xref: /openbmc/linux/security/security.c (revision 910f4ece)
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *	This program is free software; you can redistribute it and/or modify
9  *	it under the terms of the GNU General Public License as published by
10  *	the Free Software Foundation; either version 2 of the License, or
11  *	(at your option) any later version.
12  */
13 
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/integrity.h>
20 #include <linux/ima.h>
21 #include <linux/evm.h>
22 
23 #define MAX_LSM_EVM_XATTR	2
24 
25 /* Boot-time LSM user choice */
26 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
27 	CONFIG_DEFAULT_SECURITY;
28 
29 static struct security_operations *security_ops;
30 static struct security_operations default_security_ops = {
31 	.name	= "default",
32 };
33 
34 static inline int __init verify(struct security_operations *ops)
35 {
36 	/* verify the security_operations structure exists */
37 	if (!ops)
38 		return -EINVAL;
39 	security_fixup_ops(ops);
40 	return 0;
41 }
42 
43 static void __init do_security_initcalls(void)
44 {
45 	initcall_t *call;
46 	call = __security_initcall_start;
47 	while (call < __security_initcall_end) {
48 		(*call) ();
49 		call++;
50 	}
51 }
52 
53 /**
54  * security_init - initializes the security framework
55  *
56  * This should be called early in the kernel initialization sequence.
57  */
58 int __init security_init(void)
59 {
60 	printk(KERN_INFO "Security Framework initialized\n");
61 
62 	security_fixup_ops(&default_security_ops);
63 	security_ops = &default_security_ops;
64 	do_security_initcalls();
65 
66 	return 0;
67 }
68 
69 void reset_security_ops(void)
70 {
71 	security_ops = &default_security_ops;
72 }
73 
74 /* Save user chosen LSM */
75 static int __init choose_lsm(char *str)
76 {
77 	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
78 	return 1;
79 }
80 __setup("security=", choose_lsm);
81 
82 /**
83  * security_module_enable - Load given security module on boot ?
84  * @ops: a pointer to the struct security_operations that is to be checked.
85  *
86  * Each LSM must pass this method before registering its own operations
87  * to avoid security registration races. This method may also be used
88  * to check if your LSM is currently loaded during kernel initialization.
89  *
90  * Return true if:
91  *	-The passed LSM is the one chosen by user at boot time,
92  *	-or the passed LSM is configured as the default and the user did not
93  *	 choose an alternate LSM at boot time.
94  * Otherwise, return false.
95  */
96 int __init security_module_enable(struct security_operations *ops)
97 {
98 	return !strcmp(ops->name, chosen_lsm);
99 }
100 
101 /**
102  * register_security - registers a security framework with the kernel
103  * @ops: a pointer to the struct security_options that is to be registered
104  *
105  * This function allows a security module to register itself with the
106  * kernel security subsystem.  Some rudimentary checking is done on the @ops
107  * value passed to this function. You'll need to check first if your LSM
108  * is allowed to register its @ops by calling security_module_enable(@ops).
109  *
110  * If there is already a security module registered with the kernel,
111  * an error will be returned.  Otherwise %0 is returned on success.
112  */
113 int __init register_security(struct security_operations *ops)
114 {
115 	if (verify(ops)) {
116 		printk(KERN_DEBUG "%s could not verify "
117 		       "security_operations structure.\n", __func__);
118 		return -EINVAL;
119 	}
120 
121 	if (security_ops != &default_security_ops)
122 		return -EAGAIN;
123 
124 	security_ops = ops;
125 
126 	return 0;
127 }
128 
129 /* Security operations */
130 
131 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
132 {
133 	return security_ops->ptrace_access_check(child, mode);
134 }
135 
136 int security_ptrace_traceme(struct task_struct *parent)
137 {
138 	return security_ops->ptrace_traceme(parent);
139 }
140 
141 int security_capget(struct task_struct *target,
142 		     kernel_cap_t *effective,
143 		     kernel_cap_t *inheritable,
144 		     kernel_cap_t *permitted)
145 {
146 	return security_ops->capget(target, effective, inheritable, permitted);
147 }
148 
149 int security_capset(struct cred *new, const struct cred *old,
150 		    const kernel_cap_t *effective,
151 		    const kernel_cap_t *inheritable,
152 		    const kernel_cap_t *permitted)
153 {
154 	return security_ops->capset(new, old,
155 				    effective, inheritable, permitted);
156 }
157 
158 int security_capable(struct user_namespace *ns, const struct cred *cred,
159 		     int cap)
160 {
161 	return security_ops->capable(current, cred, ns, cap,
162 				     SECURITY_CAP_AUDIT);
163 }
164 
165 int security_real_capable(struct task_struct *tsk, struct user_namespace *ns,
166 			  int cap)
167 {
168 	const struct cred *cred;
169 	int ret;
170 
171 	cred = get_task_cred(tsk);
172 	ret = security_ops->capable(tsk, cred, ns, cap, SECURITY_CAP_AUDIT);
173 	put_cred(cred);
174 	return ret;
175 }
176 
177 int security_real_capable_noaudit(struct task_struct *tsk,
178 				  struct user_namespace *ns, int cap)
179 {
180 	const struct cred *cred;
181 	int ret;
182 
183 	cred = get_task_cred(tsk);
184 	ret = security_ops->capable(tsk, cred, ns, cap, SECURITY_CAP_NOAUDIT);
185 	put_cred(cred);
186 	return ret;
187 }
188 
189 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
190 {
191 	return security_ops->quotactl(cmds, type, id, sb);
192 }
193 
194 int security_quota_on(struct dentry *dentry)
195 {
196 	return security_ops->quota_on(dentry);
197 }
198 
199 int security_syslog(int type)
200 {
201 	return security_ops->syslog(type);
202 }
203 
204 int security_settime(const struct timespec *ts, const struct timezone *tz)
205 {
206 	return security_ops->settime(ts, tz);
207 }
208 
209 int security_vm_enough_memory(long pages)
210 {
211 	WARN_ON(current->mm == NULL);
212 	return security_ops->vm_enough_memory(current->mm, pages);
213 }
214 
215 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
216 {
217 	WARN_ON(mm == NULL);
218 	return security_ops->vm_enough_memory(mm, pages);
219 }
220 
221 int security_vm_enough_memory_kern(long pages)
222 {
223 	/* If current->mm is a kernel thread then we will pass NULL,
224 	   for this specific case that is fine */
225 	return security_ops->vm_enough_memory(current->mm, pages);
226 }
227 
228 int security_bprm_set_creds(struct linux_binprm *bprm)
229 {
230 	return security_ops->bprm_set_creds(bprm);
231 }
232 
233 int security_bprm_check(struct linux_binprm *bprm)
234 {
235 	int ret;
236 
237 	ret = security_ops->bprm_check_security(bprm);
238 	if (ret)
239 		return ret;
240 	return ima_bprm_check(bprm);
241 }
242 
243 void security_bprm_committing_creds(struct linux_binprm *bprm)
244 {
245 	security_ops->bprm_committing_creds(bprm);
246 }
247 
248 void security_bprm_committed_creds(struct linux_binprm *bprm)
249 {
250 	security_ops->bprm_committed_creds(bprm);
251 }
252 
253 int security_bprm_secureexec(struct linux_binprm *bprm)
254 {
255 	return security_ops->bprm_secureexec(bprm);
256 }
257 
258 int security_sb_alloc(struct super_block *sb)
259 {
260 	return security_ops->sb_alloc_security(sb);
261 }
262 
263 void security_sb_free(struct super_block *sb)
264 {
265 	security_ops->sb_free_security(sb);
266 }
267 
268 int security_sb_copy_data(char *orig, char *copy)
269 {
270 	return security_ops->sb_copy_data(orig, copy);
271 }
272 EXPORT_SYMBOL(security_sb_copy_data);
273 
274 int security_sb_remount(struct super_block *sb, void *data)
275 {
276 	return security_ops->sb_remount(sb, data);
277 }
278 
279 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
280 {
281 	return security_ops->sb_kern_mount(sb, flags, data);
282 }
283 
284 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
285 {
286 	return security_ops->sb_show_options(m, sb);
287 }
288 
289 int security_sb_statfs(struct dentry *dentry)
290 {
291 	return security_ops->sb_statfs(dentry);
292 }
293 
294 int security_sb_mount(char *dev_name, struct path *path,
295                        char *type, unsigned long flags, void *data)
296 {
297 	return security_ops->sb_mount(dev_name, path, type, flags, data);
298 }
299 
300 int security_sb_umount(struct vfsmount *mnt, int flags)
301 {
302 	return security_ops->sb_umount(mnt, flags);
303 }
304 
305 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
306 {
307 	return security_ops->sb_pivotroot(old_path, new_path);
308 }
309 
310 int security_sb_set_mnt_opts(struct super_block *sb,
311 				struct security_mnt_opts *opts)
312 {
313 	return security_ops->sb_set_mnt_opts(sb, opts);
314 }
315 EXPORT_SYMBOL(security_sb_set_mnt_opts);
316 
317 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
318 				struct super_block *newsb)
319 {
320 	security_ops->sb_clone_mnt_opts(oldsb, newsb);
321 }
322 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
323 
324 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
325 {
326 	return security_ops->sb_parse_opts_str(options, opts);
327 }
328 EXPORT_SYMBOL(security_sb_parse_opts_str);
329 
330 int security_inode_alloc(struct inode *inode)
331 {
332 	inode->i_security = NULL;
333 	return security_ops->inode_alloc_security(inode);
334 }
335 
336 void security_inode_free(struct inode *inode)
337 {
338 	integrity_inode_free(inode);
339 	security_ops->inode_free_security(inode);
340 }
341 
342 int security_inode_init_security(struct inode *inode, struct inode *dir,
343 				 const struct qstr *qstr,
344 				 const initxattrs initxattrs, void *fs_data)
345 {
346 	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
347 	struct xattr *lsm_xattr, *evm_xattr, *xattr;
348 	int ret;
349 
350 	if (unlikely(IS_PRIVATE(inode)))
351 		return 0;
352 
353 	memset(new_xattrs, 0, sizeof new_xattrs);
354 	if (!initxattrs)
355 		return security_ops->inode_init_security(inode, dir, qstr,
356 							 NULL, NULL, NULL);
357 	lsm_xattr = new_xattrs;
358 	ret = security_ops->inode_init_security(inode, dir, qstr,
359 						&lsm_xattr->name,
360 						&lsm_xattr->value,
361 						&lsm_xattr->value_len);
362 	if (ret)
363 		goto out;
364 
365 	evm_xattr = lsm_xattr + 1;
366 	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
367 	if (ret)
368 		goto out;
369 	ret = initxattrs(inode, new_xattrs, fs_data);
370 out:
371 	for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
372 		kfree(xattr->name);
373 		kfree(xattr->value);
374 	}
375 	return (ret == -EOPNOTSUPP) ? 0 : ret;
376 }
377 EXPORT_SYMBOL(security_inode_init_security);
378 
379 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
380 				     const struct qstr *qstr, char **name,
381 				     void **value, size_t *len)
382 {
383 	if (unlikely(IS_PRIVATE(inode)))
384 		return -EOPNOTSUPP;
385 	return security_ops->inode_init_security(inode, dir, qstr, name, value,
386 						 len);
387 }
388 EXPORT_SYMBOL(security_old_inode_init_security);
389 
390 #ifdef CONFIG_SECURITY_PATH
391 int security_path_mknod(struct path *dir, struct dentry *dentry, int mode,
392 			unsigned int dev)
393 {
394 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
395 		return 0;
396 	return security_ops->path_mknod(dir, dentry, mode, dev);
397 }
398 EXPORT_SYMBOL(security_path_mknod);
399 
400 int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode)
401 {
402 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
403 		return 0;
404 	return security_ops->path_mkdir(dir, dentry, mode);
405 }
406 EXPORT_SYMBOL(security_path_mkdir);
407 
408 int security_path_rmdir(struct path *dir, struct dentry *dentry)
409 {
410 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
411 		return 0;
412 	return security_ops->path_rmdir(dir, dentry);
413 }
414 
415 int security_path_unlink(struct path *dir, struct dentry *dentry)
416 {
417 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
418 		return 0;
419 	return security_ops->path_unlink(dir, dentry);
420 }
421 EXPORT_SYMBOL(security_path_unlink);
422 
423 int security_path_symlink(struct path *dir, struct dentry *dentry,
424 			  const char *old_name)
425 {
426 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
427 		return 0;
428 	return security_ops->path_symlink(dir, dentry, old_name);
429 }
430 
431 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
432 		       struct dentry *new_dentry)
433 {
434 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
435 		return 0;
436 	return security_ops->path_link(old_dentry, new_dir, new_dentry);
437 }
438 
439 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
440 			 struct path *new_dir, struct dentry *new_dentry)
441 {
442 	if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
443 		     (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
444 		return 0;
445 	return security_ops->path_rename(old_dir, old_dentry, new_dir,
446 					 new_dentry);
447 }
448 EXPORT_SYMBOL(security_path_rename);
449 
450 int security_path_truncate(struct path *path)
451 {
452 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
453 		return 0;
454 	return security_ops->path_truncate(path);
455 }
456 
457 int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt,
458 			umode_t mode)
459 {
460 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
461 		return 0;
462 	return security_ops->path_chmod(dentry, mnt, mode);
463 }
464 
465 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
466 {
467 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
468 		return 0;
469 	return security_ops->path_chown(path, uid, gid);
470 }
471 
472 int security_path_chroot(struct path *path)
473 {
474 	return security_ops->path_chroot(path);
475 }
476 #endif
477 
478 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
479 {
480 	if (unlikely(IS_PRIVATE(dir)))
481 		return 0;
482 	return security_ops->inode_create(dir, dentry, mode);
483 }
484 EXPORT_SYMBOL_GPL(security_inode_create);
485 
486 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
487 			 struct dentry *new_dentry)
488 {
489 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
490 		return 0;
491 	return security_ops->inode_link(old_dentry, dir, new_dentry);
492 }
493 
494 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
495 {
496 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
497 		return 0;
498 	return security_ops->inode_unlink(dir, dentry);
499 }
500 
501 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
502 			    const char *old_name)
503 {
504 	if (unlikely(IS_PRIVATE(dir)))
505 		return 0;
506 	return security_ops->inode_symlink(dir, dentry, old_name);
507 }
508 
509 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
510 {
511 	if (unlikely(IS_PRIVATE(dir)))
512 		return 0;
513 	return security_ops->inode_mkdir(dir, dentry, mode);
514 }
515 EXPORT_SYMBOL_GPL(security_inode_mkdir);
516 
517 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
518 {
519 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
520 		return 0;
521 	return security_ops->inode_rmdir(dir, dentry);
522 }
523 
524 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
525 {
526 	if (unlikely(IS_PRIVATE(dir)))
527 		return 0;
528 	return security_ops->inode_mknod(dir, dentry, mode, dev);
529 }
530 
531 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
532 			   struct inode *new_dir, struct dentry *new_dentry)
533 {
534         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
535             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
536 		return 0;
537 	return security_ops->inode_rename(old_dir, old_dentry,
538 					   new_dir, new_dentry);
539 }
540 
541 int security_inode_readlink(struct dentry *dentry)
542 {
543 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
544 		return 0;
545 	return security_ops->inode_readlink(dentry);
546 }
547 
548 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
549 {
550 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
551 		return 0;
552 	return security_ops->inode_follow_link(dentry, nd);
553 }
554 
555 int security_inode_permission(struct inode *inode, int mask)
556 {
557 	if (unlikely(IS_PRIVATE(inode)))
558 		return 0;
559 	return security_ops->inode_permission(inode, mask);
560 }
561 
562 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
563 {
564 	int ret;
565 
566 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
567 		return 0;
568 	ret = security_ops->inode_setattr(dentry, attr);
569 	if (ret)
570 		return ret;
571 	return evm_inode_setattr(dentry, attr);
572 }
573 EXPORT_SYMBOL_GPL(security_inode_setattr);
574 
575 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
576 {
577 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
578 		return 0;
579 	return security_ops->inode_getattr(mnt, dentry);
580 }
581 
582 int security_inode_setxattr(struct dentry *dentry, const char *name,
583 			    const void *value, size_t size, int flags)
584 {
585 	int ret;
586 
587 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
588 		return 0;
589 	ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
590 	if (ret)
591 		return ret;
592 	return evm_inode_setxattr(dentry, name, value, size);
593 }
594 
595 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
596 				  const void *value, size_t size, int flags)
597 {
598 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
599 		return;
600 	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
601 	evm_inode_post_setxattr(dentry, name, value, size);
602 }
603 
604 int security_inode_getxattr(struct dentry *dentry, const char *name)
605 {
606 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
607 		return 0;
608 	return security_ops->inode_getxattr(dentry, name);
609 }
610 
611 int security_inode_listxattr(struct dentry *dentry)
612 {
613 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
614 		return 0;
615 	return security_ops->inode_listxattr(dentry);
616 }
617 
618 int security_inode_removexattr(struct dentry *dentry, const char *name)
619 {
620 	int ret;
621 
622 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
623 		return 0;
624 	ret = security_ops->inode_removexattr(dentry, name);
625 	if (ret)
626 		return ret;
627 	return evm_inode_removexattr(dentry, name);
628 }
629 
630 int security_inode_need_killpriv(struct dentry *dentry)
631 {
632 	return security_ops->inode_need_killpriv(dentry);
633 }
634 
635 int security_inode_killpriv(struct dentry *dentry)
636 {
637 	return security_ops->inode_killpriv(dentry);
638 }
639 
640 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
641 {
642 	if (unlikely(IS_PRIVATE(inode)))
643 		return -EOPNOTSUPP;
644 	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
645 }
646 
647 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
648 {
649 	if (unlikely(IS_PRIVATE(inode)))
650 		return -EOPNOTSUPP;
651 	return security_ops->inode_setsecurity(inode, name, value, size, flags);
652 }
653 
654 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
655 {
656 	if (unlikely(IS_PRIVATE(inode)))
657 		return 0;
658 	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
659 }
660 
661 void security_inode_getsecid(const struct inode *inode, u32 *secid)
662 {
663 	security_ops->inode_getsecid(inode, secid);
664 }
665 
666 int security_file_permission(struct file *file, int mask)
667 {
668 	int ret;
669 
670 	ret = security_ops->file_permission(file, mask);
671 	if (ret)
672 		return ret;
673 
674 	return fsnotify_perm(file, mask);
675 }
676 
677 int security_file_alloc(struct file *file)
678 {
679 	return security_ops->file_alloc_security(file);
680 }
681 
682 void security_file_free(struct file *file)
683 {
684 	security_ops->file_free_security(file);
685 }
686 
687 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
688 {
689 	return security_ops->file_ioctl(file, cmd, arg);
690 }
691 
692 int security_file_mmap(struct file *file, unsigned long reqprot,
693 			unsigned long prot, unsigned long flags,
694 			unsigned long addr, unsigned long addr_only)
695 {
696 	int ret;
697 
698 	ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
699 	if (ret)
700 		return ret;
701 	return ima_file_mmap(file, prot);
702 }
703 
704 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
705 			    unsigned long prot)
706 {
707 	return security_ops->file_mprotect(vma, reqprot, prot);
708 }
709 
710 int security_file_lock(struct file *file, unsigned int cmd)
711 {
712 	return security_ops->file_lock(file, cmd);
713 }
714 
715 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
716 {
717 	return security_ops->file_fcntl(file, cmd, arg);
718 }
719 
720 int security_file_set_fowner(struct file *file)
721 {
722 	return security_ops->file_set_fowner(file);
723 }
724 
725 int security_file_send_sigiotask(struct task_struct *tsk,
726 				  struct fown_struct *fown, int sig)
727 {
728 	return security_ops->file_send_sigiotask(tsk, fown, sig);
729 }
730 
731 int security_file_receive(struct file *file)
732 {
733 	return security_ops->file_receive(file);
734 }
735 
736 int security_dentry_open(struct file *file, const struct cred *cred)
737 {
738 	int ret;
739 
740 	ret = security_ops->dentry_open(file, cred);
741 	if (ret)
742 		return ret;
743 
744 	return fsnotify_perm(file, MAY_OPEN);
745 }
746 
747 int security_task_create(unsigned long clone_flags)
748 {
749 	return security_ops->task_create(clone_flags);
750 }
751 
752 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
753 {
754 	return security_ops->cred_alloc_blank(cred, gfp);
755 }
756 
757 void security_cred_free(struct cred *cred)
758 {
759 	security_ops->cred_free(cred);
760 }
761 
762 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
763 {
764 	return security_ops->cred_prepare(new, old, gfp);
765 }
766 
767 void security_transfer_creds(struct cred *new, const struct cred *old)
768 {
769 	security_ops->cred_transfer(new, old);
770 }
771 
772 int security_kernel_act_as(struct cred *new, u32 secid)
773 {
774 	return security_ops->kernel_act_as(new, secid);
775 }
776 
777 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
778 {
779 	return security_ops->kernel_create_files_as(new, inode);
780 }
781 
782 int security_kernel_module_request(char *kmod_name)
783 {
784 	return security_ops->kernel_module_request(kmod_name);
785 }
786 
787 int security_task_fix_setuid(struct cred *new, const struct cred *old,
788 			     int flags)
789 {
790 	return security_ops->task_fix_setuid(new, old, flags);
791 }
792 
793 int security_task_setpgid(struct task_struct *p, pid_t pgid)
794 {
795 	return security_ops->task_setpgid(p, pgid);
796 }
797 
798 int security_task_getpgid(struct task_struct *p)
799 {
800 	return security_ops->task_getpgid(p);
801 }
802 
803 int security_task_getsid(struct task_struct *p)
804 {
805 	return security_ops->task_getsid(p);
806 }
807 
808 void security_task_getsecid(struct task_struct *p, u32 *secid)
809 {
810 	security_ops->task_getsecid(p, secid);
811 }
812 EXPORT_SYMBOL(security_task_getsecid);
813 
814 int security_task_setnice(struct task_struct *p, int nice)
815 {
816 	return security_ops->task_setnice(p, nice);
817 }
818 
819 int security_task_setioprio(struct task_struct *p, int ioprio)
820 {
821 	return security_ops->task_setioprio(p, ioprio);
822 }
823 
824 int security_task_getioprio(struct task_struct *p)
825 {
826 	return security_ops->task_getioprio(p);
827 }
828 
829 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
830 		struct rlimit *new_rlim)
831 {
832 	return security_ops->task_setrlimit(p, resource, new_rlim);
833 }
834 
835 int security_task_setscheduler(struct task_struct *p)
836 {
837 	return security_ops->task_setscheduler(p);
838 }
839 
840 int security_task_getscheduler(struct task_struct *p)
841 {
842 	return security_ops->task_getscheduler(p);
843 }
844 
845 int security_task_movememory(struct task_struct *p)
846 {
847 	return security_ops->task_movememory(p);
848 }
849 
850 int security_task_kill(struct task_struct *p, struct siginfo *info,
851 			int sig, u32 secid)
852 {
853 	return security_ops->task_kill(p, info, sig, secid);
854 }
855 
856 int security_task_wait(struct task_struct *p)
857 {
858 	return security_ops->task_wait(p);
859 }
860 
861 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
862 			 unsigned long arg4, unsigned long arg5)
863 {
864 	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
865 }
866 
867 void security_task_to_inode(struct task_struct *p, struct inode *inode)
868 {
869 	security_ops->task_to_inode(p, inode);
870 }
871 
872 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
873 {
874 	return security_ops->ipc_permission(ipcp, flag);
875 }
876 
877 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
878 {
879 	security_ops->ipc_getsecid(ipcp, secid);
880 }
881 
882 int security_msg_msg_alloc(struct msg_msg *msg)
883 {
884 	return security_ops->msg_msg_alloc_security(msg);
885 }
886 
887 void security_msg_msg_free(struct msg_msg *msg)
888 {
889 	security_ops->msg_msg_free_security(msg);
890 }
891 
892 int security_msg_queue_alloc(struct msg_queue *msq)
893 {
894 	return security_ops->msg_queue_alloc_security(msq);
895 }
896 
897 void security_msg_queue_free(struct msg_queue *msq)
898 {
899 	security_ops->msg_queue_free_security(msq);
900 }
901 
902 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
903 {
904 	return security_ops->msg_queue_associate(msq, msqflg);
905 }
906 
907 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
908 {
909 	return security_ops->msg_queue_msgctl(msq, cmd);
910 }
911 
912 int security_msg_queue_msgsnd(struct msg_queue *msq,
913 			       struct msg_msg *msg, int msqflg)
914 {
915 	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
916 }
917 
918 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
919 			       struct task_struct *target, long type, int mode)
920 {
921 	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
922 }
923 
924 int security_shm_alloc(struct shmid_kernel *shp)
925 {
926 	return security_ops->shm_alloc_security(shp);
927 }
928 
929 void security_shm_free(struct shmid_kernel *shp)
930 {
931 	security_ops->shm_free_security(shp);
932 }
933 
934 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
935 {
936 	return security_ops->shm_associate(shp, shmflg);
937 }
938 
939 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
940 {
941 	return security_ops->shm_shmctl(shp, cmd);
942 }
943 
944 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
945 {
946 	return security_ops->shm_shmat(shp, shmaddr, shmflg);
947 }
948 
949 int security_sem_alloc(struct sem_array *sma)
950 {
951 	return security_ops->sem_alloc_security(sma);
952 }
953 
954 void security_sem_free(struct sem_array *sma)
955 {
956 	security_ops->sem_free_security(sma);
957 }
958 
959 int security_sem_associate(struct sem_array *sma, int semflg)
960 {
961 	return security_ops->sem_associate(sma, semflg);
962 }
963 
964 int security_sem_semctl(struct sem_array *sma, int cmd)
965 {
966 	return security_ops->sem_semctl(sma, cmd);
967 }
968 
969 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
970 			unsigned nsops, int alter)
971 {
972 	return security_ops->sem_semop(sma, sops, nsops, alter);
973 }
974 
975 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
976 {
977 	if (unlikely(inode && IS_PRIVATE(inode)))
978 		return;
979 	security_ops->d_instantiate(dentry, inode);
980 }
981 EXPORT_SYMBOL(security_d_instantiate);
982 
983 int security_getprocattr(struct task_struct *p, char *name, char **value)
984 {
985 	return security_ops->getprocattr(p, name, value);
986 }
987 
988 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
989 {
990 	return security_ops->setprocattr(p, name, value, size);
991 }
992 
993 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
994 {
995 	return security_ops->netlink_send(sk, skb);
996 }
997 
998 int security_netlink_recv(struct sk_buff *skb, int cap)
999 {
1000 	return security_ops->netlink_recv(skb, cap);
1001 }
1002 EXPORT_SYMBOL(security_netlink_recv);
1003 
1004 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1005 {
1006 	return security_ops->secid_to_secctx(secid, secdata, seclen);
1007 }
1008 EXPORT_SYMBOL(security_secid_to_secctx);
1009 
1010 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1011 {
1012 	return security_ops->secctx_to_secid(secdata, seclen, secid);
1013 }
1014 EXPORT_SYMBOL(security_secctx_to_secid);
1015 
1016 void security_release_secctx(char *secdata, u32 seclen)
1017 {
1018 	security_ops->release_secctx(secdata, seclen);
1019 }
1020 EXPORT_SYMBOL(security_release_secctx);
1021 
1022 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1023 {
1024 	return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1025 }
1026 EXPORT_SYMBOL(security_inode_notifysecctx);
1027 
1028 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1029 {
1030 	return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1031 }
1032 EXPORT_SYMBOL(security_inode_setsecctx);
1033 
1034 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1035 {
1036 	return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1037 }
1038 EXPORT_SYMBOL(security_inode_getsecctx);
1039 
1040 #ifdef CONFIG_SECURITY_NETWORK
1041 
1042 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1043 {
1044 	return security_ops->unix_stream_connect(sock, other, newsk);
1045 }
1046 EXPORT_SYMBOL(security_unix_stream_connect);
1047 
1048 int security_unix_may_send(struct socket *sock,  struct socket *other)
1049 {
1050 	return security_ops->unix_may_send(sock, other);
1051 }
1052 EXPORT_SYMBOL(security_unix_may_send);
1053 
1054 int security_socket_create(int family, int type, int protocol, int kern)
1055 {
1056 	return security_ops->socket_create(family, type, protocol, kern);
1057 }
1058 
1059 int security_socket_post_create(struct socket *sock, int family,
1060 				int type, int protocol, int kern)
1061 {
1062 	return security_ops->socket_post_create(sock, family, type,
1063 						protocol, kern);
1064 }
1065 
1066 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1067 {
1068 	return security_ops->socket_bind(sock, address, addrlen);
1069 }
1070 
1071 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1072 {
1073 	return security_ops->socket_connect(sock, address, addrlen);
1074 }
1075 
1076 int security_socket_listen(struct socket *sock, int backlog)
1077 {
1078 	return security_ops->socket_listen(sock, backlog);
1079 }
1080 
1081 int security_socket_accept(struct socket *sock, struct socket *newsock)
1082 {
1083 	return security_ops->socket_accept(sock, newsock);
1084 }
1085 
1086 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1087 {
1088 	return security_ops->socket_sendmsg(sock, msg, size);
1089 }
1090 
1091 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1092 			    int size, int flags)
1093 {
1094 	return security_ops->socket_recvmsg(sock, msg, size, flags);
1095 }
1096 
1097 int security_socket_getsockname(struct socket *sock)
1098 {
1099 	return security_ops->socket_getsockname(sock);
1100 }
1101 
1102 int security_socket_getpeername(struct socket *sock)
1103 {
1104 	return security_ops->socket_getpeername(sock);
1105 }
1106 
1107 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1108 {
1109 	return security_ops->socket_getsockopt(sock, level, optname);
1110 }
1111 
1112 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1113 {
1114 	return security_ops->socket_setsockopt(sock, level, optname);
1115 }
1116 
1117 int security_socket_shutdown(struct socket *sock, int how)
1118 {
1119 	return security_ops->socket_shutdown(sock, how);
1120 }
1121 
1122 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1123 {
1124 	return security_ops->socket_sock_rcv_skb(sk, skb);
1125 }
1126 EXPORT_SYMBOL(security_sock_rcv_skb);
1127 
1128 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1129 				      int __user *optlen, unsigned len)
1130 {
1131 	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1132 }
1133 
1134 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1135 {
1136 	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1137 }
1138 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1139 
1140 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1141 {
1142 	return security_ops->sk_alloc_security(sk, family, priority);
1143 }
1144 
1145 void security_sk_free(struct sock *sk)
1146 {
1147 	security_ops->sk_free_security(sk);
1148 }
1149 
1150 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1151 {
1152 	security_ops->sk_clone_security(sk, newsk);
1153 }
1154 EXPORT_SYMBOL(security_sk_clone);
1155 
1156 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1157 {
1158 	security_ops->sk_getsecid(sk, &fl->flowi_secid);
1159 }
1160 EXPORT_SYMBOL(security_sk_classify_flow);
1161 
1162 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1163 {
1164 	security_ops->req_classify_flow(req, fl);
1165 }
1166 EXPORT_SYMBOL(security_req_classify_flow);
1167 
1168 void security_sock_graft(struct sock *sk, struct socket *parent)
1169 {
1170 	security_ops->sock_graft(sk, parent);
1171 }
1172 EXPORT_SYMBOL(security_sock_graft);
1173 
1174 int security_inet_conn_request(struct sock *sk,
1175 			struct sk_buff *skb, struct request_sock *req)
1176 {
1177 	return security_ops->inet_conn_request(sk, skb, req);
1178 }
1179 EXPORT_SYMBOL(security_inet_conn_request);
1180 
1181 void security_inet_csk_clone(struct sock *newsk,
1182 			const struct request_sock *req)
1183 {
1184 	security_ops->inet_csk_clone(newsk, req);
1185 }
1186 
1187 void security_inet_conn_established(struct sock *sk,
1188 			struct sk_buff *skb)
1189 {
1190 	security_ops->inet_conn_established(sk, skb);
1191 }
1192 
1193 int security_secmark_relabel_packet(u32 secid)
1194 {
1195 	return security_ops->secmark_relabel_packet(secid);
1196 }
1197 EXPORT_SYMBOL(security_secmark_relabel_packet);
1198 
1199 void security_secmark_refcount_inc(void)
1200 {
1201 	security_ops->secmark_refcount_inc();
1202 }
1203 EXPORT_SYMBOL(security_secmark_refcount_inc);
1204 
1205 void security_secmark_refcount_dec(void)
1206 {
1207 	security_ops->secmark_refcount_dec();
1208 }
1209 EXPORT_SYMBOL(security_secmark_refcount_dec);
1210 
1211 int security_tun_dev_create(void)
1212 {
1213 	return security_ops->tun_dev_create();
1214 }
1215 EXPORT_SYMBOL(security_tun_dev_create);
1216 
1217 void security_tun_dev_post_create(struct sock *sk)
1218 {
1219 	return security_ops->tun_dev_post_create(sk);
1220 }
1221 EXPORT_SYMBOL(security_tun_dev_post_create);
1222 
1223 int security_tun_dev_attach(struct sock *sk)
1224 {
1225 	return security_ops->tun_dev_attach(sk);
1226 }
1227 EXPORT_SYMBOL(security_tun_dev_attach);
1228 
1229 #endif	/* CONFIG_SECURITY_NETWORK */
1230 
1231 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1232 
1233 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1234 {
1235 	return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1236 }
1237 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1238 
1239 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1240 			      struct xfrm_sec_ctx **new_ctxp)
1241 {
1242 	return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1243 }
1244 
1245 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1246 {
1247 	security_ops->xfrm_policy_free_security(ctx);
1248 }
1249 EXPORT_SYMBOL(security_xfrm_policy_free);
1250 
1251 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1252 {
1253 	return security_ops->xfrm_policy_delete_security(ctx);
1254 }
1255 
1256 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1257 {
1258 	return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1259 }
1260 EXPORT_SYMBOL(security_xfrm_state_alloc);
1261 
1262 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1263 				      struct xfrm_sec_ctx *polsec, u32 secid)
1264 {
1265 	if (!polsec)
1266 		return 0;
1267 	/*
1268 	 * We want the context to be taken from secid which is usually
1269 	 * from the sock.
1270 	 */
1271 	return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1272 }
1273 
1274 int security_xfrm_state_delete(struct xfrm_state *x)
1275 {
1276 	return security_ops->xfrm_state_delete_security(x);
1277 }
1278 EXPORT_SYMBOL(security_xfrm_state_delete);
1279 
1280 void security_xfrm_state_free(struct xfrm_state *x)
1281 {
1282 	security_ops->xfrm_state_free_security(x);
1283 }
1284 
1285 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1286 {
1287 	return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1288 }
1289 
1290 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1291 				       struct xfrm_policy *xp,
1292 				       const struct flowi *fl)
1293 {
1294 	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1295 }
1296 
1297 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1298 {
1299 	return security_ops->xfrm_decode_session(skb, secid, 1);
1300 }
1301 
1302 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1303 {
1304 	int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1305 
1306 	BUG_ON(rc);
1307 }
1308 EXPORT_SYMBOL(security_skb_classify_flow);
1309 
1310 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1311 
1312 #ifdef CONFIG_KEYS
1313 
1314 int security_key_alloc(struct key *key, const struct cred *cred,
1315 		       unsigned long flags)
1316 {
1317 	return security_ops->key_alloc(key, cred, flags);
1318 }
1319 
1320 void security_key_free(struct key *key)
1321 {
1322 	security_ops->key_free(key);
1323 }
1324 
1325 int security_key_permission(key_ref_t key_ref,
1326 			    const struct cred *cred, key_perm_t perm)
1327 {
1328 	return security_ops->key_permission(key_ref, cred, perm);
1329 }
1330 
1331 int security_key_getsecurity(struct key *key, char **_buffer)
1332 {
1333 	return security_ops->key_getsecurity(key, _buffer);
1334 }
1335 
1336 #endif	/* CONFIG_KEYS */
1337 
1338 #ifdef CONFIG_AUDIT
1339 
1340 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1341 {
1342 	return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1343 }
1344 
1345 int security_audit_rule_known(struct audit_krule *krule)
1346 {
1347 	return security_ops->audit_rule_known(krule);
1348 }
1349 
1350 void security_audit_rule_free(void *lsmrule)
1351 {
1352 	security_ops->audit_rule_free(lsmrule);
1353 }
1354 
1355 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1356 			      struct audit_context *actx)
1357 {
1358 	return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1359 }
1360 
1361 #endif /* CONFIG_AUDIT */
1362