 620 { 621 if (unlikely(IS_PRIVATE(inode))) 622 return -EOPNOTSUPP; 623 return security_ops->inode_setsecurity(inode, name, value, size, flags); 624 } 625 626 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 627 { 628 if (unlikely(IS_PRIVATE(inode))) 629 return 0; 630 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 631 } 632 633 void security_inode_getsecid(const struct inode *inode, u32 *secid) 634 { 635 security_ops->inode_getsecid(inode, secid); 636 } 637 638 int security_file_permission(struct file *file, int mask) 639 { 640 int ret; 641 642 ret = security_ops->file_permission(file, mask); 643 if (ret) 644 return ret; 645 646 return fsnotify_perm(file, mask); 647 } 648 649 int security_file_alloc(struct file *file) 650 { 651 return security_ops->file_alloc_security(file); 652 } 653 654 void security_file_free(struct file *file) 655 { 656 security_ops->file_free_security(file); 657 } 658 659 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 660 { 661 return security_ops->file_ioctl(file, cmd, arg); 662 } 663 664 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 665 { 666 /* 667 * Does we have PROT_READ and does the application expect 668 * it to imply PROT_EXEC? If not, nothing to talk about... 669 */ 670 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 671 return prot; 672 if (!(current->personality & READ_IMPLIES_EXEC)) 673 return prot; 674 /* 675 * if that's an anonymous mapping, let it. 676 */ 677 if (!file) 678 return prot | PROT_EXEC; 679 /* 680 * ditto if it's not on noexec mount, except that on !MMU we need 681 * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case 682 */ 683 if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) { 684 #ifndef CONFIG_MMU 685 unsigned long caps = 0; 686 struct address_space *mapping = file->f_mapping; 687 if (mapping && mapping->backing_dev_info) 688 caps = mapping->backing_dev_info->capabilities; 689 if (!(caps & BDI_CAP_EXEC_MAP)) 690 return prot; 691 #endif 692 return prot | PROT_EXEC; 693 } 694 /* anything on noexec mount won't get PROT_EXEC */ 695 return prot; 696 } 697 698 int security_mmap_file(struct file *file, unsigned long prot, 699 unsigned long flags) 700 { 701 int ret; 702 ret = security_ops->mmap_file(file, prot, 703 mmap_prot(file, prot), flags); 704 if (ret) 705 return ret; 706 return ima_file_mmap(file, prot); 707 } 708 709 int security_mmap_addr(unsigned long addr) 710 { 711 return security_ops->mmap_addr(addr); 712 } 713 714 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 715 unsigned long prot) 716 { 717 return security_ops->file_mprotect(vma, reqprot, prot); 718 } 719 720 int security_file_lock(struct file *file, unsigned int cmd) 721 { 722 return security_ops->file_lock(file, cmd); 723 } 724 725 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 726 { 727 return security_ops->file_fcntl(file, cmd, arg); 728 } 729 730 int security_file_set_fowner(struct file *file) 731 { 732 return security_ops->file_set_fowner(file); 733 } 734 735 int security_file_send_sigiotask(struct task_struct *tsk, 736 struct fown_struct *fown, int sig) 737 { 738 return security_ops->file_send_sigiotask(tsk, fown, sig); 739 } 740 741 int security_file_receive(struct file *file) 742 { 743 return security_ops->file_receive(file); 744 } 745 746 int security_file_open(struct file *file, const struct cred *cred) 747 { 748 int ret; 749 750 ret = security_ops->file_open(file, cred); 751 if (ret) 752 return ret; 753 754 return fsnotify_perm(file, MAY_OPEN); 755 } 756 757 int security_task_create(unsigned long clone_flags) 758 { 759 return security_ops->task_create(clone_flags); 760 } 761 762 void security_task_free(struct task_struct *task) 763 { 764 security_ops->task_free(task); 765 } 766 767 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 768 { 769 return security_ops->cred_alloc_blank(cred, gfp); 770 } 771 772 void security_cred_free(struct cred *cred) 773 { 774 security_ops->cred_free(cred); 775 } 776 777 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 778 { 779 return security_ops->cred_prepare(new, old, gfp); 780 } 781 782 void security_transfer_creds(struct cred *new, const struct cred *old) 783 { 784 security_ops->cred_transfer(new, old); 785 } 786 787 int security_kernel_act_as(struct cred *new, u32 secid) 788 { 789 return security_ops->kernel_act_as(new, secid); 790 } 791 792 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 793 { 794 return security_ops->kernel_create_files_as(new, inode); 795 } 796 797 int security_kernel_module_request(char *kmod_name) 798 { 799 return security_ops->kernel_module_request(kmod_name); 800 } 801 802 int security_task_fix_setuid(struct cred *new, const struct cred *old, 803 int flags) 804 { 805 return security_ops->task_fix_setuid(new, old, flags); 806 } 807 808 int security_task_setpgid(struct task_struct *p, pid_t pgid) 809 { 810 return security_ops->task_setpgid(p, pgid); 811 } 812 813 int security_task_getpgid(struct task_struct *p) 814 { 815 return security_ops->task_getpgid(p); 816 } 817 818 int security_task_getsid(struct task_struct *p) 819 { 820 return security_ops->task_getsid(p); 821 } 822 823 void security_task_getsecid(struct task_struct *p, u32 *secid) 824 { 825 security_ops->task_getsecid(p, secid); 826 } 827 EXPORT_SYMBOL(security_task_getsecid); 828 829 int security_task_setnice(struct task_struct *p, int nice) 830 { 831 return security_ops->task_setnice(p, nice); 832 } 833 834 int security_task_setioprio(struct task_struct *p, int ioprio) 835 { 836 return security_ops->task_setioprio(p, ioprio); 837 } 838 839 int security_task_getioprio(struct task_struct *p) 840 { 841 return security_ops->task_getioprio(p); 842 } 843 844 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 845 struct rlimit *new_rlim) 846 { 847 return security_ops->task_setrlimit(p, resource, new_rlim); 848 } 849 850 int security_task_setscheduler(struct task_struct *p) 851 { 852 return security_ops->task_setscheduler(p); 853 } 854 855 int security_task_getscheduler(struct task_struct *p) 856 { 857 return security_ops->task_getscheduler(p); 858 } 859 860 int security_task_movememory(struct task_struct *p) 861 { 862 return security_ops->task_movememory(p); 863 } 864 865 int security_task_kill(struct task_struct *p, struct siginfo *info, 866 int sig, u32 secid) 867 { 868 return security_ops->task_kill(p, info, sig, secid); 869 } 870 871 int security_task_wait(struct task_struct *p) 872 { 873 return security_ops->task_wait(p); 874 } 875 876 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 877 unsigned long arg4, unsigned long arg5) 878 { 879 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5); 880 } 881 882 void security_task_to_inode(struct task_struct *p, struct inode *inode) 883 { 884 security_ops->task_to_inode(p, inode); 885 } 886 887 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 888 { 889 return security_ops->ipc_permission(ipcp, flag); 890 } 891 892 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 893 { 894 security_ops->ipc_getsecid(ipcp, secid); 895 } 896 897 int security_msg_msg_alloc(struct msg_msg *msg) 898 { 899 return security_ops->msg_msg_alloc_security(msg); 900 } 901 902 void security_msg_msg_free(struct msg_msg *msg) 903 { 904 security_ops->msg_msg_free_security(msg); 905 } 906 907 int security_msg_queue_alloc(struct msg_queue *msq) 908 { 909 return security_ops->msg_queue_alloc_security(msq); 910 } 911 912 void security_msg_queue_free(struct msg_queue *msq) 913 { 914 security_ops->msg_queue_free_security(msq); 915 } 916 917 int security_msg_queue_associate(struct msg_queue *msq, int msqflg) 918 { 919 return security_ops->msg_queue_associate(msq, msqflg); 920 } 921 922 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) 923 { 924 return security_ops->msg_queue_msgctl(msq, cmd); 925 } 926 927 int security_msg_queue_msgsnd(struct msg_queue *msq, 928 struct msg_msg *msg, int msqflg) 929 { 930 return security_ops->msg_queue_msgsnd(msq, msg, msqflg); 931 } 932 933 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 934 struct task_struct *target, long type, int mode) 935 { 936 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode); 937 } 938 939 int security_shm_alloc(struct shmid_kernel *shp) 940 { 941 return security_ops->shm_alloc_security(shp); 942 } 943 944 void security_shm_free(struct shmid_kernel *shp) 945 { 946 security_ops->shm_free_security(shp); 947 } 948 949 int security_shm_associate(struct shmid_kernel *shp, int shmflg) 950 { 951 return security_ops->shm_associate(shp, shmflg); 952 } 953 954 int security_shm_shmctl(struct shmid_kernel *shp, int cmd) 955 { 956 return security_ops->shm_shmctl(shp, cmd); 957 } 958 959 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg) 960 { 961 return security_ops->shm_shmat(shp, shmaddr, shmflg); 962 } 963 964 int security_sem_alloc(struct sem_array *sma) 965 { 966 return security_ops->sem_alloc_security(sma); 967 } 968 969 void security_sem_free(struct sem_array *sma) 970 { 971 security_ops->sem_free_security(sma); 972 } 973 974 int security_sem_associate(struct sem_array *sma, int semflg) 975 { 976 return security_ops->sem_associate(sma, semflg); 977 } 978 979 int security_sem_semctl(struct sem_array *sma, int cmd) 980 { 981 return security_ops->sem_semctl(sma, cmd); 982 } 983 984 int security_sem_semop(struct sem_array *sma, struct sembuf *sops, 985 unsigned nsops, int alter) 986 { 987 return security_ops->sem_semop(sma, sops, nsops, alter); 988 } 989 990 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 991 { 992 if (unlikely(inode && IS_PRIVATE(inode))) 993 return; 994 security_ops->d_instantiate(dentry, inode); 995 } 996 EXPORT_SYMBOL(security_d_instantiate); 997 998 int security_getprocattr(struct task_struct *p, char *name, char **value) 999 { 1000 return security_ops->getprocattr(p, name, value); 1001 } 1002 1003 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 1004 { 1005 return security_ops->setprocattr(p, name, value, size); 1006 } 1007 1008 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 1009 { 1010 return security_ops->netlink_send(sk, skb); 1011 } 1012 1013 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 1014 { 1015 return security_ops->secid_to_secctx(secid, secdata, seclen); 1016 } 1017 EXPORT_SYMBOL(security_secid_to_secctx); 1018 1019 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 1020 { 1021 return security_ops->secctx_to_secid(secdata, seclen, secid); 1022 } 1023 EXPORT_SYMBOL(security_secctx_to_secid); 1024 1025 void security_release_secctx(char *secdata, u32 seclen) 1026 { 1027 security_ops->release_secctx(secdata, seclen); 1028 } 1029 EXPORT_SYMBOL(security_release_secctx); 1030 1031 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 1032 { 1033 return security_ops->inode_notifysecctx(inode, ctx, ctxlen); 1034 } 1035 EXPORT_SYMBOL(security_inode_notifysecctx); 1036 1037 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 1038 { 1039 return security_ops->inode_setsecctx(dentry, ctx, ctxlen); 1040 } 1041 EXPORT_SYMBOL(security_inode_setsecctx); 1042 1043 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 1044 { 1045 return security_ops->inode_getsecctx(inode, ctx, ctxlen); 1046 } 1047 EXPORT_SYMBOL(security_inode_getsecctx); 1048 1049 #ifdef CONFIG_SECURITY_NETWORK 1050 1051 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 1052 { 1053 return security_ops->unix_stream_connect(sock, other, newsk); 1054 } 1055 EXPORT_SYMBOL(security_unix_stream_connect); 1056 1057 int security_unix_may_send(struct socket *sock, struct socket *other) 1058 { 1059 return security_ops->unix_may_send(sock, other); 1060 } 1061 EXPORT_SYMBOL(security_unix_may_send); 1062 1063 int security_socket_create(int family, int type, int protocol, int kern) 1064 { 1065 return security_ops->socket_create(family, type, protocol, kern); 1066 } 1067 1068 int security_socket_post_create(struct socket *sock, int family, 1069 int type, int protocol, int kern) 1070 { 1071 return security_ops->socket_post_create(sock, family, type, 1072 protocol, kern); 1073 } 1074 1075 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 1076 { 1077 return security_ops->socket_bind(sock, address, addrlen); 1078 } 1079 1080 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 1081 { 1082 return security_ops->socket_connect(sock, address, addrlen); 1083 } 1084 1085 int security_socket_listen(struct socket *sock, int backlog) 1086 { 1087 return security_ops->socket_listen(sock, backlog); 1088 } 1089 1090 int security_socket_accept(struct socket *sock, struct socket *newsock) 1091 { 1092 return security_ops->socket_accept(sock, newsock); 1093 } 1094 1095 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 1096 { 1097 return security_ops->socket_sendmsg(sock, msg, size); 1098 } 1099 1100 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 1101 int size, int flags) 1102 { 1103 return security_ops->socket_recvmsg(sock, msg, size, flags); 1104 } 1105 1106 int security_socket_getsockname(struct socket *sock) 1107 { 1108 return security_ops->socket_getsockname(sock); 1109 } 1110 1111 int security_socket_getpeername(struct socket *sock) 1112 { 1113 return security_ops->socket_getpeername(sock); 1114 } 1115 1116 int security_socket_getsockopt(struct socket *sock, int level, int optname) 1117 { 1118 return security_ops->socket_getsockopt(sock, level, optname); 1119 } 1120 1121 int security_socket_setsockopt(struct socket *sock, int level, int optname) 1122 { 1123 return security_ops->socket_setsockopt(sock, level, optname); 1124 } 1125 1126 int security_socket_shutdown(struct socket *sock, int how) 1127 { 1128 return security_ops->socket_shutdown(sock, how); 1129 } 1130 1131 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 1132 { 1133 return security_ops->socket_sock_rcv_skb(sk, skb); 1134 } 1135 EXPORT_SYMBOL(security_sock_rcv_skb); 1136 1137 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 1138 int __user *optlen, unsigned len) 1139 { 1140 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 1141 } 1142 1143 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 1144 { 1145 return security_ops->socket_getpeersec_dgram(sock, skb, secid); 1146 } 1147 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 1148 1149 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 1150 { 1151 return security_ops->sk_alloc_security(sk, family, priority); 1152 } 1153 1154 void security_sk_free(struct sock *sk) 1155 { 1156 security_ops->sk_free_security(sk); 1157 } 1158 1159 void security_sk_clone(const struct sock *sk, struct sock *newsk) 1160 { 1161 security_ops->sk_clone_security(sk, newsk); 1162 } 1163 EXPORT_SYMBOL(security_sk_clone); 1164 1165 void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 1166 { 1167 security_ops->sk_getsecid(sk, &fl->flowi_secid); 1168 } 1169 EXPORT_SYMBOL(security_sk_classify_flow); 1170 1171 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 1172 { 1173 security_ops->req_classify_flow(req, fl); 1174 } 1175 EXPORT_SYMBOL(security_req_classify_flow); 1176 1177 void security_sock_graft(struct sock *sk, struct socket *parent) 1178 { 1179 security_ops->sock_graft(sk, parent); 1180 } 1181 EXPORT_SYMBOL(security_sock_graft); 1182 1183 int security_inet_conn_request(struct sock *sk, 1184 struct sk_buff *skb, struct request_sock *req) 1185 { 1186 return security_ops->inet_conn_request(sk, skb, req); 1187 } 1188 EXPORT_SYMBOL(security_inet_conn_request); 1189 1190 void security_inet_csk_clone(struct sock *newsk, 1191 const struct request_sock *req) 1192 { 1193 security_ops->inet_csk_clone(newsk, req); 1194 } 1195 1196 void security_inet_conn_established(struct sock *sk, 1197 struct sk_buff *skb) 1198 { 1199 security_ops->inet_conn_established(sk, skb); 1200 } 1201 1202 int security_secmark_relabel_packet(u32 secid) 1203 { 1204 return security_ops->secmark_relabel_packet(secid); 1205 } 1206 EXPORT_SYMBOL(security_secmark_relabel_packet); 1207 1208 void security_secmark_refcount_inc(void) 1209 { 1210 security_ops->secmark_refcount_inc(); 1211 } 1212 EXPORT_SYMBOL(security_secmark_refcount_inc); 1213 1214 void security_secmark_refcount_dec(void) 1215 { 1216 security_ops->secmark_refcount_dec(); 1217 } 1218 EXPORT_SYMBOL(security_secmark_refcount_dec); 1219 1220 int security_tun_dev_create(void) 1221 { 1222 return security_ops->tun_dev_create(); 1223 } 1224 EXPORT_SYMBOL(security_tun_dev_create); 1225 1226 void security_tun_dev_post_create(struct sock *sk) 1227 { 1228 return security_ops->tun_dev_post_create(sk); 1229 } 1230 EXPORT_SYMBOL(security_tun_dev_post_create); 1231 1232 int security_tun_dev_attach(struct sock *sk) 1233 { 1234 return security_ops->tun_dev_attach(sk); 1235 } 1236 EXPORT_SYMBOL(security_tun_dev_attach); 1237 1238 #endif /* CONFIG_SECURITY_NETWORK */ 1239 1240 #ifdef CONFIG_SECURITY_NETWORK_XFRM 1241 1242 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx) 1243 { 1244 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx); 1245 } 1246 EXPORT_SYMBOL(security_xfrm_policy_alloc); 1247 1248 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 1249 struct xfrm_sec_ctx **new_ctxp) 1250 { 1251 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp); 1252 } 1253 1254 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 1255 { 1256 security_ops->xfrm_policy_free_security(ctx); 1257 } 1258 EXPORT_SYMBOL(security_xfrm_policy_free); 1259 1260 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 1261 { 1262 return security_ops->xfrm_policy_delete_security(ctx); 1263 } 1264 1265 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 1266 { 1267 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0); 1268 } 1269 EXPORT_SYMBOL(security_xfrm_state_alloc); 1270 1271 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1272 struct xfrm_sec_ctx *polsec, u32 secid) 1273 { 1274 if (!polsec) 1275 return 0; 1276 /* 1277 * We want the context to be taken from secid which is usually 1278 * from the sock. 1279 */ 1280 return security_ops->xfrm_state_alloc_security(x, NULL, secid); 1281 } 1282 1283 int security_xfrm_state_delete(struct xfrm_state *x) 1284 { 1285 return security_ops->xfrm_state_delete_security(x); 1286 } 1287 EXPORT_SYMBOL(security_xfrm_state_delete); 1288 1289 void security_xfrm_state_free(struct xfrm_state *x) 1290 { 1291 security_ops->xfrm_state_free_security(x); 1292 } 1293 1294 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 1295 { 1296 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir); 1297 } 1298 1299 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1300 struct xfrm_policy *xp, 1301 const struct flowi *fl) 1302 { 1303 return security_ops->xfrm_state_pol_flow_match(x, xp, fl); 1304 } 1305 1306 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1307 { 1308 return security_ops->xfrm_decode_session(skb, secid, 1); 1309 } 1310 1311 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1312 { 1313 int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0); 1314 1315 BUG_ON(rc); 1316 } 1317 EXPORT_SYMBOL(security_skb_classify_flow); 1318 1319 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1320 1321 #ifdef CONFIG_KEYS 1322 1323 int security_key_alloc(struct key *key, const struct cred *cred, 1324 unsigned long flags) 1325 { 1326 return security_ops->key_alloc(key, cred, flags); 1327 } 1328 1329 void security_key_free(struct key *key) 1330 { 1331 security_ops->key_free(key); 1332 } 1333 1334 int security_key_permission(key_ref_t key_ref, 1335 const struct cred *cred, key_perm_t perm) 1336 { 1337 return security_ops->key_permission(key_ref, cred, perm); 1338 } 1339 1340 int security_key_getsecurity(struct key *key, char **_buffer) 1341 { 1342 return security_ops->key_getsecurity(key, _buffer); 1343 } 1344 1345 #endif /* CONFIG_KEYS */ 1346 1347 #ifdef CONFIG_AUDIT 1348 1349 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 1350 { 1351 return security_ops->audit_rule_init(field, op, rulestr, lsmrule); 1352 } 1353 1354 int security_audit_rule_known(struct audit_krule *krule) 1355 { 1356 return security_ops->audit_rule_known(krule); 1357 } 1358 1359 void security_audit_rule_free(void *lsmrule) 1360 { 1361 security_ops->audit_rule_free(lsmrule); 1362 } 1363 1364 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 1365 struct audit_context *actx) 1366 { 1367 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx); 1368 } 1369 1370 #endif /* CONFIG_AUDIT */ 1371