xref: /openbmc/linux/security/security.c (revision 7dd65feb)
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *	This program is free software; you can redistribute it and/or modify
9  *	it under the terms of the GNU General Public License as published by
10  *	the Free Software Foundation; either version 2 of the License, or
11  *	(at your option) any later version.
12  */
13 
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/ima.h>
20 
21 /* Boot-time LSM user choice */
22 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
23 	CONFIG_DEFAULT_SECURITY;
24 
25 /* things that live in capability.c */
26 extern struct security_operations default_security_ops;
27 extern void security_fixup_ops(struct security_operations *ops);
28 
29 struct security_operations *security_ops;	/* Initialized to NULL */
30 
31 static inline int verify(struct security_operations *ops)
32 {
33 	/* verify the security_operations structure exists */
34 	if (!ops)
35 		return -EINVAL;
36 	security_fixup_ops(ops);
37 	return 0;
38 }
39 
40 static void __init do_security_initcalls(void)
41 {
42 	initcall_t *call;
43 	call = __security_initcall_start;
44 	while (call < __security_initcall_end) {
45 		(*call) ();
46 		call++;
47 	}
48 }
49 
50 /**
51  * security_init - initializes the security framework
52  *
53  * This should be called early in the kernel initialization sequence.
54  */
55 int __init security_init(void)
56 {
57 	printk(KERN_INFO "Security Framework initialized\n");
58 
59 	security_fixup_ops(&default_security_ops);
60 	security_ops = &default_security_ops;
61 	do_security_initcalls();
62 
63 	return 0;
64 }
65 
66 /* Save user chosen LSM */
67 static int __init choose_lsm(char *str)
68 {
69 	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
70 	return 1;
71 }
72 __setup("security=", choose_lsm);
73 
74 /**
75  * security_module_enable - Load given security module on boot ?
76  * @ops: a pointer to the struct security_operations that is to be checked.
77  *
78  * Each LSM must pass this method before registering its own operations
79  * to avoid security registration races. This method may also be used
80  * to check if your LSM is currently loaded during kernel initialization.
81  *
82  * Return true if:
83  *	-The passed LSM is the one chosen by user at boot time,
84  *	-or the passed LSM is configured as the default and the user did not
85  *	 choose an alternate LSM at boot time,
86  *	-or there is no default LSM set and the user didn't specify a
87  *	 specific LSM and we're the first to ask for registration permission,
88  *	-or the passed LSM is currently loaded.
89  * Otherwise, return false.
90  */
91 int __init security_module_enable(struct security_operations *ops)
92 {
93 	if (!*chosen_lsm)
94 		strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
95 	else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
96 		return 0;
97 
98 	return 1;
99 }
100 
101 /**
102  * register_security - registers a security framework with the kernel
103  * @ops: a pointer to the struct security_options that is to be registered
104  *
105  * This function allows a security module to register itself with the
106  * kernel security subsystem.  Some rudimentary checking is done on the @ops
107  * value passed to this function. You'll need to check first if your LSM
108  * is allowed to register its @ops by calling security_module_enable(@ops).
109  *
110  * If there is already a security module registered with the kernel,
111  * an error will be returned.  Otherwise %0 is returned on success.
112  */
113 int register_security(struct security_operations *ops)
114 {
115 	if (verify(ops)) {
116 		printk(KERN_DEBUG "%s could not verify "
117 		       "security_operations structure.\n", __func__);
118 		return -EINVAL;
119 	}
120 
121 	if (security_ops != &default_security_ops)
122 		return -EAGAIN;
123 
124 	security_ops = ops;
125 
126 	return 0;
127 }
128 
129 /* Security operations */
130 
131 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
132 {
133 	return security_ops->ptrace_access_check(child, mode);
134 }
135 
136 int security_ptrace_traceme(struct task_struct *parent)
137 {
138 	return security_ops->ptrace_traceme(parent);
139 }
140 
141 int security_capget(struct task_struct *target,
142 		     kernel_cap_t *effective,
143 		     kernel_cap_t *inheritable,
144 		     kernel_cap_t *permitted)
145 {
146 	return security_ops->capget(target, effective, inheritable, permitted);
147 }
148 
149 int security_capset(struct cred *new, const struct cred *old,
150 		    const kernel_cap_t *effective,
151 		    const kernel_cap_t *inheritable,
152 		    const kernel_cap_t *permitted)
153 {
154 	return security_ops->capset(new, old,
155 				    effective, inheritable, permitted);
156 }
157 
158 int security_capable(int cap)
159 {
160 	return security_ops->capable(current, current_cred(), cap,
161 				     SECURITY_CAP_AUDIT);
162 }
163 
164 int security_real_capable(struct task_struct *tsk, int cap)
165 {
166 	const struct cred *cred;
167 	int ret;
168 
169 	cred = get_task_cred(tsk);
170 	ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT);
171 	put_cred(cred);
172 	return ret;
173 }
174 
175 int security_real_capable_noaudit(struct task_struct *tsk, int cap)
176 {
177 	const struct cred *cred;
178 	int ret;
179 
180 	cred = get_task_cred(tsk);
181 	ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT);
182 	put_cred(cred);
183 	return ret;
184 }
185 
186 int security_acct(struct file *file)
187 {
188 	return security_ops->acct(file);
189 }
190 
191 int security_sysctl(struct ctl_table *table, int op)
192 {
193 	return security_ops->sysctl(table, op);
194 }
195 
196 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
197 {
198 	return security_ops->quotactl(cmds, type, id, sb);
199 }
200 
201 int security_quota_on(struct dentry *dentry)
202 {
203 	return security_ops->quota_on(dentry);
204 }
205 
206 int security_syslog(int type)
207 {
208 	return security_ops->syslog(type);
209 }
210 
211 int security_settime(struct timespec *ts, struct timezone *tz)
212 {
213 	return security_ops->settime(ts, tz);
214 }
215 
216 int security_vm_enough_memory(long pages)
217 {
218 	WARN_ON(current->mm == NULL);
219 	return security_ops->vm_enough_memory(current->mm, pages);
220 }
221 
222 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
223 {
224 	WARN_ON(mm == NULL);
225 	return security_ops->vm_enough_memory(mm, pages);
226 }
227 
228 int security_vm_enough_memory_kern(long pages)
229 {
230 	/* If current->mm is a kernel thread then we will pass NULL,
231 	   for this specific case that is fine */
232 	return security_ops->vm_enough_memory(current->mm, pages);
233 }
234 
235 int security_bprm_set_creds(struct linux_binprm *bprm)
236 {
237 	return security_ops->bprm_set_creds(bprm);
238 }
239 
240 int security_bprm_check(struct linux_binprm *bprm)
241 {
242 	int ret;
243 
244 	ret = security_ops->bprm_check_security(bprm);
245 	if (ret)
246 		return ret;
247 	return ima_bprm_check(bprm);
248 }
249 
250 void security_bprm_committing_creds(struct linux_binprm *bprm)
251 {
252 	security_ops->bprm_committing_creds(bprm);
253 }
254 
255 void security_bprm_committed_creds(struct linux_binprm *bprm)
256 {
257 	security_ops->bprm_committed_creds(bprm);
258 }
259 
260 int security_bprm_secureexec(struct linux_binprm *bprm)
261 {
262 	return security_ops->bprm_secureexec(bprm);
263 }
264 
265 int security_sb_alloc(struct super_block *sb)
266 {
267 	return security_ops->sb_alloc_security(sb);
268 }
269 
270 void security_sb_free(struct super_block *sb)
271 {
272 	security_ops->sb_free_security(sb);
273 }
274 
275 int security_sb_copy_data(char *orig, char *copy)
276 {
277 	return security_ops->sb_copy_data(orig, copy);
278 }
279 EXPORT_SYMBOL(security_sb_copy_data);
280 
281 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
282 {
283 	return security_ops->sb_kern_mount(sb, flags, data);
284 }
285 
286 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
287 {
288 	return security_ops->sb_show_options(m, sb);
289 }
290 
291 int security_sb_statfs(struct dentry *dentry)
292 {
293 	return security_ops->sb_statfs(dentry);
294 }
295 
296 int security_sb_mount(char *dev_name, struct path *path,
297                        char *type, unsigned long flags, void *data)
298 {
299 	return security_ops->sb_mount(dev_name, path, type, flags, data);
300 }
301 
302 int security_sb_check_sb(struct vfsmount *mnt, struct path *path)
303 {
304 	return security_ops->sb_check_sb(mnt, path);
305 }
306 
307 int security_sb_umount(struct vfsmount *mnt, int flags)
308 {
309 	return security_ops->sb_umount(mnt, flags);
310 }
311 
312 void security_sb_umount_close(struct vfsmount *mnt)
313 {
314 	security_ops->sb_umount_close(mnt);
315 }
316 
317 void security_sb_umount_busy(struct vfsmount *mnt)
318 {
319 	security_ops->sb_umount_busy(mnt);
320 }
321 
322 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
323 {
324 	security_ops->sb_post_remount(mnt, flags, data);
325 }
326 
327 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint)
328 {
329 	security_ops->sb_post_addmount(mnt, mountpoint);
330 }
331 
332 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
333 {
334 	return security_ops->sb_pivotroot(old_path, new_path);
335 }
336 
337 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path)
338 {
339 	security_ops->sb_post_pivotroot(old_path, new_path);
340 }
341 
342 int security_sb_set_mnt_opts(struct super_block *sb,
343 				struct security_mnt_opts *opts)
344 {
345 	return security_ops->sb_set_mnt_opts(sb, opts);
346 }
347 EXPORT_SYMBOL(security_sb_set_mnt_opts);
348 
349 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
350 				struct super_block *newsb)
351 {
352 	security_ops->sb_clone_mnt_opts(oldsb, newsb);
353 }
354 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
355 
356 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
357 {
358 	return security_ops->sb_parse_opts_str(options, opts);
359 }
360 EXPORT_SYMBOL(security_sb_parse_opts_str);
361 
362 int security_inode_alloc(struct inode *inode)
363 {
364 	int ret;
365 
366 	inode->i_security = NULL;
367 	ret =  security_ops->inode_alloc_security(inode);
368 	if (ret)
369 		return ret;
370 	ret = ima_inode_alloc(inode);
371 	if (ret)
372 		security_inode_free(inode);
373 	return ret;
374 }
375 
376 void security_inode_free(struct inode *inode)
377 {
378 	ima_inode_free(inode);
379 	security_ops->inode_free_security(inode);
380 }
381 
382 int security_inode_init_security(struct inode *inode, struct inode *dir,
383 				  char **name, void **value, size_t *len)
384 {
385 	if (unlikely(IS_PRIVATE(inode)))
386 		return -EOPNOTSUPP;
387 	return security_ops->inode_init_security(inode, dir, name, value, len);
388 }
389 EXPORT_SYMBOL(security_inode_init_security);
390 
391 #ifdef CONFIG_SECURITY_PATH
392 int security_path_mknod(struct path *path, struct dentry *dentry, int mode,
393 			unsigned int dev)
394 {
395 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
396 		return 0;
397 	return security_ops->path_mknod(path, dentry, mode, dev);
398 }
399 EXPORT_SYMBOL(security_path_mknod);
400 
401 int security_path_mkdir(struct path *path, struct dentry *dentry, int mode)
402 {
403 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
404 		return 0;
405 	return security_ops->path_mkdir(path, dentry, mode);
406 }
407 
408 int security_path_rmdir(struct path *path, struct dentry *dentry)
409 {
410 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
411 		return 0;
412 	return security_ops->path_rmdir(path, dentry);
413 }
414 
415 int security_path_unlink(struct path *path, struct dentry *dentry)
416 {
417 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
418 		return 0;
419 	return security_ops->path_unlink(path, dentry);
420 }
421 
422 int security_path_symlink(struct path *path, struct dentry *dentry,
423 			  const char *old_name)
424 {
425 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
426 		return 0;
427 	return security_ops->path_symlink(path, dentry, old_name);
428 }
429 
430 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
431 		       struct dentry *new_dentry)
432 {
433 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
434 		return 0;
435 	return security_ops->path_link(old_dentry, new_dir, new_dentry);
436 }
437 
438 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
439 			 struct path *new_dir, struct dentry *new_dentry)
440 {
441 	if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
442 		     (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
443 		return 0;
444 	return security_ops->path_rename(old_dir, old_dentry, new_dir,
445 					 new_dentry);
446 }
447 
448 int security_path_truncate(struct path *path, loff_t length,
449 			   unsigned int time_attrs)
450 {
451 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
452 		return 0;
453 	return security_ops->path_truncate(path, length, time_attrs);
454 }
455 
456 int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt,
457 			mode_t mode)
458 {
459 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
460 		return 0;
461 	return security_ops->path_chmod(dentry, mnt, mode);
462 }
463 
464 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
465 {
466 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
467 		return 0;
468 	return security_ops->path_chown(path, uid, gid);
469 }
470 
471 int security_path_chroot(struct path *path)
472 {
473 	return security_ops->path_chroot(path);
474 }
475 #endif
476 
477 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
478 {
479 	if (unlikely(IS_PRIVATE(dir)))
480 		return 0;
481 	return security_ops->inode_create(dir, dentry, mode);
482 }
483 EXPORT_SYMBOL_GPL(security_inode_create);
484 
485 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
486 			 struct dentry *new_dentry)
487 {
488 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
489 		return 0;
490 	return security_ops->inode_link(old_dentry, dir, new_dentry);
491 }
492 
493 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
494 {
495 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
496 		return 0;
497 	return security_ops->inode_unlink(dir, dentry);
498 }
499 
500 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
501 			    const char *old_name)
502 {
503 	if (unlikely(IS_PRIVATE(dir)))
504 		return 0;
505 	return security_ops->inode_symlink(dir, dentry, old_name);
506 }
507 
508 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
509 {
510 	if (unlikely(IS_PRIVATE(dir)))
511 		return 0;
512 	return security_ops->inode_mkdir(dir, dentry, mode);
513 }
514 EXPORT_SYMBOL_GPL(security_inode_mkdir);
515 
516 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
517 {
518 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
519 		return 0;
520 	return security_ops->inode_rmdir(dir, dentry);
521 }
522 
523 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
524 {
525 	if (unlikely(IS_PRIVATE(dir)))
526 		return 0;
527 	return security_ops->inode_mknod(dir, dentry, mode, dev);
528 }
529 
530 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
531 			   struct inode *new_dir, struct dentry *new_dentry)
532 {
533         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
534             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
535 		return 0;
536 	return security_ops->inode_rename(old_dir, old_dentry,
537 					   new_dir, new_dentry);
538 }
539 
540 int security_inode_readlink(struct dentry *dentry)
541 {
542 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
543 		return 0;
544 	return security_ops->inode_readlink(dentry);
545 }
546 
547 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
548 {
549 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
550 		return 0;
551 	return security_ops->inode_follow_link(dentry, nd);
552 }
553 
554 int security_inode_permission(struct inode *inode, int mask)
555 {
556 	if (unlikely(IS_PRIVATE(inode)))
557 		return 0;
558 	return security_ops->inode_permission(inode, mask);
559 }
560 
561 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
562 {
563 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
564 		return 0;
565 	return security_ops->inode_setattr(dentry, attr);
566 }
567 EXPORT_SYMBOL_GPL(security_inode_setattr);
568 
569 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
570 {
571 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
572 		return 0;
573 	return security_ops->inode_getattr(mnt, dentry);
574 }
575 
576 void security_inode_delete(struct inode *inode)
577 {
578 	if (unlikely(IS_PRIVATE(inode)))
579 		return;
580 	security_ops->inode_delete(inode);
581 }
582 
583 int security_inode_setxattr(struct dentry *dentry, const char *name,
584 			    const void *value, size_t size, int flags)
585 {
586 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
587 		return 0;
588 	return security_ops->inode_setxattr(dentry, name, value, size, flags);
589 }
590 
591 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
592 				  const void *value, size_t size, int flags)
593 {
594 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
595 		return;
596 	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
597 }
598 
599 int security_inode_getxattr(struct dentry *dentry, const char *name)
600 {
601 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
602 		return 0;
603 	return security_ops->inode_getxattr(dentry, name);
604 }
605 
606 int security_inode_listxattr(struct dentry *dentry)
607 {
608 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
609 		return 0;
610 	return security_ops->inode_listxattr(dentry);
611 }
612 
613 int security_inode_removexattr(struct dentry *dentry, const char *name)
614 {
615 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
616 		return 0;
617 	return security_ops->inode_removexattr(dentry, name);
618 }
619 
620 int security_inode_need_killpriv(struct dentry *dentry)
621 {
622 	return security_ops->inode_need_killpriv(dentry);
623 }
624 
625 int security_inode_killpriv(struct dentry *dentry)
626 {
627 	return security_ops->inode_killpriv(dentry);
628 }
629 
630 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
631 {
632 	if (unlikely(IS_PRIVATE(inode)))
633 		return 0;
634 	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
635 }
636 
637 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
638 {
639 	if (unlikely(IS_PRIVATE(inode)))
640 		return 0;
641 	return security_ops->inode_setsecurity(inode, name, value, size, flags);
642 }
643 
644 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
645 {
646 	if (unlikely(IS_PRIVATE(inode)))
647 		return 0;
648 	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
649 }
650 
651 void security_inode_getsecid(const struct inode *inode, u32 *secid)
652 {
653 	security_ops->inode_getsecid(inode, secid);
654 }
655 
656 int security_file_permission(struct file *file, int mask)
657 {
658 	return security_ops->file_permission(file, mask);
659 }
660 
661 int security_file_alloc(struct file *file)
662 {
663 	return security_ops->file_alloc_security(file);
664 }
665 
666 void security_file_free(struct file *file)
667 {
668 	security_ops->file_free_security(file);
669 	if (file->f_dentry)
670 		ima_file_free(file);
671 }
672 
673 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
674 {
675 	return security_ops->file_ioctl(file, cmd, arg);
676 }
677 
678 int security_file_mmap(struct file *file, unsigned long reqprot,
679 			unsigned long prot, unsigned long flags,
680 			unsigned long addr, unsigned long addr_only)
681 {
682 	int ret;
683 
684 	ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
685 	if (ret)
686 		return ret;
687 	return ima_file_mmap(file, prot);
688 }
689 
690 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
691 			    unsigned long prot)
692 {
693 	return security_ops->file_mprotect(vma, reqprot, prot);
694 }
695 
696 int security_file_lock(struct file *file, unsigned int cmd)
697 {
698 	return security_ops->file_lock(file, cmd);
699 }
700 
701 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
702 {
703 	return security_ops->file_fcntl(file, cmd, arg);
704 }
705 
706 int security_file_set_fowner(struct file *file)
707 {
708 	return security_ops->file_set_fowner(file);
709 }
710 
711 int security_file_send_sigiotask(struct task_struct *tsk,
712 				  struct fown_struct *fown, int sig)
713 {
714 	return security_ops->file_send_sigiotask(tsk, fown, sig);
715 }
716 
717 int security_file_receive(struct file *file)
718 {
719 	return security_ops->file_receive(file);
720 }
721 
722 int security_dentry_open(struct file *file, const struct cred *cred)
723 {
724 	return security_ops->dentry_open(file, cred);
725 }
726 
727 int security_task_create(unsigned long clone_flags)
728 {
729 	return security_ops->task_create(clone_flags);
730 }
731 
732 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
733 {
734 	return security_ops->cred_alloc_blank(cred, gfp);
735 }
736 
737 void security_cred_free(struct cred *cred)
738 {
739 	security_ops->cred_free(cred);
740 }
741 
742 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
743 {
744 	return security_ops->cred_prepare(new, old, gfp);
745 }
746 
747 void security_commit_creds(struct cred *new, const struct cred *old)
748 {
749 	security_ops->cred_commit(new, old);
750 }
751 
752 void security_transfer_creds(struct cred *new, const struct cred *old)
753 {
754 	security_ops->cred_transfer(new, old);
755 }
756 
757 int security_kernel_act_as(struct cred *new, u32 secid)
758 {
759 	return security_ops->kernel_act_as(new, secid);
760 }
761 
762 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
763 {
764 	return security_ops->kernel_create_files_as(new, inode);
765 }
766 
767 int security_kernel_module_request(char *kmod_name)
768 {
769 	return security_ops->kernel_module_request(kmod_name);
770 }
771 
772 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
773 {
774 	return security_ops->task_setuid(id0, id1, id2, flags);
775 }
776 
777 int security_task_fix_setuid(struct cred *new, const struct cred *old,
778 			     int flags)
779 {
780 	return security_ops->task_fix_setuid(new, old, flags);
781 }
782 
783 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
784 {
785 	return security_ops->task_setgid(id0, id1, id2, flags);
786 }
787 
788 int security_task_setpgid(struct task_struct *p, pid_t pgid)
789 {
790 	return security_ops->task_setpgid(p, pgid);
791 }
792 
793 int security_task_getpgid(struct task_struct *p)
794 {
795 	return security_ops->task_getpgid(p);
796 }
797 
798 int security_task_getsid(struct task_struct *p)
799 {
800 	return security_ops->task_getsid(p);
801 }
802 
803 void security_task_getsecid(struct task_struct *p, u32 *secid)
804 {
805 	security_ops->task_getsecid(p, secid);
806 }
807 EXPORT_SYMBOL(security_task_getsecid);
808 
809 int security_task_setgroups(struct group_info *group_info)
810 {
811 	return security_ops->task_setgroups(group_info);
812 }
813 
814 int security_task_setnice(struct task_struct *p, int nice)
815 {
816 	return security_ops->task_setnice(p, nice);
817 }
818 
819 int security_task_setioprio(struct task_struct *p, int ioprio)
820 {
821 	return security_ops->task_setioprio(p, ioprio);
822 }
823 
824 int security_task_getioprio(struct task_struct *p)
825 {
826 	return security_ops->task_getioprio(p);
827 }
828 
829 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
830 {
831 	return security_ops->task_setrlimit(resource, new_rlim);
832 }
833 
834 int security_task_setscheduler(struct task_struct *p,
835 				int policy, struct sched_param *lp)
836 {
837 	return security_ops->task_setscheduler(p, policy, lp);
838 }
839 
840 int security_task_getscheduler(struct task_struct *p)
841 {
842 	return security_ops->task_getscheduler(p);
843 }
844 
845 int security_task_movememory(struct task_struct *p)
846 {
847 	return security_ops->task_movememory(p);
848 }
849 
850 int security_task_kill(struct task_struct *p, struct siginfo *info,
851 			int sig, u32 secid)
852 {
853 	return security_ops->task_kill(p, info, sig, secid);
854 }
855 
856 int security_task_wait(struct task_struct *p)
857 {
858 	return security_ops->task_wait(p);
859 }
860 
861 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
862 			 unsigned long arg4, unsigned long arg5)
863 {
864 	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
865 }
866 
867 void security_task_to_inode(struct task_struct *p, struct inode *inode)
868 {
869 	security_ops->task_to_inode(p, inode);
870 }
871 
872 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
873 {
874 	return security_ops->ipc_permission(ipcp, flag);
875 }
876 
877 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
878 {
879 	security_ops->ipc_getsecid(ipcp, secid);
880 }
881 
882 int security_msg_msg_alloc(struct msg_msg *msg)
883 {
884 	return security_ops->msg_msg_alloc_security(msg);
885 }
886 
887 void security_msg_msg_free(struct msg_msg *msg)
888 {
889 	security_ops->msg_msg_free_security(msg);
890 }
891 
892 int security_msg_queue_alloc(struct msg_queue *msq)
893 {
894 	return security_ops->msg_queue_alloc_security(msq);
895 }
896 
897 void security_msg_queue_free(struct msg_queue *msq)
898 {
899 	security_ops->msg_queue_free_security(msq);
900 }
901 
902 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
903 {
904 	return security_ops->msg_queue_associate(msq, msqflg);
905 }
906 
907 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
908 {
909 	return security_ops->msg_queue_msgctl(msq, cmd);
910 }
911 
912 int security_msg_queue_msgsnd(struct msg_queue *msq,
913 			       struct msg_msg *msg, int msqflg)
914 {
915 	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
916 }
917 
918 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
919 			       struct task_struct *target, long type, int mode)
920 {
921 	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
922 }
923 
924 int security_shm_alloc(struct shmid_kernel *shp)
925 {
926 	return security_ops->shm_alloc_security(shp);
927 }
928 
929 void security_shm_free(struct shmid_kernel *shp)
930 {
931 	security_ops->shm_free_security(shp);
932 }
933 
934 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
935 {
936 	return security_ops->shm_associate(shp, shmflg);
937 }
938 
939 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
940 {
941 	return security_ops->shm_shmctl(shp, cmd);
942 }
943 
944 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
945 {
946 	return security_ops->shm_shmat(shp, shmaddr, shmflg);
947 }
948 
949 int security_sem_alloc(struct sem_array *sma)
950 {
951 	return security_ops->sem_alloc_security(sma);
952 }
953 
954 void security_sem_free(struct sem_array *sma)
955 {
956 	security_ops->sem_free_security(sma);
957 }
958 
959 int security_sem_associate(struct sem_array *sma, int semflg)
960 {
961 	return security_ops->sem_associate(sma, semflg);
962 }
963 
964 int security_sem_semctl(struct sem_array *sma, int cmd)
965 {
966 	return security_ops->sem_semctl(sma, cmd);
967 }
968 
969 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
970 			unsigned nsops, int alter)
971 {
972 	return security_ops->sem_semop(sma, sops, nsops, alter);
973 }
974 
975 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
976 {
977 	if (unlikely(inode && IS_PRIVATE(inode)))
978 		return;
979 	security_ops->d_instantiate(dentry, inode);
980 }
981 EXPORT_SYMBOL(security_d_instantiate);
982 
983 int security_getprocattr(struct task_struct *p, char *name, char **value)
984 {
985 	return security_ops->getprocattr(p, name, value);
986 }
987 
988 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
989 {
990 	return security_ops->setprocattr(p, name, value, size);
991 }
992 
993 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
994 {
995 	return security_ops->netlink_send(sk, skb);
996 }
997 
998 int security_netlink_recv(struct sk_buff *skb, int cap)
999 {
1000 	return security_ops->netlink_recv(skb, cap);
1001 }
1002 EXPORT_SYMBOL(security_netlink_recv);
1003 
1004 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1005 {
1006 	return security_ops->secid_to_secctx(secid, secdata, seclen);
1007 }
1008 EXPORT_SYMBOL(security_secid_to_secctx);
1009 
1010 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1011 {
1012 	return security_ops->secctx_to_secid(secdata, seclen, secid);
1013 }
1014 EXPORT_SYMBOL(security_secctx_to_secid);
1015 
1016 void security_release_secctx(char *secdata, u32 seclen)
1017 {
1018 	security_ops->release_secctx(secdata, seclen);
1019 }
1020 EXPORT_SYMBOL(security_release_secctx);
1021 
1022 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1023 {
1024 	return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1025 }
1026 EXPORT_SYMBOL(security_inode_notifysecctx);
1027 
1028 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1029 {
1030 	return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1031 }
1032 EXPORT_SYMBOL(security_inode_setsecctx);
1033 
1034 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1035 {
1036 	return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1037 }
1038 EXPORT_SYMBOL(security_inode_getsecctx);
1039 
1040 #ifdef CONFIG_SECURITY_NETWORK
1041 
1042 int security_unix_stream_connect(struct socket *sock, struct socket *other,
1043 				 struct sock *newsk)
1044 {
1045 	return security_ops->unix_stream_connect(sock, other, newsk);
1046 }
1047 EXPORT_SYMBOL(security_unix_stream_connect);
1048 
1049 int security_unix_may_send(struct socket *sock,  struct socket *other)
1050 {
1051 	return security_ops->unix_may_send(sock, other);
1052 }
1053 EXPORT_SYMBOL(security_unix_may_send);
1054 
1055 int security_socket_create(int family, int type, int protocol, int kern)
1056 {
1057 	return security_ops->socket_create(family, type, protocol, kern);
1058 }
1059 
1060 int security_socket_post_create(struct socket *sock, int family,
1061 				int type, int protocol, int kern)
1062 {
1063 	return security_ops->socket_post_create(sock, family, type,
1064 						protocol, kern);
1065 }
1066 
1067 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1068 {
1069 	return security_ops->socket_bind(sock, address, addrlen);
1070 }
1071 
1072 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1073 {
1074 	return security_ops->socket_connect(sock, address, addrlen);
1075 }
1076 
1077 int security_socket_listen(struct socket *sock, int backlog)
1078 {
1079 	return security_ops->socket_listen(sock, backlog);
1080 }
1081 
1082 int security_socket_accept(struct socket *sock, struct socket *newsock)
1083 {
1084 	return security_ops->socket_accept(sock, newsock);
1085 }
1086 
1087 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1088 {
1089 	return security_ops->socket_sendmsg(sock, msg, size);
1090 }
1091 
1092 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1093 			    int size, int flags)
1094 {
1095 	return security_ops->socket_recvmsg(sock, msg, size, flags);
1096 }
1097 
1098 int security_socket_getsockname(struct socket *sock)
1099 {
1100 	return security_ops->socket_getsockname(sock);
1101 }
1102 
1103 int security_socket_getpeername(struct socket *sock)
1104 {
1105 	return security_ops->socket_getpeername(sock);
1106 }
1107 
1108 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1109 {
1110 	return security_ops->socket_getsockopt(sock, level, optname);
1111 }
1112 
1113 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1114 {
1115 	return security_ops->socket_setsockopt(sock, level, optname);
1116 }
1117 
1118 int security_socket_shutdown(struct socket *sock, int how)
1119 {
1120 	return security_ops->socket_shutdown(sock, how);
1121 }
1122 
1123 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1124 {
1125 	return security_ops->socket_sock_rcv_skb(sk, skb);
1126 }
1127 EXPORT_SYMBOL(security_sock_rcv_skb);
1128 
1129 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1130 				      int __user *optlen, unsigned len)
1131 {
1132 	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1133 }
1134 
1135 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1136 {
1137 	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1138 }
1139 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1140 
1141 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1142 {
1143 	return security_ops->sk_alloc_security(sk, family, priority);
1144 }
1145 
1146 void security_sk_free(struct sock *sk)
1147 {
1148 	security_ops->sk_free_security(sk);
1149 }
1150 
1151 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1152 {
1153 	security_ops->sk_clone_security(sk, newsk);
1154 }
1155 
1156 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1157 {
1158 	security_ops->sk_getsecid(sk, &fl->secid);
1159 }
1160 EXPORT_SYMBOL(security_sk_classify_flow);
1161 
1162 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1163 {
1164 	security_ops->req_classify_flow(req, fl);
1165 }
1166 EXPORT_SYMBOL(security_req_classify_flow);
1167 
1168 void security_sock_graft(struct sock *sk, struct socket *parent)
1169 {
1170 	security_ops->sock_graft(sk, parent);
1171 }
1172 EXPORT_SYMBOL(security_sock_graft);
1173 
1174 int security_inet_conn_request(struct sock *sk,
1175 			struct sk_buff *skb, struct request_sock *req)
1176 {
1177 	return security_ops->inet_conn_request(sk, skb, req);
1178 }
1179 EXPORT_SYMBOL(security_inet_conn_request);
1180 
1181 void security_inet_csk_clone(struct sock *newsk,
1182 			const struct request_sock *req)
1183 {
1184 	security_ops->inet_csk_clone(newsk, req);
1185 }
1186 
1187 void security_inet_conn_established(struct sock *sk,
1188 			struct sk_buff *skb)
1189 {
1190 	security_ops->inet_conn_established(sk, skb);
1191 }
1192 
1193 int security_tun_dev_create(void)
1194 {
1195 	return security_ops->tun_dev_create();
1196 }
1197 EXPORT_SYMBOL(security_tun_dev_create);
1198 
1199 void security_tun_dev_post_create(struct sock *sk)
1200 {
1201 	return security_ops->tun_dev_post_create(sk);
1202 }
1203 EXPORT_SYMBOL(security_tun_dev_post_create);
1204 
1205 int security_tun_dev_attach(struct sock *sk)
1206 {
1207 	return security_ops->tun_dev_attach(sk);
1208 }
1209 EXPORT_SYMBOL(security_tun_dev_attach);
1210 
1211 #endif	/* CONFIG_SECURITY_NETWORK */
1212 
1213 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1214 
1215 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1216 {
1217 	return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1218 }
1219 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1220 
1221 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1222 			      struct xfrm_sec_ctx **new_ctxp)
1223 {
1224 	return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1225 }
1226 
1227 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1228 {
1229 	security_ops->xfrm_policy_free_security(ctx);
1230 }
1231 EXPORT_SYMBOL(security_xfrm_policy_free);
1232 
1233 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1234 {
1235 	return security_ops->xfrm_policy_delete_security(ctx);
1236 }
1237 
1238 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1239 {
1240 	return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1241 }
1242 EXPORT_SYMBOL(security_xfrm_state_alloc);
1243 
1244 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1245 				      struct xfrm_sec_ctx *polsec, u32 secid)
1246 {
1247 	if (!polsec)
1248 		return 0;
1249 	/*
1250 	 * We want the context to be taken from secid which is usually
1251 	 * from the sock.
1252 	 */
1253 	return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1254 }
1255 
1256 int security_xfrm_state_delete(struct xfrm_state *x)
1257 {
1258 	return security_ops->xfrm_state_delete_security(x);
1259 }
1260 EXPORT_SYMBOL(security_xfrm_state_delete);
1261 
1262 void security_xfrm_state_free(struct xfrm_state *x)
1263 {
1264 	security_ops->xfrm_state_free_security(x);
1265 }
1266 
1267 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1268 {
1269 	return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1270 }
1271 
1272 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1273 				       struct xfrm_policy *xp, struct flowi *fl)
1274 {
1275 	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1276 }
1277 
1278 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1279 {
1280 	return security_ops->xfrm_decode_session(skb, secid, 1);
1281 }
1282 
1283 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1284 {
1285 	int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1286 
1287 	BUG_ON(rc);
1288 }
1289 EXPORT_SYMBOL(security_skb_classify_flow);
1290 
1291 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1292 
1293 #ifdef CONFIG_KEYS
1294 
1295 int security_key_alloc(struct key *key, const struct cred *cred,
1296 		       unsigned long flags)
1297 {
1298 	return security_ops->key_alloc(key, cred, flags);
1299 }
1300 
1301 void security_key_free(struct key *key)
1302 {
1303 	security_ops->key_free(key);
1304 }
1305 
1306 int security_key_permission(key_ref_t key_ref,
1307 			    const struct cred *cred, key_perm_t perm)
1308 {
1309 	return security_ops->key_permission(key_ref, cred, perm);
1310 }
1311 
1312 int security_key_getsecurity(struct key *key, char **_buffer)
1313 {
1314 	return security_ops->key_getsecurity(key, _buffer);
1315 }
1316 
1317 int security_key_session_to_parent(const struct cred *cred,
1318 				   const struct cred *parent_cred,
1319 				   struct key *key)
1320 {
1321 	return security_ops->key_session_to_parent(cred, parent_cred, key);
1322 }
1323 
1324 #endif	/* CONFIG_KEYS */
1325 
1326 #ifdef CONFIG_AUDIT
1327 
1328 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1329 {
1330 	return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1331 }
1332 
1333 int security_audit_rule_known(struct audit_krule *krule)
1334 {
1335 	return security_ops->audit_rule_known(krule);
1336 }
1337 
1338 void security_audit_rule_free(void *lsmrule)
1339 {
1340 	security_ops->audit_rule_free(lsmrule);
1341 }
1342 
1343 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1344 			      struct audit_context *actx)
1345 {
1346 	return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1347 }
1348 
1349 #endif /* CONFIG_AUDIT */
1350