1 /* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/capability.h> 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/kernel.h> 18 #include <linux/security.h> 19 20 /* Boot-time LSM user choice */ 21 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1]; 22 23 /* things that live in capability.c */ 24 extern struct security_operations default_security_ops; 25 extern void security_fixup_ops(struct security_operations *ops); 26 27 struct security_operations *security_ops; /* Initialized to NULL */ 28 29 /* amount of vm to protect from userspace access */ 30 unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR; 31 32 static inline int verify(struct security_operations *ops) 33 { 34 /* verify the security_operations structure exists */ 35 if (!ops) 36 return -EINVAL; 37 security_fixup_ops(ops); 38 return 0; 39 } 40 41 static void __init do_security_initcalls(void) 42 { 43 initcall_t *call; 44 call = __security_initcall_start; 45 while (call < __security_initcall_end) { 46 (*call) (); 47 call++; 48 } 49 } 50 51 /** 52 * security_init - initializes the security framework 53 * 54 * This should be called early in the kernel initialization sequence. 55 */ 56 int __init security_init(void) 57 { 58 printk(KERN_INFO "Security Framework initialized\n"); 59 60 security_fixup_ops(&default_security_ops); 61 security_ops = &default_security_ops; 62 do_security_initcalls(); 63 64 return 0; 65 } 66 67 /* Save user chosen LSM */ 68 static int __init choose_lsm(char *str) 69 { 70 strncpy(chosen_lsm, str, SECURITY_NAME_MAX); 71 return 1; 72 } 73 __setup("security=", choose_lsm); 74 75 /** 76 * security_module_enable - Load given security module on boot ? 77 * @ops: a pointer to the struct security_operations that is to be checked. 78 * 79 * Each LSM must pass this method before registering its own operations 80 * to avoid security registration races. This method may also be used 81 * to check if your LSM is currently loaded during kernel initialization. 82 * 83 * Return true if: 84 * -The passed LSM is the one chosen by user at boot time, 85 * -or user didn't specify a specific LSM and we're the first to ask 86 * for registration permission, 87 * -or the passed LSM is currently loaded. 88 * Otherwise, return false. 89 */ 90 int __init security_module_enable(struct security_operations *ops) 91 { 92 if (!*chosen_lsm) 93 strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX); 94 else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX)) 95 return 0; 96 97 return 1; 98 } 99 100 /** 101 * register_security - registers a security framework with the kernel 102 * @ops: a pointer to the struct security_options that is to be registered 103 * 104 * This function allows a security module to register itself with the 105 * kernel security subsystem. Some rudimentary checking is done on the @ops 106 * value passed to this function. You'll need to check first if your LSM 107 * is allowed to register its @ops by calling security_module_enable(@ops). 108 * 109 * If there is already a security module registered with the kernel, 110 * an error will be returned. Otherwise %0 is returned on success. 111 */ 112 int register_security(struct security_operations *ops) 113 { 114 if (verify(ops)) { 115 printk(KERN_DEBUG "%s could not verify " 116 "security_operations structure.\n", __func__); 117 return -EINVAL; 118 } 119 120 if (security_ops != &default_security_ops) 121 return -EAGAIN; 122 123 security_ops = ops; 124 125 return 0; 126 } 127 128 /* Security operations */ 129 130 int security_ptrace_may_access(struct task_struct *child, unsigned int mode) 131 { 132 return security_ops->ptrace_may_access(child, mode); 133 } 134 135 int security_ptrace_traceme(struct task_struct *parent) 136 { 137 return security_ops->ptrace_traceme(parent); 138 } 139 140 int security_capget(struct task_struct *target, 141 kernel_cap_t *effective, 142 kernel_cap_t *inheritable, 143 kernel_cap_t *permitted) 144 { 145 return security_ops->capget(target, effective, inheritable, permitted); 146 } 147 148 int security_capset(struct cred *new, const struct cred *old, 149 const kernel_cap_t *effective, 150 const kernel_cap_t *inheritable, 151 const kernel_cap_t *permitted) 152 { 153 return security_ops->capset(new, old, 154 effective, inheritable, permitted); 155 } 156 157 int security_capable(int cap) 158 { 159 return security_ops->capable(current, current_cred(), cap, 160 SECURITY_CAP_AUDIT); 161 } 162 163 int security_real_capable(struct task_struct *tsk, int cap) 164 { 165 const struct cred *cred; 166 int ret; 167 168 cred = get_task_cred(tsk); 169 ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT); 170 put_cred(cred); 171 return ret; 172 } 173 174 int security_real_capable_noaudit(struct task_struct *tsk, int cap) 175 { 176 const struct cred *cred; 177 int ret; 178 179 cred = get_task_cred(tsk); 180 ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT); 181 put_cred(cred); 182 return ret; 183 } 184 185 int security_acct(struct file *file) 186 { 187 return security_ops->acct(file); 188 } 189 190 int security_sysctl(struct ctl_table *table, int op) 191 { 192 return security_ops->sysctl(table, op); 193 } 194 195 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 196 { 197 return security_ops->quotactl(cmds, type, id, sb); 198 } 199 200 int security_quota_on(struct dentry *dentry) 201 { 202 return security_ops->quota_on(dentry); 203 } 204 205 int security_syslog(int type) 206 { 207 return security_ops->syslog(type); 208 } 209 210 int security_settime(struct timespec *ts, struct timezone *tz) 211 { 212 return security_ops->settime(ts, tz); 213 } 214 215 int security_vm_enough_memory(long pages) 216 { 217 WARN_ON(current->mm == NULL); 218 return security_ops->vm_enough_memory(current->mm, pages); 219 } 220 221 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 222 { 223 WARN_ON(mm == NULL); 224 return security_ops->vm_enough_memory(mm, pages); 225 } 226 227 int security_vm_enough_memory_kern(long pages) 228 { 229 /* If current->mm is a kernel thread then we will pass NULL, 230 for this specific case that is fine */ 231 return security_ops->vm_enough_memory(current->mm, pages); 232 } 233 234 int security_bprm_set_creds(struct linux_binprm *bprm) 235 { 236 return security_ops->bprm_set_creds(bprm); 237 } 238 239 int security_bprm_check(struct linux_binprm *bprm) 240 { 241 return security_ops->bprm_check_security(bprm); 242 } 243 244 void security_bprm_committing_creds(struct linux_binprm *bprm) 245 { 246 security_ops->bprm_committing_creds(bprm); 247 } 248 249 void security_bprm_committed_creds(struct linux_binprm *bprm) 250 { 251 security_ops->bprm_committed_creds(bprm); 252 } 253 254 int security_bprm_secureexec(struct linux_binprm *bprm) 255 { 256 return security_ops->bprm_secureexec(bprm); 257 } 258 259 int security_sb_alloc(struct super_block *sb) 260 { 261 return security_ops->sb_alloc_security(sb); 262 } 263 264 void security_sb_free(struct super_block *sb) 265 { 266 security_ops->sb_free_security(sb); 267 } 268 269 int security_sb_copy_data(char *orig, char *copy) 270 { 271 return security_ops->sb_copy_data(orig, copy); 272 } 273 EXPORT_SYMBOL(security_sb_copy_data); 274 275 int security_sb_kern_mount(struct super_block *sb, int flags, void *data) 276 { 277 return security_ops->sb_kern_mount(sb, flags, data); 278 } 279 280 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 281 { 282 return security_ops->sb_show_options(m, sb); 283 } 284 285 int security_sb_statfs(struct dentry *dentry) 286 { 287 return security_ops->sb_statfs(dentry); 288 } 289 290 int security_sb_mount(char *dev_name, struct path *path, 291 char *type, unsigned long flags, void *data) 292 { 293 return security_ops->sb_mount(dev_name, path, type, flags, data); 294 } 295 296 int security_sb_check_sb(struct vfsmount *mnt, struct path *path) 297 { 298 return security_ops->sb_check_sb(mnt, path); 299 } 300 301 int security_sb_umount(struct vfsmount *mnt, int flags) 302 { 303 return security_ops->sb_umount(mnt, flags); 304 } 305 306 void security_sb_umount_close(struct vfsmount *mnt) 307 { 308 security_ops->sb_umount_close(mnt); 309 } 310 311 void security_sb_umount_busy(struct vfsmount *mnt) 312 { 313 security_ops->sb_umount_busy(mnt); 314 } 315 316 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data) 317 { 318 security_ops->sb_post_remount(mnt, flags, data); 319 } 320 321 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint) 322 { 323 security_ops->sb_post_addmount(mnt, mountpoint); 324 } 325 326 int security_sb_pivotroot(struct path *old_path, struct path *new_path) 327 { 328 return security_ops->sb_pivotroot(old_path, new_path); 329 } 330 331 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path) 332 { 333 security_ops->sb_post_pivotroot(old_path, new_path); 334 } 335 336 int security_sb_set_mnt_opts(struct super_block *sb, 337 struct security_mnt_opts *opts) 338 { 339 return security_ops->sb_set_mnt_opts(sb, opts); 340 } 341 EXPORT_SYMBOL(security_sb_set_mnt_opts); 342 343 void security_sb_clone_mnt_opts(const struct super_block *oldsb, 344 struct super_block *newsb) 345 { 346 security_ops->sb_clone_mnt_opts(oldsb, newsb); 347 } 348 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 349 350 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) 351 { 352 return security_ops->sb_parse_opts_str(options, opts); 353 } 354 EXPORT_SYMBOL(security_sb_parse_opts_str); 355 356 int security_inode_alloc(struct inode *inode) 357 { 358 inode->i_security = NULL; 359 return security_ops->inode_alloc_security(inode); 360 } 361 362 void security_inode_free(struct inode *inode) 363 { 364 security_ops->inode_free_security(inode); 365 } 366 367 int security_inode_init_security(struct inode *inode, struct inode *dir, 368 char **name, void **value, size_t *len) 369 { 370 if (unlikely(IS_PRIVATE(inode))) 371 return -EOPNOTSUPP; 372 return security_ops->inode_init_security(inode, dir, name, value, len); 373 } 374 EXPORT_SYMBOL(security_inode_init_security); 375 376 #ifdef CONFIG_SECURITY_PATH 377 int security_path_mknod(struct path *path, struct dentry *dentry, int mode, 378 unsigned int dev) 379 { 380 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 381 return 0; 382 return security_ops->path_mknod(path, dentry, mode, dev); 383 } 384 EXPORT_SYMBOL(security_path_mknod); 385 386 int security_path_mkdir(struct path *path, struct dentry *dentry, int mode) 387 { 388 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 389 return 0; 390 return security_ops->path_mkdir(path, dentry, mode); 391 } 392 393 int security_path_rmdir(struct path *path, struct dentry *dentry) 394 { 395 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 396 return 0; 397 return security_ops->path_rmdir(path, dentry); 398 } 399 400 int security_path_unlink(struct path *path, struct dentry *dentry) 401 { 402 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 403 return 0; 404 return security_ops->path_unlink(path, dentry); 405 } 406 407 int security_path_symlink(struct path *path, struct dentry *dentry, 408 const char *old_name) 409 { 410 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 411 return 0; 412 return security_ops->path_symlink(path, dentry, old_name); 413 } 414 415 int security_path_link(struct dentry *old_dentry, struct path *new_dir, 416 struct dentry *new_dentry) 417 { 418 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 419 return 0; 420 return security_ops->path_link(old_dentry, new_dir, new_dentry); 421 } 422 423 int security_path_rename(struct path *old_dir, struct dentry *old_dentry, 424 struct path *new_dir, struct dentry *new_dentry) 425 { 426 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 427 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 428 return 0; 429 return security_ops->path_rename(old_dir, old_dentry, new_dir, 430 new_dentry); 431 } 432 433 int security_path_truncate(struct path *path, loff_t length, 434 unsigned int time_attrs) 435 { 436 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 437 return 0; 438 return security_ops->path_truncate(path, length, time_attrs); 439 } 440 #endif 441 442 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode) 443 { 444 if (unlikely(IS_PRIVATE(dir))) 445 return 0; 446 return security_ops->inode_create(dir, dentry, mode); 447 } 448 EXPORT_SYMBOL_GPL(security_inode_create); 449 450 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 451 struct dentry *new_dentry) 452 { 453 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 454 return 0; 455 return security_ops->inode_link(old_dentry, dir, new_dentry); 456 } 457 458 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 459 { 460 if (unlikely(IS_PRIVATE(dentry->d_inode))) 461 return 0; 462 return security_ops->inode_unlink(dir, dentry); 463 } 464 465 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 466 const char *old_name) 467 { 468 if (unlikely(IS_PRIVATE(dir))) 469 return 0; 470 return security_ops->inode_symlink(dir, dentry, old_name); 471 } 472 473 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode) 474 { 475 if (unlikely(IS_PRIVATE(dir))) 476 return 0; 477 return security_ops->inode_mkdir(dir, dentry, mode); 478 } 479 EXPORT_SYMBOL_GPL(security_inode_mkdir); 480 481 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 482 { 483 if (unlikely(IS_PRIVATE(dentry->d_inode))) 484 return 0; 485 return security_ops->inode_rmdir(dir, dentry); 486 } 487 488 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 489 { 490 if (unlikely(IS_PRIVATE(dir))) 491 return 0; 492 return security_ops->inode_mknod(dir, dentry, mode, dev); 493 } 494 495 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 496 struct inode *new_dir, struct dentry *new_dentry) 497 { 498 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 499 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 500 return 0; 501 return security_ops->inode_rename(old_dir, old_dentry, 502 new_dir, new_dentry); 503 } 504 505 int security_inode_readlink(struct dentry *dentry) 506 { 507 if (unlikely(IS_PRIVATE(dentry->d_inode))) 508 return 0; 509 return security_ops->inode_readlink(dentry); 510 } 511 512 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd) 513 { 514 if (unlikely(IS_PRIVATE(dentry->d_inode))) 515 return 0; 516 return security_ops->inode_follow_link(dentry, nd); 517 } 518 519 int security_inode_permission(struct inode *inode, int mask) 520 { 521 if (unlikely(IS_PRIVATE(inode))) 522 return 0; 523 return security_ops->inode_permission(inode, mask); 524 } 525 526 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 527 { 528 if (unlikely(IS_PRIVATE(dentry->d_inode))) 529 return 0; 530 return security_ops->inode_setattr(dentry, attr); 531 } 532 EXPORT_SYMBOL_GPL(security_inode_setattr); 533 534 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 535 { 536 if (unlikely(IS_PRIVATE(dentry->d_inode))) 537 return 0; 538 return security_ops->inode_getattr(mnt, dentry); 539 } 540 541 void security_inode_delete(struct inode *inode) 542 { 543 if (unlikely(IS_PRIVATE(inode))) 544 return; 545 security_ops->inode_delete(inode); 546 } 547 548 int security_inode_setxattr(struct dentry *dentry, const char *name, 549 const void *value, size_t size, int flags) 550 { 551 if (unlikely(IS_PRIVATE(dentry->d_inode))) 552 return 0; 553 return security_ops->inode_setxattr(dentry, name, value, size, flags); 554 } 555 556 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 557 const void *value, size_t size, int flags) 558 { 559 if (unlikely(IS_PRIVATE(dentry->d_inode))) 560 return; 561 security_ops->inode_post_setxattr(dentry, name, value, size, flags); 562 } 563 564 int security_inode_getxattr(struct dentry *dentry, const char *name) 565 { 566 if (unlikely(IS_PRIVATE(dentry->d_inode))) 567 return 0; 568 return security_ops->inode_getxattr(dentry, name); 569 } 570 571 int security_inode_listxattr(struct dentry *dentry) 572 { 573 if (unlikely(IS_PRIVATE(dentry->d_inode))) 574 return 0; 575 return security_ops->inode_listxattr(dentry); 576 } 577 578 int security_inode_removexattr(struct dentry *dentry, const char *name) 579 { 580 if (unlikely(IS_PRIVATE(dentry->d_inode))) 581 return 0; 582 return security_ops->inode_removexattr(dentry, name); 583 } 584 585 int security_inode_need_killpriv(struct dentry *dentry) 586 { 587 return security_ops->inode_need_killpriv(dentry); 588 } 589 590 int security_inode_killpriv(struct dentry *dentry) 591 { 592 return security_ops->inode_killpriv(dentry); 593 } 594 595 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 596 { 597 if (unlikely(IS_PRIVATE(inode))) 598 return 0; 599 return security_ops->inode_getsecurity(inode, name, buffer, alloc); 600 } 601 602 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 603 { 604 if (unlikely(IS_PRIVATE(inode))) 605 return 0; 606 return security_ops->inode_setsecurity(inode, name, value, size, flags); 607 } 608 609 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 610 { 611 if (unlikely(IS_PRIVATE(inode))) 612 return 0; 613 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 614 } 615 616 void security_inode_getsecid(const struct inode *inode, u32 *secid) 617 { 618 security_ops->inode_getsecid(inode, secid); 619 } 620 621 int security_file_permission(struct file *file, int mask) 622 { 623 return security_ops->file_permission(file, mask); 624 } 625 626 int security_file_alloc(struct file *file) 627 { 628 return security_ops->file_alloc_security(file); 629 } 630 631 void security_file_free(struct file *file) 632 { 633 security_ops->file_free_security(file); 634 } 635 636 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 637 { 638 return security_ops->file_ioctl(file, cmd, arg); 639 } 640 641 int security_file_mmap(struct file *file, unsigned long reqprot, 642 unsigned long prot, unsigned long flags, 643 unsigned long addr, unsigned long addr_only) 644 { 645 return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only); 646 } 647 648 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 649 unsigned long prot) 650 { 651 return security_ops->file_mprotect(vma, reqprot, prot); 652 } 653 654 int security_file_lock(struct file *file, unsigned int cmd) 655 { 656 return security_ops->file_lock(file, cmd); 657 } 658 659 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 660 { 661 return security_ops->file_fcntl(file, cmd, arg); 662 } 663 664 int security_file_set_fowner(struct file *file) 665 { 666 return security_ops->file_set_fowner(file); 667 } 668 669 int security_file_send_sigiotask(struct task_struct *tsk, 670 struct fown_struct *fown, int sig) 671 { 672 return security_ops->file_send_sigiotask(tsk, fown, sig); 673 } 674 675 int security_file_receive(struct file *file) 676 { 677 return security_ops->file_receive(file); 678 } 679 680 int security_dentry_open(struct file *file, const struct cred *cred) 681 { 682 return security_ops->dentry_open(file, cred); 683 } 684 685 int security_task_create(unsigned long clone_flags) 686 { 687 return security_ops->task_create(clone_flags); 688 } 689 690 void security_cred_free(struct cred *cred) 691 { 692 security_ops->cred_free(cred); 693 } 694 695 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 696 { 697 return security_ops->cred_prepare(new, old, gfp); 698 } 699 700 void security_commit_creds(struct cred *new, const struct cred *old) 701 { 702 security_ops->cred_commit(new, old); 703 } 704 705 int security_kernel_act_as(struct cred *new, u32 secid) 706 { 707 return security_ops->kernel_act_as(new, secid); 708 } 709 710 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 711 { 712 return security_ops->kernel_create_files_as(new, inode); 713 } 714 715 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags) 716 { 717 return security_ops->task_setuid(id0, id1, id2, flags); 718 } 719 720 int security_task_fix_setuid(struct cred *new, const struct cred *old, 721 int flags) 722 { 723 return security_ops->task_fix_setuid(new, old, flags); 724 } 725 726 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags) 727 { 728 return security_ops->task_setgid(id0, id1, id2, flags); 729 } 730 731 int security_task_setpgid(struct task_struct *p, pid_t pgid) 732 { 733 return security_ops->task_setpgid(p, pgid); 734 } 735 736 int security_task_getpgid(struct task_struct *p) 737 { 738 return security_ops->task_getpgid(p); 739 } 740 741 int security_task_getsid(struct task_struct *p) 742 { 743 return security_ops->task_getsid(p); 744 } 745 746 void security_task_getsecid(struct task_struct *p, u32 *secid) 747 { 748 security_ops->task_getsecid(p, secid); 749 } 750 EXPORT_SYMBOL(security_task_getsecid); 751 752 int security_task_setgroups(struct group_info *group_info) 753 { 754 return security_ops->task_setgroups(group_info); 755 } 756 757 int security_task_setnice(struct task_struct *p, int nice) 758 { 759 return security_ops->task_setnice(p, nice); 760 } 761 762 int security_task_setioprio(struct task_struct *p, int ioprio) 763 { 764 return security_ops->task_setioprio(p, ioprio); 765 } 766 767 int security_task_getioprio(struct task_struct *p) 768 { 769 return security_ops->task_getioprio(p); 770 } 771 772 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim) 773 { 774 return security_ops->task_setrlimit(resource, new_rlim); 775 } 776 777 int security_task_setscheduler(struct task_struct *p, 778 int policy, struct sched_param *lp) 779 { 780 return security_ops->task_setscheduler(p, policy, lp); 781 } 782 783 int security_task_getscheduler(struct task_struct *p) 784 { 785 return security_ops->task_getscheduler(p); 786 } 787 788 int security_task_movememory(struct task_struct *p) 789 { 790 return security_ops->task_movememory(p); 791 } 792 793 int security_task_kill(struct task_struct *p, struct siginfo *info, 794 int sig, u32 secid) 795 { 796 return security_ops->task_kill(p, info, sig, secid); 797 } 798 799 int security_task_wait(struct task_struct *p) 800 { 801 return security_ops->task_wait(p); 802 } 803 804 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 805 unsigned long arg4, unsigned long arg5) 806 { 807 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5); 808 } 809 810 void security_task_to_inode(struct task_struct *p, struct inode *inode) 811 { 812 security_ops->task_to_inode(p, inode); 813 } 814 815 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 816 { 817 return security_ops->ipc_permission(ipcp, flag); 818 } 819 820 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 821 { 822 security_ops->ipc_getsecid(ipcp, secid); 823 } 824 825 int security_msg_msg_alloc(struct msg_msg *msg) 826 { 827 return security_ops->msg_msg_alloc_security(msg); 828 } 829 830 void security_msg_msg_free(struct msg_msg *msg) 831 { 832 security_ops->msg_msg_free_security(msg); 833 } 834 835 int security_msg_queue_alloc(struct msg_queue *msq) 836 { 837 return security_ops->msg_queue_alloc_security(msq); 838 } 839 840 void security_msg_queue_free(struct msg_queue *msq) 841 { 842 security_ops->msg_queue_free_security(msq); 843 } 844 845 int security_msg_queue_associate(struct msg_queue *msq, int msqflg) 846 { 847 return security_ops->msg_queue_associate(msq, msqflg); 848 } 849 850 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) 851 { 852 return security_ops->msg_queue_msgctl(msq, cmd); 853 } 854 855 int security_msg_queue_msgsnd(struct msg_queue *msq, 856 struct msg_msg *msg, int msqflg) 857 { 858 return security_ops->msg_queue_msgsnd(msq, msg, msqflg); 859 } 860 861 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 862 struct task_struct *target, long type, int mode) 863 { 864 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode); 865 } 866 867 int security_shm_alloc(struct shmid_kernel *shp) 868 { 869 return security_ops->shm_alloc_security(shp); 870 } 871 872 void security_shm_free(struct shmid_kernel *shp) 873 { 874 security_ops->shm_free_security(shp); 875 } 876 877 int security_shm_associate(struct shmid_kernel *shp, int shmflg) 878 { 879 return security_ops->shm_associate(shp, shmflg); 880 } 881 882 int security_shm_shmctl(struct shmid_kernel *shp, int cmd) 883 { 884 return security_ops->shm_shmctl(shp, cmd); 885 } 886 887 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg) 888 { 889 return security_ops->shm_shmat(shp, shmaddr, shmflg); 890 } 891 892 int security_sem_alloc(struct sem_array *sma) 893 { 894 return security_ops->sem_alloc_security(sma); 895 } 896 897 void security_sem_free(struct sem_array *sma) 898 { 899 security_ops->sem_free_security(sma); 900 } 901 902 int security_sem_associate(struct sem_array *sma, int semflg) 903 { 904 return security_ops->sem_associate(sma, semflg); 905 } 906 907 int security_sem_semctl(struct sem_array *sma, int cmd) 908 { 909 return security_ops->sem_semctl(sma, cmd); 910 } 911 912 int security_sem_semop(struct sem_array *sma, struct sembuf *sops, 913 unsigned nsops, int alter) 914 { 915 return security_ops->sem_semop(sma, sops, nsops, alter); 916 } 917 918 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 919 { 920 if (unlikely(inode && IS_PRIVATE(inode))) 921 return; 922 security_ops->d_instantiate(dentry, inode); 923 } 924 EXPORT_SYMBOL(security_d_instantiate); 925 926 int security_getprocattr(struct task_struct *p, char *name, char **value) 927 { 928 return security_ops->getprocattr(p, name, value); 929 } 930 931 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 932 { 933 return security_ops->setprocattr(p, name, value, size); 934 } 935 936 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 937 { 938 return security_ops->netlink_send(sk, skb); 939 } 940 941 int security_netlink_recv(struct sk_buff *skb, int cap) 942 { 943 return security_ops->netlink_recv(skb, cap); 944 } 945 EXPORT_SYMBOL(security_netlink_recv); 946 947 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 948 { 949 return security_ops->secid_to_secctx(secid, secdata, seclen); 950 } 951 EXPORT_SYMBOL(security_secid_to_secctx); 952 953 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 954 { 955 return security_ops->secctx_to_secid(secdata, seclen, secid); 956 } 957 EXPORT_SYMBOL(security_secctx_to_secid); 958 959 void security_release_secctx(char *secdata, u32 seclen) 960 { 961 security_ops->release_secctx(secdata, seclen); 962 } 963 EXPORT_SYMBOL(security_release_secctx); 964 965 #ifdef CONFIG_SECURITY_NETWORK 966 967 int security_unix_stream_connect(struct socket *sock, struct socket *other, 968 struct sock *newsk) 969 { 970 return security_ops->unix_stream_connect(sock, other, newsk); 971 } 972 EXPORT_SYMBOL(security_unix_stream_connect); 973 974 int security_unix_may_send(struct socket *sock, struct socket *other) 975 { 976 return security_ops->unix_may_send(sock, other); 977 } 978 EXPORT_SYMBOL(security_unix_may_send); 979 980 int security_socket_create(int family, int type, int protocol, int kern) 981 { 982 return security_ops->socket_create(family, type, protocol, kern); 983 } 984 985 int security_socket_post_create(struct socket *sock, int family, 986 int type, int protocol, int kern) 987 { 988 return security_ops->socket_post_create(sock, family, type, 989 protocol, kern); 990 } 991 992 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 993 { 994 return security_ops->socket_bind(sock, address, addrlen); 995 } 996 997 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 998 { 999 return security_ops->socket_connect(sock, address, addrlen); 1000 } 1001 1002 int security_socket_listen(struct socket *sock, int backlog) 1003 { 1004 return security_ops->socket_listen(sock, backlog); 1005 } 1006 1007 int security_socket_accept(struct socket *sock, struct socket *newsock) 1008 { 1009 return security_ops->socket_accept(sock, newsock); 1010 } 1011 1012 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 1013 { 1014 return security_ops->socket_sendmsg(sock, msg, size); 1015 } 1016 1017 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 1018 int size, int flags) 1019 { 1020 return security_ops->socket_recvmsg(sock, msg, size, flags); 1021 } 1022 1023 int security_socket_getsockname(struct socket *sock) 1024 { 1025 return security_ops->socket_getsockname(sock); 1026 } 1027 1028 int security_socket_getpeername(struct socket *sock) 1029 { 1030 return security_ops->socket_getpeername(sock); 1031 } 1032 1033 int security_socket_getsockopt(struct socket *sock, int level, int optname) 1034 { 1035 return security_ops->socket_getsockopt(sock, level, optname); 1036 } 1037 1038 int security_socket_setsockopt(struct socket *sock, int level, int optname) 1039 { 1040 return security_ops->socket_setsockopt(sock, level, optname); 1041 } 1042 1043 int security_socket_shutdown(struct socket *sock, int how) 1044 { 1045 return security_ops->socket_shutdown(sock, how); 1046 } 1047 1048 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 1049 { 1050 return security_ops->socket_sock_rcv_skb(sk, skb); 1051 } 1052 EXPORT_SYMBOL(security_sock_rcv_skb); 1053 1054 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 1055 int __user *optlen, unsigned len) 1056 { 1057 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 1058 } 1059 1060 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 1061 { 1062 return security_ops->socket_getpeersec_dgram(sock, skb, secid); 1063 } 1064 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 1065 1066 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 1067 { 1068 return security_ops->sk_alloc_security(sk, family, priority); 1069 } 1070 1071 void security_sk_free(struct sock *sk) 1072 { 1073 security_ops->sk_free_security(sk); 1074 } 1075 1076 void security_sk_clone(const struct sock *sk, struct sock *newsk) 1077 { 1078 security_ops->sk_clone_security(sk, newsk); 1079 } 1080 1081 void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 1082 { 1083 security_ops->sk_getsecid(sk, &fl->secid); 1084 } 1085 EXPORT_SYMBOL(security_sk_classify_flow); 1086 1087 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 1088 { 1089 security_ops->req_classify_flow(req, fl); 1090 } 1091 EXPORT_SYMBOL(security_req_classify_flow); 1092 1093 void security_sock_graft(struct sock *sk, struct socket *parent) 1094 { 1095 security_ops->sock_graft(sk, parent); 1096 } 1097 EXPORT_SYMBOL(security_sock_graft); 1098 1099 int security_inet_conn_request(struct sock *sk, 1100 struct sk_buff *skb, struct request_sock *req) 1101 { 1102 return security_ops->inet_conn_request(sk, skb, req); 1103 } 1104 EXPORT_SYMBOL(security_inet_conn_request); 1105 1106 void security_inet_csk_clone(struct sock *newsk, 1107 const struct request_sock *req) 1108 { 1109 security_ops->inet_csk_clone(newsk, req); 1110 } 1111 1112 void security_inet_conn_established(struct sock *sk, 1113 struct sk_buff *skb) 1114 { 1115 security_ops->inet_conn_established(sk, skb); 1116 } 1117 1118 #endif /* CONFIG_SECURITY_NETWORK */ 1119 1120 #ifdef CONFIG_SECURITY_NETWORK_XFRM 1121 1122 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx) 1123 { 1124 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx); 1125 } 1126 EXPORT_SYMBOL(security_xfrm_policy_alloc); 1127 1128 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 1129 struct xfrm_sec_ctx **new_ctxp) 1130 { 1131 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp); 1132 } 1133 1134 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 1135 { 1136 security_ops->xfrm_policy_free_security(ctx); 1137 } 1138 EXPORT_SYMBOL(security_xfrm_policy_free); 1139 1140 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 1141 { 1142 return security_ops->xfrm_policy_delete_security(ctx); 1143 } 1144 1145 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 1146 { 1147 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0); 1148 } 1149 EXPORT_SYMBOL(security_xfrm_state_alloc); 1150 1151 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1152 struct xfrm_sec_ctx *polsec, u32 secid) 1153 { 1154 if (!polsec) 1155 return 0; 1156 /* 1157 * We want the context to be taken from secid which is usually 1158 * from the sock. 1159 */ 1160 return security_ops->xfrm_state_alloc_security(x, NULL, secid); 1161 } 1162 1163 int security_xfrm_state_delete(struct xfrm_state *x) 1164 { 1165 return security_ops->xfrm_state_delete_security(x); 1166 } 1167 EXPORT_SYMBOL(security_xfrm_state_delete); 1168 1169 void security_xfrm_state_free(struct xfrm_state *x) 1170 { 1171 security_ops->xfrm_state_free_security(x); 1172 } 1173 1174 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 1175 { 1176 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir); 1177 } 1178 1179 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1180 struct xfrm_policy *xp, struct flowi *fl) 1181 { 1182 return security_ops->xfrm_state_pol_flow_match(x, xp, fl); 1183 } 1184 1185 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1186 { 1187 return security_ops->xfrm_decode_session(skb, secid, 1); 1188 } 1189 1190 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1191 { 1192 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0); 1193 1194 BUG_ON(rc); 1195 } 1196 EXPORT_SYMBOL(security_skb_classify_flow); 1197 1198 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1199 1200 #ifdef CONFIG_KEYS 1201 1202 int security_key_alloc(struct key *key, const struct cred *cred, 1203 unsigned long flags) 1204 { 1205 return security_ops->key_alloc(key, cred, flags); 1206 } 1207 1208 void security_key_free(struct key *key) 1209 { 1210 security_ops->key_free(key); 1211 } 1212 1213 int security_key_permission(key_ref_t key_ref, 1214 const struct cred *cred, key_perm_t perm) 1215 { 1216 return security_ops->key_permission(key_ref, cred, perm); 1217 } 1218 1219 int security_key_getsecurity(struct key *key, char **_buffer) 1220 { 1221 return security_ops->key_getsecurity(key, _buffer); 1222 } 1223 1224 #endif /* CONFIG_KEYS */ 1225 1226 #ifdef CONFIG_AUDIT 1227 1228 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 1229 { 1230 return security_ops->audit_rule_init(field, op, rulestr, lsmrule); 1231 } 1232 1233 int security_audit_rule_known(struct audit_krule *krule) 1234 { 1235 return security_ops->audit_rule_known(krule); 1236 } 1237 1238 void security_audit_rule_free(void *lsmrule) 1239 { 1240 security_ops->audit_rule_free(lsmrule); 1241 } 1242 1243 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 1244 struct audit_context *actx) 1245 { 1246 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx); 1247 } 1248 1249 #endif /* CONFIG_AUDIT */ 1250