1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Security plug functions 4 * 5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 8 * Copyright (C) 2016 Mellanox Technologies 9 */ 10 11 #define pr_fmt(fmt) "LSM: " fmt 12 13 #include <linux/bpf.h> 14 #include <linux/capability.h> 15 #include <linux/dcache.h> 16 #include <linux/export.h> 17 #include <linux/init.h> 18 #include <linux/kernel.h> 19 #include <linux/lsm_hooks.h> 20 #include <linux/integrity.h> 21 #include <linux/ima.h> 22 #include <linux/evm.h> 23 #include <linux/fsnotify.h> 24 #include <linux/mman.h> 25 #include <linux/mount.h> 26 #include <linux/personality.h> 27 #include <linux/backing-dev.h> 28 #include <linux/string.h> 29 #include <linux/msg.h> 30 #include <net/flow.h> 31 32 #define MAX_LSM_EVM_XATTR 2 33 34 /* How many LSMs were built into the kernel? */ 35 #define LSM_COUNT (__end_lsm_info - __start_lsm_info) 36 37 struct security_hook_heads security_hook_heads __lsm_ro_after_init; 38 static ATOMIC_NOTIFIER_HEAD(lsm_notifier_chain); 39 40 static struct kmem_cache *lsm_file_cache; 41 static struct kmem_cache *lsm_inode_cache; 42 43 char *lsm_names; 44 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init; 45 46 /* Boot-time LSM user choice */ 47 static __initdata const char *chosen_lsm_order; 48 static __initdata const char *chosen_major_lsm; 49 50 static __initconst const char * const builtin_lsm_order = CONFIG_LSM; 51 52 /* Ordered list of LSMs to initialize. */ 53 static __initdata struct lsm_info **ordered_lsms; 54 static __initdata struct lsm_info *exclusive; 55 56 static __initdata bool debug; 57 #define init_debug(...) \ 58 do { \ 59 if (debug) \ 60 pr_info(__VA_ARGS__); \ 61 } while (0) 62 63 static bool __init is_enabled(struct lsm_info *lsm) 64 { 65 if (!lsm->enabled) 66 return false; 67 68 return *lsm->enabled; 69 } 70 71 /* Mark an LSM's enabled flag. */ 72 static int lsm_enabled_true __initdata = 1; 73 static int lsm_enabled_false __initdata = 0; 74 static void __init set_enabled(struct lsm_info *lsm, bool enabled) 75 { 76 /* 77 * When an LSM hasn't configured an enable variable, we can use 78 * a hard-coded location for storing the default enabled state. 79 */ 80 if (!lsm->enabled) { 81 if (enabled) 82 lsm->enabled = &lsm_enabled_true; 83 else 84 lsm->enabled = &lsm_enabled_false; 85 } else if (lsm->enabled == &lsm_enabled_true) { 86 if (!enabled) 87 lsm->enabled = &lsm_enabled_false; 88 } else if (lsm->enabled == &lsm_enabled_false) { 89 if (enabled) 90 lsm->enabled = &lsm_enabled_true; 91 } else { 92 *lsm->enabled = enabled; 93 } 94 } 95 96 /* Is an LSM already listed in the ordered LSMs list? */ 97 static bool __init exists_ordered_lsm(struct lsm_info *lsm) 98 { 99 struct lsm_info **check; 100 101 for (check = ordered_lsms; *check; check++) 102 if (*check == lsm) 103 return true; 104 105 return false; 106 } 107 108 /* Append an LSM to the list of ordered LSMs to initialize. */ 109 static int last_lsm __initdata; 110 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from) 111 { 112 /* Ignore duplicate selections. */ 113 if (exists_ordered_lsm(lsm)) 114 return; 115 116 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from)) 117 return; 118 119 /* Enable this LSM, if it is not already set. */ 120 if (!lsm->enabled) 121 lsm->enabled = &lsm_enabled_true; 122 ordered_lsms[last_lsm++] = lsm; 123 124 init_debug("%s ordering: %s (%sabled)\n", from, lsm->name, 125 is_enabled(lsm) ? "en" : "dis"); 126 } 127 128 /* Is an LSM allowed to be initialized? */ 129 static bool __init lsm_allowed(struct lsm_info *lsm) 130 { 131 /* Skip if the LSM is disabled. */ 132 if (!is_enabled(lsm)) 133 return false; 134 135 /* Not allowed if another exclusive LSM already initialized. */ 136 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) { 137 init_debug("exclusive disabled: %s\n", lsm->name); 138 return false; 139 } 140 141 return true; 142 } 143 144 static void __init lsm_set_blob_size(int *need, int *lbs) 145 { 146 int offset; 147 148 if (*need > 0) { 149 offset = *lbs; 150 *lbs += *need; 151 *need = offset; 152 } 153 } 154 155 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed) 156 { 157 if (!needed) 158 return; 159 160 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred); 161 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file); 162 /* 163 * The inode blob gets an rcu_head in addition to 164 * what the modules might need. 165 */ 166 if (needed->lbs_inode && blob_sizes.lbs_inode == 0) 167 blob_sizes.lbs_inode = sizeof(struct rcu_head); 168 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode); 169 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc); 170 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg); 171 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task); 172 } 173 174 /* Prepare LSM for initialization. */ 175 static void __init prepare_lsm(struct lsm_info *lsm) 176 { 177 int enabled = lsm_allowed(lsm); 178 179 /* Record enablement (to handle any following exclusive LSMs). */ 180 set_enabled(lsm, enabled); 181 182 /* If enabled, do pre-initialization work. */ 183 if (enabled) { 184 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) { 185 exclusive = lsm; 186 init_debug("exclusive chosen: %s\n", lsm->name); 187 } 188 189 lsm_set_blob_sizes(lsm->blobs); 190 } 191 } 192 193 /* Initialize a given LSM, if it is enabled. */ 194 static void __init initialize_lsm(struct lsm_info *lsm) 195 { 196 if (is_enabled(lsm)) { 197 int ret; 198 199 init_debug("initializing %s\n", lsm->name); 200 ret = lsm->init(); 201 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); 202 } 203 } 204 205 /* Populate ordered LSMs list from comma-separated LSM name list. */ 206 static void __init ordered_lsm_parse(const char *order, const char *origin) 207 { 208 struct lsm_info *lsm; 209 char *sep, *name, *next; 210 211 /* LSM_ORDER_FIRST is always first. */ 212 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 213 if (lsm->order == LSM_ORDER_FIRST) 214 append_ordered_lsm(lsm, "first"); 215 } 216 217 /* Process "security=", if given. */ 218 if (chosen_major_lsm) { 219 struct lsm_info *major; 220 221 /* 222 * To match the original "security=" behavior, this 223 * explicitly does NOT fallback to another Legacy Major 224 * if the selected one was separately disabled: disable 225 * all non-matching Legacy Major LSMs. 226 */ 227 for (major = __start_lsm_info; major < __end_lsm_info; 228 major++) { 229 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) && 230 strcmp(major->name, chosen_major_lsm) != 0) { 231 set_enabled(major, false); 232 init_debug("security=%s disabled: %s\n", 233 chosen_major_lsm, major->name); 234 } 235 } 236 } 237 238 sep = kstrdup(order, GFP_KERNEL); 239 next = sep; 240 /* Walk the list, looking for matching LSMs. */ 241 while ((name = strsep(&next, ",")) != NULL) { 242 bool found = false; 243 244 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 245 if (lsm->order == LSM_ORDER_MUTABLE && 246 strcmp(lsm->name, name) == 0) { 247 append_ordered_lsm(lsm, origin); 248 found = true; 249 } 250 } 251 252 if (!found) 253 init_debug("%s ignored: %s\n", origin, name); 254 } 255 256 /* Process "security=", if given. */ 257 if (chosen_major_lsm) { 258 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 259 if (exists_ordered_lsm(lsm)) 260 continue; 261 if (strcmp(lsm->name, chosen_major_lsm) == 0) 262 append_ordered_lsm(lsm, "security="); 263 } 264 } 265 266 /* Disable all LSMs not in the ordered list. */ 267 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 268 if (exists_ordered_lsm(lsm)) 269 continue; 270 set_enabled(lsm, false); 271 init_debug("%s disabled: %s\n", origin, lsm->name); 272 } 273 274 kfree(sep); 275 } 276 277 static void __init lsm_early_cred(struct cred *cred); 278 static void __init lsm_early_task(struct task_struct *task); 279 280 static void __init ordered_lsm_init(void) 281 { 282 struct lsm_info **lsm; 283 284 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms), 285 GFP_KERNEL); 286 287 if (chosen_lsm_order) { 288 if (chosen_major_lsm) { 289 pr_info("security= is ignored because it is superseded by lsm=\n"); 290 chosen_major_lsm = NULL; 291 } 292 ordered_lsm_parse(chosen_lsm_order, "cmdline"); 293 } else 294 ordered_lsm_parse(builtin_lsm_order, "builtin"); 295 296 for (lsm = ordered_lsms; *lsm; lsm++) 297 prepare_lsm(*lsm); 298 299 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred); 300 init_debug("file blob size = %d\n", blob_sizes.lbs_file); 301 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode); 302 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc); 303 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg); 304 init_debug("task blob size = %d\n", blob_sizes.lbs_task); 305 306 /* 307 * Create any kmem_caches needed for blobs 308 */ 309 if (blob_sizes.lbs_file) 310 lsm_file_cache = kmem_cache_create("lsm_file_cache", 311 blob_sizes.lbs_file, 0, 312 SLAB_PANIC, NULL); 313 if (blob_sizes.lbs_inode) 314 lsm_inode_cache = kmem_cache_create("lsm_inode_cache", 315 blob_sizes.lbs_inode, 0, 316 SLAB_PANIC, NULL); 317 318 lsm_early_cred((struct cred *) current->cred); 319 lsm_early_task(current); 320 for (lsm = ordered_lsms; *lsm; lsm++) 321 initialize_lsm(*lsm); 322 323 kfree(ordered_lsms); 324 } 325 326 /** 327 * security_init - initializes the security framework 328 * 329 * This should be called early in the kernel initialization sequence. 330 */ 331 int __init security_init(void) 332 { 333 int i; 334 struct hlist_head *list = (struct hlist_head *) &security_hook_heads; 335 336 pr_info("Security Framework initializing\n"); 337 338 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head); 339 i++) 340 INIT_HLIST_HEAD(&list[i]); 341 342 /* Load LSMs in specified order. */ 343 ordered_lsm_init(); 344 345 return 0; 346 } 347 348 /* Save user chosen LSM */ 349 static int __init choose_major_lsm(char *str) 350 { 351 chosen_major_lsm = str; 352 return 1; 353 } 354 __setup("security=", choose_major_lsm); 355 356 /* Explicitly choose LSM initialization order. */ 357 static int __init choose_lsm_order(char *str) 358 { 359 chosen_lsm_order = str; 360 return 1; 361 } 362 __setup("lsm=", choose_lsm_order); 363 364 /* Enable LSM order debugging. */ 365 static int __init enable_debug(char *str) 366 { 367 debug = true; 368 return 1; 369 } 370 __setup("lsm.debug", enable_debug); 371 372 static bool match_last_lsm(const char *list, const char *lsm) 373 { 374 const char *last; 375 376 if (WARN_ON(!list || !lsm)) 377 return false; 378 last = strrchr(list, ','); 379 if (last) 380 /* Pass the comma, strcmp() will check for '\0' */ 381 last++; 382 else 383 last = list; 384 return !strcmp(last, lsm); 385 } 386 387 static int lsm_append(char *new, char **result) 388 { 389 char *cp; 390 391 if (*result == NULL) { 392 *result = kstrdup(new, GFP_KERNEL); 393 if (*result == NULL) 394 return -ENOMEM; 395 } else { 396 /* Check if it is the last registered name */ 397 if (match_last_lsm(*result, new)) 398 return 0; 399 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 400 if (cp == NULL) 401 return -ENOMEM; 402 kfree(*result); 403 *result = cp; 404 } 405 return 0; 406 } 407 408 /** 409 * security_add_hooks - Add a modules hooks to the hook lists. 410 * @hooks: the hooks to add 411 * @count: the number of hooks to add 412 * @lsm: the name of the security module 413 * 414 * Each LSM has to register its hooks with the infrastructure. 415 */ 416 void __init security_add_hooks(struct security_hook_list *hooks, int count, 417 char *lsm) 418 { 419 int i; 420 421 for (i = 0; i < count; i++) { 422 hooks[i].lsm = lsm; 423 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 424 } 425 if (lsm_append(lsm, &lsm_names) < 0) 426 panic("%s - Cannot get early memory.\n", __func__); 427 } 428 429 int call_lsm_notifier(enum lsm_event event, void *data) 430 { 431 return atomic_notifier_call_chain(&lsm_notifier_chain, event, data); 432 } 433 EXPORT_SYMBOL(call_lsm_notifier); 434 435 int register_lsm_notifier(struct notifier_block *nb) 436 { 437 return atomic_notifier_chain_register(&lsm_notifier_chain, nb); 438 } 439 EXPORT_SYMBOL(register_lsm_notifier); 440 441 int unregister_lsm_notifier(struct notifier_block *nb) 442 { 443 return atomic_notifier_chain_unregister(&lsm_notifier_chain, nb); 444 } 445 EXPORT_SYMBOL(unregister_lsm_notifier); 446 447 /** 448 * lsm_cred_alloc - allocate a composite cred blob 449 * @cred: the cred that needs a blob 450 * @gfp: allocation type 451 * 452 * Allocate the cred blob for all the modules 453 * 454 * Returns 0, or -ENOMEM if memory can't be allocated. 455 */ 456 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp) 457 { 458 if (blob_sizes.lbs_cred == 0) { 459 cred->security = NULL; 460 return 0; 461 } 462 463 cred->security = kzalloc(blob_sizes.lbs_cred, gfp); 464 if (cred->security == NULL) 465 return -ENOMEM; 466 return 0; 467 } 468 469 /** 470 * lsm_early_cred - during initialization allocate a composite cred blob 471 * @cred: the cred that needs a blob 472 * 473 * Allocate the cred blob for all the modules 474 */ 475 static void __init lsm_early_cred(struct cred *cred) 476 { 477 int rc = lsm_cred_alloc(cred, GFP_KERNEL); 478 479 if (rc) 480 panic("%s: Early cred alloc failed.\n", __func__); 481 } 482 483 /** 484 * lsm_file_alloc - allocate a composite file blob 485 * @file: the file that needs a blob 486 * 487 * Allocate the file blob for all the modules 488 * 489 * Returns 0, or -ENOMEM if memory can't be allocated. 490 */ 491 static int lsm_file_alloc(struct file *file) 492 { 493 if (!lsm_file_cache) { 494 file->f_security = NULL; 495 return 0; 496 } 497 498 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL); 499 if (file->f_security == NULL) 500 return -ENOMEM; 501 return 0; 502 } 503 504 /** 505 * lsm_inode_alloc - allocate a composite inode blob 506 * @inode: the inode that needs a blob 507 * 508 * Allocate the inode blob for all the modules 509 * 510 * Returns 0, or -ENOMEM if memory can't be allocated. 511 */ 512 int lsm_inode_alloc(struct inode *inode) 513 { 514 if (!lsm_inode_cache) { 515 inode->i_security = NULL; 516 return 0; 517 } 518 519 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS); 520 if (inode->i_security == NULL) 521 return -ENOMEM; 522 return 0; 523 } 524 525 /** 526 * lsm_task_alloc - allocate a composite task blob 527 * @task: the task that needs a blob 528 * 529 * Allocate the task blob for all the modules 530 * 531 * Returns 0, or -ENOMEM if memory can't be allocated. 532 */ 533 static int lsm_task_alloc(struct task_struct *task) 534 { 535 if (blob_sizes.lbs_task == 0) { 536 task->security = NULL; 537 return 0; 538 } 539 540 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL); 541 if (task->security == NULL) 542 return -ENOMEM; 543 return 0; 544 } 545 546 /** 547 * lsm_ipc_alloc - allocate a composite ipc blob 548 * @kip: the ipc that needs a blob 549 * 550 * Allocate the ipc blob for all the modules 551 * 552 * Returns 0, or -ENOMEM if memory can't be allocated. 553 */ 554 static int lsm_ipc_alloc(struct kern_ipc_perm *kip) 555 { 556 if (blob_sizes.lbs_ipc == 0) { 557 kip->security = NULL; 558 return 0; 559 } 560 561 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL); 562 if (kip->security == NULL) 563 return -ENOMEM; 564 return 0; 565 } 566 567 /** 568 * lsm_msg_msg_alloc - allocate a composite msg_msg blob 569 * @mp: the msg_msg that needs a blob 570 * 571 * Allocate the ipc blob for all the modules 572 * 573 * Returns 0, or -ENOMEM if memory can't be allocated. 574 */ 575 static int lsm_msg_msg_alloc(struct msg_msg *mp) 576 { 577 if (blob_sizes.lbs_msg_msg == 0) { 578 mp->security = NULL; 579 return 0; 580 } 581 582 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL); 583 if (mp->security == NULL) 584 return -ENOMEM; 585 return 0; 586 } 587 588 /** 589 * lsm_early_task - during initialization allocate a composite task blob 590 * @task: the task that needs a blob 591 * 592 * Allocate the task blob for all the modules 593 */ 594 static void __init lsm_early_task(struct task_struct *task) 595 { 596 int rc = lsm_task_alloc(task); 597 598 if (rc) 599 panic("%s: Early task alloc failed.\n", __func__); 600 } 601 602 /* 603 * Hook list operation macros. 604 * 605 * call_void_hook: 606 * This is a hook that does not return a value. 607 * 608 * call_int_hook: 609 * This is a hook that returns a value. 610 */ 611 612 #define call_void_hook(FUNC, ...) \ 613 do { \ 614 struct security_hook_list *P; \ 615 \ 616 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 617 P->hook.FUNC(__VA_ARGS__); \ 618 } while (0) 619 620 #define call_int_hook(FUNC, IRC, ...) ({ \ 621 int RC = IRC; \ 622 do { \ 623 struct security_hook_list *P; \ 624 \ 625 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 626 RC = P->hook.FUNC(__VA_ARGS__); \ 627 if (RC != 0) \ 628 break; \ 629 } \ 630 } while (0); \ 631 RC; \ 632 }) 633 634 /* Security operations */ 635 636 int security_binder_set_context_mgr(struct task_struct *mgr) 637 { 638 return call_int_hook(binder_set_context_mgr, 0, mgr); 639 } 640 641 int security_binder_transaction(struct task_struct *from, 642 struct task_struct *to) 643 { 644 return call_int_hook(binder_transaction, 0, from, to); 645 } 646 647 int security_binder_transfer_binder(struct task_struct *from, 648 struct task_struct *to) 649 { 650 return call_int_hook(binder_transfer_binder, 0, from, to); 651 } 652 653 int security_binder_transfer_file(struct task_struct *from, 654 struct task_struct *to, struct file *file) 655 { 656 return call_int_hook(binder_transfer_file, 0, from, to, file); 657 } 658 659 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 660 { 661 return call_int_hook(ptrace_access_check, 0, child, mode); 662 } 663 664 int security_ptrace_traceme(struct task_struct *parent) 665 { 666 return call_int_hook(ptrace_traceme, 0, parent); 667 } 668 669 int security_capget(struct task_struct *target, 670 kernel_cap_t *effective, 671 kernel_cap_t *inheritable, 672 kernel_cap_t *permitted) 673 { 674 return call_int_hook(capget, 0, target, 675 effective, inheritable, permitted); 676 } 677 678 int security_capset(struct cred *new, const struct cred *old, 679 const kernel_cap_t *effective, 680 const kernel_cap_t *inheritable, 681 const kernel_cap_t *permitted) 682 { 683 return call_int_hook(capset, 0, new, old, 684 effective, inheritable, permitted); 685 } 686 687 int security_capable(const struct cred *cred, 688 struct user_namespace *ns, 689 int cap, 690 unsigned int opts) 691 { 692 return call_int_hook(capable, 0, cred, ns, cap, opts); 693 } 694 695 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 696 { 697 return call_int_hook(quotactl, 0, cmds, type, id, sb); 698 } 699 700 int security_quota_on(struct dentry *dentry) 701 { 702 return call_int_hook(quota_on, 0, dentry); 703 } 704 705 int security_syslog(int type) 706 { 707 return call_int_hook(syslog, 0, type); 708 } 709 710 int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 711 { 712 return call_int_hook(settime, 0, ts, tz); 713 } 714 715 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 716 { 717 struct security_hook_list *hp; 718 int cap_sys_admin = 1; 719 int rc; 720 721 /* 722 * The module will respond with a positive value if 723 * it thinks the __vm_enough_memory() call should be 724 * made with the cap_sys_admin set. If all of the modules 725 * agree that it should be set it will. If any module 726 * thinks it should not be set it won't. 727 */ 728 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 729 rc = hp->hook.vm_enough_memory(mm, pages); 730 if (rc <= 0) { 731 cap_sys_admin = 0; 732 break; 733 } 734 } 735 return __vm_enough_memory(mm, pages, cap_sys_admin); 736 } 737 738 int security_bprm_set_creds(struct linux_binprm *bprm) 739 { 740 return call_int_hook(bprm_set_creds, 0, bprm); 741 } 742 743 int security_bprm_check(struct linux_binprm *bprm) 744 { 745 int ret; 746 747 ret = call_int_hook(bprm_check_security, 0, bprm); 748 if (ret) 749 return ret; 750 return ima_bprm_check(bprm); 751 } 752 753 void security_bprm_committing_creds(struct linux_binprm *bprm) 754 { 755 call_void_hook(bprm_committing_creds, bprm); 756 } 757 758 void security_bprm_committed_creds(struct linux_binprm *bprm) 759 { 760 call_void_hook(bprm_committed_creds, bprm); 761 } 762 763 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) 764 { 765 return call_int_hook(fs_context_dup, 0, fc, src_fc); 766 } 767 768 int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param) 769 { 770 return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param); 771 } 772 773 int security_sb_alloc(struct super_block *sb) 774 { 775 return call_int_hook(sb_alloc_security, 0, sb); 776 } 777 778 void security_sb_free(struct super_block *sb) 779 { 780 call_void_hook(sb_free_security, sb); 781 } 782 783 void security_free_mnt_opts(void **mnt_opts) 784 { 785 if (!*mnt_opts) 786 return; 787 call_void_hook(sb_free_mnt_opts, *mnt_opts); 788 *mnt_opts = NULL; 789 } 790 EXPORT_SYMBOL(security_free_mnt_opts); 791 792 int security_sb_eat_lsm_opts(char *options, void **mnt_opts) 793 { 794 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts); 795 } 796 EXPORT_SYMBOL(security_sb_eat_lsm_opts); 797 798 int security_sb_remount(struct super_block *sb, 799 void *mnt_opts) 800 { 801 return call_int_hook(sb_remount, 0, sb, mnt_opts); 802 } 803 EXPORT_SYMBOL(security_sb_remount); 804 805 int security_sb_kern_mount(struct super_block *sb) 806 { 807 return call_int_hook(sb_kern_mount, 0, sb); 808 } 809 810 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 811 { 812 return call_int_hook(sb_show_options, 0, m, sb); 813 } 814 815 int security_sb_statfs(struct dentry *dentry) 816 { 817 return call_int_hook(sb_statfs, 0, dentry); 818 } 819 820 int security_sb_mount(const char *dev_name, const struct path *path, 821 const char *type, unsigned long flags, void *data) 822 { 823 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data); 824 } 825 826 int security_sb_umount(struct vfsmount *mnt, int flags) 827 { 828 return call_int_hook(sb_umount, 0, mnt, flags); 829 } 830 831 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path) 832 { 833 return call_int_hook(sb_pivotroot, 0, old_path, new_path); 834 } 835 836 int security_sb_set_mnt_opts(struct super_block *sb, 837 void *mnt_opts, 838 unsigned long kern_flags, 839 unsigned long *set_kern_flags) 840 { 841 return call_int_hook(sb_set_mnt_opts, 842 mnt_opts ? -EOPNOTSUPP : 0, sb, 843 mnt_opts, kern_flags, set_kern_flags); 844 } 845 EXPORT_SYMBOL(security_sb_set_mnt_opts); 846 847 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 848 struct super_block *newsb, 849 unsigned long kern_flags, 850 unsigned long *set_kern_flags) 851 { 852 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb, 853 kern_flags, set_kern_flags); 854 } 855 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 856 857 int security_add_mnt_opt(const char *option, const char *val, int len, 858 void **mnt_opts) 859 { 860 return call_int_hook(sb_add_mnt_opt, -EINVAL, 861 option, val, len, mnt_opts); 862 } 863 EXPORT_SYMBOL(security_add_mnt_opt); 864 865 int security_move_mount(const struct path *from_path, const struct path *to_path) 866 { 867 return call_int_hook(move_mount, 0, from_path, to_path); 868 } 869 870 int security_inode_alloc(struct inode *inode) 871 { 872 int rc = lsm_inode_alloc(inode); 873 874 if (unlikely(rc)) 875 return rc; 876 rc = call_int_hook(inode_alloc_security, 0, inode); 877 if (unlikely(rc)) 878 security_inode_free(inode); 879 return rc; 880 } 881 882 static void inode_free_by_rcu(struct rcu_head *head) 883 { 884 /* 885 * The rcu head is at the start of the inode blob 886 */ 887 kmem_cache_free(lsm_inode_cache, head); 888 } 889 890 void security_inode_free(struct inode *inode) 891 { 892 integrity_inode_free(inode); 893 call_void_hook(inode_free_security, inode); 894 /* 895 * The inode may still be referenced in a path walk and 896 * a call to security_inode_permission() can be made 897 * after inode_free_security() is called. Ideally, the VFS 898 * wouldn't do this, but fixing that is a much harder 899 * job. For now, simply free the i_security via RCU, and 900 * leave the current inode->i_security pointer intact. 901 * The inode will be freed after the RCU grace period too. 902 */ 903 if (inode->i_security) 904 call_rcu((struct rcu_head *)inode->i_security, 905 inode_free_by_rcu); 906 } 907 908 int security_dentry_init_security(struct dentry *dentry, int mode, 909 const struct qstr *name, void **ctx, 910 u32 *ctxlen) 911 { 912 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode, 913 name, ctx, ctxlen); 914 } 915 EXPORT_SYMBOL(security_dentry_init_security); 916 917 int security_dentry_create_files_as(struct dentry *dentry, int mode, 918 struct qstr *name, 919 const struct cred *old, struct cred *new) 920 { 921 return call_int_hook(dentry_create_files_as, 0, dentry, mode, 922 name, old, new); 923 } 924 EXPORT_SYMBOL(security_dentry_create_files_as); 925 926 int security_inode_init_security(struct inode *inode, struct inode *dir, 927 const struct qstr *qstr, 928 const initxattrs initxattrs, void *fs_data) 929 { 930 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 931 struct xattr *lsm_xattr, *evm_xattr, *xattr; 932 int ret; 933 934 if (unlikely(IS_PRIVATE(inode))) 935 return 0; 936 937 if (!initxattrs) 938 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, 939 dir, qstr, NULL, NULL, NULL); 940 memset(new_xattrs, 0, sizeof(new_xattrs)); 941 lsm_xattr = new_xattrs; 942 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr, 943 &lsm_xattr->name, 944 &lsm_xattr->value, 945 &lsm_xattr->value_len); 946 if (ret) 947 goto out; 948 949 evm_xattr = lsm_xattr + 1; 950 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 951 if (ret) 952 goto out; 953 ret = initxattrs(inode, new_xattrs, fs_data); 954 out: 955 for (xattr = new_xattrs; xattr->value != NULL; xattr++) 956 kfree(xattr->value); 957 return (ret == -EOPNOTSUPP) ? 0 : ret; 958 } 959 EXPORT_SYMBOL(security_inode_init_security); 960 961 int security_old_inode_init_security(struct inode *inode, struct inode *dir, 962 const struct qstr *qstr, const char **name, 963 void **value, size_t *len) 964 { 965 if (unlikely(IS_PRIVATE(inode))) 966 return -EOPNOTSUPP; 967 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, 968 qstr, name, value, len); 969 } 970 EXPORT_SYMBOL(security_old_inode_init_security); 971 972 #ifdef CONFIG_SECURITY_PATH 973 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode, 974 unsigned int dev) 975 { 976 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 977 return 0; 978 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev); 979 } 980 EXPORT_SYMBOL(security_path_mknod); 981 982 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode) 983 { 984 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 985 return 0; 986 return call_int_hook(path_mkdir, 0, dir, dentry, mode); 987 } 988 EXPORT_SYMBOL(security_path_mkdir); 989 990 int security_path_rmdir(const struct path *dir, struct dentry *dentry) 991 { 992 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 993 return 0; 994 return call_int_hook(path_rmdir, 0, dir, dentry); 995 } 996 997 int security_path_unlink(const struct path *dir, struct dentry *dentry) 998 { 999 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1000 return 0; 1001 return call_int_hook(path_unlink, 0, dir, dentry); 1002 } 1003 EXPORT_SYMBOL(security_path_unlink); 1004 1005 int security_path_symlink(const struct path *dir, struct dentry *dentry, 1006 const char *old_name) 1007 { 1008 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1009 return 0; 1010 return call_int_hook(path_symlink, 0, dir, dentry, old_name); 1011 } 1012 1013 int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 1014 struct dentry *new_dentry) 1015 { 1016 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1017 return 0; 1018 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry); 1019 } 1020 1021 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 1022 const struct path *new_dir, struct dentry *new_dentry, 1023 unsigned int flags) 1024 { 1025 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1026 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1027 return 0; 1028 1029 if (flags & RENAME_EXCHANGE) { 1030 int err = call_int_hook(path_rename, 0, new_dir, new_dentry, 1031 old_dir, old_dentry); 1032 if (err) 1033 return err; 1034 } 1035 1036 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir, 1037 new_dentry); 1038 } 1039 EXPORT_SYMBOL(security_path_rename); 1040 1041 int security_path_truncate(const struct path *path) 1042 { 1043 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1044 return 0; 1045 return call_int_hook(path_truncate, 0, path); 1046 } 1047 1048 int security_path_chmod(const struct path *path, umode_t mode) 1049 { 1050 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1051 return 0; 1052 return call_int_hook(path_chmod, 0, path, mode); 1053 } 1054 1055 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 1056 { 1057 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1058 return 0; 1059 return call_int_hook(path_chown, 0, path, uid, gid); 1060 } 1061 1062 int security_path_chroot(const struct path *path) 1063 { 1064 return call_int_hook(path_chroot, 0, path); 1065 } 1066 #endif 1067 1068 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 1069 { 1070 if (unlikely(IS_PRIVATE(dir))) 1071 return 0; 1072 return call_int_hook(inode_create, 0, dir, dentry, mode); 1073 } 1074 EXPORT_SYMBOL_GPL(security_inode_create); 1075 1076 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 1077 struct dentry *new_dentry) 1078 { 1079 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1080 return 0; 1081 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry); 1082 } 1083 1084 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 1085 { 1086 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1087 return 0; 1088 return call_int_hook(inode_unlink, 0, dir, dentry); 1089 } 1090 1091 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 1092 const char *old_name) 1093 { 1094 if (unlikely(IS_PRIVATE(dir))) 1095 return 0; 1096 return call_int_hook(inode_symlink, 0, dir, dentry, old_name); 1097 } 1098 1099 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1100 { 1101 if (unlikely(IS_PRIVATE(dir))) 1102 return 0; 1103 return call_int_hook(inode_mkdir, 0, dir, dentry, mode); 1104 } 1105 EXPORT_SYMBOL_GPL(security_inode_mkdir); 1106 1107 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 1108 { 1109 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1110 return 0; 1111 return call_int_hook(inode_rmdir, 0, dir, dentry); 1112 } 1113 1114 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 1115 { 1116 if (unlikely(IS_PRIVATE(dir))) 1117 return 0; 1118 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev); 1119 } 1120 1121 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 1122 struct inode *new_dir, struct dentry *new_dentry, 1123 unsigned int flags) 1124 { 1125 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1126 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1127 return 0; 1128 1129 if (flags & RENAME_EXCHANGE) { 1130 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry, 1131 old_dir, old_dentry); 1132 if (err) 1133 return err; 1134 } 1135 1136 return call_int_hook(inode_rename, 0, old_dir, old_dentry, 1137 new_dir, new_dentry); 1138 } 1139 1140 int security_inode_readlink(struct dentry *dentry) 1141 { 1142 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1143 return 0; 1144 return call_int_hook(inode_readlink, 0, dentry); 1145 } 1146 1147 int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 1148 bool rcu) 1149 { 1150 if (unlikely(IS_PRIVATE(inode))) 1151 return 0; 1152 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu); 1153 } 1154 1155 int security_inode_permission(struct inode *inode, int mask) 1156 { 1157 if (unlikely(IS_PRIVATE(inode))) 1158 return 0; 1159 return call_int_hook(inode_permission, 0, inode, mask); 1160 } 1161 1162 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 1163 { 1164 int ret; 1165 1166 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1167 return 0; 1168 ret = call_int_hook(inode_setattr, 0, dentry, attr); 1169 if (ret) 1170 return ret; 1171 return evm_inode_setattr(dentry, attr); 1172 } 1173 EXPORT_SYMBOL_GPL(security_inode_setattr); 1174 1175 int security_inode_getattr(const struct path *path) 1176 { 1177 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1178 return 0; 1179 return call_int_hook(inode_getattr, 0, path); 1180 } 1181 1182 int security_inode_setxattr(struct dentry *dentry, const char *name, 1183 const void *value, size_t size, int flags) 1184 { 1185 int ret; 1186 1187 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1188 return 0; 1189 /* 1190 * SELinux and Smack integrate the cap call, 1191 * so assume that all LSMs supplying this call do so. 1192 */ 1193 ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size, 1194 flags); 1195 1196 if (ret == 1) 1197 ret = cap_inode_setxattr(dentry, name, value, size, flags); 1198 if (ret) 1199 return ret; 1200 ret = ima_inode_setxattr(dentry, name, value, size); 1201 if (ret) 1202 return ret; 1203 return evm_inode_setxattr(dentry, name, value, size); 1204 } 1205 1206 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 1207 const void *value, size_t size, int flags) 1208 { 1209 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1210 return; 1211 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 1212 evm_inode_post_setxattr(dentry, name, value, size); 1213 } 1214 1215 int security_inode_getxattr(struct dentry *dentry, const char *name) 1216 { 1217 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1218 return 0; 1219 return call_int_hook(inode_getxattr, 0, dentry, name); 1220 } 1221 1222 int security_inode_listxattr(struct dentry *dentry) 1223 { 1224 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1225 return 0; 1226 return call_int_hook(inode_listxattr, 0, dentry); 1227 } 1228 1229 int security_inode_removexattr(struct dentry *dentry, const char *name) 1230 { 1231 int ret; 1232 1233 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1234 return 0; 1235 /* 1236 * SELinux and Smack integrate the cap call, 1237 * so assume that all LSMs supplying this call do so. 1238 */ 1239 ret = call_int_hook(inode_removexattr, 1, dentry, name); 1240 if (ret == 1) 1241 ret = cap_inode_removexattr(dentry, name); 1242 if (ret) 1243 return ret; 1244 ret = ima_inode_removexattr(dentry, name); 1245 if (ret) 1246 return ret; 1247 return evm_inode_removexattr(dentry, name); 1248 } 1249 1250 int security_inode_need_killpriv(struct dentry *dentry) 1251 { 1252 return call_int_hook(inode_need_killpriv, 0, dentry); 1253 } 1254 1255 int security_inode_killpriv(struct dentry *dentry) 1256 { 1257 return call_int_hook(inode_killpriv, 0, dentry); 1258 } 1259 1260 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc) 1261 { 1262 struct security_hook_list *hp; 1263 int rc; 1264 1265 if (unlikely(IS_PRIVATE(inode))) 1266 return -EOPNOTSUPP; 1267 /* 1268 * Only one module will provide an attribute with a given name. 1269 */ 1270 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) { 1271 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc); 1272 if (rc != -EOPNOTSUPP) 1273 return rc; 1274 } 1275 return -EOPNOTSUPP; 1276 } 1277 1278 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 1279 { 1280 struct security_hook_list *hp; 1281 int rc; 1282 1283 if (unlikely(IS_PRIVATE(inode))) 1284 return -EOPNOTSUPP; 1285 /* 1286 * Only one module will provide an attribute with a given name. 1287 */ 1288 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) { 1289 rc = hp->hook.inode_setsecurity(inode, name, value, size, 1290 flags); 1291 if (rc != -EOPNOTSUPP) 1292 return rc; 1293 } 1294 return -EOPNOTSUPP; 1295 } 1296 1297 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 1298 { 1299 if (unlikely(IS_PRIVATE(inode))) 1300 return 0; 1301 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size); 1302 } 1303 EXPORT_SYMBOL(security_inode_listsecurity); 1304 1305 void security_inode_getsecid(struct inode *inode, u32 *secid) 1306 { 1307 call_void_hook(inode_getsecid, inode, secid); 1308 } 1309 1310 int security_inode_copy_up(struct dentry *src, struct cred **new) 1311 { 1312 return call_int_hook(inode_copy_up, 0, src, new); 1313 } 1314 EXPORT_SYMBOL(security_inode_copy_up); 1315 1316 int security_inode_copy_up_xattr(const char *name) 1317 { 1318 return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name); 1319 } 1320 EXPORT_SYMBOL(security_inode_copy_up_xattr); 1321 1322 int security_kernfs_init_security(struct kernfs_node *kn_dir, 1323 struct kernfs_node *kn) 1324 { 1325 return call_int_hook(kernfs_init_security, 0, kn_dir, kn); 1326 } 1327 1328 int security_file_permission(struct file *file, int mask) 1329 { 1330 int ret; 1331 1332 ret = call_int_hook(file_permission, 0, file, mask); 1333 if (ret) 1334 return ret; 1335 1336 return fsnotify_perm(file, mask); 1337 } 1338 1339 int security_file_alloc(struct file *file) 1340 { 1341 int rc = lsm_file_alloc(file); 1342 1343 if (rc) 1344 return rc; 1345 rc = call_int_hook(file_alloc_security, 0, file); 1346 if (unlikely(rc)) 1347 security_file_free(file); 1348 return rc; 1349 } 1350 1351 void security_file_free(struct file *file) 1352 { 1353 void *blob; 1354 1355 call_void_hook(file_free_security, file); 1356 1357 blob = file->f_security; 1358 if (blob) { 1359 file->f_security = NULL; 1360 kmem_cache_free(lsm_file_cache, blob); 1361 } 1362 } 1363 1364 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1365 { 1366 return call_int_hook(file_ioctl, 0, file, cmd, arg); 1367 } 1368 1369 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 1370 { 1371 /* 1372 * Does we have PROT_READ and does the application expect 1373 * it to imply PROT_EXEC? If not, nothing to talk about... 1374 */ 1375 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 1376 return prot; 1377 if (!(current->personality & READ_IMPLIES_EXEC)) 1378 return prot; 1379 /* 1380 * if that's an anonymous mapping, let it. 1381 */ 1382 if (!file) 1383 return prot | PROT_EXEC; 1384 /* 1385 * ditto if it's not on noexec mount, except that on !MMU we need 1386 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 1387 */ 1388 if (!path_noexec(&file->f_path)) { 1389 #ifndef CONFIG_MMU 1390 if (file->f_op->mmap_capabilities) { 1391 unsigned caps = file->f_op->mmap_capabilities(file); 1392 if (!(caps & NOMMU_MAP_EXEC)) 1393 return prot; 1394 } 1395 #endif 1396 return prot | PROT_EXEC; 1397 } 1398 /* anything on noexec mount won't get PROT_EXEC */ 1399 return prot; 1400 } 1401 1402 int security_mmap_file(struct file *file, unsigned long prot, 1403 unsigned long flags) 1404 { 1405 int ret; 1406 ret = call_int_hook(mmap_file, 0, file, prot, 1407 mmap_prot(file, prot), flags); 1408 if (ret) 1409 return ret; 1410 return ima_file_mmap(file, prot); 1411 } 1412 1413 int security_mmap_addr(unsigned long addr) 1414 { 1415 return call_int_hook(mmap_addr, 0, addr); 1416 } 1417 1418 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 1419 unsigned long prot) 1420 { 1421 return call_int_hook(file_mprotect, 0, vma, reqprot, prot); 1422 } 1423 1424 int security_file_lock(struct file *file, unsigned int cmd) 1425 { 1426 return call_int_hook(file_lock, 0, file, cmd); 1427 } 1428 1429 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 1430 { 1431 return call_int_hook(file_fcntl, 0, file, cmd, arg); 1432 } 1433 1434 void security_file_set_fowner(struct file *file) 1435 { 1436 call_void_hook(file_set_fowner, file); 1437 } 1438 1439 int security_file_send_sigiotask(struct task_struct *tsk, 1440 struct fown_struct *fown, int sig) 1441 { 1442 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig); 1443 } 1444 1445 int security_file_receive(struct file *file) 1446 { 1447 return call_int_hook(file_receive, 0, file); 1448 } 1449 1450 int security_file_open(struct file *file) 1451 { 1452 int ret; 1453 1454 ret = call_int_hook(file_open, 0, file); 1455 if (ret) 1456 return ret; 1457 1458 return fsnotify_perm(file, MAY_OPEN); 1459 } 1460 1461 int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 1462 { 1463 int rc = lsm_task_alloc(task); 1464 1465 if (rc) 1466 return rc; 1467 rc = call_int_hook(task_alloc, 0, task, clone_flags); 1468 if (unlikely(rc)) 1469 security_task_free(task); 1470 return rc; 1471 } 1472 1473 void security_task_free(struct task_struct *task) 1474 { 1475 call_void_hook(task_free, task); 1476 1477 kfree(task->security); 1478 task->security = NULL; 1479 } 1480 1481 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 1482 { 1483 int rc = lsm_cred_alloc(cred, gfp); 1484 1485 if (rc) 1486 return rc; 1487 1488 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp); 1489 if (unlikely(rc)) 1490 security_cred_free(cred); 1491 return rc; 1492 } 1493 1494 void security_cred_free(struct cred *cred) 1495 { 1496 /* 1497 * There is a failure case in prepare_creds() that 1498 * may result in a call here with ->security being NULL. 1499 */ 1500 if (unlikely(cred->security == NULL)) 1501 return; 1502 1503 call_void_hook(cred_free, cred); 1504 1505 kfree(cred->security); 1506 cred->security = NULL; 1507 } 1508 1509 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 1510 { 1511 int rc = lsm_cred_alloc(new, gfp); 1512 1513 if (rc) 1514 return rc; 1515 1516 rc = call_int_hook(cred_prepare, 0, new, old, gfp); 1517 if (unlikely(rc)) 1518 security_cred_free(new); 1519 return rc; 1520 } 1521 1522 void security_transfer_creds(struct cred *new, const struct cred *old) 1523 { 1524 call_void_hook(cred_transfer, new, old); 1525 } 1526 1527 void security_cred_getsecid(const struct cred *c, u32 *secid) 1528 { 1529 *secid = 0; 1530 call_void_hook(cred_getsecid, c, secid); 1531 } 1532 EXPORT_SYMBOL(security_cred_getsecid); 1533 1534 int security_kernel_act_as(struct cred *new, u32 secid) 1535 { 1536 return call_int_hook(kernel_act_as, 0, new, secid); 1537 } 1538 1539 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 1540 { 1541 return call_int_hook(kernel_create_files_as, 0, new, inode); 1542 } 1543 1544 int security_kernel_module_request(char *kmod_name) 1545 { 1546 int ret; 1547 1548 ret = call_int_hook(kernel_module_request, 0, kmod_name); 1549 if (ret) 1550 return ret; 1551 return integrity_kernel_module_request(kmod_name); 1552 } 1553 1554 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id) 1555 { 1556 int ret; 1557 1558 ret = call_int_hook(kernel_read_file, 0, file, id); 1559 if (ret) 1560 return ret; 1561 return ima_read_file(file, id); 1562 } 1563 EXPORT_SYMBOL_GPL(security_kernel_read_file); 1564 1565 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 1566 enum kernel_read_file_id id) 1567 { 1568 int ret; 1569 1570 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id); 1571 if (ret) 1572 return ret; 1573 return ima_post_read_file(file, buf, size, id); 1574 } 1575 EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 1576 1577 int security_kernel_load_data(enum kernel_load_data_id id) 1578 { 1579 int ret; 1580 1581 ret = call_int_hook(kernel_load_data, 0, id); 1582 if (ret) 1583 return ret; 1584 return ima_load_data(id); 1585 } 1586 EXPORT_SYMBOL_GPL(security_kernel_load_data); 1587 1588 int security_task_fix_setuid(struct cred *new, const struct cred *old, 1589 int flags) 1590 { 1591 return call_int_hook(task_fix_setuid, 0, new, old, flags); 1592 } 1593 1594 int security_task_setpgid(struct task_struct *p, pid_t pgid) 1595 { 1596 return call_int_hook(task_setpgid, 0, p, pgid); 1597 } 1598 1599 int security_task_getpgid(struct task_struct *p) 1600 { 1601 return call_int_hook(task_getpgid, 0, p); 1602 } 1603 1604 int security_task_getsid(struct task_struct *p) 1605 { 1606 return call_int_hook(task_getsid, 0, p); 1607 } 1608 1609 void security_task_getsecid(struct task_struct *p, u32 *secid) 1610 { 1611 *secid = 0; 1612 call_void_hook(task_getsecid, p, secid); 1613 } 1614 EXPORT_SYMBOL(security_task_getsecid); 1615 1616 int security_task_setnice(struct task_struct *p, int nice) 1617 { 1618 return call_int_hook(task_setnice, 0, p, nice); 1619 } 1620 1621 int security_task_setioprio(struct task_struct *p, int ioprio) 1622 { 1623 return call_int_hook(task_setioprio, 0, p, ioprio); 1624 } 1625 1626 int security_task_getioprio(struct task_struct *p) 1627 { 1628 return call_int_hook(task_getioprio, 0, p); 1629 } 1630 1631 int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 1632 unsigned int flags) 1633 { 1634 return call_int_hook(task_prlimit, 0, cred, tcred, flags); 1635 } 1636 1637 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 1638 struct rlimit *new_rlim) 1639 { 1640 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim); 1641 } 1642 1643 int security_task_setscheduler(struct task_struct *p) 1644 { 1645 return call_int_hook(task_setscheduler, 0, p); 1646 } 1647 1648 int security_task_getscheduler(struct task_struct *p) 1649 { 1650 return call_int_hook(task_getscheduler, 0, p); 1651 } 1652 1653 int security_task_movememory(struct task_struct *p) 1654 { 1655 return call_int_hook(task_movememory, 0, p); 1656 } 1657 1658 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, 1659 int sig, const struct cred *cred) 1660 { 1661 return call_int_hook(task_kill, 0, p, info, sig, cred); 1662 } 1663 1664 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 1665 unsigned long arg4, unsigned long arg5) 1666 { 1667 int thisrc; 1668 int rc = -ENOSYS; 1669 struct security_hook_list *hp; 1670 1671 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 1672 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 1673 if (thisrc != -ENOSYS) { 1674 rc = thisrc; 1675 if (thisrc != 0) 1676 break; 1677 } 1678 } 1679 return rc; 1680 } 1681 1682 void security_task_to_inode(struct task_struct *p, struct inode *inode) 1683 { 1684 call_void_hook(task_to_inode, p, inode); 1685 } 1686 1687 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 1688 { 1689 return call_int_hook(ipc_permission, 0, ipcp, flag); 1690 } 1691 1692 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 1693 { 1694 *secid = 0; 1695 call_void_hook(ipc_getsecid, ipcp, secid); 1696 } 1697 1698 int security_msg_msg_alloc(struct msg_msg *msg) 1699 { 1700 int rc = lsm_msg_msg_alloc(msg); 1701 1702 if (unlikely(rc)) 1703 return rc; 1704 rc = call_int_hook(msg_msg_alloc_security, 0, msg); 1705 if (unlikely(rc)) 1706 security_msg_msg_free(msg); 1707 return rc; 1708 } 1709 1710 void security_msg_msg_free(struct msg_msg *msg) 1711 { 1712 call_void_hook(msg_msg_free_security, msg); 1713 kfree(msg->security); 1714 msg->security = NULL; 1715 } 1716 1717 int security_msg_queue_alloc(struct kern_ipc_perm *msq) 1718 { 1719 int rc = lsm_ipc_alloc(msq); 1720 1721 if (unlikely(rc)) 1722 return rc; 1723 rc = call_int_hook(msg_queue_alloc_security, 0, msq); 1724 if (unlikely(rc)) 1725 security_msg_queue_free(msq); 1726 return rc; 1727 } 1728 1729 void security_msg_queue_free(struct kern_ipc_perm *msq) 1730 { 1731 call_void_hook(msg_queue_free_security, msq); 1732 kfree(msq->security); 1733 msq->security = NULL; 1734 } 1735 1736 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 1737 { 1738 return call_int_hook(msg_queue_associate, 0, msq, msqflg); 1739 } 1740 1741 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 1742 { 1743 return call_int_hook(msg_queue_msgctl, 0, msq, cmd); 1744 } 1745 1746 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 1747 struct msg_msg *msg, int msqflg) 1748 { 1749 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg); 1750 } 1751 1752 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 1753 struct task_struct *target, long type, int mode) 1754 { 1755 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode); 1756 } 1757 1758 int security_shm_alloc(struct kern_ipc_perm *shp) 1759 { 1760 int rc = lsm_ipc_alloc(shp); 1761 1762 if (unlikely(rc)) 1763 return rc; 1764 rc = call_int_hook(shm_alloc_security, 0, shp); 1765 if (unlikely(rc)) 1766 security_shm_free(shp); 1767 return rc; 1768 } 1769 1770 void security_shm_free(struct kern_ipc_perm *shp) 1771 { 1772 call_void_hook(shm_free_security, shp); 1773 kfree(shp->security); 1774 shp->security = NULL; 1775 } 1776 1777 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 1778 { 1779 return call_int_hook(shm_associate, 0, shp, shmflg); 1780 } 1781 1782 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 1783 { 1784 return call_int_hook(shm_shmctl, 0, shp, cmd); 1785 } 1786 1787 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg) 1788 { 1789 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg); 1790 } 1791 1792 int security_sem_alloc(struct kern_ipc_perm *sma) 1793 { 1794 int rc = lsm_ipc_alloc(sma); 1795 1796 if (unlikely(rc)) 1797 return rc; 1798 rc = call_int_hook(sem_alloc_security, 0, sma); 1799 if (unlikely(rc)) 1800 security_sem_free(sma); 1801 return rc; 1802 } 1803 1804 void security_sem_free(struct kern_ipc_perm *sma) 1805 { 1806 call_void_hook(sem_free_security, sma); 1807 kfree(sma->security); 1808 sma->security = NULL; 1809 } 1810 1811 int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 1812 { 1813 return call_int_hook(sem_associate, 0, sma, semflg); 1814 } 1815 1816 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 1817 { 1818 return call_int_hook(sem_semctl, 0, sma, cmd); 1819 } 1820 1821 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 1822 unsigned nsops, int alter) 1823 { 1824 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter); 1825 } 1826 1827 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 1828 { 1829 if (unlikely(inode && IS_PRIVATE(inode))) 1830 return; 1831 call_void_hook(d_instantiate, dentry, inode); 1832 } 1833 EXPORT_SYMBOL(security_d_instantiate); 1834 1835 int security_getprocattr(struct task_struct *p, const char *lsm, char *name, 1836 char **value) 1837 { 1838 struct security_hook_list *hp; 1839 1840 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) { 1841 if (lsm != NULL && strcmp(lsm, hp->lsm)) 1842 continue; 1843 return hp->hook.getprocattr(p, name, value); 1844 } 1845 return -EINVAL; 1846 } 1847 1848 int security_setprocattr(const char *lsm, const char *name, void *value, 1849 size_t size) 1850 { 1851 struct security_hook_list *hp; 1852 1853 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) { 1854 if (lsm != NULL && strcmp(lsm, hp->lsm)) 1855 continue; 1856 return hp->hook.setprocattr(name, value, size); 1857 } 1858 return -EINVAL; 1859 } 1860 1861 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 1862 { 1863 return call_int_hook(netlink_send, 0, sk, skb); 1864 } 1865 1866 int security_ismaclabel(const char *name) 1867 { 1868 return call_int_hook(ismaclabel, 0, name); 1869 } 1870 EXPORT_SYMBOL(security_ismaclabel); 1871 1872 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 1873 { 1874 return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata, 1875 seclen); 1876 } 1877 EXPORT_SYMBOL(security_secid_to_secctx); 1878 1879 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 1880 { 1881 *secid = 0; 1882 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid); 1883 } 1884 EXPORT_SYMBOL(security_secctx_to_secid); 1885 1886 void security_release_secctx(char *secdata, u32 seclen) 1887 { 1888 call_void_hook(release_secctx, secdata, seclen); 1889 } 1890 EXPORT_SYMBOL(security_release_secctx); 1891 1892 void security_inode_invalidate_secctx(struct inode *inode) 1893 { 1894 call_void_hook(inode_invalidate_secctx, inode); 1895 } 1896 EXPORT_SYMBOL(security_inode_invalidate_secctx); 1897 1898 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 1899 { 1900 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen); 1901 } 1902 EXPORT_SYMBOL(security_inode_notifysecctx); 1903 1904 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 1905 { 1906 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen); 1907 } 1908 EXPORT_SYMBOL(security_inode_setsecctx); 1909 1910 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 1911 { 1912 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen); 1913 } 1914 EXPORT_SYMBOL(security_inode_getsecctx); 1915 1916 #ifdef CONFIG_SECURITY_NETWORK 1917 1918 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 1919 { 1920 return call_int_hook(unix_stream_connect, 0, sock, other, newsk); 1921 } 1922 EXPORT_SYMBOL(security_unix_stream_connect); 1923 1924 int security_unix_may_send(struct socket *sock, struct socket *other) 1925 { 1926 return call_int_hook(unix_may_send, 0, sock, other); 1927 } 1928 EXPORT_SYMBOL(security_unix_may_send); 1929 1930 int security_socket_create(int family, int type, int protocol, int kern) 1931 { 1932 return call_int_hook(socket_create, 0, family, type, protocol, kern); 1933 } 1934 1935 int security_socket_post_create(struct socket *sock, int family, 1936 int type, int protocol, int kern) 1937 { 1938 return call_int_hook(socket_post_create, 0, sock, family, type, 1939 protocol, kern); 1940 } 1941 1942 int security_socket_socketpair(struct socket *socka, struct socket *sockb) 1943 { 1944 return call_int_hook(socket_socketpair, 0, socka, sockb); 1945 } 1946 EXPORT_SYMBOL(security_socket_socketpair); 1947 1948 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 1949 { 1950 return call_int_hook(socket_bind, 0, sock, address, addrlen); 1951 } 1952 1953 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 1954 { 1955 return call_int_hook(socket_connect, 0, sock, address, addrlen); 1956 } 1957 1958 int security_socket_listen(struct socket *sock, int backlog) 1959 { 1960 return call_int_hook(socket_listen, 0, sock, backlog); 1961 } 1962 1963 int security_socket_accept(struct socket *sock, struct socket *newsock) 1964 { 1965 return call_int_hook(socket_accept, 0, sock, newsock); 1966 } 1967 1968 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 1969 { 1970 return call_int_hook(socket_sendmsg, 0, sock, msg, size); 1971 } 1972 1973 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 1974 int size, int flags) 1975 { 1976 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags); 1977 } 1978 1979 int security_socket_getsockname(struct socket *sock) 1980 { 1981 return call_int_hook(socket_getsockname, 0, sock); 1982 } 1983 1984 int security_socket_getpeername(struct socket *sock) 1985 { 1986 return call_int_hook(socket_getpeername, 0, sock); 1987 } 1988 1989 int security_socket_getsockopt(struct socket *sock, int level, int optname) 1990 { 1991 return call_int_hook(socket_getsockopt, 0, sock, level, optname); 1992 } 1993 1994 int security_socket_setsockopt(struct socket *sock, int level, int optname) 1995 { 1996 return call_int_hook(socket_setsockopt, 0, sock, level, optname); 1997 } 1998 1999 int security_socket_shutdown(struct socket *sock, int how) 2000 { 2001 return call_int_hook(socket_shutdown, 0, sock, how); 2002 } 2003 2004 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 2005 { 2006 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb); 2007 } 2008 EXPORT_SYMBOL(security_sock_rcv_skb); 2009 2010 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 2011 int __user *optlen, unsigned len) 2012 { 2013 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock, 2014 optval, optlen, len); 2015 } 2016 2017 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 2018 { 2019 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock, 2020 skb, secid); 2021 } 2022 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 2023 2024 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 2025 { 2026 return call_int_hook(sk_alloc_security, 0, sk, family, priority); 2027 } 2028 2029 void security_sk_free(struct sock *sk) 2030 { 2031 call_void_hook(sk_free_security, sk); 2032 } 2033 2034 void security_sk_clone(const struct sock *sk, struct sock *newsk) 2035 { 2036 call_void_hook(sk_clone_security, sk, newsk); 2037 } 2038 EXPORT_SYMBOL(security_sk_clone); 2039 2040 void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 2041 { 2042 call_void_hook(sk_getsecid, sk, &fl->flowi_secid); 2043 } 2044 EXPORT_SYMBOL(security_sk_classify_flow); 2045 2046 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 2047 { 2048 call_void_hook(req_classify_flow, req, fl); 2049 } 2050 EXPORT_SYMBOL(security_req_classify_flow); 2051 2052 void security_sock_graft(struct sock *sk, struct socket *parent) 2053 { 2054 call_void_hook(sock_graft, sk, parent); 2055 } 2056 EXPORT_SYMBOL(security_sock_graft); 2057 2058 int security_inet_conn_request(struct sock *sk, 2059 struct sk_buff *skb, struct request_sock *req) 2060 { 2061 return call_int_hook(inet_conn_request, 0, sk, skb, req); 2062 } 2063 EXPORT_SYMBOL(security_inet_conn_request); 2064 2065 void security_inet_csk_clone(struct sock *newsk, 2066 const struct request_sock *req) 2067 { 2068 call_void_hook(inet_csk_clone, newsk, req); 2069 } 2070 2071 void security_inet_conn_established(struct sock *sk, 2072 struct sk_buff *skb) 2073 { 2074 call_void_hook(inet_conn_established, sk, skb); 2075 } 2076 EXPORT_SYMBOL(security_inet_conn_established); 2077 2078 int security_secmark_relabel_packet(u32 secid) 2079 { 2080 return call_int_hook(secmark_relabel_packet, 0, secid); 2081 } 2082 EXPORT_SYMBOL(security_secmark_relabel_packet); 2083 2084 void security_secmark_refcount_inc(void) 2085 { 2086 call_void_hook(secmark_refcount_inc); 2087 } 2088 EXPORT_SYMBOL(security_secmark_refcount_inc); 2089 2090 void security_secmark_refcount_dec(void) 2091 { 2092 call_void_hook(secmark_refcount_dec); 2093 } 2094 EXPORT_SYMBOL(security_secmark_refcount_dec); 2095 2096 int security_tun_dev_alloc_security(void **security) 2097 { 2098 return call_int_hook(tun_dev_alloc_security, 0, security); 2099 } 2100 EXPORT_SYMBOL(security_tun_dev_alloc_security); 2101 2102 void security_tun_dev_free_security(void *security) 2103 { 2104 call_void_hook(tun_dev_free_security, security); 2105 } 2106 EXPORT_SYMBOL(security_tun_dev_free_security); 2107 2108 int security_tun_dev_create(void) 2109 { 2110 return call_int_hook(tun_dev_create, 0); 2111 } 2112 EXPORT_SYMBOL(security_tun_dev_create); 2113 2114 int security_tun_dev_attach_queue(void *security) 2115 { 2116 return call_int_hook(tun_dev_attach_queue, 0, security); 2117 } 2118 EXPORT_SYMBOL(security_tun_dev_attach_queue); 2119 2120 int security_tun_dev_attach(struct sock *sk, void *security) 2121 { 2122 return call_int_hook(tun_dev_attach, 0, sk, security); 2123 } 2124 EXPORT_SYMBOL(security_tun_dev_attach); 2125 2126 int security_tun_dev_open(void *security) 2127 { 2128 return call_int_hook(tun_dev_open, 0, security); 2129 } 2130 EXPORT_SYMBOL(security_tun_dev_open); 2131 2132 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb) 2133 { 2134 return call_int_hook(sctp_assoc_request, 0, ep, skb); 2135 } 2136 EXPORT_SYMBOL(security_sctp_assoc_request); 2137 2138 int security_sctp_bind_connect(struct sock *sk, int optname, 2139 struct sockaddr *address, int addrlen) 2140 { 2141 return call_int_hook(sctp_bind_connect, 0, sk, optname, 2142 address, addrlen); 2143 } 2144 EXPORT_SYMBOL(security_sctp_bind_connect); 2145 2146 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk, 2147 struct sock *newsk) 2148 { 2149 call_void_hook(sctp_sk_clone, ep, sk, newsk); 2150 } 2151 EXPORT_SYMBOL(security_sctp_sk_clone); 2152 2153 #endif /* CONFIG_SECURITY_NETWORK */ 2154 2155 #ifdef CONFIG_SECURITY_INFINIBAND 2156 2157 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 2158 { 2159 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey); 2160 } 2161 EXPORT_SYMBOL(security_ib_pkey_access); 2162 2163 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num) 2164 { 2165 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num); 2166 } 2167 EXPORT_SYMBOL(security_ib_endport_manage_subnet); 2168 2169 int security_ib_alloc_security(void **sec) 2170 { 2171 return call_int_hook(ib_alloc_security, 0, sec); 2172 } 2173 EXPORT_SYMBOL(security_ib_alloc_security); 2174 2175 void security_ib_free_security(void *sec) 2176 { 2177 call_void_hook(ib_free_security, sec); 2178 } 2179 EXPORT_SYMBOL(security_ib_free_security); 2180 #endif /* CONFIG_SECURITY_INFINIBAND */ 2181 2182 #ifdef CONFIG_SECURITY_NETWORK_XFRM 2183 2184 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 2185 struct xfrm_user_sec_ctx *sec_ctx, 2186 gfp_t gfp) 2187 { 2188 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp); 2189 } 2190 EXPORT_SYMBOL(security_xfrm_policy_alloc); 2191 2192 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 2193 struct xfrm_sec_ctx **new_ctxp) 2194 { 2195 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp); 2196 } 2197 2198 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 2199 { 2200 call_void_hook(xfrm_policy_free_security, ctx); 2201 } 2202 EXPORT_SYMBOL(security_xfrm_policy_free); 2203 2204 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 2205 { 2206 return call_int_hook(xfrm_policy_delete_security, 0, ctx); 2207 } 2208 2209 int security_xfrm_state_alloc(struct xfrm_state *x, 2210 struct xfrm_user_sec_ctx *sec_ctx) 2211 { 2212 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx); 2213 } 2214 EXPORT_SYMBOL(security_xfrm_state_alloc); 2215 2216 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 2217 struct xfrm_sec_ctx *polsec, u32 secid) 2218 { 2219 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid); 2220 } 2221 2222 int security_xfrm_state_delete(struct xfrm_state *x) 2223 { 2224 return call_int_hook(xfrm_state_delete_security, 0, x); 2225 } 2226 EXPORT_SYMBOL(security_xfrm_state_delete); 2227 2228 void security_xfrm_state_free(struct xfrm_state *x) 2229 { 2230 call_void_hook(xfrm_state_free_security, x); 2231 } 2232 2233 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 2234 { 2235 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir); 2236 } 2237 2238 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 2239 struct xfrm_policy *xp, 2240 const struct flowi *fl) 2241 { 2242 struct security_hook_list *hp; 2243 int rc = 1; 2244 2245 /* 2246 * Since this function is expected to return 0 or 1, the judgment 2247 * becomes difficult if multiple LSMs supply this call. Fortunately, 2248 * we can use the first LSM's judgment because currently only SELinux 2249 * supplies this call. 2250 * 2251 * For speed optimization, we explicitly break the loop rather than 2252 * using the macro 2253 */ 2254 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 2255 list) { 2256 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl); 2257 break; 2258 } 2259 return rc; 2260 } 2261 2262 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 2263 { 2264 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1); 2265 } 2266 2267 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 2268 { 2269 int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid, 2270 0); 2271 2272 BUG_ON(rc); 2273 } 2274 EXPORT_SYMBOL(security_skb_classify_flow); 2275 2276 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 2277 2278 #ifdef CONFIG_KEYS 2279 2280 int security_key_alloc(struct key *key, const struct cred *cred, 2281 unsigned long flags) 2282 { 2283 return call_int_hook(key_alloc, 0, key, cred, flags); 2284 } 2285 2286 void security_key_free(struct key *key) 2287 { 2288 call_void_hook(key_free, key); 2289 } 2290 2291 int security_key_permission(key_ref_t key_ref, 2292 const struct cred *cred, unsigned perm) 2293 { 2294 return call_int_hook(key_permission, 0, key_ref, cred, perm); 2295 } 2296 2297 int security_key_getsecurity(struct key *key, char **_buffer) 2298 { 2299 *_buffer = NULL; 2300 return call_int_hook(key_getsecurity, 0, key, _buffer); 2301 } 2302 2303 #endif /* CONFIG_KEYS */ 2304 2305 #ifdef CONFIG_AUDIT 2306 2307 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 2308 { 2309 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule); 2310 } 2311 2312 int security_audit_rule_known(struct audit_krule *krule) 2313 { 2314 return call_int_hook(audit_rule_known, 0, krule); 2315 } 2316 2317 void security_audit_rule_free(void *lsmrule) 2318 { 2319 call_void_hook(audit_rule_free, lsmrule); 2320 } 2321 2322 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule) 2323 { 2324 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule); 2325 } 2326 #endif /* CONFIG_AUDIT */ 2327 2328 #ifdef CONFIG_BPF_SYSCALL 2329 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 2330 { 2331 return call_int_hook(bpf, 0, cmd, attr, size); 2332 } 2333 int security_bpf_map(struct bpf_map *map, fmode_t fmode) 2334 { 2335 return call_int_hook(bpf_map, 0, map, fmode); 2336 } 2337 int security_bpf_prog(struct bpf_prog *prog) 2338 { 2339 return call_int_hook(bpf_prog, 0, prog); 2340 } 2341 int security_bpf_map_alloc(struct bpf_map *map) 2342 { 2343 return call_int_hook(bpf_map_alloc_security, 0, map); 2344 } 2345 int security_bpf_prog_alloc(struct bpf_prog_aux *aux) 2346 { 2347 return call_int_hook(bpf_prog_alloc_security, 0, aux); 2348 } 2349 void security_bpf_map_free(struct bpf_map *map) 2350 { 2351 call_void_hook(bpf_map_free_security, map); 2352 } 2353 void security_bpf_prog_free(struct bpf_prog_aux *aux) 2354 { 2355 call_void_hook(bpf_prog_free_security, aux); 2356 } 2357 #endif /* CONFIG_BPF_SYSCALL */ 2358