1 /* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/capability.h> 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/kernel.h> 18 #include <linux/security.h> 19 20 /* Boot-time LSM user choice */ 21 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1]; 22 23 /* things that live in dummy.c */ 24 extern struct security_operations dummy_security_ops; 25 extern void security_fixup_ops(struct security_operations *ops); 26 27 struct security_operations *security_ops; /* Initialized to NULL */ 28 29 /* amount of vm to protect from userspace access */ 30 unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR; 31 32 static inline int verify(struct security_operations *ops) 33 { 34 /* verify the security_operations structure exists */ 35 if (!ops) 36 return -EINVAL; 37 security_fixup_ops(ops); 38 return 0; 39 } 40 41 static void __init do_security_initcalls(void) 42 { 43 initcall_t *call; 44 call = __security_initcall_start; 45 while (call < __security_initcall_end) { 46 (*call) (); 47 call++; 48 } 49 } 50 51 /** 52 * security_init - initializes the security framework 53 * 54 * This should be called early in the kernel initialization sequence. 55 */ 56 int __init security_init(void) 57 { 58 printk(KERN_INFO "Security Framework initialized\n"); 59 60 if (verify(&dummy_security_ops)) { 61 printk(KERN_ERR "%s could not verify " 62 "dummy_security_ops structure.\n", __func__); 63 return -EIO; 64 } 65 66 security_ops = &dummy_security_ops; 67 do_security_initcalls(); 68 69 return 0; 70 } 71 72 /* Save user chosen LSM */ 73 static int __init choose_lsm(char *str) 74 { 75 strncpy(chosen_lsm, str, SECURITY_NAME_MAX); 76 return 1; 77 } 78 __setup("security=", choose_lsm); 79 80 /** 81 * security_module_enable - Load given security module on boot ? 82 * @ops: a pointer to the struct security_operations that is to be checked. 83 * 84 * Each LSM must pass this method before registering its own operations 85 * to avoid security registration races. This method may also be used 86 * to check if your LSM is currently loaded during kernel initialization. 87 * 88 * Return true if: 89 * -The passed LSM is the one chosen by user at boot time, 90 * -or user didsn't specify a specific LSM and we're the first to ask 91 * for registeration permissoin, 92 * -or the passed LSM is currently loaded. 93 * Otherwise, return false. 94 */ 95 int __init security_module_enable(struct security_operations *ops) 96 { 97 if (!*chosen_lsm) 98 strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX); 99 else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX)) 100 return 0; 101 102 return 1; 103 } 104 105 /** 106 * register_security - registers a security framework with the kernel 107 * @ops: a pointer to the struct security_options that is to be registered 108 * 109 * This function is to allow a security module to register itself with the 110 * kernel security subsystem. Some rudimentary checking is done on the @ops 111 * value passed to this function. You'll need to check first if your LSM 112 * is allowed to register its @ops by calling security_module_enable(@ops). 113 * 114 * If there is already a security module registered with the kernel, 115 * an error will be returned. Otherwise 0 is returned on success. 116 */ 117 int register_security(struct security_operations *ops) 118 { 119 if (verify(ops)) { 120 printk(KERN_DEBUG "%s could not verify " 121 "security_operations structure.\n", __func__); 122 return -EINVAL; 123 } 124 125 if (security_ops != &dummy_security_ops) 126 return -EAGAIN; 127 128 security_ops = ops; 129 130 return 0; 131 } 132 133 /** 134 * mod_reg_security - allows security modules to be "stacked" 135 * @name: a pointer to a string with the name of the security_options to be registered 136 * @ops: a pointer to the struct security_options that is to be registered 137 * 138 * This function allows security modules to be stacked if the currently loaded 139 * security module allows this to happen. It passes the @name and @ops to the 140 * register_security function of the currently loaded security module. 141 * 142 * The return value depends on the currently loaded security module, with 0 as 143 * success. 144 */ 145 int mod_reg_security(const char *name, struct security_operations *ops) 146 { 147 if (verify(ops)) { 148 printk(KERN_INFO "%s could not verify " 149 "security operations.\n", __func__); 150 return -EINVAL; 151 } 152 153 if (ops == security_ops) { 154 printk(KERN_INFO "%s security operations " 155 "already registered.\n", __func__); 156 return -EINVAL; 157 } 158 159 return security_ops->register_security(name, ops); 160 } 161 162 /* Security operations */ 163 164 int security_ptrace(struct task_struct *parent, struct task_struct *child) 165 { 166 return security_ops->ptrace(parent, child); 167 } 168 169 int security_capget(struct task_struct *target, 170 kernel_cap_t *effective, 171 kernel_cap_t *inheritable, 172 kernel_cap_t *permitted) 173 { 174 return security_ops->capget(target, effective, inheritable, permitted); 175 } 176 177 int security_capset_check(struct task_struct *target, 178 kernel_cap_t *effective, 179 kernel_cap_t *inheritable, 180 kernel_cap_t *permitted) 181 { 182 return security_ops->capset_check(target, effective, inheritable, permitted); 183 } 184 185 void security_capset_set(struct task_struct *target, 186 kernel_cap_t *effective, 187 kernel_cap_t *inheritable, 188 kernel_cap_t *permitted) 189 { 190 security_ops->capset_set(target, effective, inheritable, permitted); 191 } 192 193 int security_capable(struct task_struct *tsk, int cap) 194 { 195 return security_ops->capable(tsk, cap); 196 } 197 198 int security_acct(struct file *file) 199 { 200 return security_ops->acct(file); 201 } 202 203 int security_sysctl(struct ctl_table *table, int op) 204 { 205 return security_ops->sysctl(table, op); 206 } 207 208 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 209 { 210 return security_ops->quotactl(cmds, type, id, sb); 211 } 212 213 int security_quota_on(struct dentry *dentry) 214 { 215 return security_ops->quota_on(dentry); 216 } 217 218 int security_syslog(int type) 219 { 220 return security_ops->syslog(type); 221 } 222 223 int security_settime(struct timespec *ts, struct timezone *tz) 224 { 225 return security_ops->settime(ts, tz); 226 } 227 228 int security_vm_enough_memory(long pages) 229 { 230 return security_ops->vm_enough_memory(current->mm, pages); 231 } 232 233 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 234 { 235 return security_ops->vm_enough_memory(mm, pages); 236 } 237 238 int security_bprm_alloc(struct linux_binprm *bprm) 239 { 240 return security_ops->bprm_alloc_security(bprm); 241 } 242 243 void security_bprm_free(struct linux_binprm *bprm) 244 { 245 security_ops->bprm_free_security(bprm); 246 } 247 248 void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe) 249 { 250 security_ops->bprm_apply_creds(bprm, unsafe); 251 } 252 253 void security_bprm_post_apply_creds(struct linux_binprm *bprm) 254 { 255 security_ops->bprm_post_apply_creds(bprm); 256 } 257 258 int security_bprm_set(struct linux_binprm *bprm) 259 { 260 return security_ops->bprm_set_security(bprm); 261 } 262 263 int security_bprm_check(struct linux_binprm *bprm) 264 { 265 return security_ops->bprm_check_security(bprm); 266 } 267 268 int security_bprm_secureexec(struct linux_binprm *bprm) 269 { 270 return security_ops->bprm_secureexec(bprm); 271 } 272 273 int security_sb_alloc(struct super_block *sb) 274 { 275 return security_ops->sb_alloc_security(sb); 276 } 277 278 void security_sb_free(struct super_block *sb) 279 { 280 security_ops->sb_free_security(sb); 281 } 282 283 int security_sb_copy_data(char *orig, char *copy) 284 { 285 return security_ops->sb_copy_data(orig, copy); 286 } 287 EXPORT_SYMBOL(security_sb_copy_data); 288 289 int security_sb_kern_mount(struct super_block *sb, void *data) 290 { 291 return security_ops->sb_kern_mount(sb, data); 292 } 293 294 int security_sb_statfs(struct dentry *dentry) 295 { 296 return security_ops->sb_statfs(dentry); 297 } 298 299 int security_sb_mount(char *dev_name, struct path *path, 300 char *type, unsigned long flags, void *data) 301 { 302 return security_ops->sb_mount(dev_name, path, type, flags, data); 303 } 304 305 int security_sb_check_sb(struct vfsmount *mnt, struct path *path) 306 { 307 return security_ops->sb_check_sb(mnt, path); 308 } 309 310 int security_sb_umount(struct vfsmount *mnt, int flags) 311 { 312 return security_ops->sb_umount(mnt, flags); 313 } 314 315 void security_sb_umount_close(struct vfsmount *mnt) 316 { 317 security_ops->sb_umount_close(mnt); 318 } 319 320 void security_sb_umount_busy(struct vfsmount *mnt) 321 { 322 security_ops->sb_umount_busy(mnt); 323 } 324 325 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data) 326 { 327 security_ops->sb_post_remount(mnt, flags, data); 328 } 329 330 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint) 331 { 332 security_ops->sb_post_addmount(mnt, mountpoint); 333 } 334 335 int security_sb_pivotroot(struct path *old_path, struct path *new_path) 336 { 337 return security_ops->sb_pivotroot(old_path, new_path); 338 } 339 340 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path) 341 { 342 security_ops->sb_post_pivotroot(old_path, new_path); 343 } 344 345 int security_sb_get_mnt_opts(const struct super_block *sb, 346 struct security_mnt_opts *opts) 347 { 348 return security_ops->sb_get_mnt_opts(sb, opts); 349 } 350 351 int security_sb_set_mnt_opts(struct super_block *sb, 352 struct security_mnt_opts *opts) 353 { 354 return security_ops->sb_set_mnt_opts(sb, opts); 355 } 356 EXPORT_SYMBOL(security_sb_set_mnt_opts); 357 358 void security_sb_clone_mnt_opts(const struct super_block *oldsb, 359 struct super_block *newsb) 360 { 361 security_ops->sb_clone_mnt_opts(oldsb, newsb); 362 } 363 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 364 365 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) 366 { 367 return security_ops->sb_parse_opts_str(options, opts); 368 } 369 EXPORT_SYMBOL(security_sb_parse_opts_str); 370 371 int security_inode_alloc(struct inode *inode) 372 { 373 inode->i_security = NULL; 374 return security_ops->inode_alloc_security(inode); 375 } 376 377 void security_inode_free(struct inode *inode) 378 { 379 security_ops->inode_free_security(inode); 380 } 381 382 int security_inode_init_security(struct inode *inode, struct inode *dir, 383 char **name, void **value, size_t *len) 384 { 385 if (unlikely(IS_PRIVATE(inode))) 386 return -EOPNOTSUPP; 387 return security_ops->inode_init_security(inode, dir, name, value, len); 388 } 389 EXPORT_SYMBOL(security_inode_init_security); 390 391 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode) 392 { 393 if (unlikely(IS_PRIVATE(dir))) 394 return 0; 395 return security_ops->inode_create(dir, dentry, mode); 396 } 397 398 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 399 struct dentry *new_dentry) 400 { 401 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 402 return 0; 403 return security_ops->inode_link(old_dentry, dir, new_dentry); 404 } 405 406 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 407 { 408 if (unlikely(IS_PRIVATE(dentry->d_inode))) 409 return 0; 410 return security_ops->inode_unlink(dir, dentry); 411 } 412 413 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 414 const char *old_name) 415 { 416 if (unlikely(IS_PRIVATE(dir))) 417 return 0; 418 return security_ops->inode_symlink(dir, dentry, old_name); 419 } 420 421 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode) 422 { 423 if (unlikely(IS_PRIVATE(dir))) 424 return 0; 425 return security_ops->inode_mkdir(dir, dentry, mode); 426 } 427 428 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 429 { 430 if (unlikely(IS_PRIVATE(dentry->d_inode))) 431 return 0; 432 return security_ops->inode_rmdir(dir, dentry); 433 } 434 435 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 436 { 437 if (unlikely(IS_PRIVATE(dir))) 438 return 0; 439 return security_ops->inode_mknod(dir, dentry, mode, dev); 440 } 441 442 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 443 struct inode *new_dir, struct dentry *new_dentry) 444 { 445 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 446 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 447 return 0; 448 return security_ops->inode_rename(old_dir, old_dentry, 449 new_dir, new_dentry); 450 } 451 452 int security_inode_readlink(struct dentry *dentry) 453 { 454 if (unlikely(IS_PRIVATE(dentry->d_inode))) 455 return 0; 456 return security_ops->inode_readlink(dentry); 457 } 458 459 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd) 460 { 461 if (unlikely(IS_PRIVATE(dentry->d_inode))) 462 return 0; 463 return security_ops->inode_follow_link(dentry, nd); 464 } 465 466 int security_inode_permission(struct inode *inode, int mask, struct nameidata *nd) 467 { 468 if (unlikely(IS_PRIVATE(inode))) 469 return 0; 470 return security_ops->inode_permission(inode, mask, nd); 471 } 472 473 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 474 { 475 if (unlikely(IS_PRIVATE(dentry->d_inode))) 476 return 0; 477 return security_ops->inode_setattr(dentry, attr); 478 } 479 480 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 481 { 482 if (unlikely(IS_PRIVATE(dentry->d_inode))) 483 return 0; 484 return security_ops->inode_getattr(mnt, dentry); 485 } 486 487 void security_inode_delete(struct inode *inode) 488 { 489 if (unlikely(IS_PRIVATE(inode))) 490 return; 491 security_ops->inode_delete(inode); 492 } 493 494 int security_inode_setxattr(struct dentry *dentry, const char *name, 495 const void *value, size_t size, int flags) 496 { 497 if (unlikely(IS_PRIVATE(dentry->d_inode))) 498 return 0; 499 return security_ops->inode_setxattr(dentry, name, value, size, flags); 500 } 501 502 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 503 const void *value, size_t size, int flags) 504 { 505 if (unlikely(IS_PRIVATE(dentry->d_inode))) 506 return; 507 security_ops->inode_post_setxattr(dentry, name, value, size, flags); 508 } 509 510 int security_inode_getxattr(struct dentry *dentry, const char *name) 511 { 512 if (unlikely(IS_PRIVATE(dentry->d_inode))) 513 return 0; 514 return security_ops->inode_getxattr(dentry, name); 515 } 516 517 int security_inode_listxattr(struct dentry *dentry) 518 { 519 if (unlikely(IS_PRIVATE(dentry->d_inode))) 520 return 0; 521 return security_ops->inode_listxattr(dentry); 522 } 523 524 int security_inode_removexattr(struct dentry *dentry, const char *name) 525 { 526 if (unlikely(IS_PRIVATE(dentry->d_inode))) 527 return 0; 528 return security_ops->inode_removexattr(dentry, name); 529 } 530 531 int security_inode_need_killpriv(struct dentry *dentry) 532 { 533 return security_ops->inode_need_killpriv(dentry); 534 } 535 536 int security_inode_killpriv(struct dentry *dentry) 537 { 538 return security_ops->inode_killpriv(dentry); 539 } 540 541 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 542 { 543 if (unlikely(IS_PRIVATE(inode))) 544 return 0; 545 return security_ops->inode_getsecurity(inode, name, buffer, alloc); 546 } 547 548 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 549 { 550 if (unlikely(IS_PRIVATE(inode))) 551 return 0; 552 return security_ops->inode_setsecurity(inode, name, value, size, flags); 553 } 554 555 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 556 { 557 if (unlikely(IS_PRIVATE(inode))) 558 return 0; 559 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 560 } 561 562 void security_inode_getsecid(const struct inode *inode, u32 *secid) 563 { 564 security_ops->inode_getsecid(inode, secid); 565 } 566 567 int security_file_permission(struct file *file, int mask) 568 { 569 return security_ops->file_permission(file, mask); 570 } 571 572 int security_file_alloc(struct file *file) 573 { 574 return security_ops->file_alloc_security(file); 575 } 576 577 void security_file_free(struct file *file) 578 { 579 security_ops->file_free_security(file); 580 } 581 582 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 583 { 584 return security_ops->file_ioctl(file, cmd, arg); 585 } 586 587 int security_file_mmap(struct file *file, unsigned long reqprot, 588 unsigned long prot, unsigned long flags, 589 unsigned long addr, unsigned long addr_only) 590 { 591 return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only); 592 } 593 594 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 595 unsigned long prot) 596 { 597 return security_ops->file_mprotect(vma, reqprot, prot); 598 } 599 600 int security_file_lock(struct file *file, unsigned int cmd) 601 { 602 return security_ops->file_lock(file, cmd); 603 } 604 605 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 606 { 607 return security_ops->file_fcntl(file, cmd, arg); 608 } 609 610 int security_file_set_fowner(struct file *file) 611 { 612 return security_ops->file_set_fowner(file); 613 } 614 615 int security_file_send_sigiotask(struct task_struct *tsk, 616 struct fown_struct *fown, int sig) 617 { 618 return security_ops->file_send_sigiotask(tsk, fown, sig); 619 } 620 621 int security_file_receive(struct file *file) 622 { 623 return security_ops->file_receive(file); 624 } 625 626 int security_dentry_open(struct file *file) 627 { 628 return security_ops->dentry_open(file); 629 } 630 631 int security_task_create(unsigned long clone_flags) 632 { 633 return security_ops->task_create(clone_flags); 634 } 635 636 int security_task_alloc(struct task_struct *p) 637 { 638 return security_ops->task_alloc_security(p); 639 } 640 641 void security_task_free(struct task_struct *p) 642 { 643 security_ops->task_free_security(p); 644 } 645 646 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags) 647 { 648 return security_ops->task_setuid(id0, id1, id2, flags); 649 } 650 651 int security_task_post_setuid(uid_t old_ruid, uid_t old_euid, 652 uid_t old_suid, int flags) 653 { 654 return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags); 655 } 656 657 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags) 658 { 659 return security_ops->task_setgid(id0, id1, id2, flags); 660 } 661 662 int security_task_setpgid(struct task_struct *p, pid_t pgid) 663 { 664 return security_ops->task_setpgid(p, pgid); 665 } 666 667 int security_task_getpgid(struct task_struct *p) 668 { 669 return security_ops->task_getpgid(p); 670 } 671 672 int security_task_getsid(struct task_struct *p) 673 { 674 return security_ops->task_getsid(p); 675 } 676 677 void security_task_getsecid(struct task_struct *p, u32 *secid) 678 { 679 security_ops->task_getsecid(p, secid); 680 } 681 EXPORT_SYMBOL(security_task_getsecid); 682 683 int security_task_setgroups(struct group_info *group_info) 684 { 685 return security_ops->task_setgroups(group_info); 686 } 687 688 int security_task_setnice(struct task_struct *p, int nice) 689 { 690 return security_ops->task_setnice(p, nice); 691 } 692 693 int security_task_setioprio(struct task_struct *p, int ioprio) 694 { 695 return security_ops->task_setioprio(p, ioprio); 696 } 697 698 int security_task_getioprio(struct task_struct *p) 699 { 700 return security_ops->task_getioprio(p); 701 } 702 703 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim) 704 { 705 return security_ops->task_setrlimit(resource, new_rlim); 706 } 707 708 int security_task_setscheduler(struct task_struct *p, 709 int policy, struct sched_param *lp) 710 { 711 return security_ops->task_setscheduler(p, policy, lp); 712 } 713 714 int security_task_getscheduler(struct task_struct *p) 715 { 716 return security_ops->task_getscheduler(p); 717 } 718 719 int security_task_movememory(struct task_struct *p) 720 { 721 return security_ops->task_movememory(p); 722 } 723 724 int security_task_kill(struct task_struct *p, struct siginfo *info, 725 int sig, u32 secid) 726 { 727 return security_ops->task_kill(p, info, sig, secid); 728 } 729 730 int security_task_wait(struct task_struct *p) 731 { 732 return security_ops->task_wait(p); 733 } 734 735 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 736 unsigned long arg4, unsigned long arg5, long *rc_p) 737 { 738 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p); 739 } 740 741 void security_task_reparent_to_init(struct task_struct *p) 742 { 743 security_ops->task_reparent_to_init(p); 744 } 745 746 void security_task_to_inode(struct task_struct *p, struct inode *inode) 747 { 748 security_ops->task_to_inode(p, inode); 749 } 750 751 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 752 { 753 return security_ops->ipc_permission(ipcp, flag); 754 } 755 756 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 757 { 758 security_ops->ipc_getsecid(ipcp, secid); 759 } 760 761 int security_msg_msg_alloc(struct msg_msg *msg) 762 { 763 return security_ops->msg_msg_alloc_security(msg); 764 } 765 766 void security_msg_msg_free(struct msg_msg *msg) 767 { 768 security_ops->msg_msg_free_security(msg); 769 } 770 771 int security_msg_queue_alloc(struct msg_queue *msq) 772 { 773 return security_ops->msg_queue_alloc_security(msq); 774 } 775 776 void security_msg_queue_free(struct msg_queue *msq) 777 { 778 security_ops->msg_queue_free_security(msq); 779 } 780 781 int security_msg_queue_associate(struct msg_queue *msq, int msqflg) 782 { 783 return security_ops->msg_queue_associate(msq, msqflg); 784 } 785 786 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) 787 { 788 return security_ops->msg_queue_msgctl(msq, cmd); 789 } 790 791 int security_msg_queue_msgsnd(struct msg_queue *msq, 792 struct msg_msg *msg, int msqflg) 793 { 794 return security_ops->msg_queue_msgsnd(msq, msg, msqflg); 795 } 796 797 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 798 struct task_struct *target, long type, int mode) 799 { 800 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode); 801 } 802 803 int security_shm_alloc(struct shmid_kernel *shp) 804 { 805 return security_ops->shm_alloc_security(shp); 806 } 807 808 void security_shm_free(struct shmid_kernel *shp) 809 { 810 security_ops->shm_free_security(shp); 811 } 812 813 int security_shm_associate(struct shmid_kernel *shp, int shmflg) 814 { 815 return security_ops->shm_associate(shp, shmflg); 816 } 817 818 int security_shm_shmctl(struct shmid_kernel *shp, int cmd) 819 { 820 return security_ops->shm_shmctl(shp, cmd); 821 } 822 823 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg) 824 { 825 return security_ops->shm_shmat(shp, shmaddr, shmflg); 826 } 827 828 int security_sem_alloc(struct sem_array *sma) 829 { 830 return security_ops->sem_alloc_security(sma); 831 } 832 833 void security_sem_free(struct sem_array *sma) 834 { 835 security_ops->sem_free_security(sma); 836 } 837 838 int security_sem_associate(struct sem_array *sma, int semflg) 839 { 840 return security_ops->sem_associate(sma, semflg); 841 } 842 843 int security_sem_semctl(struct sem_array *sma, int cmd) 844 { 845 return security_ops->sem_semctl(sma, cmd); 846 } 847 848 int security_sem_semop(struct sem_array *sma, struct sembuf *sops, 849 unsigned nsops, int alter) 850 { 851 return security_ops->sem_semop(sma, sops, nsops, alter); 852 } 853 854 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 855 { 856 if (unlikely(inode && IS_PRIVATE(inode))) 857 return; 858 security_ops->d_instantiate(dentry, inode); 859 } 860 EXPORT_SYMBOL(security_d_instantiate); 861 862 int security_getprocattr(struct task_struct *p, char *name, char **value) 863 { 864 return security_ops->getprocattr(p, name, value); 865 } 866 867 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 868 { 869 return security_ops->setprocattr(p, name, value, size); 870 } 871 872 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 873 { 874 return security_ops->netlink_send(sk, skb); 875 } 876 877 int security_netlink_recv(struct sk_buff *skb, int cap) 878 { 879 return security_ops->netlink_recv(skb, cap); 880 } 881 EXPORT_SYMBOL(security_netlink_recv); 882 883 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 884 { 885 return security_ops->secid_to_secctx(secid, secdata, seclen); 886 } 887 EXPORT_SYMBOL(security_secid_to_secctx); 888 889 int security_secctx_to_secid(char *secdata, u32 seclen, u32 *secid) 890 { 891 return security_ops->secctx_to_secid(secdata, seclen, secid); 892 } 893 EXPORT_SYMBOL(security_secctx_to_secid); 894 895 void security_release_secctx(char *secdata, u32 seclen) 896 { 897 return security_ops->release_secctx(secdata, seclen); 898 } 899 EXPORT_SYMBOL(security_release_secctx); 900 901 #ifdef CONFIG_SECURITY_NETWORK 902 903 int security_unix_stream_connect(struct socket *sock, struct socket *other, 904 struct sock *newsk) 905 { 906 return security_ops->unix_stream_connect(sock, other, newsk); 907 } 908 EXPORT_SYMBOL(security_unix_stream_connect); 909 910 int security_unix_may_send(struct socket *sock, struct socket *other) 911 { 912 return security_ops->unix_may_send(sock, other); 913 } 914 EXPORT_SYMBOL(security_unix_may_send); 915 916 int security_socket_create(int family, int type, int protocol, int kern) 917 { 918 return security_ops->socket_create(family, type, protocol, kern); 919 } 920 921 int security_socket_post_create(struct socket *sock, int family, 922 int type, int protocol, int kern) 923 { 924 return security_ops->socket_post_create(sock, family, type, 925 protocol, kern); 926 } 927 928 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 929 { 930 return security_ops->socket_bind(sock, address, addrlen); 931 } 932 933 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 934 { 935 return security_ops->socket_connect(sock, address, addrlen); 936 } 937 938 int security_socket_listen(struct socket *sock, int backlog) 939 { 940 return security_ops->socket_listen(sock, backlog); 941 } 942 943 int security_socket_accept(struct socket *sock, struct socket *newsock) 944 { 945 return security_ops->socket_accept(sock, newsock); 946 } 947 948 void security_socket_post_accept(struct socket *sock, struct socket *newsock) 949 { 950 security_ops->socket_post_accept(sock, newsock); 951 } 952 953 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 954 { 955 return security_ops->socket_sendmsg(sock, msg, size); 956 } 957 958 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 959 int size, int flags) 960 { 961 return security_ops->socket_recvmsg(sock, msg, size, flags); 962 } 963 964 int security_socket_getsockname(struct socket *sock) 965 { 966 return security_ops->socket_getsockname(sock); 967 } 968 969 int security_socket_getpeername(struct socket *sock) 970 { 971 return security_ops->socket_getpeername(sock); 972 } 973 974 int security_socket_getsockopt(struct socket *sock, int level, int optname) 975 { 976 return security_ops->socket_getsockopt(sock, level, optname); 977 } 978 979 int security_socket_setsockopt(struct socket *sock, int level, int optname) 980 { 981 return security_ops->socket_setsockopt(sock, level, optname); 982 } 983 984 int security_socket_shutdown(struct socket *sock, int how) 985 { 986 return security_ops->socket_shutdown(sock, how); 987 } 988 989 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 990 { 991 return security_ops->socket_sock_rcv_skb(sk, skb); 992 } 993 EXPORT_SYMBOL(security_sock_rcv_skb); 994 995 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 996 int __user *optlen, unsigned len) 997 { 998 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 999 } 1000 1001 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 1002 { 1003 return security_ops->socket_getpeersec_dgram(sock, skb, secid); 1004 } 1005 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 1006 1007 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 1008 { 1009 return security_ops->sk_alloc_security(sk, family, priority); 1010 } 1011 1012 void security_sk_free(struct sock *sk) 1013 { 1014 return security_ops->sk_free_security(sk); 1015 } 1016 1017 void security_sk_clone(const struct sock *sk, struct sock *newsk) 1018 { 1019 return security_ops->sk_clone_security(sk, newsk); 1020 } 1021 1022 void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 1023 { 1024 security_ops->sk_getsecid(sk, &fl->secid); 1025 } 1026 EXPORT_SYMBOL(security_sk_classify_flow); 1027 1028 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 1029 { 1030 security_ops->req_classify_flow(req, fl); 1031 } 1032 EXPORT_SYMBOL(security_req_classify_flow); 1033 1034 void security_sock_graft(struct sock *sk, struct socket *parent) 1035 { 1036 security_ops->sock_graft(sk, parent); 1037 } 1038 EXPORT_SYMBOL(security_sock_graft); 1039 1040 int security_inet_conn_request(struct sock *sk, 1041 struct sk_buff *skb, struct request_sock *req) 1042 { 1043 return security_ops->inet_conn_request(sk, skb, req); 1044 } 1045 EXPORT_SYMBOL(security_inet_conn_request); 1046 1047 void security_inet_csk_clone(struct sock *newsk, 1048 const struct request_sock *req) 1049 { 1050 security_ops->inet_csk_clone(newsk, req); 1051 } 1052 1053 void security_inet_conn_established(struct sock *sk, 1054 struct sk_buff *skb) 1055 { 1056 security_ops->inet_conn_established(sk, skb); 1057 } 1058 1059 #endif /* CONFIG_SECURITY_NETWORK */ 1060 1061 #ifdef CONFIG_SECURITY_NETWORK_XFRM 1062 1063 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx) 1064 { 1065 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx); 1066 } 1067 EXPORT_SYMBOL(security_xfrm_policy_alloc); 1068 1069 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 1070 struct xfrm_sec_ctx **new_ctxp) 1071 { 1072 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp); 1073 } 1074 1075 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 1076 { 1077 security_ops->xfrm_policy_free_security(ctx); 1078 } 1079 EXPORT_SYMBOL(security_xfrm_policy_free); 1080 1081 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 1082 { 1083 return security_ops->xfrm_policy_delete_security(ctx); 1084 } 1085 1086 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 1087 { 1088 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0); 1089 } 1090 EXPORT_SYMBOL(security_xfrm_state_alloc); 1091 1092 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1093 struct xfrm_sec_ctx *polsec, u32 secid) 1094 { 1095 if (!polsec) 1096 return 0; 1097 /* 1098 * We want the context to be taken from secid which is usually 1099 * from the sock. 1100 */ 1101 return security_ops->xfrm_state_alloc_security(x, NULL, secid); 1102 } 1103 1104 int security_xfrm_state_delete(struct xfrm_state *x) 1105 { 1106 return security_ops->xfrm_state_delete_security(x); 1107 } 1108 EXPORT_SYMBOL(security_xfrm_state_delete); 1109 1110 void security_xfrm_state_free(struct xfrm_state *x) 1111 { 1112 security_ops->xfrm_state_free_security(x); 1113 } 1114 1115 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 1116 { 1117 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir); 1118 } 1119 1120 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1121 struct xfrm_policy *xp, struct flowi *fl) 1122 { 1123 return security_ops->xfrm_state_pol_flow_match(x, xp, fl); 1124 } 1125 1126 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1127 { 1128 return security_ops->xfrm_decode_session(skb, secid, 1); 1129 } 1130 1131 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1132 { 1133 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0); 1134 1135 BUG_ON(rc); 1136 } 1137 EXPORT_SYMBOL(security_skb_classify_flow); 1138 1139 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1140 1141 #ifdef CONFIG_KEYS 1142 1143 int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags) 1144 { 1145 return security_ops->key_alloc(key, tsk, flags); 1146 } 1147 1148 void security_key_free(struct key *key) 1149 { 1150 security_ops->key_free(key); 1151 } 1152 1153 int security_key_permission(key_ref_t key_ref, 1154 struct task_struct *context, key_perm_t perm) 1155 { 1156 return security_ops->key_permission(key_ref, context, perm); 1157 } 1158 1159 #endif /* CONFIG_KEYS */ 1160 1161 #ifdef CONFIG_AUDIT 1162 1163 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 1164 { 1165 return security_ops->audit_rule_init(field, op, rulestr, lsmrule); 1166 } 1167 1168 int security_audit_rule_known(struct audit_krule *krule) 1169 { 1170 return security_ops->audit_rule_known(krule); 1171 } 1172 1173 void security_audit_rule_free(void *lsmrule) 1174 { 1175 security_ops->audit_rule_free(lsmrule); 1176 } 1177 1178 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 1179 struct audit_context *actx) 1180 { 1181 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx); 1182 } 1183 1184 #endif /* CONFIG_AUDIT */ 1185