xref: /openbmc/linux/security/security.c (revision 95e9fd10)
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *	This program is free software; you can redistribute it and/or modify
9  *	it under the terms of the GNU General Public License as published by
10  *	the Free Software Foundation; either version 2 of the License, or
11  *	(at your option) any later version.
12  */
13 
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/integrity.h>
20 #include <linux/ima.h>
21 #include <linux/evm.h>
22 #include <linux/fsnotify.h>
23 #include <linux/mman.h>
24 #include <linux/mount.h>
25 #include <linux/personality.h>
26 #include <linux/backing-dev.h>
27 #include <net/flow.h>
28 
29 #define MAX_LSM_EVM_XATTR	2
30 
31 /* Boot-time LSM user choice */
32 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
33 	CONFIG_DEFAULT_SECURITY;
34 
35 static struct security_operations *security_ops;
36 static struct security_operations default_security_ops = {
37 	.name	= "default",
38 };
39 
40 static inline int __init verify(struct security_operations *ops)
41 {
42 	/* verify the security_operations structure exists */
43 	if (!ops)
44 		return -EINVAL;
45 	security_fixup_ops(ops);
46 	return 0;
47 }
48 
49 static void __init do_security_initcalls(void)
50 {
51 	initcall_t *call;
52 	call = __security_initcall_start;
53 	while (call < __security_initcall_end) {
54 		(*call) ();
55 		call++;
56 	}
57 }
58 
59 /**
60  * security_init - initializes the security framework
61  *
62  * This should be called early in the kernel initialization sequence.
63  */
64 int __init security_init(void)
65 {
66 	printk(KERN_INFO "Security Framework initialized\n");
67 
68 	security_fixup_ops(&default_security_ops);
69 	security_ops = &default_security_ops;
70 	do_security_initcalls();
71 
72 	return 0;
73 }
74 
75 void reset_security_ops(void)
76 {
77 	security_ops = &default_security_ops;
78 }
79 
80 /* Save user chosen LSM */
81 static int __init choose_lsm(char *str)
82 {
83 	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
84 	return 1;
85 }
86 __setup("security=", choose_lsm);
87 
88 /**
89  * security_module_enable - Load given security module on boot ?
90  * @ops: a pointer to the struct security_operations that is to be checked.
91  *
92  * Each LSM must pass this method before registering its own operations
93  * to avoid security registration races. This method may also be used
94  * to check if your LSM is currently loaded during kernel initialization.
95  *
96  * Return true if:
97  *	-The passed LSM is the one chosen by user at boot time,
98  *	-or the passed LSM is configured as the default and the user did not
99  *	 choose an alternate LSM at boot time.
100  * Otherwise, return false.
101  */
102 int __init security_module_enable(struct security_operations *ops)
103 {
104 	return !strcmp(ops->name, chosen_lsm);
105 }
106 
107 /**
108  * register_security - registers a security framework with the kernel
109  * @ops: a pointer to the struct security_options that is to be registered
110  *
111  * This function allows a security module to register itself with the
112  * kernel security subsystem.  Some rudimentary checking is done on the @ops
113  * value passed to this function. You'll need to check first if your LSM
114  * is allowed to register its @ops by calling security_module_enable(@ops).
115  *
116  * If there is already a security module registered with the kernel,
117  * an error will be returned.  Otherwise %0 is returned on success.
118  */
119 int __init register_security(struct security_operations *ops)
120 {
121 	if (verify(ops)) {
122 		printk(KERN_DEBUG "%s could not verify "
123 		       "security_operations structure.\n", __func__);
124 		return -EINVAL;
125 	}
126 
127 	if (security_ops != &default_security_ops)
128 		return -EAGAIN;
129 
130 	security_ops = ops;
131 
132 	return 0;
133 }
134 
135 /* Security operations */
136 
137 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
138 {
139 	return security_ops->ptrace_access_check(child, mode);
140 }
141 
142 int security_ptrace_traceme(struct task_struct *parent)
143 {
144 	return security_ops->ptrace_traceme(parent);
145 }
146 
147 int security_capget(struct task_struct *target,
148 		     kernel_cap_t *effective,
149 		     kernel_cap_t *inheritable,
150 		     kernel_cap_t *permitted)
151 {
152 	return security_ops->capget(target, effective, inheritable, permitted);
153 }
154 
155 int security_capset(struct cred *new, const struct cred *old,
156 		    const kernel_cap_t *effective,
157 		    const kernel_cap_t *inheritable,
158 		    const kernel_cap_t *permitted)
159 {
160 	return security_ops->capset(new, old,
161 				    effective, inheritable, permitted);
162 }
163 
164 int security_capable(const struct cred *cred, struct user_namespace *ns,
165 		     int cap)
166 {
167 	return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
168 }
169 
170 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
171 			     int cap)
172 {
173 	return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
174 }
175 
176 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
177 {
178 	return security_ops->quotactl(cmds, type, id, sb);
179 }
180 
181 int security_quota_on(struct dentry *dentry)
182 {
183 	return security_ops->quota_on(dentry);
184 }
185 
186 int security_syslog(int type)
187 {
188 	return security_ops->syslog(type);
189 }
190 
191 int security_settime(const struct timespec *ts, const struct timezone *tz)
192 {
193 	return security_ops->settime(ts, tz);
194 }
195 
196 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
197 {
198 	return security_ops->vm_enough_memory(mm, pages);
199 }
200 
201 int security_bprm_set_creds(struct linux_binprm *bprm)
202 {
203 	return security_ops->bprm_set_creds(bprm);
204 }
205 
206 int security_bprm_check(struct linux_binprm *bprm)
207 {
208 	int ret;
209 
210 	ret = security_ops->bprm_check_security(bprm);
211 	if (ret)
212 		return ret;
213 	return ima_bprm_check(bprm);
214 }
215 
216 void security_bprm_committing_creds(struct linux_binprm *bprm)
217 {
218 	security_ops->bprm_committing_creds(bprm);
219 }
220 
221 void security_bprm_committed_creds(struct linux_binprm *bprm)
222 {
223 	security_ops->bprm_committed_creds(bprm);
224 }
225 
226 int security_bprm_secureexec(struct linux_binprm *bprm)
227 {
228 	return security_ops->bprm_secureexec(bprm);
229 }
230 
231 int security_sb_alloc(struct super_block *sb)
232 {
233 	return security_ops->sb_alloc_security(sb);
234 }
235 
236 void security_sb_free(struct super_block *sb)
237 {
238 	security_ops->sb_free_security(sb);
239 }
240 
241 int security_sb_copy_data(char *orig, char *copy)
242 {
243 	return security_ops->sb_copy_data(orig, copy);
244 }
245 EXPORT_SYMBOL(security_sb_copy_data);
246 
247 int security_sb_remount(struct super_block *sb, void *data)
248 {
249 	return security_ops->sb_remount(sb, data);
250 }
251 
252 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
253 {
254 	return security_ops->sb_kern_mount(sb, flags, data);
255 }
256 
257 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
258 {
259 	return security_ops->sb_show_options(m, sb);
260 }
261 
262 int security_sb_statfs(struct dentry *dentry)
263 {
264 	return security_ops->sb_statfs(dentry);
265 }
266 
267 int security_sb_mount(char *dev_name, struct path *path,
268                        char *type, unsigned long flags, void *data)
269 {
270 	return security_ops->sb_mount(dev_name, path, type, flags, data);
271 }
272 
273 int security_sb_umount(struct vfsmount *mnt, int flags)
274 {
275 	return security_ops->sb_umount(mnt, flags);
276 }
277 
278 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
279 {
280 	return security_ops->sb_pivotroot(old_path, new_path);
281 }
282 
283 int security_sb_set_mnt_opts(struct super_block *sb,
284 				struct security_mnt_opts *opts)
285 {
286 	return security_ops->sb_set_mnt_opts(sb, opts);
287 }
288 EXPORT_SYMBOL(security_sb_set_mnt_opts);
289 
290 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
291 				struct super_block *newsb)
292 {
293 	security_ops->sb_clone_mnt_opts(oldsb, newsb);
294 }
295 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
296 
297 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
298 {
299 	return security_ops->sb_parse_opts_str(options, opts);
300 }
301 EXPORT_SYMBOL(security_sb_parse_opts_str);
302 
303 int security_inode_alloc(struct inode *inode)
304 {
305 	inode->i_security = NULL;
306 	return security_ops->inode_alloc_security(inode);
307 }
308 
309 void security_inode_free(struct inode *inode)
310 {
311 	integrity_inode_free(inode);
312 	security_ops->inode_free_security(inode);
313 }
314 
315 int security_inode_init_security(struct inode *inode, struct inode *dir,
316 				 const struct qstr *qstr,
317 				 const initxattrs initxattrs, void *fs_data)
318 {
319 	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
320 	struct xattr *lsm_xattr, *evm_xattr, *xattr;
321 	int ret;
322 
323 	if (unlikely(IS_PRIVATE(inode)))
324 		return 0;
325 
326 	memset(new_xattrs, 0, sizeof new_xattrs);
327 	if (!initxattrs)
328 		return security_ops->inode_init_security(inode, dir, qstr,
329 							 NULL, NULL, NULL);
330 	lsm_xattr = new_xattrs;
331 	ret = security_ops->inode_init_security(inode, dir, qstr,
332 						&lsm_xattr->name,
333 						&lsm_xattr->value,
334 						&lsm_xattr->value_len);
335 	if (ret)
336 		goto out;
337 
338 	evm_xattr = lsm_xattr + 1;
339 	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
340 	if (ret)
341 		goto out;
342 	ret = initxattrs(inode, new_xattrs, fs_data);
343 out:
344 	for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
345 		kfree(xattr->name);
346 		kfree(xattr->value);
347 	}
348 	return (ret == -EOPNOTSUPP) ? 0 : ret;
349 }
350 EXPORT_SYMBOL(security_inode_init_security);
351 
352 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
353 				     const struct qstr *qstr, char **name,
354 				     void **value, size_t *len)
355 {
356 	if (unlikely(IS_PRIVATE(inode)))
357 		return -EOPNOTSUPP;
358 	return security_ops->inode_init_security(inode, dir, qstr, name, value,
359 						 len);
360 }
361 EXPORT_SYMBOL(security_old_inode_init_security);
362 
363 #ifdef CONFIG_SECURITY_PATH
364 int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
365 			unsigned int dev)
366 {
367 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
368 		return 0;
369 	return security_ops->path_mknod(dir, dentry, mode, dev);
370 }
371 EXPORT_SYMBOL(security_path_mknod);
372 
373 int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
374 {
375 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
376 		return 0;
377 	return security_ops->path_mkdir(dir, dentry, mode);
378 }
379 EXPORT_SYMBOL(security_path_mkdir);
380 
381 int security_path_rmdir(struct path *dir, struct dentry *dentry)
382 {
383 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
384 		return 0;
385 	return security_ops->path_rmdir(dir, dentry);
386 }
387 
388 int security_path_unlink(struct path *dir, struct dentry *dentry)
389 {
390 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
391 		return 0;
392 	return security_ops->path_unlink(dir, dentry);
393 }
394 EXPORT_SYMBOL(security_path_unlink);
395 
396 int security_path_symlink(struct path *dir, struct dentry *dentry,
397 			  const char *old_name)
398 {
399 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
400 		return 0;
401 	return security_ops->path_symlink(dir, dentry, old_name);
402 }
403 
404 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
405 		       struct dentry *new_dentry)
406 {
407 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
408 		return 0;
409 	return security_ops->path_link(old_dentry, new_dir, new_dentry);
410 }
411 
412 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
413 			 struct path *new_dir, struct dentry *new_dentry)
414 {
415 	if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
416 		     (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
417 		return 0;
418 	return security_ops->path_rename(old_dir, old_dentry, new_dir,
419 					 new_dentry);
420 }
421 EXPORT_SYMBOL(security_path_rename);
422 
423 int security_path_truncate(struct path *path)
424 {
425 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
426 		return 0;
427 	return security_ops->path_truncate(path);
428 }
429 
430 int security_path_chmod(struct path *path, umode_t mode)
431 {
432 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
433 		return 0;
434 	return security_ops->path_chmod(path, mode);
435 }
436 
437 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
438 {
439 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
440 		return 0;
441 	return security_ops->path_chown(path, uid, gid);
442 }
443 
444 int security_path_chroot(struct path *path)
445 {
446 	return security_ops->path_chroot(path);
447 }
448 #endif
449 
450 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
451 {
452 	if (unlikely(IS_PRIVATE(dir)))
453 		return 0;
454 	return security_ops->inode_create(dir, dentry, mode);
455 }
456 EXPORT_SYMBOL_GPL(security_inode_create);
457 
458 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
459 			 struct dentry *new_dentry)
460 {
461 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
462 		return 0;
463 	return security_ops->inode_link(old_dentry, dir, new_dentry);
464 }
465 
466 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
467 {
468 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
469 		return 0;
470 	return security_ops->inode_unlink(dir, dentry);
471 }
472 
473 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
474 			    const char *old_name)
475 {
476 	if (unlikely(IS_PRIVATE(dir)))
477 		return 0;
478 	return security_ops->inode_symlink(dir, dentry, old_name);
479 }
480 
481 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
482 {
483 	if (unlikely(IS_PRIVATE(dir)))
484 		return 0;
485 	return security_ops->inode_mkdir(dir, dentry, mode);
486 }
487 EXPORT_SYMBOL_GPL(security_inode_mkdir);
488 
489 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
490 {
491 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
492 		return 0;
493 	return security_ops->inode_rmdir(dir, dentry);
494 }
495 
496 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
497 {
498 	if (unlikely(IS_PRIVATE(dir)))
499 		return 0;
500 	return security_ops->inode_mknod(dir, dentry, mode, dev);
501 }
502 
503 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
504 			   struct inode *new_dir, struct dentry *new_dentry)
505 {
506         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
507             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
508 		return 0;
509 	return security_ops->inode_rename(old_dir, old_dentry,
510 					   new_dir, new_dentry);
511 }
512 
513 int security_inode_readlink(struct dentry *dentry)
514 {
515 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
516 		return 0;
517 	return security_ops->inode_readlink(dentry);
518 }
519 
520 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
521 {
522 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
523 		return 0;
524 	return security_ops->inode_follow_link(dentry, nd);
525 }
526 
527 int security_inode_permission(struct inode *inode, int mask)
528 {
529 	if (unlikely(IS_PRIVATE(inode)))
530 		return 0;
531 	return security_ops->inode_permission(inode, mask);
532 }
533 
534 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
535 {
536 	int ret;
537 
538 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
539 		return 0;
540 	ret = security_ops->inode_setattr(dentry, attr);
541 	if (ret)
542 		return ret;
543 	return evm_inode_setattr(dentry, attr);
544 }
545 EXPORT_SYMBOL_GPL(security_inode_setattr);
546 
547 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
548 {
549 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
550 		return 0;
551 	return security_ops->inode_getattr(mnt, dentry);
552 }
553 
554 int security_inode_setxattr(struct dentry *dentry, const char *name,
555 			    const void *value, size_t size, int flags)
556 {
557 	int ret;
558 
559 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
560 		return 0;
561 	ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
562 	if (ret)
563 		return ret;
564 	return evm_inode_setxattr(dentry, name, value, size);
565 }
566 
567 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
568 				  const void *value, size_t size, int flags)
569 {
570 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
571 		return;
572 	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
573 	evm_inode_post_setxattr(dentry, name, value, size);
574 }
575 
576 int security_inode_getxattr(struct dentry *dentry, const char *name)
577 {
578 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
579 		return 0;
580 	return security_ops->inode_getxattr(dentry, name);
581 }
582 
583 int security_inode_listxattr(struct dentry *dentry)
584 {
585 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
586 		return 0;
587 	return security_ops->inode_listxattr(dentry);
588 }
589 
590 int security_inode_removexattr(struct dentry *dentry, const char *name)
591 {
592 	int ret;
593 
594 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
595 		return 0;
596 	ret = security_ops->inode_removexattr(dentry, name);
597 	if (ret)
598 		return ret;
599 	return evm_inode_removexattr(dentry, name);
600 }
601 
602 int security_inode_need_killpriv(struct dentry *dentry)
603 {
604 	return security_ops->inode_need_killpriv(dentry);
605 }
606 
607 int security_inode_killpriv(struct dentry *dentry)
608 {
609 	return security_ops->inode_killpriv(dentry);
610 }
611 
612 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
613 {
614 	if (unlikely(IS_PRIVATE(inode)))
615 		return -EOPNOTSUPP;
616 	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
617 }
618 
619 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
620 {
621 	if (unlikely(IS_PRIVATE(inode)))
622 		return -EOPNOTSUPP;
623 	return security_ops->inode_setsecurity(inode, name, value, size, flags);
624 }
625 
626 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
627 {
628 	if (unlikely(IS_PRIVATE(inode)))
629 		return 0;
630 	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
631 }
632 
633 void security_inode_getsecid(const struct inode *inode, u32 *secid)
634 {
635 	security_ops->inode_getsecid(inode, secid);
636 }
637 
638 int security_file_permission(struct file *file, int mask)
639 {
640 	int ret;
641 
642 	ret = security_ops->file_permission(file, mask);
643 	if (ret)
644 		return ret;
645 
646 	return fsnotify_perm(file, mask);
647 }
648 
649 int security_file_alloc(struct file *file)
650 {
651 	return security_ops->file_alloc_security(file);
652 }
653 
654 void security_file_free(struct file *file)
655 {
656 	security_ops->file_free_security(file);
657 }
658 
659 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
660 {
661 	return security_ops->file_ioctl(file, cmd, arg);
662 }
663 
664 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
665 {
666 	/*
667 	 * Does we have PROT_READ and does the application expect
668 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
669 	 */
670 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
671 		return prot;
672 	if (!(current->personality & READ_IMPLIES_EXEC))
673 		return prot;
674 	/*
675 	 * if that's an anonymous mapping, let it.
676 	 */
677 	if (!file)
678 		return prot | PROT_EXEC;
679 	/*
680 	 * ditto if it's not on noexec mount, except that on !MMU we need
681 	 * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case
682 	 */
683 	if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
684 #ifndef CONFIG_MMU
685 		unsigned long caps = 0;
686 		struct address_space *mapping = file->f_mapping;
687 		if (mapping && mapping->backing_dev_info)
688 			caps = mapping->backing_dev_info->capabilities;
689 		if (!(caps & BDI_CAP_EXEC_MAP))
690 			return prot;
691 #endif
692 		return prot | PROT_EXEC;
693 	}
694 	/* anything on noexec mount won't get PROT_EXEC */
695 	return prot;
696 }
697 
698 int security_mmap_file(struct file *file, unsigned long prot,
699 			unsigned long flags)
700 {
701 	int ret;
702 	ret = security_ops->mmap_file(file, prot,
703 					mmap_prot(file, prot), flags);
704 	if (ret)
705 		return ret;
706 	return ima_file_mmap(file, prot);
707 }
708 
709 int security_mmap_addr(unsigned long addr)
710 {
711 	return security_ops->mmap_addr(addr);
712 }
713 
714 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
715 			    unsigned long prot)
716 {
717 	return security_ops->file_mprotect(vma, reqprot, prot);
718 }
719 
720 int security_file_lock(struct file *file, unsigned int cmd)
721 {
722 	return security_ops->file_lock(file, cmd);
723 }
724 
725 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
726 {
727 	return security_ops->file_fcntl(file, cmd, arg);
728 }
729 
730 int security_file_set_fowner(struct file *file)
731 {
732 	return security_ops->file_set_fowner(file);
733 }
734 
735 int security_file_send_sigiotask(struct task_struct *tsk,
736 				  struct fown_struct *fown, int sig)
737 {
738 	return security_ops->file_send_sigiotask(tsk, fown, sig);
739 }
740 
741 int security_file_receive(struct file *file)
742 {
743 	return security_ops->file_receive(file);
744 }
745 
746 int security_file_open(struct file *file, const struct cred *cred)
747 {
748 	int ret;
749 
750 	ret = security_ops->file_open(file, cred);
751 	if (ret)
752 		return ret;
753 
754 	return fsnotify_perm(file, MAY_OPEN);
755 }
756 
757 int security_task_create(unsigned long clone_flags)
758 {
759 	return security_ops->task_create(clone_flags);
760 }
761 
762 void security_task_free(struct task_struct *task)
763 {
764 	security_ops->task_free(task);
765 }
766 
767 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
768 {
769 	return security_ops->cred_alloc_blank(cred, gfp);
770 }
771 
772 void security_cred_free(struct cred *cred)
773 {
774 	security_ops->cred_free(cred);
775 }
776 
777 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
778 {
779 	return security_ops->cred_prepare(new, old, gfp);
780 }
781 
782 void security_transfer_creds(struct cred *new, const struct cred *old)
783 {
784 	security_ops->cred_transfer(new, old);
785 }
786 
787 int security_kernel_act_as(struct cred *new, u32 secid)
788 {
789 	return security_ops->kernel_act_as(new, secid);
790 }
791 
792 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
793 {
794 	return security_ops->kernel_create_files_as(new, inode);
795 }
796 
797 int security_kernel_module_request(char *kmod_name)
798 {
799 	return security_ops->kernel_module_request(kmod_name);
800 }
801 
802 int security_task_fix_setuid(struct cred *new, const struct cred *old,
803 			     int flags)
804 {
805 	return security_ops->task_fix_setuid(new, old, flags);
806 }
807 
808 int security_task_setpgid(struct task_struct *p, pid_t pgid)
809 {
810 	return security_ops->task_setpgid(p, pgid);
811 }
812 
813 int security_task_getpgid(struct task_struct *p)
814 {
815 	return security_ops->task_getpgid(p);
816 }
817 
818 int security_task_getsid(struct task_struct *p)
819 {
820 	return security_ops->task_getsid(p);
821 }
822 
823 void security_task_getsecid(struct task_struct *p, u32 *secid)
824 {
825 	security_ops->task_getsecid(p, secid);
826 }
827 EXPORT_SYMBOL(security_task_getsecid);
828 
829 int security_task_setnice(struct task_struct *p, int nice)
830 {
831 	return security_ops->task_setnice(p, nice);
832 }
833 
834 int security_task_setioprio(struct task_struct *p, int ioprio)
835 {
836 	return security_ops->task_setioprio(p, ioprio);
837 }
838 
839 int security_task_getioprio(struct task_struct *p)
840 {
841 	return security_ops->task_getioprio(p);
842 }
843 
844 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
845 		struct rlimit *new_rlim)
846 {
847 	return security_ops->task_setrlimit(p, resource, new_rlim);
848 }
849 
850 int security_task_setscheduler(struct task_struct *p)
851 {
852 	return security_ops->task_setscheduler(p);
853 }
854 
855 int security_task_getscheduler(struct task_struct *p)
856 {
857 	return security_ops->task_getscheduler(p);
858 }
859 
860 int security_task_movememory(struct task_struct *p)
861 {
862 	return security_ops->task_movememory(p);
863 }
864 
865 int security_task_kill(struct task_struct *p, struct siginfo *info,
866 			int sig, u32 secid)
867 {
868 	return security_ops->task_kill(p, info, sig, secid);
869 }
870 
871 int security_task_wait(struct task_struct *p)
872 {
873 	return security_ops->task_wait(p);
874 }
875 
876 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
877 			 unsigned long arg4, unsigned long arg5)
878 {
879 	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
880 }
881 
882 void security_task_to_inode(struct task_struct *p, struct inode *inode)
883 {
884 	security_ops->task_to_inode(p, inode);
885 }
886 
887 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
888 {
889 	return security_ops->ipc_permission(ipcp, flag);
890 }
891 
892 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
893 {
894 	security_ops->ipc_getsecid(ipcp, secid);
895 }
896 
897 int security_msg_msg_alloc(struct msg_msg *msg)
898 {
899 	return security_ops->msg_msg_alloc_security(msg);
900 }
901 
902 void security_msg_msg_free(struct msg_msg *msg)
903 {
904 	security_ops->msg_msg_free_security(msg);
905 }
906 
907 int security_msg_queue_alloc(struct msg_queue *msq)
908 {
909 	return security_ops->msg_queue_alloc_security(msq);
910 }
911 
912 void security_msg_queue_free(struct msg_queue *msq)
913 {
914 	security_ops->msg_queue_free_security(msq);
915 }
916 
917 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
918 {
919 	return security_ops->msg_queue_associate(msq, msqflg);
920 }
921 
922 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
923 {
924 	return security_ops->msg_queue_msgctl(msq, cmd);
925 }
926 
927 int security_msg_queue_msgsnd(struct msg_queue *msq,
928 			       struct msg_msg *msg, int msqflg)
929 {
930 	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
931 }
932 
933 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
934 			       struct task_struct *target, long type, int mode)
935 {
936 	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
937 }
938 
939 int security_shm_alloc(struct shmid_kernel *shp)
940 {
941 	return security_ops->shm_alloc_security(shp);
942 }
943 
944 void security_shm_free(struct shmid_kernel *shp)
945 {
946 	security_ops->shm_free_security(shp);
947 }
948 
949 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
950 {
951 	return security_ops->shm_associate(shp, shmflg);
952 }
953 
954 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
955 {
956 	return security_ops->shm_shmctl(shp, cmd);
957 }
958 
959 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
960 {
961 	return security_ops->shm_shmat(shp, shmaddr, shmflg);
962 }
963 
964 int security_sem_alloc(struct sem_array *sma)
965 {
966 	return security_ops->sem_alloc_security(sma);
967 }
968 
969 void security_sem_free(struct sem_array *sma)
970 {
971 	security_ops->sem_free_security(sma);
972 }
973 
974 int security_sem_associate(struct sem_array *sma, int semflg)
975 {
976 	return security_ops->sem_associate(sma, semflg);
977 }
978 
979 int security_sem_semctl(struct sem_array *sma, int cmd)
980 {
981 	return security_ops->sem_semctl(sma, cmd);
982 }
983 
984 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
985 			unsigned nsops, int alter)
986 {
987 	return security_ops->sem_semop(sma, sops, nsops, alter);
988 }
989 
990 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
991 {
992 	if (unlikely(inode && IS_PRIVATE(inode)))
993 		return;
994 	security_ops->d_instantiate(dentry, inode);
995 }
996 EXPORT_SYMBOL(security_d_instantiate);
997 
998 int security_getprocattr(struct task_struct *p, char *name, char **value)
999 {
1000 	return security_ops->getprocattr(p, name, value);
1001 }
1002 
1003 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
1004 {
1005 	return security_ops->setprocattr(p, name, value, size);
1006 }
1007 
1008 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1009 {
1010 	return security_ops->netlink_send(sk, skb);
1011 }
1012 
1013 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1014 {
1015 	return security_ops->secid_to_secctx(secid, secdata, seclen);
1016 }
1017 EXPORT_SYMBOL(security_secid_to_secctx);
1018 
1019 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1020 {
1021 	return security_ops->secctx_to_secid(secdata, seclen, secid);
1022 }
1023 EXPORT_SYMBOL(security_secctx_to_secid);
1024 
1025 void security_release_secctx(char *secdata, u32 seclen)
1026 {
1027 	security_ops->release_secctx(secdata, seclen);
1028 }
1029 EXPORT_SYMBOL(security_release_secctx);
1030 
1031 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1032 {
1033 	return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1034 }
1035 EXPORT_SYMBOL(security_inode_notifysecctx);
1036 
1037 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1038 {
1039 	return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1040 }
1041 EXPORT_SYMBOL(security_inode_setsecctx);
1042 
1043 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1044 {
1045 	return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1046 }
1047 EXPORT_SYMBOL(security_inode_getsecctx);
1048 
1049 #ifdef CONFIG_SECURITY_NETWORK
1050 
1051 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1052 {
1053 	return security_ops->unix_stream_connect(sock, other, newsk);
1054 }
1055 EXPORT_SYMBOL(security_unix_stream_connect);
1056 
1057 int security_unix_may_send(struct socket *sock,  struct socket *other)
1058 {
1059 	return security_ops->unix_may_send(sock, other);
1060 }
1061 EXPORT_SYMBOL(security_unix_may_send);
1062 
1063 int security_socket_create(int family, int type, int protocol, int kern)
1064 {
1065 	return security_ops->socket_create(family, type, protocol, kern);
1066 }
1067 
1068 int security_socket_post_create(struct socket *sock, int family,
1069 				int type, int protocol, int kern)
1070 {
1071 	return security_ops->socket_post_create(sock, family, type,
1072 						protocol, kern);
1073 }
1074 
1075 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1076 {
1077 	return security_ops->socket_bind(sock, address, addrlen);
1078 }
1079 
1080 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1081 {
1082 	return security_ops->socket_connect(sock, address, addrlen);
1083 }
1084 
1085 int security_socket_listen(struct socket *sock, int backlog)
1086 {
1087 	return security_ops->socket_listen(sock, backlog);
1088 }
1089 
1090 int security_socket_accept(struct socket *sock, struct socket *newsock)
1091 {
1092 	return security_ops->socket_accept(sock, newsock);
1093 }
1094 
1095 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1096 {
1097 	return security_ops->socket_sendmsg(sock, msg, size);
1098 }
1099 
1100 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1101 			    int size, int flags)
1102 {
1103 	return security_ops->socket_recvmsg(sock, msg, size, flags);
1104 }
1105 
1106 int security_socket_getsockname(struct socket *sock)
1107 {
1108 	return security_ops->socket_getsockname(sock);
1109 }
1110 
1111 int security_socket_getpeername(struct socket *sock)
1112 {
1113 	return security_ops->socket_getpeername(sock);
1114 }
1115 
1116 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1117 {
1118 	return security_ops->socket_getsockopt(sock, level, optname);
1119 }
1120 
1121 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1122 {
1123 	return security_ops->socket_setsockopt(sock, level, optname);
1124 }
1125 
1126 int security_socket_shutdown(struct socket *sock, int how)
1127 {
1128 	return security_ops->socket_shutdown(sock, how);
1129 }
1130 
1131 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1132 {
1133 	return security_ops->socket_sock_rcv_skb(sk, skb);
1134 }
1135 EXPORT_SYMBOL(security_sock_rcv_skb);
1136 
1137 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1138 				      int __user *optlen, unsigned len)
1139 {
1140 	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1141 }
1142 
1143 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1144 {
1145 	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1146 }
1147 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1148 
1149 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1150 {
1151 	return security_ops->sk_alloc_security(sk, family, priority);
1152 }
1153 
1154 void security_sk_free(struct sock *sk)
1155 {
1156 	security_ops->sk_free_security(sk);
1157 }
1158 
1159 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1160 {
1161 	security_ops->sk_clone_security(sk, newsk);
1162 }
1163 EXPORT_SYMBOL(security_sk_clone);
1164 
1165 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1166 {
1167 	security_ops->sk_getsecid(sk, &fl->flowi_secid);
1168 }
1169 EXPORT_SYMBOL(security_sk_classify_flow);
1170 
1171 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1172 {
1173 	security_ops->req_classify_flow(req, fl);
1174 }
1175 EXPORT_SYMBOL(security_req_classify_flow);
1176 
1177 void security_sock_graft(struct sock *sk, struct socket *parent)
1178 {
1179 	security_ops->sock_graft(sk, parent);
1180 }
1181 EXPORT_SYMBOL(security_sock_graft);
1182 
1183 int security_inet_conn_request(struct sock *sk,
1184 			struct sk_buff *skb, struct request_sock *req)
1185 {
1186 	return security_ops->inet_conn_request(sk, skb, req);
1187 }
1188 EXPORT_SYMBOL(security_inet_conn_request);
1189 
1190 void security_inet_csk_clone(struct sock *newsk,
1191 			const struct request_sock *req)
1192 {
1193 	security_ops->inet_csk_clone(newsk, req);
1194 }
1195 
1196 void security_inet_conn_established(struct sock *sk,
1197 			struct sk_buff *skb)
1198 {
1199 	security_ops->inet_conn_established(sk, skb);
1200 }
1201 
1202 int security_secmark_relabel_packet(u32 secid)
1203 {
1204 	return security_ops->secmark_relabel_packet(secid);
1205 }
1206 EXPORT_SYMBOL(security_secmark_relabel_packet);
1207 
1208 void security_secmark_refcount_inc(void)
1209 {
1210 	security_ops->secmark_refcount_inc();
1211 }
1212 EXPORT_SYMBOL(security_secmark_refcount_inc);
1213 
1214 void security_secmark_refcount_dec(void)
1215 {
1216 	security_ops->secmark_refcount_dec();
1217 }
1218 EXPORT_SYMBOL(security_secmark_refcount_dec);
1219 
1220 int security_tun_dev_create(void)
1221 {
1222 	return security_ops->tun_dev_create();
1223 }
1224 EXPORT_SYMBOL(security_tun_dev_create);
1225 
1226 void security_tun_dev_post_create(struct sock *sk)
1227 {
1228 	return security_ops->tun_dev_post_create(sk);
1229 }
1230 EXPORT_SYMBOL(security_tun_dev_post_create);
1231 
1232 int security_tun_dev_attach(struct sock *sk)
1233 {
1234 	return security_ops->tun_dev_attach(sk);
1235 }
1236 EXPORT_SYMBOL(security_tun_dev_attach);
1237 
1238 #endif	/* CONFIG_SECURITY_NETWORK */
1239 
1240 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1241 
1242 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1243 {
1244 	return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1245 }
1246 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1247 
1248 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1249 			      struct xfrm_sec_ctx **new_ctxp)
1250 {
1251 	return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1252 }
1253 
1254 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1255 {
1256 	security_ops->xfrm_policy_free_security(ctx);
1257 }
1258 EXPORT_SYMBOL(security_xfrm_policy_free);
1259 
1260 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1261 {
1262 	return security_ops->xfrm_policy_delete_security(ctx);
1263 }
1264 
1265 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1266 {
1267 	return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1268 }
1269 EXPORT_SYMBOL(security_xfrm_state_alloc);
1270 
1271 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1272 				      struct xfrm_sec_ctx *polsec, u32 secid)
1273 {
1274 	if (!polsec)
1275 		return 0;
1276 	/*
1277 	 * We want the context to be taken from secid which is usually
1278 	 * from the sock.
1279 	 */
1280 	return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1281 }
1282 
1283 int security_xfrm_state_delete(struct xfrm_state *x)
1284 {
1285 	return security_ops->xfrm_state_delete_security(x);
1286 }
1287 EXPORT_SYMBOL(security_xfrm_state_delete);
1288 
1289 void security_xfrm_state_free(struct xfrm_state *x)
1290 {
1291 	security_ops->xfrm_state_free_security(x);
1292 }
1293 
1294 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1295 {
1296 	return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1297 }
1298 
1299 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1300 				       struct xfrm_policy *xp,
1301 				       const struct flowi *fl)
1302 {
1303 	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1304 }
1305 
1306 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1307 {
1308 	return security_ops->xfrm_decode_session(skb, secid, 1);
1309 }
1310 
1311 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1312 {
1313 	int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1314 
1315 	BUG_ON(rc);
1316 }
1317 EXPORT_SYMBOL(security_skb_classify_flow);
1318 
1319 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1320 
1321 #ifdef CONFIG_KEYS
1322 
1323 int security_key_alloc(struct key *key, const struct cred *cred,
1324 		       unsigned long flags)
1325 {
1326 	return security_ops->key_alloc(key, cred, flags);
1327 }
1328 
1329 void security_key_free(struct key *key)
1330 {
1331 	security_ops->key_free(key);
1332 }
1333 
1334 int security_key_permission(key_ref_t key_ref,
1335 			    const struct cred *cred, key_perm_t perm)
1336 {
1337 	return security_ops->key_permission(key_ref, cred, perm);
1338 }
1339 
1340 int security_key_getsecurity(struct key *key, char **_buffer)
1341 {
1342 	return security_ops->key_getsecurity(key, _buffer);
1343 }
1344 
1345 #endif	/* CONFIG_KEYS */
1346 
1347 #ifdef CONFIG_AUDIT
1348 
1349 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1350 {
1351 	return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1352 }
1353 
1354 int security_audit_rule_known(struct audit_krule *krule)
1355 {
1356 	return security_ops->audit_rule_known(krule);
1357 }
1358 
1359 void security_audit_rule_free(void *lsmrule)
1360 {
1361 	security_ops->audit_rule_free(lsmrule);
1362 }
1363 
1364 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1365 			      struct audit_context *actx)
1366 {
1367 	return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1368 }
1369 
1370 #endif /* CONFIG_AUDIT */
1371