1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Security plug functions 4 * 5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 8 * Copyright (C) 2016 Mellanox Technologies 9 */ 10 11 #define pr_fmt(fmt) "LSM: " fmt 12 13 #include <linux/bpf.h> 14 #include <linux/capability.h> 15 #include <linux/dcache.h> 16 #include <linux/export.h> 17 #include <linux/init.h> 18 #include <linux/kernel.h> 19 #include <linux/kernel_read_file.h> 20 #include <linux/lsm_hooks.h> 21 #include <linux/integrity.h> 22 #include <linux/ima.h> 23 #include <linux/evm.h> 24 #include <linux/fsnotify.h> 25 #include <linux/mman.h> 26 #include <linux/mount.h> 27 #include <linux/personality.h> 28 #include <linux/backing-dev.h> 29 #include <linux/string.h> 30 #include <linux/msg.h> 31 #include <net/flow.h> 32 33 #define MAX_LSM_EVM_XATTR 2 34 35 /* How many LSMs were built into the kernel? */ 36 #define LSM_COUNT (__end_lsm_info - __start_lsm_info) 37 38 /* 39 * These are descriptions of the reasons that can be passed to the 40 * security_locked_down() LSM hook. Placing this array here allows 41 * all security modules to use the same descriptions for auditing 42 * purposes. 43 */ 44 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = { 45 [LOCKDOWN_NONE] = "none", 46 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading", 47 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port", 48 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access", 49 [LOCKDOWN_KEXEC] = "kexec of unsigned images", 50 [LOCKDOWN_HIBERNATION] = "hibernation", 51 [LOCKDOWN_PCI_ACCESS] = "direct PCI access", 52 [LOCKDOWN_IOPORT] = "raw io port access", 53 [LOCKDOWN_MSR] = "raw MSR access", 54 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables", 55 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage", 56 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO", 57 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters", 58 [LOCKDOWN_MMIOTRACE] = "unsafe mmio", 59 [LOCKDOWN_DEBUGFS] = "debugfs access", 60 [LOCKDOWN_XMON_WR] = "xmon write access", 61 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM", 62 [LOCKDOWN_INTEGRITY_MAX] = "integrity", 63 [LOCKDOWN_KCORE] = "/proc/kcore access", 64 [LOCKDOWN_KPROBES] = "use of kprobes", 65 [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM", 66 [LOCKDOWN_PERF] = "unsafe use of perf", 67 [LOCKDOWN_TRACEFS] = "use of tracefs", 68 [LOCKDOWN_XMON_RW] = "xmon read and write access", 69 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret", 70 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality", 71 }; 72 73 struct security_hook_heads security_hook_heads __lsm_ro_after_init; 74 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain); 75 76 static struct kmem_cache *lsm_file_cache; 77 static struct kmem_cache *lsm_inode_cache; 78 79 char *lsm_names; 80 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init; 81 82 /* Boot-time LSM user choice */ 83 static __initdata const char *chosen_lsm_order; 84 static __initdata const char *chosen_major_lsm; 85 86 static __initconst const char * const builtin_lsm_order = CONFIG_LSM; 87 88 /* Ordered list of LSMs to initialize. */ 89 static __initdata struct lsm_info **ordered_lsms; 90 static __initdata struct lsm_info *exclusive; 91 92 static __initdata bool debug; 93 #define init_debug(...) \ 94 do { \ 95 if (debug) \ 96 pr_info(__VA_ARGS__); \ 97 } while (0) 98 99 static bool __init is_enabled(struct lsm_info *lsm) 100 { 101 if (!lsm->enabled) 102 return false; 103 104 return *lsm->enabled; 105 } 106 107 /* Mark an LSM's enabled flag. */ 108 static int lsm_enabled_true __initdata = 1; 109 static int lsm_enabled_false __initdata = 0; 110 static void __init set_enabled(struct lsm_info *lsm, bool enabled) 111 { 112 /* 113 * When an LSM hasn't configured an enable variable, we can use 114 * a hard-coded location for storing the default enabled state. 115 */ 116 if (!lsm->enabled) { 117 if (enabled) 118 lsm->enabled = &lsm_enabled_true; 119 else 120 lsm->enabled = &lsm_enabled_false; 121 } else if (lsm->enabled == &lsm_enabled_true) { 122 if (!enabled) 123 lsm->enabled = &lsm_enabled_false; 124 } else if (lsm->enabled == &lsm_enabled_false) { 125 if (enabled) 126 lsm->enabled = &lsm_enabled_true; 127 } else { 128 *lsm->enabled = enabled; 129 } 130 } 131 132 /* Is an LSM already listed in the ordered LSMs list? */ 133 static bool __init exists_ordered_lsm(struct lsm_info *lsm) 134 { 135 struct lsm_info **check; 136 137 for (check = ordered_lsms; *check; check++) 138 if (*check == lsm) 139 return true; 140 141 return false; 142 } 143 144 /* Append an LSM to the list of ordered LSMs to initialize. */ 145 static int last_lsm __initdata; 146 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from) 147 { 148 /* Ignore duplicate selections. */ 149 if (exists_ordered_lsm(lsm)) 150 return; 151 152 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from)) 153 return; 154 155 /* Enable this LSM, if it is not already set. */ 156 if (!lsm->enabled) 157 lsm->enabled = &lsm_enabled_true; 158 ordered_lsms[last_lsm++] = lsm; 159 160 init_debug("%s ordering: %s (%sabled)\n", from, lsm->name, 161 is_enabled(lsm) ? "en" : "dis"); 162 } 163 164 /* Is an LSM allowed to be initialized? */ 165 static bool __init lsm_allowed(struct lsm_info *lsm) 166 { 167 /* Skip if the LSM is disabled. */ 168 if (!is_enabled(lsm)) 169 return false; 170 171 /* Not allowed if another exclusive LSM already initialized. */ 172 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) { 173 init_debug("exclusive disabled: %s\n", lsm->name); 174 return false; 175 } 176 177 return true; 178 } 179 180 static void __init lsm_set_blob_size(int *need, int *lbs) 181 { 182 int offset; 183 184 if (*need > 0) { 185 offset = *lbs; 186 *lbs += *need; 187 *need = offset; 188 } 189 } 190 191 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed) 192 { 193 if (!needed) 194 return; 195 196 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred); 197 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file); 198 /* 199 * The inode blob gets an rcu_head in addition to 200 * what the modules might need. 201 */ 202 if (needed->lbs_inode && blob_sizes.lbs_inode == 0) 203 blob_sizes.lbs_inode = sizeof(struct rcu_head); 204 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode); 205 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc); 206 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg); 207 lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock); 208 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task); 209 } 210 211 /* Prepare LSM for initialization. */ 212 static void __init prepare_lsm(struct lsm_info *lsm) 213 { 214 int enabled = lsm_allowed(lsm); 215 216 /* Record enablement (to handle any following exclusive LSMs). */ 217 set_enabled(lsm, enabled); 218 219 /* If enabled, do pre-initialization work. */ 220 if (enabled) { 221 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) { 222 exclusive = lsm; 223 init_debug("exclusive chosen: %s\n", lsm->name); 224 } 225 226 lsm_set_blob_sizes(lsm->blobs); 227 } 228 } 229 230 /* Initialize a given LSM, if it is enabled. */ 231 static void __init initialize_lsm(struct lsm_info *lsm) 232 { 233 if (is_enabled(lsm)) { 234 int ret; 235 236 init_debug("initializing %s\n", lsm->name); 237 ret = lsm->init(); 238 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); 239 } 240 } 241 242 /* Populate ordered LSMs list from comma-separated LSM name list. */ 243 static void __init ordered_lsm_parse(const char *order, const char *origin) 244 { 245 struct lsm_info *lsm; 246 char *sep, *name, *next; 247 248 /* LSM_ORDER_FIRST is always first. */ 249 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 250 if (lsm->order == LSM_ORDER_FIRST) 251 append_ordered_lsm(lsm, "first"); 252 } 253 254 /* Process "security=", if given. */ 255 if (chosen_major_lsm) { 256 struct lsm_info *major; 257 258 /* 259 * To match the original "security=" behavior, this 260 * explicitly does NOT fallback to another Legacy Major 261 * if the selected one was separately disabled: disable 262 * all non-matching Legacy Major LSMs. 263 */ 264 for (major = __start_lsm_info; major < __end_lsm_info; 265 major++) { 266 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) && 267 strcmp(major->name, chosen_major_lsm) != 0) { 268 set_enabled(major, false); 269 init_debug("security=%s disabled: %s\n", 270 chosen_major_lsm, major->name); 271 } 272 } 273 } 274 275 sep = kstrdup(order, GFP_KERNEL); 276 next = sep; 277 /* Walk the list, looking for matching LSMs. */ 278 while ((name = strsep(&next, ",")) != NULL) { 279 bool found = false; 280 281 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 282 if (lsm->order == LSM_ORDER_MUTABLE && 283 strcmp(lsm->name, name) == 0) { 284 append_ordered_lsm(lsm, origin); 285 found = true; 286 } 287 } 288 289 if (!found) 290 init_debug("%s ignored: %s\n", origin, name); 291 } 292 293 /* Process "security=", if given. */ 294 if (chosen_major_lsm) { 295 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 296 if (exists_ordered_lsm(lsm)) 297 continue; 298 if (strcmp(lsm->name, chosen_major_lsm) == 0) 299 append_ordered_lsm(lsm, "security="); 300 } 301 } 302 303 /* Disable all LSMs not in the ordered list. */ 304 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 305 if (exists_ordered_lsm(lsm)) 306 continue; 307 set_enabled(lsm, false); 308 init_debug("%s disabled: %s\n", origin, lsm->name); 309 } 310 311 kfree(sep); 312 } 313 314 static void __init lsm_early_cred(struct cred *cred); 315 static void __init lsm_early_task(struct task_struct *task); 316 317 static int lsm_append(const char *new, char **result); 318 319 static void __init ordered_lsm_init(void) 320 { 321 struct lsm_info **lsm; 322 323 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms), 324 GFP_KERNEL); 325 326 if (chosen_lsm_order) { 327 if (chosen_major_lsm) { 328 pr_info("security= is ignored because it is superseded by lsm=\n"); 329 chosen_major_lsm = NULL; 330 } 331 ordered_lsm_parse(chosen_lsm_order, "cmdline"); 332 } else 333 ordered_lsm_parse(builtin_lsm_order, "builtin"); 334 335 for (lsm = ordered_lsms; *lsm; lsm++) 336 prepare_lsm(*lsm); 337 338 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred); 339 init_debug("file blob size = %d\n", blob_sizes.lbs_file); 340 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode); 341 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc); 342 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg); 343 init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock); 344 init_debug("task blob size = %d\n", blob_sizes.lbs_task); 345 346 /* 347 * Create any kmem_caches needed for blobs 348 */ 349 if (blob_sizes.lbs_file) 350 lsm_file_cache = kmem_cache_create("lsm_file_cache", 351 blob_sizes.lbs_file, 0, 352 SLAB_PANIC, NULL); 353 if (blob_sizes.lbs_inode) 354 lsm_inode_cache = kmem_cache_create("lsm_inode_cache", 355 blob_sizes.lbs_inode, 0, 356 SLAB_PANIC, NULL); 357 358 lsm_early_cred((struct cred *) current->cred); 359 lsm_early_task(current); 360 for (lsm = ordered_lsms; *lsm; lsm++) 361 initialize_lsm(*lsm); 362 363 kfree(ordered_lsms); 364 } 365 366 int __init early_security_init(void) 367 { 368 int i; 369 struct hlist_head *list = (struct hlist_head *) &security_hook_heads; 370 struct lsm_info *lsm; 371 372 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head); 373 i++) 374 INIT_HLIST_HEAD(&list[i]); 375 376 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 377 if (!lsm->enabled) 378 lsm->enabled = &lsm_enabled_true; 379 prepare_lsm(lsm); 380 initialize_lsm(lsm); 381 } 382 383 return 0; 384 } 385 386 /** 387 * security_init - initializes the security framework 388 * 389 * This should be called early in the kernel initialization sequence. 390 */ 391 int __init security_init(void) 392 { 393 struct lsm_info *lsm; 394 395 pr_info("Security Framework initializing\n"); 396 397 /* 398 * Append the names of the early LSM modules now that kmalloc() is 399 * available 400 */ 401 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 402 if (lsm->enabled) 403 lsm_append(lsm->name, &lsm_names); 404 } 405 406 /* Load LSMs in specified order. */ 407 ordered_lsm_init(); 408 409 return 0; 410 } 411 412 /* Save user chosen LSM */ 413 static int __init choose_major_lsm(char *str) 414 { 415 chosen_major_lsm = str; 416 return 1; 417 } 418 __setup("security=", choose_major_lsm); 419 420 /* Explicitly choose LSM initialization order. */ 421 static int __init choose_lsm_order(char *str) 422 { 423 chosen_lsm_order = str; 424 return 1; 425 } 426 __setup("lsm=", choose_lsm_order); 427 428 /* Enable LSM order debugging. */ 429 static int __init enable_debug(char *str) 430 { 431 debug = true; 432 return 1; 433 } 434 __setup("lsm.debug", enable_debug); 435 436 static bool match_last_lsm(const char *list, const char *lsm) 437 { 438 const char *last; 439 440 if (WARN_ON(!list || !lsm)) 441 return false; 442 last = strrchr(list, ','); 443 if (last) 444 /* Pass the comma, strcmp() will check for '\0' */ 445 last++; 446 else 447 last = list; 448 return !strcmp(last, lsm); 449 } 450 451 static int lsm_append(const char *new, char **result) 452 { 453 char *cp; 454 455 if (*result == NULL) { 456 *result = kstrdup(new, GFP_KERNEL); 457 if (*result == NULL) 458 return -ENOMEM; 459 } else { 460 /* Check if it is the last registered name */ 461 if (match_last_lsm(*result, new)) 462 return 0; 463 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 464 if (cp == NULL) 465 return -ENOMEM; 466 kfree(*result); 467 *result = cp; 468 } 469 return 0; 470 } 471 472 /** 473 * security_add_hooks - Add a modules hooks to the hook lists. 474 * @hooks: the hooks to add 475 * @count: the number of hooks to add 476 * @lsm: the name of the security module 477 * 478 * Each LSM has to register its hooks with the infrastructure. 479 */ 480 void __init security_add_hooks(struct security_hook_list *hooks, int count, 481 char *lsm) 482 { 483 int i; 484 485 for (i = 0; i < count; i++) { 486 hooks[i].lsm = lsm; 487 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 488 } 489 490 /* 491 * Don't try to append during early_security_init(), we'll come back 492 * and fix this up afterwards. 493 */ 494 if (slab_is_available()) { 495 if (lsm_append(lsm, &lsm_names) < 0) 496 panic("%s - Cannot get early memory.\n", __func__); 497 } 498 } 499 500 int call_blocking_lsm_notifier(enum lsm_event event, void *data) 501 { 502 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain, 503 event, data); 504 } 505 EXPORT_SYMBOL(call_blocking_lsm_notifier); 506 507 int register_blocking_lsm_notifier(struct notifier_block *nb) 508 { 509 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain, 510 nb); 511 } 512 EXPORT_SYMBOL(register_blocking_lsm_notifier); 513 514 int unregister_blocking_lsm_notifier(struct notifier_block *nb) 515 { 516 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain, 517 nb); 518 } 519 EXPORT_SYMBOL(unregister_blocking_lsm_notifier); 520 521 /** 522 * lsm_cred_alloc - allocate a composite cred blob 523 * @cred: the cred that needs a blob 524 * @gfp: allocation type 525 * 526 * Allocate the cred blob for all the modules 527 * 528 * Returns 0, or -ENOMEM if memory can't be allocated. 529 */ 530 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp) 531 { 532 if (blob_sizes.lbs_cred == 0) { 533 cred->security = NULL; 534 return 0; 535 } 536 537 cred->security = kzalloc(blob_sizes.lbs_cred, gfp); 538 if (cred->security == NULL) 539 return -ENOMEM; 540 return 0; 541 } 542 543 /** 544 * lsm_early_cred - during initialization allocate a composite cred blob 545 * @cred: the cred that needs a blob 546 * 547 * Allocate the cred blob for all the modules 548 */ 549 static void __init lsm_early_cred(struct cred *cred) 550 { 551 int rc = lsm_cred_alloc(cred, GFP_KERNEL); 552 553 if (rc) 554 panic("%s: Early cred alloc failed.\n", __func__); 555 } 556 557 /** 558 * lsm_file_alloc - allocate a composite file blob 559 * @file: the file that needs a blob 560 * 561 * Allocate the file blob for all the modules 562 * 563 * Returns 0, or -ENOMEM if memory can't be allocated. 564 */ 565 static int lsm_file_alloc(struct file *file) 566 { 567 if (!lsm_file_cache) { 568 file->f_security = NULL; 569 return 0; 570 } 571 572 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL); 573 if (file->f_security == NULL) 574 return -ENOMEM; 575 return 0; 576 } 577 578 /** 579 * lsm_inode_alloc - allocate a composite inode blob 580 * @inode: the inode that needs a blob 581 * 582 * Allocate the inode blob for all the modules 583 * 584 * Returns 0, or -ENOMEM if memory can't be allocated. 585 */ 586 int lsm_inode_alloc(struct inode *inode) 587 { 588 if (!lsm_inode_cache) { 589 inode->i_security = NULL; 590 return 0; 591 } 592 593 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS); 594 if (inode->i_security == NULL) 595 return -ENOMEM; 596 return 0; 597 } 598 599 /** 600 * lsm_task_alloc - allocate a composite task blob 601 * @task: the task that needs a blob 602 * 603 * Allocate the task blob for all the modules 604 * 605 * Returns 0, or -ENOMEM if memory can't be allocated. 606 */ 607 static int lsm_task_alloc(struct task_struct *task) 608 { 609 if (blob_sizes.lbs_task == 0) { 610 task->security = NULL; 611 return 0; 612 } 613 614 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL); 615 if (task->security == NULL) 616 return -ENOMEM; 617 return 0; 618 } 619 620 /** 621 * lsm_ipc_alloc - allocate a composite ipc blob 622 * @kip: the ipc that needs a blob 623 * 624 * Allocate the ipc blob for all the modules 625 * 626 * Returns 0, or -ENOMEM if memory can't be allocated. 627 */ 628 static int lsm_ipc_alloc(struct kern_ipc_perm *kip) 629 { 630 if (blob_sizes.lbs_ipc == 0) { 631 kip->security = NULL; 632 return 0; 633 } 634 635 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL); 636 if (kip->security == NULL) 637 return -ENOMEM; 638 return 0; 639 } 640 641 /** 642 * lsm_msg_msg_alloc - allocate a composite msg_msg blob 643 * @mp: the msg_msg that needs a blob 644 * 645 * Allocate the ipc blob for all the modules 646 * 647 * Returns 0, or -ENOMEM if memory can't be allocated. 648 */ 649 static int lsm_msg_msg_alloc(struct msg_msg *mp) 650 { 651 if (blob_sizes.lbs_msg_msg == 0) { 652 mp->security = NULL; 653 return 0; 654 } 655 656 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL); 657 if (mp->security == NULL) 658 return -ENOMEM; 659 return 0; 660 } 661 662 /** 663 * lsm_early_task - during initialization allocate a composite task blob 664 * @task: the task that needs a blob 665 * 666 * Allocate the task blob for all the modules 667 */ 668 static void __init lsm_early_task(struct task_struct *task) 669 { 670 int rc = lsm_task_alloc(task); 671 672 if (rc) 673 panic("%s: Early task alloc failed.\n", __func__); 674 } 675 676 /** 677 * lsm_superblock_alloc - allocate a composite superblock blob 678 * @sb: the superblock that needs a blob 679 * 680 * Allocate the superblock blob for all the modules 681 * 682 * Returns 0, or -ENOMEM if memory can't be allocated. 683 */ 684 static int lsm_superblock_alloc(struct super_block *sb) 685 { 686 if (blob_sizes.lbs_superblock == 0) { 687 sb->s_security = NULL; 688 return 0; 689 } 690 691 sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL); 692 if (sb->s_security == NULL) 693 return -ENOMEM; 694 return 0; 695 } 696 697 /* 698 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and 699 * can be accessed with: 700 * 701 * LSM_RET_DEFAULT(<hook_name>) 702 * 703 * The macros below define static constants for the default value of each 704 * LSM hook. 705 */ 706 #define LSM_RET_DEFAULT(NAME) (NAME##_default) 707 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME) 708 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \ 709 static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT); 710 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 711 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME) 712 713 #include <linux/lsm_hook_defs.h> 714 #undef LSM_HOOK 715 716 /* 717 * Hook list operation macros. 718 * 719 * call_void_hook: 720 * This is a hook that does not return a value. 721 * 722 * call_int_hook: 723 * This is a hook that returns a value. 724 */ 725 726 #define call_void_hook(FUNC, ...) \ 727 do { \ 728 struct security_hook_list *P; \ 729 \ 730 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 731 P->hook.FUNC(__VA_ARGS__); \ 732 } while (0) 733 734 #define call_int_hook(FUNC, IRC, ...) ({ \ 735 int RC = IRC; \ 736 do { \ 737 struct security_hook_list *P; \ 738 \ 739 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 740 RC = P->hook.FUNC(__VA_ARGS__); \ 741 if (RC != 0) \ 742 break; \ 743 } \ 744 } while (0); \ 745 RC; \ 746 }) 747 748 /* Security operations */ 749 750 int security_binder_set_context_mgr(const struct cred *mgr) 751 { 752 return call_int_hook(binder_set_context_mgr, 0, mgr); 753 } 754 755 int security_binder_transaction(const struct cred *from, 756 const struct cred *to) 757 { 758 return call_int_hook(binder_transaction, 0, from, to); 759 } 760 761 int security_binder_transfer_binder(const struct cred *from, 762 const struct cred *to) 763 { 764 return call_int_hook(binder_transfer_binder, 0, from, to); 765 } 766 767 int security_binder_transfer_file(const struct cred *from, 768 const struct cred *to, struct file *file) 769 { 770 return call_int_hook(binder_transfer_file, 0, from, to, file); 771 } 772 773 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 774 { 775 return call_int_hook(ptrace_access_check, 0, child, mode); 776 } 777 778 int security_ptrace_traceme(struct task_struct *parent) 779 { 780 return call_int_hook(ptrace_traceme, 0, parent); 781 } 782 783 int security_capget(struct task_struct *target, 784 kernel_cap_t *effective, 785 kernel_cap_t *inheritable, 786 kernel_cap_t *permitted) 787 { 788 return call_int_hook(capget, 0, target, 789 effective, inheritable, permitted); 790 } 791 792 int security_capset(struct cred *new, const struct cred *old, 793 const kernel_cap_t *effective, 794 const kernel_cap_t *inheritable, 795 const kernel_cap_t *permitted) 796 { 797 return call_int_hook(capset, 0, new, old, 798 effective, inheritable, permitted); 799 } 800 801 int security_capable(const struct cred *cred, 802 struct user_namespace *ns, 803 int cap, 804 unsigned int opts) 805 { 806 return call_int_hook(capable, 0, cred, ns, cap, opts); 807 } 808 809 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 810 { 811 return call_int_hook(quotactl, 0, cmds, type, id, sb); 812 } 813 814 int security_quota_on(struct dentry *dentry) 815 { 816 return call_int_hook(quota_on, 0, dentry); 817 } 818 819 int security_syslog(int type) 820 { 821 return call_int_hook(syslog, 0, type); 822 } 823 824 int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 825 { 826 return call_int_hook(settime, 0, ts, tz); 827 } 828 829 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 830 { 831 struct security_hook_list *hp; 832 int cap_sys_admin = 1; 833 int rc; 834 835 /* 836 * The module will respond with a positive value if 837 * it thinks the __vm_enough_memory() call should be 838 * made with the cap_sys_admin set. If all of the modules 839 * agree that it should be set it will. If any module 840 * thinks it should not be set it won't. 841 */ 842 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 843 rc = hp->hook.vm_enough_memory(mm, pages); 844 if (rc <= 0) { 845 cap_sys_admin = 0; 846 break; 847 } 848 } 849 return __vm_enough_memory(mm, pages, cap_sys_admin); 850 } 851 852 int security_bprm_creds_for_exec(struct linux_binprm *bprm) 853 { 854 return call_int_hook(bprm_creds_for_exec, 0, bprm); 855 } 856 857 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file) 858 { 859 return call_int_hook(bprm_creds_from_file, 0, bprm, file); 860 } 861 862 int security_bprm_check(struct linux_binprm *bprm) 863 { 864 int ret; 865 866 ret = call_int_hook(bprm_check_security, 0, bprm); 867 if (ret) 868 return ret; 869 return ima_bprm_check(bprm); 870 } 871 872 void security_bprm_committing_creds(struct linux_binprm *bprm) 873 { 874 call_void_hook(bprm_committing_creds, bprm); 875 } 876 877 void security_bprm_committed_creds(struct linux_binprm *bprm) 878 { 879 call_void_hook(bprm_committed_creds, bprm); 880 } 881 882 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) 883 { 884 return call_int_hook(fs_context_dup, 0, fc, src_fc); 885 } 886 887 int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param) 888 { 889 return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param); 890 } 891 892 int security_sb_alloc(struct super_block *sb) 893 { 894 int rc = lsm_superblock_alloc(sb); 895 896 if (unlikely(rc)) 897 return rc; 898 rc = call_int_hook(sb_alloc_security, 0, sb); 899 if (unlikely(rc)) 900 security_sb_free(sb); 901 return rc; 902 } 903 904 void security_sb_delete(struct super_block *sb) 905 { 906 call_void_hook(sb_delete, sb); 907 } 908 909 void security_sb_free(struct super_block *sb) 910 { 911 call_void_hook(sb_free_security, sb); 912 kfree(sb->s_security); 913 sb->s_security = NULL; 914 } 915 916 void security_free_mnt_opts(void **mnt_opts) 917 { 918 if (!*mnt_opts) 919 return; 920 call_void_hook(sb_free_mnt_opts, *mnt_opts); 921 *mnt_opts = NULL; 922 } 923 EXPORT_SYMBOL(security_free_mnt_opts); 924 925 int security_sb_eat_lsm_opts(char *options, void **mnt_opts) 926 { 927 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts); 928 } 929 EXPORT_SYMBOL(security_sb_eat_lsm_opts); 930 931 int security_sb_mnt_opts_compat(struct super_block *sb, 932 void *mnt_opts) 933 { 934 return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts); 935 } 936 EXPORT_SYMBOL(security_sb_mnt_opts_compat); 937 938 int security_sb_remount(struct super_block *sb, 939 void *mnt_opts) 940 { 941 return call_int_hook(sb_remount, 0, sb, mnt_opts); 942 } 943 EXPORT_SYMBOL(security_sb_remount); 944 945 int security_sb_kern_mount(struct super_block *sb) 946 { 947 return call_int_hook(sb_kern_mount, 0, sb); 948 } 949 950 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 951 { 952 return call_int_hook(sb_show_options, 0, m, sb); 953 } 954 955 int security_sb_statfs(struct dentry *dentry) 956 { 957 return call_int_hook(sb_statfs, 0, dentry); 958 } 959 960 int security_sb_mount(const char *dev_name, const struct path *path, 961 const char *type, unsigned long flags, void *data) 962 { 963 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data); 964 } 965 966 int security_sb_umount(struct vfsmount *mnt, int flags) 967 { 968 return call_int_hook(sb_umount, 0, mnt, flags); 969 } 970 971 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path) 972 { 973 return call_int_hook(sb_pivotroot, 0, old_path, new_path); 974 } 975 976 int security_sb_set_mnt_opts(struct super_block *sb, 977 void *mnt_opts, 978 unsigned long kern_flags, 979 unsigned long *set_kern_flags) 980 { 981 return call_int_hook(sb_set_mnt_opts, 982 mnt_opts ? -EOPNOTSUPP : 0, sb, 983 mnt_opts, kern_flags, set_kern_flags); 984 } 985 EXPORT_SYMBOL(security_sb_set_mnt_opts); 986 987 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 988 struct super_block *newsb, 989 unsigned long kern_flags, 990 unsigned long *set_kern_flags) 991 { 992 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb, 993 kern_flags, set_kern_flags); 994 } 995 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 996 997 int security_move_mount(const struct path *from_path, const struct path *to_path) 998 { 999 return call_int_hook(move_mount, 0, from_path, to_path); 1000 } 1001 1002 int security_path_notify(const struct path *path, u64 mask, 1003 unsigned int obj_type) 1004 { 1005 return call_int_hook(path_notify, 0, path, mask, obj_type); 1006 } 1007 1008 int security_inode_alloc(struct inode *inode) 1009 { 1010 int rc = lsm_inode_alloc(inode); 1011 1012 if (unlikely(rc)) 1013 return rc; 1014 rc = call_int_hook(inode_alloc_security, 0, inode); 1015 if (unlikely(rc)) 1016 security_inode_free(inode); 1017 return rc; 1018 } 1019 1020 static void inode_free_by_rcu(struct rcu_head *head) 1021 { 1022 /* 1023 * The rcu head is at the start of the inode blob 1024 */ 1025 kmem_cache_free(lsm_inode_cache, head); 1026 } 1027 1028 void security_inode_free(struct inode *inode) 1029 { 1030 integrity_inode_free(inode); 1031 call_void_hook(inode_free_security, inode); 1032 /* 1033 * The inode may still be referenced in a path walk and 1034 * a call to security_inode_permission() can be made 1035 * after inode_free_security() is called. Ideally, the VFS 1036 * wouldn't do this, but fixing that is a much harder 1037 * job. For now, simply free the i_security via RCU, and 1038 * leave the current inode->i_security pointer intact. 1039 * The inode will be freed after the RCU grace period too. 1040 */ 1041 if (inode->i_security) 1042 call_rcu((struct rcu_head *)inode->i_security, 1043 inode_free_by_rcu); 1044 } 1045 1046 int security_dentry_init_security(struct dentry *dentry, int mode, 1047 const struct qstr *name, 1048 const char **xattr_name, void **ctx, 1049 u32 *ctxlen) 1050 { 1051 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode, 1052 name, xattr_name, ctx, ctxlen); 1053 } 1054 EXPORT_SYMBOL(security_dentry_init_security); 1055 1056 int security_dentry_create_files_as(struct dentry *dentry, int mode, 1057 struct qstr *name, 1058 const struct cred *old, struct cred *new) 1059 { 1060 return call_int_hook(dentry_create_files_as, 0, dentry, mode, 1061 name, old, new); 1062 } 1063 EXPORT_SYMBOL(security_dentry_create_files_as); 1064 1065 int security_inode_init_security(struct inode *inode, struct inode *dir, 1066 const struct qstr *qstr, 1067 const initxattrs initxattrs, void *fs_data) 1068 { 1069 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 1070 struct xattr *lsm_xattr, *evm_xattr, *xattr; 1071 int ret; 1072 1073 if (unlikely(IS_PRIVATE(inode))) 1074 return 0; 1075 1076 if (!initxattrs) 1077 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, 1078 dir, qstr, NULL, NULL, NULL); 1079 memset(new_xattrs, 0, sizeof(new_xattrs)); 1080 lsm_xattr = new_xattrs; 1081 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr, 1082 &lsm_xattr->name, 1083 &lsm_xattr->value, 1084 &lsm_xattr->value_len); 1085 if (ret) 1086 goto out; 1087 1088 evm_xattr = lsm_xattr + 1; 1089 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 1090 if (ret) 1091 goto out; 1092 ret = initxattrs(inode, new_xattrs, fs_data); 1093 out: 1094 for (xattr = new_xattrs; xattr->value != NULL; xattr++) 1095 kfree(xattr->value); 1096 return (ret == -EOPNOTSUPP) ? 0 : ret; 1097 } 1098 EXPORT_SYMBOL(security_inode_init_security); 1099 1100 int security_inode_init_security_anon(struct inode *inode, 1101 const struct qstr *name, 1102 const struct inode *context_inode) 1103 { 1104 return call_int_hook(inode_init_security_anon, 0, inode, name, 1105 context_inode); 1106 } 1107 1108 int security_old_inode_init_security(struct inode *inode, struct inode *dir, 1109 const struct qstr *qstr, const char **name, 1110 void **value, size_t *len) 1111 { 1112 if (unlikely(IS_PRIVATE(inode))) 1113 return -EOPNOTSUPP; 1114 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, 1115 qstr, name, value, len); 1116 } 1117 EXPORT_SYMBOL(security_old_inode_init_security); 1118 1119 #ifdef CONFIG_SECURITY_PATH 1120 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode, 1121 unsigned int dev) 1122 { 1123 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1124 return 0; 1125 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev); 1126 } 1127 EXPORT_SYMBOL(security_path_mknod); 1128 1129 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode) 1130 { 1131 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1132 return 0; 1133 return call_int_hook(path_mkdir, 0, dir, dentry, mode); 1134 } 1135 EXPORT_SYMBOL(security_path_mkdir); 1136 1137 int security_path_rmdir(const struct path *dir, struct dentry *dentry) 1138 { 1139 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1140 return 0; 1141 return call_int_hook(path_rmdir, 0, dir, dentry); 1142 } 1143 1144 int security_path_unlink(const struct path *dir, struct dentry *dentry) 1145 { 1146 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1147 return 0; 1148 return call_int_hook(path_unlink, 0, dir, dentry); 1149 } 1150 EXPORT_SYMBOL(security_path_unlink); 1151 1152 int security_path_symlink(const struct path *dir, struct dentry *dentry, 1153 const char *old_name) 1154 { 1155 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1156 return 0; 1157 return call_int_hook(path_symlink, 0, dir, dentry, old_name); 1158 } 1159 1160 int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 1161 struct dentry *new_dentry) 1162 { 1163 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1164 return 0; 1165 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry); 1166 } 1167 1168 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 1169 const struct path *new_dir, struct dentry *new_dentry, 1170 unsigned int flags) 1171 { 1172 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1173 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1174 return 0; 1175 1176 if (flags & RENAME_EXCHANGE) { 1177 int err = call_int_hook(path_rename, 0, new_dir, new_dentry, 1178 old_dir, old_dentry); 1179 if (err) 1180 return err; 1181 } 1182 1183 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir, 1184 new_dentry); 1185 } 1186 EXPORT_SYMBOL(security_path_rename); 1187 1188 int security_path_truncate(const struct path *path) 1189 { 1190 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1191 return 0; 1192 return call_int_hook(path_truncate, 0, path); 1193 } 1194 1195 int security_path_chmod(const struct path *path, umode_t mode) 1196 { 1197 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1198 return 0; 1199 return call_int_hook(path_chmod, 0, path, mode); 1200 } 1201 1202 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 1203 { 1204 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1205 return 0; 1206 return call_int_hook(path_chown, 0, path, uid, gid); 1207 } 1208 1209 int security_path_chroot(const struct path *path) 1210 { 1211 return call_int_hook(path_chroot, 0, path); 1212 } 1213 #endif 1214 1215 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 1216 { 1217 if (unlikely(IS_PRIVATE(dir))) 1218 return 0; 1219 return call_int_hook(inode_create, 0, dir, dentry, mode); 1220 } 1221 EXPORT_SYMBOL_GPL(security_inode_create); 1222 1223 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 1224 struct dentry *new_dentry) 1225 { 1226 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1227 return 0; 1228 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry); 1229 } 1230 1231 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 1232 { 1233 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1234 return 0; 1235 return call_int_hook(inode_unlink, 0, dir, dentry); 1236 } 1237 1238 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 1239 const char *old_name) 1240 { 1241 if (unlikely(IS_PRIVATE(dir))) 1242 return 0; 1243 return call_int_hook(inode_symlink, 0, dir, dentry, old_name); 1244 } 1245 1246 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1247 { 1248 if (unlikely(IS_PRIVATE(dir))) 1249 return 0; 1250 return call_int_hook(inode_mkdir, 0, dir, dentry, mode); 1251 } 1252 EXPORT_SYMBOL_GPL(security_inode_mkdir); 1253 1254 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 1255 { 1256 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1257 return 0; 1258 return call_int_hook(inode_rmdir, 0, dir, dentry); 1259 } 1260 1261 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 1262 { 1263 if (unlikely(IS_PRIVATE(dir))) 1264 return 0; 1265 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev); 1266 } 1267 1268 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 1269 struct inode *new_dir, struct dentry *new_dentry, 1270 unsigned int flags) 1271 { 1272 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1273 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1274 return 0; 1275 1276 if (flags & RENAME_EXCHANGE) { 1277 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry, 1278 old_dir, old_dentry); 1279 if (err) 1280 return err; 1281 } 1282 1283 return call_int_hook(inode_rename, 0, old_dir, old_dentry, 1284 new_dir, new_dentry); 1285 } 1286 1287 int security_inode_readlink(struct dentry *dentry) 1288 { 1289 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1290 return 0; 1291 return call_int_hook(inode_readlink, 0, dentry); 1292 } 1293 1294 int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 1295 bool rcu) 1296 { 1297 if (unlikely(IS_PRIVATE(inode))) 1298 return 0; 1299 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu); 1300 } 1301 1302 int security_inode_permission(struct inode *inode, int mask) 1303 { 1304 if (unlikely(IS_PRIVATE(inode))) 1305 return 0; 1306 return call_int_hook(inode_permission, 0, inode, mask); 1307 } 1308 1309 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 1310 { 1311 int ret; 1312 1313 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1314 return 0; 1315 ret = call_int_hook(inode_setattr, 0, dentry, attr); 1316 if (ret) 1317 return ret; 1318 return evm_inode_setattr(dentry, attr); 1319 } 1320 EXPORT_SYMBOL_GPL(security_inode_setattr); 1321 1322 int security_inode_getattr(const struct path *path) 1323 { 1324 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1325 return 0; 1326 return call_int_hook(inode_getattr, 0, path); 1327 } 1328 1329 int security_inode_setxattr(struct user_namespace *mnt_userns, 1330 struct dentry *dentry, const char *name, 1331 const void *value, size_t size, int flags) 1332 { 1333 int ret; 1334 1335 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1336 return 0; 1337 /* 1338 * SELinux and Smack integrate the cap call, 1339 * so assume that all LSMs supplying this call do so. 1340 */ 1341 ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value, 1342 size, flags); 1343 1344 if (ret == 1) 1345 ret = cap_inode_setxattr(dentry, name, value, size, flags); 1346 if (ret) 1347 return ret; 1348 ret = ima_inode_setxattr(dentry, name, value, size); 1349 if (ret) 1350 return ret; 1351 return evm_inode_setxattr(mnt_userns, dentry, name, value, size); 1352 } 1353 1354 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 1355 const void *value, size_t size, int flags) 1356 { 1357 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1358 return; 1359 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 1360 evm_inode_post_setxattr(dentry, name, value, size); 1361 } 1362 1363 int security_inode_getxattr(struct dentry *dentry, const char *name) 1364 { 1365 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1366 return 0; 1367 return call_int_hook(inode_getxattr, 0, dentry, name); 1368 } 1369 1370 int security_inode_listxattr(struct dentry *dentry) 1371 { 1372 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1373 return 0; 1374 return call_int_hook(inode_listxattr, 0, dentry); 1375 } 1376 1377 int security_inode_removexattr(struct user_namespace *mnt_userns, 1378 struct dentry *dentry, const char *name) 1379 { 1380 int ret; 1381 1382 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1383 return 0; 1384 /* 1385 * SELinux and Smack integrate the cap call, 1386 * so assume that all LSMs supplying this call do so. 1387 */ 1388 ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name); 1389 if (ret == 1) 1390 ret = cap_inode_removexattr(mnt_userns, dentry, name); 1391 if (ret) 1392 return ret; 1393 ret = ima_inode_removexattr(dentry, name); 1394 if (ret) 1395 return ret; 1396 return evm_inode_removexattr(mnt_userns, dentry, name); 1397 } 1398 1399 int security_inode_need_killpriv(struct dentry *dentry) 1400 { 1401 return call_int_hook(inode_need_killpriv, 0, dentry); 1402 } 1403 1404 int security_inode_killpriv(struct user_namespace *mnt_userns, 1405 struct dentry *dentry) 1406 { 1407 return call_int_hook(inode_killpriv, 0, mnt_userns, dentry); 1408 } 1409 1410 int security_inode_getsecurity(struct user_namespace *mnt_userns, 1411 struct inode *inode, const char *name, 1412 void **buffer, bool alloc) 1413 { 1414 struct security_hook_list *hp; 1415 int rc; 1416 1417 if (unlikely(IS_PRIVATE(inode))) 1418 return LSM_RET_DEFAULT(inode_getsecurity); 1419 /* 1420 * Only one module will provide an attribute with a given name. 1421 */ 1422 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) { 1423 rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc); 1424 if (rc != LSM_RET_DEFAULT(inode_getsecurity)) 1425 return rc; 1426 } 1427 return LSM_RET_DEFAULT(inode_getsecurity); 1428 } 1429 1430 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 1431 { 1432 struct security_hook_list *hp; 1433 int rc; 1434 1435 if (unlikely(IS_PRIVATE(inode))) 1436 return LSM_RET_DEFAULT(inode_setsecurity); 1437 /* 1438 * Only one module will provide an attribute with a given name. 1439 */ 1440 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) { 1441 rc = hp->hook.inode_setsecurity(inode, name, value, size, 1442 flags); 1443 if (rc != LSM_RET_DEFAULT(inode_setsecurity)) 1444 return rc; 1445 } 1446 return LSM_RET_DEFAULT(inode_setsecurity); 1447 } 1448 1449 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 1450 { 1451 if (unlikely(IS_PRIVATE(inode))) 1452 return 0; 1453 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size); 1454 } 1455 EXPORT_SYMBOL(security_inode_listsecurity); 1456 1457 void security_inode_getsecid(struct inode *inode, u32 *secid) 1458 { 1459 call_void_hook(inode_getsecid, inode, secid); 1460 } 1461 1462 int security_inode_copy_up(struct dentry *src, struct cred **new) 1463 { 1464 return call_int_hook(inode_copy_up, 0, src, new); 1465 } 1466 EXPORT_SYMBOL(security_inode_copy_up); 1467 1468 int security_inode_copy_up_xattr(const char *name) 1469 { 1470 struct security_hook_list *hp; 1471 int rc; 1472 1473 /* 1474 * The implementation can return 0 (accept the xattr), 1 (discard the 1475 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or 1476 * any other error code incase of an error. 1477 */ 1478 hlist_for_each_entry(hp, 1479 &security_hook_heads.inode_copy_up_xattr, list) { 1480 rc = hp->hook.inode_copy_up_xattr(name); 1481 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr)) 1482 return rc; 1483 } 1484 1485 return LSM_RET_DEFAULT(inode_copy_up_xattr); 1486 } 1487 EXPORT_SYMBOL(security_inode_copy_up_xattr); 1488 1489 int security_kernfs_init_security(struct kernfs_node *kn_dir, 1490 struct kernfs_node *kn) 1491 { 1492 return call_int_hook(kernfs_init_security, 0, kn_dir, kn); 1493 } 1494 1495 int security_file_permission(struct file *file, int mask) 1496 { 1497 int ret; 1498 1499 ret = call_int_hook(file_permission, 0, file, mask); 1500 if (ret) 1501 return ret; 1502 1503 return fsnotify_perm(file, mask); 1504 } 1505 1506 int security_file_alloc(struct file *file) 1507 { 1508 int rc = lsm_file_alloc(file); 1509 1510 if (rc) 1511 return rc; 1512 rc = call_int_hook(file_alloc_security, 0, file); 1513 if (unlikely(rc)) 1514 security_file_free(file); 1515 return rc; 1516 } 1517 1518 void security_file_free(struct file *file) 1519 { 1520 void *blob; 1521 1522 call_void_hook(file_free_security, file); 1523 1524 blob = file->f_security; 1525 if (blob) { 1526 file->f_security = NULL; 1527 kmem_cache_free(lsm_file_cache, blob); 1528 } 1529 } 1530 1531 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1532 { 1533 return call_int_hook(file_ioctl, 0, file, cmd, arg); 1534 } 1535 EXPORT_SYMBOL_GPL(security_file_ioctl); 1536 1537 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 1538 { 1539 /* 1540 * Does we have PROT_READ and does the application expect 1541 * it to imply PROT_EXEC? If not, nothing to talk about... 1542 */ 1543 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 1544 return prot; 1545 if (!(current->personality & READ_IMPLIES_EXEC)) 1546 return prot; 1547 /* 1548 * if that's an anonymous mapping, let it. 1549 */ 1550 if (!file) 1551 return prot | PROT_EXEC; 1552 /* 1553 * ditto if it's not on noexec mount, except that on !MMU we need 1554 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 1555 */ 1556 if (!path_noexec(&file->f_path)) { 1557 #ifndef CONFIG_MMU 1558 if (file->f_op->mmap_capabilities) { 1559 unsigned caps = file->f_op->mmap_capabilities(file); 1560 if (!(caps & NOMMU_MAP_EXEC)) 1561 return prot; 1562 } 1563 #endif 1564 return prot | PROT_EXEC; 1565 } 1566 /* anything on noexec mount won't get PROT_EXEC */ 1567 return prot; 1568 } 1569 1570 int security_mmap_file(struct file *file, unsigned long prot, 1571 unsigned long flags) 1572 { 1573 int ret; 1574 ret = call_int_hook(mmap_file, 0, file, prot, 1575 mmap_prot(file, prot), flags); 1576 if (ret) 1577 return ret; 1578 return ima_file_mmap(file, prot); 1579 } 1580 1581 int security_mmap_addr(unsigned long addr) 1582 { 1583 return call_int_hook(mmap_addr, 0, addr); 1584 } 1585 1586 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 1587 unsigned long prot) 1588 { 1589 int ret; 1590 1591 ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot); 1592 if (ret) 1593 return ret; 1594 return ima_file_mprotect(vma, prot); 1595 } 1596 1597 int security_file_lock(struct file *file, unsigned int cmd) 1598 { 1599 return call_int_hook(file_lock, 0, file, cmd); 1600 } 1601 1602 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 1603 { 1604 return call_int_hook(file_fcntl, 0, file, cmd, arg); 1605 } 1606 1607 void security_file_set_fowner(struct file *file) 1608 { 1609 call_void_hook(file_set_fowner, file); 1610 } 1611 1612 int security_file_send_sigiotask(struct task_struct *tsk, 1613 struct fown_struct *fown, int sig) 1614 { 1615 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig); 1616 } 1617 1618 int security_file_receive(struct file *file) 1619 { 1620 return call_int_hook(file_receive, 0, file); 1621 } 1622 1623 int security_file_open(struct file *file) 1624 { 1625 int ret; 1626 1627 ret = call_int_hook(file_open, 0, file); 1628 if (ret) 1629 return ret; 1630 1631 return fsnotify_perm(file, MAY_OPEN); 1632 } 1633 1634 int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 1635 { 1636 int rc = lsm_task_alloc(task); 1637 1638 if (rc) 1639 return rc; 1640 rc = call_int_hook(task_alloc, 0, task, clone_flags); 1641 if (unlikely(rc)) 1642 security_task_free(task); 1643 return rc; 1644 } 1645 1646 void security_task_free(struct task_struct *task) 1647 { 1648 call_void_hook(task_free, task); 1649 1650 kfree(task->security); 1651 task->security = NULL; 1652 } 1653 1654 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 1655 { 1656 int rc = lsm_cred_alloc(cred, gfp); 1657 1658 if (rc) 1659 return rc; 1660 1661 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp); 1662 if (unlikely(rc)) 1663 security_cred_free(cred); 1664 return rc; 1665 } 1666 1667 void security_cred_free(struct cred *cred) 1668 { 1669 /* 1670 * There is a failure case in prepare_creds() that 1671 * may result in a call here with ->security being NULL. 1672 */ 1673 if (unlikely(cred->security == NULL)) 1674 return; 1675 1676 call_void_hook(cred_free, cred); 1677 1678 kfree(cred->security); 1679 cred->security = NULL; 1680 } 1681 1682 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 1683 { 1684 int rc = lsm_cred_alloc(new, gfp); 1685 1686 if (rc) 1687 return rc; 1688 1689 rc = call_int_hook(cred_prepare, 0, new, old, gfp); 1690 if (unlikely(rc)) 1691 security_cred_free(new); 1692 return rc; 1693 } 1694 1695 void security_transfer_creds(struct cred *new, const struct cred *old) 1696 { 1697 call_void_hook(cred_transfer, new, old); 1698 } 1699 1700 void security_cred_getsecid(const struct cred *c, u32 *secid) 1701 { 1702 *secid = 0; 1703 call_void_hook(cred_getsecid, c, secid); 1704 } 1705 EXPORT_SYMBOL(security_cred_getsecid); 1706 1707 int security_kernel_act_as(struct cred *new, u32 secid) 1708 { 1709 return call_int_hook(kernel_act_as, 0, new, secid); 1710 } 1711 1712 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 1713 { 1714 return call_int_hook(kernel_create_files_as, 0, new, inode); 1715 } 1716 1717 int security_kernel_module_request(char *kmod_name) 1718 { 1719 int ret; 1720 1721 ret = call_int_hook(kernel_module_request, 0, kmod_name); 1722 if (ret) 1723 return ret; 1724 return integrity_kernel_module_request(kmod_name); 1725 } 1726 1727 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id, 1728 bool contents) 1729 { 1730 int ret; 1731 1732 ret = call_int_hook(kernel_read_file, 0, file, id, contents); 1733 if (ret) 1734 return ret; 1735 return ima_read_file(file, id, contents); 1736 } 1737 EXPORT_SYMBOL_GPL(security_kernel_read_file); 1738 1739 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 1740 enum kernel_read_file_id id) 1741 { 1742 int ret; 1743 1744 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id); 1745 if (ret) 1746 return ret; 1747 return ima_post_read_file(file, buf, size, id); 1748 } 1749 EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 1750 1751 int security_kernel_load_data(enum kernel_load_data_id id, bool contents) 1752 { 1753 int ret; 1754 1755 ret = call_int_hook(kernel_load_data, 0, id, contents); 1756 if (ret) 1757 return ret; 1758 return ima_load_data(id, contents); 1759 } 1760 EXPORT_SYMBOL_GPL(security_kernel_load_data); 1761 1762 int security_kernel_post_load_data(char *buf, loff_t size, 1763 enum kernel_load_data_id id, 1764 char *description) 1765 { 1766 int ret; 1767 1768 ret = call_int_hook(kernel_post_load_data, 0, buf, size, id, 1769 description); 1770 if (ret) 1771 return ret; 1772 return ima_post_load_data(buf, size, id, description); 1773 } 1774 EXPORT_SYMBOL_GPL(security_kernel_post_load_data); 1775 1776 int security_task_fix_setuid(struct cred *new, const struct cred *old, 1777 int flags) 1778 { 1779 return call_int_hook(task_fix_setuid, 0, new, old, flags); 1780 } 1781 1782 int security_task_fix_setgid(struct cred *new, const struct cred *old, 1783 int flags) 1784 { 1785 return call_int_hook(task_fix_setgid, 0, new, old, flags); 1786 } 1787 1788 int security_task_setpgid(struct task_struct *p, pid_t pgid) 1789 { 1790 return call_int_hook(task_setpgid, 0, p, pgid); 1791 } 1792 1793 int security_task_getpgid(struct task_struct *p) 1794 { 1795 return call_int_hook(task_getpgid, 0, p); 1796 } 1797 1798 int security_task_getsid(struct task_struct *p) 1799 { 1800 return call_int_hook(task_getsid, 0, p); 1801 } 1802 1803 void security_current_getsecid_subj(u32 *secid) 1804 { 1805 *secid = 0; 1806 call_void_hook(current_getsecid_subj, secid); 1807 } 1808 EXPORT_SYMBOL(security_current_getsecid_subj); 1809 1810 void security_task_getsecid_obj(struct task_struct *p, u32 *secid) 1811 { 1812 *secid = 0; 1813 call_void_hook(task_getsecid_obj, p, secid); 1814 } 1815 EXPORT_SYMBOL(security_task_getsecid_obj); 1816 1817 int security_task_setnice(struct task_struct *p, int nice) 1818 { 1819 return call_int_hook(task_setnice, 0, p, nice); 1820 } 1821 1822 int security_task_setioprio(struct task_struct *p, int ioprio) 1823 { 1824 return call_int_hook(task_setioprio, 0, p, ioprio); 1825 } 1826 1827 int security_task_getioprio(struct task_struct *p) 1828 { 1829 return call_int_hook(task_getioprio, 0, p); 1830 } 1831 1832 int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 1833 unsigned int flags) 1834 { 1835 return call_int_hook(task_prlimit, 0, cred, tcred, flags); 1836 } 1837 1838 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 1839 struct rlimit *new_rlim) 1840 { 1841 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim); 1842 } 1843 1844 int security_task_setscheduler(struct task_struct *p) 1845 { 1846 return call_int_hook(task_setscheduler, 0, p); 1847 } 1848 1849 int security_task_getscheduler(struct task_struct *p) 1850 { 1851 return call_int_hook(task_getscheduler, 0, p); 1852 } 1853 1854 int security_task_movememory(struct task_struct *p) 1855 { 1856 return call_int_hook(task_movememory, 0, p); 1857 } 1858 1859 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, 1860 int sig, const struct cred *cred) 1861 { 1862 return call_int_hook(task_kill, 0, p, info, sig, cred); 1863 } 1864 1865 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 1866 unsigned long arg4, unsigned long arg5) 1867 { 1868 int thisrc; 1869 int rc = LSM_RET_DEFAULT(task_prctl); 1870 struct security_hook_list *hp; 1871 1872 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 1873 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 1874 if (thisrc != LSM_RET_DEFAULT(task_prctl)) { 1875 rc = thisrc; 1876 if (thisrc != 0) 1877 break; 1878 } 1879 } 1880 return rc; 1881 } 1882 1883 void security_task_to_inode(struct task_struct *p, struct inode *inode) 1884 { 1885 call_void_hook(task_to_inode, p, inode); 1886 } 1887 1888 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 1889 { 1890 return call_int_hook(ipc_permission, 0, ipcp, flag); 1891 } 1892 1893 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 1894 { 1895 *secid = 0; 1896 call_void_hook(ipc_getsecid, ipcp, secid); 1897 } 1898 1899 int security_msg_msg_alloc(struct msg_msg *msg) 1900 { 1901 int rc = lsm_msg_msg_alloc(msg); 1902 1903 if (unlikely(rc)) 1904 return rc; 1905 rc = call_int_hook(msg_msg_alloc_security, 0, msg); 1906 if (unlikely(rc)) 1907 security_msg_msg_free(msg); 1908 return rc; 1909 } 1910 1911 void security_msg_msg_free(struct msg_msg *msg) 1912 { 1913 call_void_hook(msg_msg_free_security, msg); 1914 kfree(msg->security); 1915 msg->security = NULL; 1916 } 1917 1918 int security_msg_queue_alloc(struct kern_ipc_perm *msq) 1919 { 1920 int rc = lsm_ipc_alloc(msq); 1921 1922 if (unlikely(rc)) 1923 return rc; 1924 rc = call_int_hook(msg_queue_alloc_security, 0, msq); 1925 if (unlikely(rc)) 1926 security_msg_queue_free(msq); 1927 return rc; 1928 } 1929 1930 void security_msg_queue_free(struct kern_ipc_perm *msq) 1931 { 1932 call_void_hook(msg_queue_free_security, msq); 1933 kfree(msq->security); 1934 msq->security = NULL; 1935 } 1936 1937 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 1938 { 1939 return call_int_hook(msg_queue_associate, 0, msq, msqflg); 1940 } 1941 1942 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 1943 { 1944 return call_int_hook(msg_queue_msgctl, 0, msq, cmd); 1945 } 1946 1947 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 1948 struct msg_msg *msg, int msqflg) 1949 { 1950 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg); 1951 } 1952 1953 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 1954 struct task_struct *target, long type, int mode) 1955 { 1956 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode); 1957 } 1958 1959 int security_shm_alloc(struct kern_ipc_perm *shp) 1960 { 1961 int rc = lsm_ipc_alloc(shp); 1962 1963 if (unlikely(rc)) 1964 return rc; 1965 rc = call_int_hook(shm_alloc_security, 0, shp); 1966 if (unlikely(rc)) 1967 security_shm_free(shp); 1968 return rc; 1969 } 1970 1971 void security_shm_free(struct kern_ipc_perm *shp) 1972 { 1973 call_void_hook(shm_free_security, shp); 1974 kfree(shp->security); 1975 shp->security = NULL; 1976 } 1977 1978 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 1979 { 1980 return call_int_hook(shm_associate, 0, shp, shmflg); 1981 } 1982 1983 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 1984 { 1985 return call_int_hook(shm_shmctl, 0, shp, cmd); 1986 } 1987 1988 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg) 1989 { 1990 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg); 1991 } 1992 1993 int security_sem_alloc(struct kern_ipc_perm *sma) 1994 { 1995 int rc = lsm_ipc_alloc(sma); 1996 1997 if (unlikely(rc)) 1998 return rc; 1999 rc = call_int_hook(sem_alloc_security, 0, sma); 2000 if (unlikely(rc)) 2001 security_sem_free(sma); 2002 return rc; 2003 } 2004 2005 void security_sem_free(struct kern_ipc_perm *sma) 2006 { 2007 call_void_hook(sem_free_security, sma); 2008 kfree(sma->security); 2009 sma->security = NULL; 2010 } 2011 2012 int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 2013 { 2014 return call_int_hook(sem_associate, 0, sma, semflg); 2015 } 2016 2017 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 2018 { 2019 return call_int_hook(sem_semctl, 0, sma, cmd); 2020 } 2021 2022 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 2023 unsigned nsops, int alter) 2024 { 2025 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter); 2026 } 2027 2028 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 2029 { 2030 if (unlikely(inode && IS_PRIVATE(inode))) 2031 return; 2032 call_void_hook(d_instantiate, dentry, inode); 2033 } 2034 EXPORT_SYMBOL(security_d_instantiate); 2035 2036 int security_getprocattr(struct task_struct *p, const char *lsm, char *name, 2037 char **value) 2038 { 2039 struct security_hook_list *hp; 2040 2041 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) { 2042 if (lsm != NULL && strcmp(lsm, hp->lsm)) 2043 continue; 2044 return hp->hook.getprocattr(p, name, value); 2045 } 2046 return LSM_RET_DEFAULT(getprocattr); 2047 } 2048 2049 int security_setprocattr(const char *lsm, const char *name, void *value, 2050 size_t size) 2051 { 2052 struct security_hook_list *hp; 2053 2054 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) { 2055 if (lsm != NULL && strcmp(lsm, hp->lsm)) 2056 continue; 2057 return hp->hook.setprocattr(name, value, size); 2058 } 2059 return LSM_RET_DEFAULT(setprocattr); 2060 } 2061 2062 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 2063 { 2064 return call_int_hook(netlink_send, 0, sk, skb); 2065 } 2066 2067 int security_ismaclabel(const char *name) 2068 { 2069 return call_int_hook(ismaclabel, 0, name); 2070 } 2071 EXPORT_SYMBOL(security_ismaclabel); 2072 2073 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 2074 { 2075 struct security_hook_list *hp; 2076 int rc; 2077 2078 /* 2079 * Currently, only one LSM can implement secid_to_secctx (i.e this 2080 * LSM hook is not "stackable"). 2081 */ 2082 hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) { 2083 rc = hp->hook.secid_to_secctx(secid, secdata, seclen); 2084 if (rc != LSM_RET_DEFAULT(secid_to_secctx)) 2085 return rc; 2086 } 2087 2088 return LSM_RET_DEFAULT(secid_to_secctx); 2089 } 2090 EXPORT_SYMBOL(security_secid_to_secctx); 2091 2092 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 2093 { 2094 *secid = 0; 2095 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid); 2096 } 2097 EXPORT_SYMBOL(security_secctx_to_secid); 2098 2099 void security_release_secctx(char *secdata, u32 seclen) 2100 { 2101 call_void_hook(release_secctx, secdata, seclen); 2102 } 2103 EXPORT_SYMBOL(security_release_secctx); 2104 2105 void security_inode_invalidate_secctx(struct inode *inode) 2106 { 2107 call_void_hook(inode_invalidate_secctx, inode); 2108 } 2109 EXPORT_SYMBOL(security_inode_invalidate_secctx); 2110 2111 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 2112 { 2113 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen); 2114 } 2115 EXPORT_SYMBOL(security_inode_notifysecctx); 2116 2117 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 2118 { 2119 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen); 2120 } 2121 EXPORT_SYMBOL(security_inode_setsecctx); 2122 2123 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 2124 { 2125 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen); 2126 } 2127 EXPORT_SYMBOL(security_inode_getsecctx); 2128 2129 #ifdef CONFIG_WATCH_QUEUE 2130 int security_post_notification(const struct cred *w_cred, 2131 const struct cred *cred, 2132 struct watch_notification *n) 2133 { 2134 return call_int_hook(post_notification, 0, w_cred, cred, n); 2135 } 2136 #endif /* CONFIG_WATCH_QUEUE */ 2137 2138 #ifdef CONFIG_KEY_NOTIFICATIONS 2139 int security_watch_key(struct key *key) 2140 { 2141 return call_int_hook(watch_key, 0, key); 2142 } 2143 #endif 2144 2145 #ifdef CONFIG_SECURITY_NETWORK 2146 2147 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 2148 { 2149 return call_int_hook(unix_stream_connect, 0, sock, other, newsk); 2150 } 2151 EXPORT_SYMBOL(security_unix_stream_connect); 2152 2153 int security_unix_may_send(struct socket *sock, struct socket *other) 2154 { 2155 return call_int_hook(unix_may_send, 0, sock, other); 2156 } 2157 EXPORT_SYMBOL(security_unix_may_send); 2158 2159 int security_socket_create(int family, int type, int protocol, int kern) 2160 { 2161 return call_int_hook(socket_create, 0, family, type, protocol, kern); 2162 } 2163 2164 int security_socket_post_create(struct socket *sock, int family, 2165 int type, int protocol, int kern) 2166 { 2167 return call_int_hook(socket_post_create, 0, sock, family, type, 2168 protocol, kern); 2169 } 2170 2171 int security_socket_socketpair(struct socket *socka, struct socket *sockb) 2172 { 2173 return call_int_hook(socket_socketpair, 0, socka, sockb); 2174 } 2175 EXPORT_SYMBOL(security_socket_socketpair); 2176 2177 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 2178 { 2179 return call_int_hook(socket_bind, 0, sock, address, addrlen); 2180 } 2181 2182 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 2183 { 2184 return call_int_hook(socket_connect, 0, sock, address, addrlen); 2185 } 2186 2187 int security_socket_listen(struct socket *sock, int backlog) 2188 { 2189 return call_int_hook(socket_listen, 0, sock, backlog); 2190 } 2191 2192 int security_socket_accept(struct socket *sock, struct socket *newsock) 2193 { 2194 return call_int_hook(socket_accept, 0, sock, newsock); 2195 } 2196 2197 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 2198 { 2199 return call_int_hook(socket_sendmsg, 0, sock, msg, size); 2200 } 2201 2202 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 2203 int size, int flags) 2204 { 2205 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags); 2206 } 2207 2208 int security_socket_getsockname(struct socket *sock) 2209 { 2210 return call_int_hook(socket_getsockname, 0, sock); 2211 } 2212 2213 int security_socket_getpeername(struct socket *sock) 2214 { 2215 return call_int_hook(socket_getpeername, 0, sock); 2216 } 2217 2218 int security_socket_getsockopt(struct socket *sock, int level, int optname) 2219 { 2220 return call_int_hook(socket_getsockopt, 0, sock, level, optname); 2221 } 2222 2223 int security_socket_setsockopt(struct socket *sock, int level, int optname) 2224 { 2225 return call_int_hook(socket_setsockopt, 0, sock, level, optname); 2226 } 2227 2228 int security_socket_shutdown(struct socket *sock, int how) 2229 { 2230 return call_int_hook(socket_shutdown, 0, sock, how); 2231 } 2232 2233 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 2234 { 2235 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb); 2236 } 2237 EXPORT_SYMBOL(security_sock_rcv_skb); 2238 2239 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 2240 int __user *optlen, unsigned len) 2241 { 2242 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock, 2243 optval, optlen, len); 2244 } 2245 2246 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 2247 { 2248 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock, 2249 skb, secid); 2250 } 2251 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 2252 2253 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 2254 { 2255 return call_int_hook(sk_alloc_security, 0, sk, family, priority); 2256 } 2257 2258 void security_sk_free(struct sock *sk) 2259 { 2260 call_void_hook(sk_free_security, sk); 2261 } 2262 2263 void security_sk_clone(const struct sock *sk, struct sock *newsk) 2264 { 2265 call_void_hook(sk_clone_security, sk, newsk); 2266 } 2267 EXPORT_SYMBOL(security_sk_clone); 2268 2269 void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic) 2270 { 2271 call_void_hook(sk_getsecid, sk, &flic->flowic_secid); 2272 } 2273 EXPORT_SYMBOL(security_sk_classify_flow); 2274 2275 void security_req_classify_flow(const struct request_sock *req, 2276 struct flowi_common *flic) 2277 { 2278 call_void_hook(req_classify_flow, req, flic); 2279 } 2280 EXPORT_SYMBOL(security_req_classify_flow); 2281 2282 void security_sock_graft(struct sock *sk, struct socket *parent) 2283 { 2284 call_void_hook(sock_graft, sk, parent); 2285 } 2286 EXPORT_SYMBOL(security_sock_graft); 2287 2288 int security_inet_conn_request(const struct sock *sk, 2289 struct sk_buff *skb, struct request_sock *req) 2290 { 2291 return call_int_hook(inet_conn_request, 0, sk, skb, req); 2292 } 2293 EXPORT_SYMBOL(security_inet_conn_request); 2294 2295 void security_inet_csk_clone(struct sock *newsk, 2296 const struct request_sock *req) 2297 { 2298 call_void_hook(inet_csk_clone, newsk, req); 2299 } 2300 2301 void security_inet_conn_established(struct sock *sk, 2302 struct sk_buff *skb) 2303 { 2304 call_void_hook(inet_conn_established, sk, skb); 2305 } 2306 EXPORT_SYMBOL(security_inet_conn_established); 2307 2308 int security_secmark_relabel_packet(u32 secid) 2309 { 2310 return call_int_hook(secmark_relabel_packet, 0, secid); 2311 } 2312 EXPORT_SYMBOL(security_secmark_relabel_packet); 2313 2314 void security_secmark_refcount_inc(void) 2315 { 2316 call_void_hook(secmark_refcount_inc); 2317 } 2318 EXPORT_SYMBOL(security_secmark_refcount_inc); 2319 2320 void security_secmark_refcount_dec(void) 2321 { 2322 call_void_hook(secmark_refcount_dec); 2323 } 2324 EXPORT_SYMBOL(security_secmark_refcount_dec); 2325 2326 int security_tun_dev_alloc_security(void **security) 2327 { 2328 return call_int_hook(tun_dev_alloc_security, 0, security); 2329 } 2330 EXPORT_SYMBOL(security_tun_dev_alloc_security); 2331 2332 void security_tun_dev_free_security(void *security) 2333 { 2334 call_void_hook(tun_dev_free_security, security); 2335 } 2336 EXPORT_SYMBOL(security_tun_dev_free_security); 2337 2338 int security_tun_dev_create(void) 2339 { 2340 return call_int_hook(tun_dev_create, 0); 2341 } 2342 EXPORT_SYMBOL(security_tun_dev_create); 2343 2344 int security_tun_dev_attach_queue(void *security) 2345 { 2346 return call_int_hook(tun_dev_attach_queue, 0, security); 2347 } 2348 EXPORT_SYMBOL(security_tun_dev_attach_queue); 2349 2350 int security_tun_dev_attach(struct sock *sk, void *security) 2351 { 2352 return call_int_hook(tun_dev_attach, 0, sk, security); 2353 } 2354 EXPORT_SYMBOL(security_tun_dev_attach); 2355 2356 int security_tun_dev_open(void *security) 2357 { 2358 return call_int_hook(tun_dev_open, 0, security); 2359 } 2360 EXPORT_SYMBOL(security_tun_dev_open); 2361 2362 int security_sctp_assoc_request(struct sctp_association *asoc, struct sk_buff *skb) 2363 { 2364 return call_int_hook(sctp_assoc_request, 0, asoc, skb); 2365 } 2366 EXPORT_SYMBOL(security_sctp_assoc_request); 2367 2368 int security_sctp_bind_connect(struct sock *sk, int optname, 2369 struct sockaddr *address, int addrlen) 2370 { 2371 return call_int_hook(sctp_bind_connect, 0, sk, optname, 2372 address, addrlen); 2373 } 2374 EXPORT_SYMBOL(security_sctp_bind_connect); 2375 2376 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk, 2377 struct sock *newsk) 2378 { 2379 call_void_hook(sctp_sk_clone, asoc, sk, newsk); 2380 } 2381 EXPORT_SYMBOL(security_sctp_sk_clone); 2382 2383 #endif /* CONFIG_SECURITY_NETWORK */ 2384 2385 #ifdef CONFIG_SECURITY_INFINIBAND 2386 2387 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 2388 { 2389 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey); 2390 } 2391 EXPORT_SYMBOL(security_ib_pkey_access); 2392 2393 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num) 2394 { 2395 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num); 2396 } 2397 EXPORT_SYMBOL(security_ib_endport_manage_subnet); 2398 2399 int security_ib_alloc_security(void **sec) 2400 { 2401 return call_int_hook(ib_alloc_security, 0, sec); 2402 } 2403 EXPORT_SYMBOL(security_ib_alloc_security); 2404 2405 void security_ib_free_security(void *sec) 2406 { 2407 call_void_hook(ib_free_security, sec); 2408 } 2409 EXPORT_SYMBOL(security_ib_free_security); 2410 #endif /* CONFIG_SECURITY_INFINIBAND */ 2411 2412 #ifdef CONFIG_SECURITY_NETWORK_XFRM 2413 2414 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 2415 struct xfrm_user_sec_ctx *sec_ctx, 2416 gfp_t gfp) 2417 { 2418 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp); 2419 } 2420 EXPORT_SYMBOL(security_xfrm_policy_alloc); 2421 2422 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 2423 struct xfrm_sec_ctx **new_ctxp) 2424 { 2425 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp); 2426 } 2427 2428 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 2429 { 2430 call_void_hook(xfrm_policy_free_security, ctx); 2431 } 2432 EXPORT_SYMBOL(security_xfrm_policy_free); 2433 2434 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 2435 { 2436 return call_int_hook(xfrm_policy_delete_security, 0, ctx); 2437 } 2438 2439 int security_xfrm_state_alloc(struct xfrm_state *x, 2440 struct xfrm_user_sec_ctx *sec_ctx) 2441 { 2442 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx); 2443 } 2444 EXPORT_SYMBOL(security_xfrm_state_alloc); 2445 2446 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 2447 struct xfrm_sec_ctx *polsec, u32 secid) 2448 { 2449 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid); 2450 } 2451 2452 int security_xfrm_state_delete(struct xfrm_state *x) 2453 { 2454 return call_int_hook(xfrm_state_delete_security, 0, x); 2455 } 2456 EXPORT_SYMBOL(security_xfrm_state_delete); 2457 2458 void security_xfrm_state_free(struct xfrm_state *x) 2459 { 2460 call_void_hook(xfrm_state_free_security, x); 2461 } 2462 2463 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid) 2464 { 2465 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid); 2466 } 2467 2468 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 2469 struct xfrm_policy *xp, 2470 const struct flowi_common *flic) 2471 { 2472 struct security_hook_list *hp; 2473 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match); 2474 2475 /* 2476 * Since this function is expected to return 0 or 1, the judgment 2477 * becomes difficult if multiple LSMs supply this call. Fortunately, 2478 * we can use the first LSM's judgment because currently only SELinux 2479 * supplies this call. 2480 * 2481 * For speed optimization, we explicitly break the loop rather than 2482 * using the macro 2483 */ 2484 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 2485 list) { 2486 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic); 2487 break; 2488 } 2489 return rc; 2490 } 2491 2492 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 2493 { 2494 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1); 2495 } 2496 2497 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic) 2498 { 2499 int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid, 2500 0); 2501 2502 BUG_ON(rc); 2503 } 2504 EXPORT_SYMBOL(security_skb_classify_flow); 2505 2506 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 2507 2508 #ifdef CONFIG_KEYS 2509 2510 int security_key_alloc(struct key *key, const struct cred *cred, 2511 unsigned long flags) 2512 { 2513 return call_int_hook(key_alloc, 0, key, cred, flags); 2514 } 2515 2516 void security_key_free(struct key *key) 2517 { 2518 call_void_hook(key_free, key); 2519 } 2520 2521 int security_key_permission(key_ref_t key_ref, const struct cred *cred, 2522 enum key_need_perm need_perm) 2523 { 2524 return call_int_hook(key_permission, 0, key_ref, cred, need_perm); 2525 } 2526 2527 int security_key_getsecurity(struct key *key, char **_buffer) 2528 { 2529 *_buffer = NULL; 2530 return call_int_hook(key_getsecurity, 0, key, _buffer); 2531 } 2532 2533 #endif /* CONFIG_KEYS */ 2534 2535 #ifdef CONFIG_AUDIT 2536 2537 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 2538 { 2539 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule); 2540 } 2541 2542 int security_audit_rule_known(struct audit_krule *krule) 2543 { 2544 return call_int_hook(audit_rule_known, 0, krule); 2545 } 2546 2547 void security_audit_rule_free(void *lsmrule) 2548 { 2549 call_void_hook(audit_rule_free, lsmrule); 2550 } 2551 2552 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule) 2553 { 2554 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule); 2555 } 2556 #endif /* CONFIG_AUDIT */ 2557 2558 #ifdef CONFIG_BPF_SYSCALL 2559 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 2560 { 2561 return call_int_hook(bpf, 0, cmd, attr, size); 2562 } 2563 int security_bpf_map(struct bpf_map *map, fmode_t fmode) 2564 { 2565 return call_int_hook(bpf_map, 0, map, fmode); 2566 } 2567 int security_bpf_prog(struct bpf_prog *prog) 2568 { 2569 return call_int_hook(bpf_prog, 0, prog); 2570 } 2571 int security_bpf_map_alloc(struct bpf_map *map) 2572 { 2573 return call_int_hook(bpf_map_alloc_security, 0, map); 2574 } 2575 int security_bpf_prog_alloc(struct bpf_prog_aux *aux) 2576 { 2577 return call_int_hook(bpf_prog_alloc_security, 0, aux); 2578 } 2579 void security_bpf_map_free(struct bpf_map *map) 2580 { 2581 call_void_hook(bpf_map_free_security, map); 2582 } 2583 void security_bpf_prog_free(struct bpf_prog_aux *aux) 2584 { 2585 call_void_hook(bpf_prog_free_security, aux); 2586 } 2587 #endif /* CONFIG_BPF_SYSCALL */ 2588 2589 int security_locked_down(enum lockdown_reason what) 2590 { 2591 return call_int_hook(locked_down, 0, what); 2592 } 2593 EXPORT_SYMBOL(security_locked_down); 2594 2595 #ifdef CONFIG_PERF_EVENTS 2596 int security_perf_event_open(struct perf_event_attr *attr, int type) 2597 { 2598 return call_int_hook(perf_event_open, 0, attr, type); 2599 } 2600 2601 int security_perf_event_alloc(struct perf_event *event) 2602 { 2603 return call_int_hook(perf_event_alloc, 0, event); 2604 } 2605 2606 void security_perf_event_free(struct perf_event *event) 2607 { 2608 call_void_hook(perf_event_free, event); 2609 } 2610 2611 int security_perf_event_read(struct perf_event *event) 2612 { 2613 return call_int_hook(perf_event_read, 0, event); 2614 } 2615 2616 int security_perf_event_write(struct perf_event *event) 2617 { 2618 return call_int_hook(perf_event_write, 0, event); 2619 } 2620 #endif /* CONFIG_PERF_EVENTS */ 2621 2622 #ifdef CONFIG_IO_URING 2623 int security_uring_override_creds(const struct cred *new) 2624 { 2625 return call_int_hook(uring_override_creds, 0, new); 2626 } 2627 2628 int security_uring_sqpoll(void) 2629 { 2630 return call_int_hook(uring_sqpoll, 0); 2631 } 2632 #endif /* CONFIG_IO_URING */ 2633