1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Security plug functions 4 * 5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 8 * Copyright (C) 2016 Mellanox Technologies 9 */ 10 11 #define pr_fmt(fmt) "LSM: " fmt 12 13 #include <linux/bpf.h> 14 #include <linux/capability.h> 15 #include <linux/dcache.h> 16 #include <linux/export.h> 17 #include <linux/init.h> 18 #include <linux/kernel.h> 19 #include <linux/kernel_read_file.h> 20 #include <linux/lsm_hooks.h> 21 #include <linux/integrity.h> 22 #include <linux/ima.h> 23 #include <linux/evm.h> 24 #include <linux/fsnotify.h> 25 #include <linux/mman.h> 26 #include <linux/mount.h> 27 #include <linux/personality.h> 28 #include <linux/backing-dev.h> 29 #include <linux/string.h> 30 #include <linux/msg.h> 31 #include <net/flow.h> 32 33 #define MAX_LSM_EVM_XATTR 2 34 35 /* How many LSMs were built into the kernel? */ 36 #define LSM_COUNT (__end_lsm_info - __start_lsm_info) 37 38 /* 39 * These are descriptions of the reasons that can be passed to the 40 * security_locked_down() LSM hook. Placing this array here allows 41 * all security modules to use the same descriptions for auditing 42 * purposes. 43 */ 44 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = { 45 [LOCKDOWN_NONE] = "none", 46 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading", 47 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port", 48 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access", 49 [LOCKDOWN_KEXEC] = "kexec of unsigned images", 50 [LOCKDOWN_HIBERNATION] = "hibernation", 51 [LOCKDOWN_PCI_ACCESS] = "direct PCI access", 52 [LOCKDOWN_IOPORT] = "raw io port access", 53 [LOCKDOWN_MSR] = "raw MSR access", 54 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables", 55 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage", 56 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO", 57 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters", 58 [LOCKDOWN_MMIOTRACE] = "unsafe mmio", 59 [LOCKDOWN_DEBUGFS] = "debugfs access", 60 [LOCKDOWN_XMON_WR] = "xmon write access", 61 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM", 62 [LOCKDOWN_INTEGRITY_MAX] = "integrity", 63 [LOCKDOWN_KCORE] = "/proc/kcore access", 64 [LOCKDOWN_KPROBES] = "use of kprobes", 65 [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM", 66 [LOCKDOWN_PERF] = "unsafe use of perf", 67 [LOCKDOWN_TRACEFS] = "use of tracefs", 68 [LOCKDOWN_XMON_RW] = "xmon read and write access", 69 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret", 70 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality", 71 }; 72 73 struct security_hook_heads security_hook_heads __lsm_ro_after_init; 74 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain); 75 76 static struct kmem_cache *lsm_file_cache; 77 static struct kmem_cache *lsm_inode_cache; 78 79 char *lsm_names; 80 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init; 81 82 /* Boot-time LSM user choice */ 83 static __initdata const char *chosen_lsm_order; 84 static __initdata const char *chosen_major_lsm; 85 86 static __initconst const char * const builtin_lsm_order = CONFIG_LSM; 87 88 /* Ordered list of LSMs to initialize. */ 89 static __initdata struct lsm_info **ordered_lsms; 90 static __initdata struct lsm_info *exclusive; 91 92 static __initdata bool debug; 93 #define init_debug(...) \ 94 do { \ 95 if (debug) \ 96 pr_info(__VA_ARGS__); \ 97 } while (0) 98 99 static bool __init is_enabled(struct lsm_info *lsm) 100 { 101 if (!lsm->enabled) 102 return false; 103 104 return *lsm->enabled; 105 } 106 107 /* Mark an LSM's enabled flag. */ 108 static int lsm_enabled_true __initdata = 1; 109 static int lsm_enabled_false __initdata = 0; 110 static void __init set_enabled(struct lsm_info *lsm, bool enabled) 111 { 112 /* 113 * When an LSM hasn't configured an enable variable, we can use 114 * a hard-coded location for storing the default enabled state. 115 */ 116 if (!lsm->enabled) { 117 if (enabled) 118 lsm->enabled = &lsm_enabled_true; 119 else 120 lsm->enabled = &lsm_enabled_false; 121 } else if (lsm->enabled == &lsm_enabled_true) { 122 if (!enabled) 123 lsm->enabled = &lsm_enabled_false; 124 } else if (lsm->enabled == &lsm_enabled_false) { 125 if (enabled) 126 lsm->enabled = &lsm_enabled_true; 127 } else { 128 *lsm->enabled = enabled; 129 } 130 } 131 132 /* Is an LSM already listed in the ordered LSMs list? */ 133 static bool __init exists_ordered_lsm(struct lsm_info *lsm) 134 { 135 struct lsm_info **check; 136 137 for (check = ordered_lsms; *check; check++) 138 if (*check == lsm) 139 return true; 140 141 return false; 142 } 143 144 /* Append an LSM to the list of ordered LSMs to initialize. */ 145 static int last_lsm __initdata; 146 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from) 147 { 148 /* Ignore duplicate selections. */ 149 if (exists_ordered_lsm(lsm)) 150 return; 151 152 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from)) 153 return; 154 155 /* Enable this LSM, if it is not already set. */ 156 if (!lsm->enabled) 157 lsm->enabled = &lsm_enabled_true; 158 ordered_lsms[last_lsm++] = lsm; 159 160 init_debug("%s ordering: %s (%sabled)\n", from, lsm->name, 161 is_enabled(lsm) ? "en" : "dis"); 162 } 163 164 /* Is an LSM allowed to be initialized? */ 165 static bool __init lsm_allowed(struct lsm_info *lsm) 166 { 167 /* Skip if the LSM is disabled. */ 168 if (!is_enabled(lsm)) 169 return false; 170 171 /* Not allowed if another exclusive LSM already initialized. */ 172 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) { 173 init_debug("exclusive disabled: %s\n", lsm->name); 174 return false; 175 } 176 177 return true; 178 } 179 180 static void __init lsm_set_blob_size(int *need, int *lbs) 181 { 182 int offset; 183 184 if (*need > 0) { 185 offset = *lbs; 186 *lbs += *need; 187 *need = offset; 188 } 189 } 190 191 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed) 192 { 193 if (!needed) 194 return; 195 196 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred); 197 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file); 198 /* 199 * The inode blob gets an rcu_head in addition to 200 * what the modules might need. 201 */ 202 if (needed->lbs_inode && blob_sizes.lbs_inode == 0) 203 blob_sizes.lbs_inode = sizeof(struct rcu_head); 204 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode); 205 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc); 206 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg); 207 lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock); 208 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task); 209 } 210 211 /* Prepare LSM for initialization. */ 212 static void __init prepare_lsm(struct lsm_info *lsm) 213 { 214 int enabled = lsm_allowed(lsm); 215 216 /* Record enablement (to handle any following exclusive LSMs). */ 217 set_enabled(lsm, enabled); 218 219 /* If enabled, do pre-initialization work. */ 220 if (enabled) { 221 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) { 222 exclusive = lsm; 223 init_debug("exclusive chosen: %s\n", lsm->name); 224 } 225 226 lsm_set_blob_sizes(lsm->blobs); 227 } 228 } 229 230 /* Initialize a given LSM, if it is enabled. */ 231 static void __init initialize_lsm(struct lsm_info *lsm) 232 { 233 if (is_enabled(lsm)) { 234 int ret; 235 236 init_debug("initializing %s\n", lsm->name); 237 ret = lsm->init(); 238 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); 239 } 240 } 241 242 /* Populate ordered LSMs list from comma-separated LSM name list. */ 243 static void __init ordered_lsm_parse(const char *order, const char *origin) 244 { 245 struct lsm_info *lsm; 246 char *sep, *name, *next; 247 248 /* LSM_ORDER_FIRST is always first. */ 249 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 250 if (lsm->order == LSM_ORDER_FIRST) 251 append_ordered_lsm(lsm, "first"); 252 } 253 254 /* Process "security=", if given. */ 255 if (chosen_major_lsm) { 256 struct lsm_info *major; 257 258 /* 259 * To match the original "security=" behavior, this 260 * explicitly does NOT fallback to another Legacy Major 261 * if the selected one was separately disabled: disable 262 * all non-matching Legacy Major LSMs. 263 */ 264 for (major = __start_lsm_info; major < __end_lsm_info; 265 major++) { 266 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) && 267 strcmp(major->name, chosen_major_lsm) != 0) { 268 set_enabled(major, false); 269 init_debug("security=%s disabled: %s\n", 270 chosen_major_lsm, major->name); 271 } 272 } 273 } 274 275 sep = kstrdup(order, GFP_KERNEL); 276 next = sep; 277 /* Walk the list, looking for matching LSMs. */ 278 while ((name = strsep(&next, ",")) != NULL) { 279 bool found = false; 280 281 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 282 if (lsm->order == LSM_ORDER_MUTABLE && 283 strcmp(lsm->name, name) == 0) { 284 append_ordered_lsm(lsm, origin); 285 found = true; 286 } 287 } 288 289 if (!found) 290 init_debug("%s ignored: %s\n", origin, name); 291 } 292 293 /* Process "security=", if given. */ 294 if (chosen_major_lsm) { 295 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 296 if (exists_ordered_lsm(lsm)) 297 continue; 298 if (strcmp(lsm->name, chosen_major_lsm) == 0) 299 append_ordered_lsm(lsm, "security="); 300 } 301 } 302 303 /* Disable all LSMs not in the ordered list. */ 304 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 305 if (exists_ordered_lsm(lsm)) 306 continue; 307 set_enabled(lsm, false); 308 init_debug("%s disabled: %s\n", origin, lsm->name); 309 } 310 311 kfree(sep); 312 } 313 314 static void __init lsm_early_cred(struct cred *cred); 315 static void __init lsm_early_task(struct task_struct *task); 316 317 static int lsm_append(const char *new, char **result); 318 319 static void __init ordered_lsm_init(void) 320 { 321 struct lsm_info **lsm; 322 323 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms), 324 GFP_KERNEL); 325 326 if (chosen_lsm_order) { 327 if (chosen_major_lsm) { 328 pr_info("security= is ignored because it is superseded by lsm=\n"); 329 chosen_major_lsm = NULL; 330 } 331 ordered_lsm_parse(chosen_lsm_order, "cmdline"); 332 } else 333 ordered_lsm_parse(builtin_lsm_order, "builtin"); 334 335 for (lsm = ordered_lsms; *lsm; lsm++) 336 prepare_lsm(*lsm); 337 338 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred); 339 init_debug("file blob size = %d\n", blob_sizes.lbs_file); 340 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode); 341 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc); 342 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg); 343 init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock); 344 init_debug("task blob size = %d\n", blob_sizes.lbs_task); 345 346 /* 347 * Create any kmem_caches needed for blobs 348 */ 349 if (blob_sizes.lbs_file) 350 lsm_file_cache = kmem_cache_create("lsm_file_cache", 351 blob_sizes.lbs_file, 0, 352 SLAB_PANIC, NULL); 353 if (blob_sizes.lbs_inode) 354 lsm_inode_cache = kmem_cache_create("lsm_inode_cache", 355 blob_sizes.lbs_inode, 0, 356 SLAB_PANIC, NULL); 357 358 lsm_early_cred((struct cred *) current->cred); 359 lsm_early_task(current); 360 for (lsm = ordered_lsms; *lsm; lsm++) 361 initialize_lsm(*lsm); 362 363 kfree(ordered_lsms); 364 } 365 366 int __init early_security_init(void) 367 { 368 int i; 369 struct hlist_head *list = (struct hlist_head *) &security_hook_heads; 370 struct lsm_info *lsm; 371 372 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head); 373 i++) 374 INIT_HLIST_HEAD(&list[i]); 375 376 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 377 if (!lsm->enabled) 378 lsm->enabled = &lsm_enabled_true; 379 prepare_lsm(lsm); 380 initialize_lsm(lsm); 381 } 382 383 return 0; 384 } 385 386 /** 387 * security_init - initializes the security framework 388 * 389 * This should be called early in the kernel initialization sequence. 390 */ 391 int __init security_init(void) 392 { 393 struct lsm_info *lsm; 394 395 pr_info("Security Framework initializing\n"); 396 397 /* 398 * Append the names of the early LSM modules now that kmalloc() is 399 * available 400 */ 401 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 402 if (lsm->enabled) 403 lsm_append(lsm->name, &lsm_names); 404 } 405 406 /* Load LSMs in specified order. */ 407 ordered_lsm_init(); 408 409 return 0; 410 } 411 412 /* Save user chosen LSM */ 413 static int __init choose_major_lsm(char *str) 414 { 415 chosen_major_lsm = str; 416 return 1; 417 } 418 __setup("security=", choose_major_lsm); 419 420 /* Explicitly choose LSM initialization order. */ 421 static int __init choose_lsm_order(char *str) 422 { 423 chosen_lsm_order = str; 424 return 1; 425 } 426 __setup("lsm=", choose_lsm_order); 427 428 /* Enable LSM order debugging. */ 429 static int __init enable_debug(char *str) 430 { 431 debug = true; 432 return 1; 433 } 434 __setup("lsm.debug", enable_debug); 435 436 static bool match_last_lsm(const char *list, const char *lsm) 437 { 438 const char *last; 439 440 if (WARN_ON(!list || !lsm)) 441 return false; 442 last = strrchr(list, ','); 443 if (last) 444 /* Pass the comma, strcmp() will check for '\0' */ 445 last++; 446 else 447 last = list; 448 return !strcmp(last, lsm); 449 } 450 451 static int lsm_append(const char *new, char **result) 452 { 453 char *cp; 454 455 if (*result == NULL) { 456 *result = kstrdup(new, GFP_KERNEL); 457 if (*result == NULL) 458 return -ENOMEM; 459 } else { 460 /* Check if it is the last registered name */ 461 if (match_last_lsm(*result, new)) 462 return 0; 463 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 464 if (cp == NULL) 465 return -ENOMEM; 466 kfree(*result); 467 *result = cp; 468 } 469 return 0; 470 } 471 472 /** 473 * security_add_hooks - Add a modules hooks to the hook lists. 474 * @hooks: the hooks to add 475 * @count: the number of hooks to add 476 * @lsm: the name of the security module 477 * 478 * Each LSM has to register its hooks with the infrastructure. 479 */ 480 void __init security_add_hooks(struct security_hook_list *hooks, int count, 481 char *lsm) 482 { 483 int i; 484 485 for (i = 0; i < count; i++) { 486 hooks[i].lsm = lsm; 487 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 488 } 489 490 /* 491 * Don't try to append during early_security_init(), we'll come back 492 * and fix this up afterwards. 493 */ 494 if (slab_is_available()) { 495 if (lsm_append(lsm, &lsm_names) < 0) 496 panic("%s - Cannot get early memory.\n", __func__); 497 } 498 } 499 500 int call_blocking_lsm_notifier(enum lsm_event event, void *data) 501 { 502 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain, 503 event, data); 504 } 505 EXPORT_SYMBOL(call_blocking_lsm_notifier); 506 507 int register_blocking_lsm_notifier(struct notifier_block *nb) 508 { 509 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain, 510 nb); 511 } 512 EXPORT_SYMBOL(register_blocking_lsm_notifier); 513 514 int unregister_blocking_lsm_notifier(struct notifier_block *nb) 515 { 516 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain, 517 nb); 518 } 519 EXPORT_SYMBOL(unregister_blocking_lsm_notifier); 520 521 /** 522 * lsm_cred_alloc - allocate a composite cred blob 523 * @cred: the cred that needs a blob 524 * @gfp: allocation type 525 * 526 * Allocate the cred blob for all the modules 527 * 528 * Returns 0, or -ENOMEM if memory can't be allocated. 529 */ 530 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp) 531 { 532 if (blob_sizes.lbs_cred == 0) { 533 cred->security = NULL; 534 return 0; 535 } 536 537 cred->security = kzalloc(blob_sizes.lbs_cred, gfp); 538 if (cred->security == NULL) 539 return -ENOMEM; 540 return 0; 541 } 542 543 /** 544 * lsm_early_cred - during initialization allocate a composite cred blob 545 * @cred: the cred that needs a blob 546 * 547 * Allocate the cred blob for all the modules 548 */ 549 static void __init lsm_early_cred(struct cred *cred) 550 { 551 int rc = lsm_cred_alloc(cred, GFP_KERNEL); 552 553 if (rc) 554 panic("%s: Early cred alloc failed.\n", __func__); 555 } 556 557 /** 558 * lsm_file_alloc - allocate a composite file blob 559 * @file: the file that needs a blob 560 * 561 * Allocate the file blob for all the modules 562 * 563 * Returns 0, or -ENOMEM if memory can't be allocated. 564 */ 565 static int lsm_file_alloc(struct file *file) 566 { 567 if (!lsm_file_cache) { 568 file->f_security = NULL; 569 return 0; 570 } 571 572 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL); 573 if (file->f_security == NULL) 574 return -ENOMEM; 575 return 0; 576 } 577 578 /** 579 * lsm_inode_alloc - allocate a composite inode blob 580 * @inode: the inode that needs a blob 581 * 582 * Allocate the inode blob for all the modules 583 * 584 * Returns 0, or -ENOMEM if memory can't be allocated. 585 */ 586 int lsm_inode_alloc(struct inode *inode) 587 { 588 if (!lsm_inode_cache) { 589 inode->i_security = NULL; 590 return 0; 591 } 592 593 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS); 594 if (inode->i_security == NULL) 595 return -ENOMEM; 596 return 0; 597 } 598 599 /** 600 * lsm_task_alloc - allocate a composite task blob 601 * @task: the task that needs a blob 602 * 603 * Allocate the task blob for all the modules 604 * 605 * Returns 0, or -ENOMEM if memory can't be allocated. 606 */ 607 static int lsm_task_alloc(struct task_struct *task) 608 { 609 if (blob_sizes.lbs_task == 0) { 610 task->security = NULL; 611 return 0; 612 } 613 614 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL); 615 if (task->security == NULL) 616 return -ENOMEM; 617 return 0; 618 } 619 620 /** 621 * lsm_ipc_alloc - allocate a composite ipc blob 622 * @kip: the ipc that needs a blob 623 * 624 * Allocate the ipc blob for all the modules 625 * 626 * Returns 0, or -ENOMEM if memory can't be allocated. 627 */ 628 static int lsm_ipc_alloc(struct kern_ipc_perm *kip) 629 { 630 if (blob_sizes.lbs_ipc == 0) { 631 kip->security = NULL; 632 return 0; 633 } 634 635 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL); 636 if (kip->security == NULL) 637 return -ENOMEM; 638 return 0; 639 } 640 641 /** 642 * lsm_msg_msg_alloc - allocate a composite msg_msg blob 643 * @mp: the msg_msg that needs a blob 644 * 645 * Allocate the ipc blob for all the modules 646 * 647 * Returns 0, or -ENOMEM if memory can't be allocated. 648 */ 649 static int lsm_msg_msg_alloc(struct msg_msg *mp) 650 { 651 if (blob_sizes.lbs_msg_msg == 0) { 652 mp->security = NULL; 653 return 0; 654 } 655 656 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL); 657 if (mp->security == NULL) 658 return -ENOMEM; 659 return 0; 660 } 661 662 /** 663 * lsm_early_task - during initialization allocate a composite task blob 664 * @task: the task that needs a blob 665 * 666 * Allocate the task blob for all the modules 667 */ 668 static void __init lsm_early_task(struct task_struct *task) 669 { 670 int rc = lsm_task_alloc(task); 671 672 if (rc) 673 panic("%s: Early task alloc failed.\n", __func__); 674 } 675 676 /** 677 * lsm_superblock_alloc - allocate a composite superblock blob 678 * @sb: the superblock that needs a blob 679 * 680 * Allocate the superblock blob for all the modules 681 * 682 * Returns 0, or -ENOMEM if memory can't be allocated. 683 */ 684 static int lsm_superblock_alloc(struct super_block *sb) 685 { 686 if (blob_sizes.lbs_superblock == 0) { 687 sb->s_security = NULL; 688 return 0; 689 } 690 691 sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL); 692 if (sb->s_security == NULL) 693 return -ENOMEM; 694 return 0; 695 } 696 697 /* 698 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and 699 * can be accessed with: 700 * 701 * LSM_RET_DEFAULT(<hook_name>) 702 * 703 * The macros below define static constants for the default value of each 704 * LSM hook. 705 */ 706 #define LSM_RET_DEFAULT(NAME) (NAME##_default) 707 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME) 708 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \ 709 static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT); 710 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 711 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME) 712 713 #include <linux/lsm_hook_defs.h> 714 #undef LSM_HOOK 715 716 /* 717 * Hook list operation macros. 718 * 719 * call_void_hook: 720 * This is a hook that does not return a value. 721 * 722 * call_int_hook: 723 * This is a hook that returns a value. 724 */ 725 726 #define call_void_hook(FUNC, ...) \ 727 do { \ 728 struct security_hook_list *P; \ 729 \ 730 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 731 P->hook.FUNC(__VA_ARGS__); \ 732 } while (0) 733 734 #define call_int_hook(FUNC, IRC, ...) ({ \ 735 int RC = IRC; \ 736 do { \ 737 struct security_hook_list *P; \ 738 \ 739 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 740 RC = P->hook.FUNC(__VA_ARGS__); \ 741 if (RC != 0) \ 742 break; \ 743 } \ 744 } while (0); \ 745 RC; \ 746 }) 747 748 /* Security operations */ 749 750 int security_binder_set_context_mgr(const struct cred *mgr) 751 { 752 return call_int_hook(binder_set_context_mgr, 0, mgr); 753 } 754 755 int security_binder_transaction(const struct cred *from, 756 const struct cred *to) 757 { 758 return call_int_hook(binder_transaction, 0, from, to); 759 } 760 761 int security_binder_transfer_binder(const struct cred *from, 762 const struct cred *to) 763 { 764 return call_int_hook(binder_transfer_binder, 0, from, to); 765 } 766 767 int security_binder_transfer_file(const struct cred *from, 768 const struct cred *to, struct file *file) 769 { 770 return call_int_hook(binder_transfer_file, 0, from, to, file); 771 } 772 773 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 774 { 775 return call_int_hook(ptrace_access_check, 0, child, mode); 776 } 777 778 int security_ptrace_traceme(struct task_struct *parent) 779 { 780 return call_int_hook(ptrace_traceme, 0, parent); 781 } 782 783 int security_capget(struct task_struct *target, 784 kernel_cap_t *effective, 785 kernel_cap_t *inheritable, 786 kernel_cap_t *permitted) 787 { 788 return call_int_hook(capget, 0, target, 789 effective, inheritable, permitted); 790 } 791 792 int security_capset(struct cred *new, const struct cred *old, 793 const kernel_cap_t *effective, 794 const kernel_cap_t *inheritable, 795 const kernel_cap_t *permitted) 796 { 797 return call_int_hook(capset, 0, new, old, 798 effective, inheritable, permitted); 799 } 800 801 int security_capable(const struct cred *cred, 802 struct user_namespace *ns, 803 int cap, 804 unsigned int opts) 805 { 806 return call_int_hook(capable, 0, cred, ns, cap, opts); 807 } 808 809 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 810 { 811 return call_int_hook(quotactl, 0, cmds, type, id, sb); 812 } 813 814 int security_quota_on(struct dentry *dentry) 815 { 816 return call_int_hook(quota_on, 0, dentry); 817 } 818 819 int security_syslog(int type) 820 { 821 return call_int_hook(syslog, 0, type); 822 } 823 824 int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 825 { 826 return call_int_hook(settime, 0, ts, tz); 827 } 828 829 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 830 { 831 struct security_hook_list *hp; 832 int cap_sys_admin = 1; 833 int rc; 834 835 /* 836 * The module will respond with a positive value if 837 * it thinks the __vm_enough_memory() call should be 838 * made with the cap_sys_admin set. If all of the modules 839 * agree that it should be set it will. If any module 840 * thinks it should not be set it won't. 841 */ 842 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 843 rc = hp->hook.vm_enough_memory(mm, pages); 844 if (rc <= 0) { 845 cap_sys_admin = 0; 846 break; 847 } 848 } 849 return __vm_enough_memory(mm, pages, cap_sys_admin); 850 } 851 852 int security_bprm_creds_for_exec(struct linux_binprm *bprm) 853 { 854 return call_int_hook(bprm_creds_for_exec, 0, bprm); 855 } 856 857 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file) 858 { 859 return call_int_hook(bprm_creds_from_file, 0, bprm, file); 860 } 861 862 int security_bprm_check(struct linux_binprm *bprm) 863 { 864 int ret; 865 866 ret = call_int_hook(bprm_check_security, 0, bprm); 867 if (ret) 868 return ret; 869 return ima_bprm_check(bprm); 870 } 871 872 void security_bprm_committing_creds(struct linux_binprm *bprm) 873 { 874 call_void_hook(bprm_committing_creds, bprm); 875 } 876 877 void security_bprm_committed_creds(struct linux_binprm *bprm) 878 { 879 call_void_hook(bprm_committed_creds, bprm); 880 } 881 882 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) 883 { 884 return call_int_hook(fs_context_dup, 0, fc, src_fc); 885 } 886 887 int security_fs_context_parse_param(struct fs_context *fc, 888 struct fs_parameter *param) 889 { 890 struct security_hook_list *hp; 891 int trc; 892 int rc = -ENOPARAM; 893 894 hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param, 895 list) { 896 trc = hp->hook.fs_context_parse_param(fc, param); 897 if (trc == 0) 898 rc = 0; 899 else if (trc != -ENOPARAM) 900 return trc; 901 } 902 return rc; 903 } 904 905 int security_sb_alloc(struct super_block *sb) 906 { 907 int rc = lsm_superblock_alloc(sb); 908 909 if (unlikely(rc)) 910 return rc; 911 rc = call_int_hook(sb_alloc_security, 0, sb); 912 if (unlikely(rc)) 913 security_sb_free(sb); 914 return rc; 915 } 916 917 void security_sb_delete(struct super_block *sb) 918 { 919 call_void_hook(sb_delete, sb); 920 } 921 922 void security_sb_free(struct super_block *sb) 923 { 924 call_void_hook(sb_free_security, sb); 925 kfree(sb->s_security); 926 sb->s_security = NULL; 927 } 928 929 void security_free_mnt_opts(void **mnt_opts) 930 { 931 if (!*mnt_opts) 932 return; 933 call_void_hook(sb_free_mnt_opts, *mnt_opts); 934 *mnt_opts = NULL; 935 } 936 EXPORT_SYMBOL(security_free_mnt_opts); 937 938 int security_sb_eat_lsm_opts(char *options, void **mnt_opts) 939 { 940 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts); 941 } 942 EXPORT_SYMBOL(security_sb_eat_lsm_opts); 943 944 int security_sb_mnt_opts_compat(struct super_block *sb, 945 void *mnt_opts) 946 { 947 return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts); 948 } 949 EXPORT_SYMBOL(security_sb_mnt_opts_compat); 950 951 int security_sb_remount(struct super_block *sb, 952 void *mnt_opts) 953 { 954 return call_int_hook(sb_remount, 0, sb, mnt_opts); 955 } 956 EXPORT_SYMBOL(security_sb_remount); 957 958 int security_sb_kern_mount(struct super_block *sb) 959 { 960 return call_int_hook(sb_kern_mount, 0, sb); 961 } 962 963 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 964 { 965 return call_int_hook(sb_show_options, 0, m, sb); 966 } 967 968 int security_sb_statfs(struct dentry *dentry) 969 { 970 return call_int_hook(sb_statfs, 0, dentry); 971 } 972 973 int security_sb_mount(const char *dev_name, const struct path *path, 974 const char *type, unsigned long flags, void *data) 975 { 976 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data); 977 } 978 979 int security_sb_umount(struct vfsmount *mnt, int flags) 980 { 981 return call_int_hook(sb_umount, 0, mnt, flags); 982 } 983 984 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path) 985 { 986 return call_int_hook(sb_pivotroot, 0, old_path, new_path); 987 } 988 989 int security_sb_set_mnt_opts(struct super_block *sb, 990 void *mnt_opts, 991 unsigned long kern_flags, 992 unsigned long *set_kern_flags) 993 { 994 return call_int_hook(sb_set_mnt_opts, 995 mnt_opts ? -EOPNOTSUPP : 0, sb, 996 mnt_opts, kern_flags, set_kern_flags); 997 } 998 EXPORT_SYMBOL(security_sb_set_mnt_opts); 999 1000 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 1001 struct super_block *newsb, 1002 unsigned long kern_flags, 1003 unsigned long *set_kern_flags) 1004 { 1005 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb, 1006 kern_flags, set_kern_flags); 1007 } 1008 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 1009 1010 int security_move_mount(const struct path *from_path, const struct path *to_path) 1011 { 1012 return call_int_hook(move_mount, 0, from_path, to_path); 1013 } 1014 1015 int security_path_notify(const struct path *path, u64 mask, 1016 unsigned int obj_type) 1017 { 1018 return call_int_hook(path_notify, 0, path, mask, obj_type); 1019 } 1020 1021 int security_inode_alloc(struct inode *inode) 1022 { 1023 int rc = lsm_inode_alloc(inode); 1024 1025 if (unlikely(rc)) 1026 return rc; 1027 rc = call_int_hook(inode_alloc_security, 0, inode); 1028 if (unlikely(rc)) 1029 security_inode_free(inode); 1030 return rc; 1031 } 1032 1033 static void inode_free_by_rcu(struct rcu_head *head) 1034 { 1035 /* 1036 * The rcu head is at the start of the inode blob 1037 */ 1038 kmem_cache_free(lsm_inode_cache, head); 1039 } 1040 1041 void security_inode_free(struct inode *inode) 1042 { 1043 integrity_inode_free(inode); 1044 call_void_hook(inode_free_security, inode); 1045 /* 1046 * The inode may still be referenced in a path walk and 1047 * a call to security_inode_permission() can be made 1048 * after inode_free_security() is called. Ideally, the VFS 1049 * wouldn't do this, but fixing that is a much harder 1050 * job. For now, simply free the i_security via RCU, and 1051 * leave the current inode->i_security pointer intact. 1052 * The inode will be freed after the RCU grace period too. 1053 */ 1054 if (inode->i_security) 1055 call_rcu((struct rcu_head *)inode->i_security, 1056 inode_free_by_rcu); 1057 } 1058 1059 int security_dentry_init_security(struct dentry *dentry, int mode, 1060 const struct qstr *name, 1061 const char **xattr_name, void **ctx, 1062 u32 *ctxlen) 1063 { 1064 struct security_hook_list *hp; 1065 int rc; 1066 1067 /* 1068 * Only one module will provide a security context. 1069 */ 1070 hlist_for_each_entry(hp, &security_hook_heads.dentry_init_security, list) { 1071 rc = hp->hook.dentry_init_security(dentry, mode, name, 1072 xattr_name, ctx, ctxlen); 1073 if (rc != LSM_RET_DEFAULT(dentry_init_security)) 1074 return rc; 1075 } 1076 return LSM_RET_DEFAULT(dentry_init_security); 1077 } 1078 EXPORT_SYMBOL(security_dentry_init_security); 1079 1080 int security_dentry_create_files_as(struct dentry *dentry, int mode, 1081 struct qstr *name, 1082 const struct cred *old, struct cred *new) 1083 { 1084 return call_int_hook(dentry_create_files_as, 0, dentry, mode, 1085 name, old, new); 1086 } 1087 EXPORT_SYMBOL(security_dentry_create_files_as); 1088 1089 int security_inode_init_security(struct inode *inode, struct inode *dir, 1090 const struct qstr *qstr, 1091 const initxattrs initxattrs, void *fs_data) 1092 { 1093 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 1094 struct xattr *lsm_xattr, *evm_xattr, *xattr; 1095 int ret; 1096 1097 if (unlikely(IS_PRIVATE(inode))) 1098 return 0; 1099 1100 if (!initxattrs) 1101 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, 1102 dir, qstr, NULL, NULL, NULL); 1103 memset(new_xattrs, 0, sizeof(new_xattrs)); 1104 lsm_xattr = new_xattrs; 1105 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr, 1106 &lsm_xattr->name, 1107 &lsm_xattr->value, 1108 &lsm_xattr->value_len); 1109 if (ret) 1110 goto out; 1111 1112 evm_xattr = lsm_xattr + 1; 1113 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 1114 if (ret) 1115 goto out; 1116 ret = initxattrs(inode, new_xattrs, fs_data); 1117 out: 1118 for (xattr = new_xattrs; xattr->value != NULL; xattr++) 1119 kfree(xattr->value); 1120 return (ret == -EOPNOTSUPP) ? 0 : ret; 1121 } 1122 EXPORT_SYMBOL(security_inode_init_security); 1123 1124 int security_inode_init_security_anon(struct inode *inode, 1125 const struct qstr *name, 1126 const struct inode *context_inode) 1127 { 1128 return call_int_hook(inode_init_security_anon, 0, inode, name, 1129 context_inode); 1130 } 1131 1132 int security_old_inode_init_security(struct inode *inode, struct inode *dir, 1133 const struct qstr *qstr, const char **name, 1134 void **value, size_t *len) 1135 { 1136 if (unlikely(IS_PRIVATE(inode))) 1137 return -EOPNOTSUPP; 1138 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, 1139 qstr, name, value, len); 1140 } 1141 EXPORT_SYMBOL(security_old_inode_init_security); 1142 1143 #ifdef CONFIG_SECURITY_PATH 1144 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode, 1145 unsigned int dev) 1146 { 1147 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1148 return 0; 1149 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev); 1150 } 1151 EXPORT_SYMBOL(security_path_mknod); 1152 1153 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode) 1154 { 1155 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1156 return 0; 1157 return call_int_hook(path_mkdir, 0, dir, dentry, mode); 1158 } 1159 EXPORT_SYMBOL(security_path_mkdir); 1160 1161 int security_path_rmdir(const struct path *dir, struct dentry *dentry) 1162 { 1163 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1164 return 0; 1165 return call_int_hook(path_rmdir, 0, dir, dentry); 1166 } 1167 1168 int security_path_unlink(const struct path *dir, struct dentry *dentry) 1169 { 1170 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1171 return 0; 1172 return call_int_hook(path_unlink, 0, dir, dentry); 1173 } 1174 EXPORT_SYMBOL(security_path_unlink); 1175 1176 int security_path_symlink(const struct path *dir, struct dentry *dentry, 1177 const char *old_name) 1178 { 1179 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1180 return 0; 1181 return call_int_hook(path_symlink, 0, dir, dentry, old_name); 1182 } 1183 1184 int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 1185 struct dentry *new_dentry) 1186 { 1187 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1188 return 0; 1189 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry); 1190 } 1191 1192 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 1193 const struct path *new_dir, struct dentry *new_dentry, 1194 unsigned int flags) 1195 { 1196 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1197 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1198 return 0; 1199 1200 if (flags & RENAME_EXCHANGE) { 1201 int err = call_int_hook(path_rename, 0, new_dir, new_dentry, 1202 old_dir, old_dentry); 1203 if (err) 1204 return err; 1205 } 1206 1207 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir, 1208 new_dentry); 1209 } 1210 EXPORT_SYMBOL(security_path_rename); 1211 1212 int security_path_truncate(const struct path *path) 1213 { 1214 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1215 return 0; 1216 return call_int_hook(path_truncate, 0, path); 1217 } 1218 1219 int security_path_chmod(const struct path *path, umode_t mode) 1220 { 1221 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1222 return 0; 1223 return call_int_hook(path_chmod, 0, path, mode); 1224 } 1225 1226 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 1227 { 1228 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1229 return 0; 1230 return call_int_hook(path_chown, 0, path, uid, gid); 1231 } 1232 1233 int security_path_chroot(const struct path *path) 1234 { 1235 return call_int_hook(path_chroot, 0, path); 1236 } 1237 #endif 1238 1239 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 1240 { 1241 if (unlikely(IS_PRIVATE(dir))) 1242 return 0; 1243 return call_int_hook(inode_create, 0, dir, dentry, mode); 1244 } 1245 EXPORT_SYMBOL_GPL(security_inode_create); 1246 1247 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 1248 struct dentry *new_dentry) 1249 { 1250 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1251 return 0; 1252 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry); 1253 } 1254 1255 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 1256 { 1257 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1258 return 0; 1259 return call_int_hook(inode_unlink, 0, dir, dentry); 1260 } 1261 1262 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 1263 const char *old_name) 1264 { 1265 if (unlikely(IS_PRIVATE(dir))) 1266 return 0; 1267 return call_int_hook(inode_symlink, 0, dir, dentry, old_name); 1268 } 1269 1270 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1271 { 1272 if (unlikely(IS_PRIVATE(dir))) 1273 return 0; 1274 return call_int_hook(inode_mkdir, 0, dir, dentry, mode); 1275 } 1276 EXPORT_SYMBOL_GPL(security_inode_mkdir); 1277 1278 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 1279 { 1280 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1281 return 0; 1282 return call_int_hook(inode_rmdir, 0, dir, dentry); 1283 } 1284 1285 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 1286 { 1287 if (unlikely(IS_PRIVATE(dir))) 1288 return 0; 1289 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev); 1290 } 1291 1292 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 1293 struct inode *new_dir, struct dentry *new_dentry, 1294 unsigned int flags) 1295 { 1296 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1297 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1298 return 0; 1299 1300 if (flags & RENAME_EXCHANGE) { 1301 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry, 1302 old_dir, old_dentry); 1303 if (err) 1304 return err; 1305 } 1306 1307 return call_int_hook(inode_rename, 0, old_dir, old_dentry, 1308 new_dir, new_dentry); 1309 } 1310 1311 int security_inode_readlink(struct dentry *dentry) 1312 { 1313 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1314 return 0; 1315 return call_int_hook(inode_readlink, 0, dentry); 1316 } 1317 1318 int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 1319 bool rcu) 1320 { 1321 if (unlikely(IS_PRIVATE(inode))) 1322 return 0; 1323 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu); 1324 } 1325 1326 int security_inode_permission(struct inode *inode, int mask) 1327 { 1328 if (unlikely(IS_PRIVATE(inode))) 1329 return 0; 1330 return call_int_hook(inode_permission, 0, inode, mask); 1331 } 1332 1333 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 1334 { 1335 int ret; 1336 1337 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1338 return 0; 1339 ret = call_int_hook(inode_setattr, 0, dentry, attr); 1340 if (ret) 1341 return ret; 1342 return evm_inode_setattr(dentry, attr); 1343 } 1344 EXPORT_SYMBOL_GPL(security_inode_setattr); 1345 1346 int security_inode_getattr(const struct path *path) 1347 { 1348 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1349 return 0; 1350 return call_int_hook(inode_getattr, 0, path); 1351 } 1352 1353 int security_inode_setxattr(struct user_namespace *mnt_userns, 1354 struct dentry *dentry, const char *name, 1355 const void *value, size_t size, int flags) 1356 { 1357 int ret; 1358 1359 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1360 return 0; 1361 /* 1362 * SELinux and Smack integrate the cap call, 1363 * so assume that all LSMs supplying this call do so. 1364 */ 1365 ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value, 1366 size, flags); 1367 1368 if (ret == 1) 1369 ret = cap_inode_setxattr(dentry, name, value, size, flags); 1370 if (ret) 1371 return ret; 1372 ret = ima_inode_setxattr(dentry, name, value, size); 1373 if (ret) 1374 return ret; 1375 return evm_inode_setxattr(mnt_userns, dentry, name, value, size); 1376 } 1377 1378 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 1379 const void *value, size_t size, int flags) 1380 { 1381 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1382 return; 1383 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 1384 evm_inode_post_setxattr(dentry, name, value, size); 1385 } 1386 1387 int security_inode_getxattr(struct dentry *dentry, const char *name) 1388 { 1389 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1390 return 0; 1391 return call_int_hook(inode_getxattr, 0, dentry, name); 1392 } 1393 1394 int security_inode_listxattr(struct dentry *dentry) 1395 { 1396 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1397 return 0; 1398 return call_int_hook(inode_listxattr, 0, dentry); 1399 } 1400 1401 int security_inode_removexattr(struct user_namespace *mnt_userns, 1402 struct dentry *dentry, const char *name) 1403 { 1404 int ret; 1405 1406 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1407 return 0; 1408 /* 1409 * SELinux and Smack integrate the cap call, 1410 * so assume that all LSMs supplying this call do so. 1411 */ 1412 ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name); 1413 if (ret == 1) 1414 ret = cap_inode_removexattr(mnt_userns, dentry, name); 1415 if (ret) 1416 return ret; 1417 ret = ima_inode_removexattr(dentry, name); 1418 if (ret) 1419 return ret; 1420 return evm_inode_removexattr(mnt_userns, dentry, name); 1421 } 1422 1423 int security_inode_need_killpriv(struct dentry *dentry) 1424 { 1425 return call_int_hook(inode_need_killpriv, 0, dentry); 1426 } 1427 1428 int security_inode_killpriv(struct user_namespace *mnt_userns, 1429 struct dentry *dentry) 1430 { 1431 return call_int_hook(inode_killpriv, 0, mnt_userns, dentry); 1432 } 1433 1434 int security_inode_getsecurity(struct user_namespace *mnt_userns, 1435 struct inode *inode, const char *name, 1436 void **buffer, bool alloc) 1437 { 1438 struct security_hook_list *hp; 1439 int rc; 1440 1441 if (unlikely(IS_PRIVATE(inode))) 1442 return LSM_RET_DEFAULT(inode_getsecurity); 1443 /* 1444 * Only one module will provide an attribute with a given name. 1445 */ 1446 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) { 1447 rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc); 1448 if (rc != LSM_RET_DEFAULT(inode_getsecurity)) 1449 return rc; 1450 } 1451 return LSM_RET_DEFAULT(inode_getsecurity); 1452 } 1453 1454 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 1455 { 1456 struct security_hook_list *hp; 1457 int rc; 1458 1459 if (unlikely(IS_PRIVATE(inode))) 1460 return LSM_RET_DEFAULT(inode_setsecurity); 1461 /* 1462 * Only one module will provide an attribute with a given name. 1463 */ 1464 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) { 1465 rc = hp->hook.inode_setsecurity(inode, name, value, size, 1466 flags); 1467 if (rc != LSM_RET_DEFAULT(inode_setsecurity)) 1468 return rc; 1469 } 1470 return LSM_RET_DEFAULT(inode_setsecurity); 1471 } 1472 1473 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 1474 { 1475 if (unlikely(IS_PRIVATE(inode))) 1476 return 0; 1477 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size); 1478 } 1479 EXPORT_SYMBOL(security_inode_listsecurity); 1480 1481 void security_inode_getsecid(struct inode *inode, u32 *secid) 1482 { 1483 call_void_hook(inode_getsecid, inode, secid); 1484 } 1485 1486 int security_inode_copy_up(struct dentry *src, struct cred **new) 1487 { 1488 return call_int_hook(inode_copy_up, 0, src, new); 1489 } 1490 EXPORT_SYMBOL(security_inode_copy_up); 1491 1492 int security_inode_copy_up_xattr(const char *name) 1493 { 1494 struct security_hook_list *hp; 1495 int rc; 1496 1497 /* 1498 * The implementation can return 0 (accept the xattr), 1 (discard the 1499 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or 1500 * any other error code incase of an error. 1501 */ 1502 hlist_for_each_entry(hp, 1503 &security_hook_heads.inode_copy_up_xattr, list) { 1504 rc = hp->hook.inode_copy_up_xattr(name); 1505 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr)) 1506 return rc; 1507 } 1508 1509 return LSM_RET_DEFAULT(inode_copy_up_xattr); 1510 } 1511 EXPORT_SYMBOL(security_inode_copy_up_xattr); 1512 1513 int security_kernfs_init_security(struct kernfs_node *kn_dir, 1514 struct kernfs_node *kn) 1515 { 1516 return call_int_hook(kernfs_init_security, 0, kn_dir, kn); 1517 } 1518 1519 int security_file_permission(struct file *file, int mask) 1520 { 1521 int ret; 1522 1523 ret = call_int_hook(file_permission, 0, file, mask); 1524 if (ret) 1525 return ret; 1526 1527 return fsnotify_perm(file, mask); 1528 } 1529 1530 int security_file_alloc(struct file *file) 1531 { 1532 int rc = lsm_file_alloc(file); 1533 1534 if (rc) 1535 return rc; 1536 rc = call_int_hook(file_alloc_security, 0, file); 1537 if (unlikely(rc)) 1538 security_file_free(file); 1539 return rc; 1540 } 1541 1542 void security_file_free(struct file *file) 1543 { 1544 void *blob; 1545 1546 call_void_hook(file_free_security, file); 1547 1548 blob = file->f_security; 1549 if (blob) { 1550 file->f_security = NULL; 1551 kmem_cache_free(lsm_file_cache, blob); 1552 } 1553 } 1554 1555 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1556 { 1557 return call_int_hook(file_ioctl, 0, file, cmd, arg); 1558 } 1559 EXPORT_SYMBOL_GPL(security_file_ioctl); 1560 1561 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 1562 { 1563 /* 1564 * Does we have PROT_READ and does the application expect 1565 * it to imply PROT_EXEC? If not, nothing to talk about... 1566 */ 1567 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 1568 return prot; 1569 if (!(current->personality & READ_IMPLIES_EXEC)) 1570 return prot; 1571 /* 1572 * if that's an anonymous mapping, let it. 1573 */ 1574 if (!file) 1575 return prot | PROT_EXEC; 1576 /* 1577 * ditto if it's not on noexec mount, except that on !MMU we need 1578 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 1579 */ 1580 if (!path_noexec(&file->f_path)) { 1581 #ifndef CONFIG_MMU 1582 if (file->f_op->mmap_capabilities) { 1583 unsigned caps = file->f_op->mmap_capabilities(file); 1584 if (!(caps & NOMMU_MAP_EXEC)) 1585 return prot; 1586 } 1587 #endif 1588 return prot | PROT_EXEC; 1589 } 1590 /* anything on noexec mount won't get PROT_EXEC */ 1591 return prot; 1592 } 1593 1594 int security_mmap_file(struct file *file, unsigned long prot, 1595 unsigned long flags) 1596 { 1597 int ret; 1598 ret = call_int_hook(mmap_file, 0, file, prot, 1599 mmap_prot(file, prot), flags); 1600 if (ret) 1601 return ret; 1602 return ima_file_mmap(file, prot); 1603 } 1604 1605 int security_mmap_addr(unsigned long addr) 1606 { 1607 return call_int_hook(mmap_addr, 0, addr); 1608 } 1609 1610 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 1611 unsigned long prot) 1612 { 1613 int ret; 1614 1615 ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot); 1616 if (ret) 1617 return ret; 1618 return ima_file_mprotect(vma, prot); 1619 } 1620 1621 int security_file_lock(struct file *file, unsigned int cmd) 1622 { 1623 return call_int_hook(file_lock, 0, file, cmd); 1624 } 1625 1626 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 1627 { 1628 return call_int_hook(file_fcntl, 0, file, cmd, arg); 1629 } 1630 1631 void security_file_set_fowner(struct file *file) 1632 { 1633 call_void_hook(file_set_fowner, file); 1634 } 1635 1636 int security_file_send_sigiotask(struct task_struct *tsk, 1637 struct fown_struct *fown, int sig) 1638 { 1639 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig); 1640 } 1641 1642 int security_file_receive(struct file *file) 1643 { 1644 return call_int_hook(file_receive, 0, file); 1645 } 1646 1647 int security_file_open(struct file *file) 1648 { 1649 int ret; 1650 1651 ret = call_int_hook(file_open, 0, file); 1652 if (ret) 1653 return ret; 1654 1655 return fsnotify_perm(file, MAY_OPEN); 1656 } 1657 1658 int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 1659 { 1660 int rc = lsm_task_alloc(task); 1661 1662 if (rc) 1663 return rc; 1664 rc = call_int_hook(task_alloc, 0, task, clone_flags); 1665 if (unlikely(rc)) 1666 security_task_free(task); 1667 return rc; 1668 } 1669 1670 void security_task_free(struct task_struct *task) 1671 { 1672 call_void_hook(task_free, task); 1673 1674 kfree(task->security); 1675 task->security = NULL; 1676 } 1677 1678 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 1679 { 1680 int rc = lsm_cred_alloc(cred, gfp); 1681 1682 if (rc) 1683 return rc; 1684 1685 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp); 1686 if (unlikely(rc)) 1687 security_cred_free(cred); 1688 return rc; 1689 } 1690 1691 void security_cred_free(struct cred *cred) 1692 { 1693 /* 1694 * There is a failure case in prepare_creds() that 1695 * may result in a call here with ->security being NULL. 1696 */ 1697 if (unlikely(cred->security == NULL)) 1698 return; 1699 1700 call_void_hook(cred_free, cred); 1701 1702 kfree(cred->security); 1703 cred->security = NULL; 1704 } 1705 1706 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 1707 { 1708 int rc = lsm_cred_alloc(new, gfp); 1709 1710 if (rc) 1711 return rc; 1712 1713 rc = call_int_hook(cred_prepare, 0, new, old, gfp); 1714 if (unlikely(rc)) 1715 security_cred_free(new); 1716 return rc; 1717 } 1718 1719 void security_transfer_creds(struct cred *new, const struct cred *old) 1720 { 1721 call_void_hook(cred_transfer, new, old); 1722 } 1723 1724 void security_cred_getsecid(const struct cred *c, u32 *secid) 1725 { 1726 *secid = 0; 1727 call_void_hook(cred_getsecid, c, secid); 1728 } 1729 EXPORT_SYMBOL(security_cred_getsecid); 1730 1731 int security_kernel_act_as(struct cred *new, u32 secid) 1732 { 1733 return call_int_hook(kernel_act_as, 0, new, secid); 1734 } 1735 1736 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 1737 { 1738 return call_int_hook(kernel_create_files_as, 0, new, inode); 1739 } 1740 1741 int security_kernel_module_request(char *kmod_name) 1742 { 1743 int ret; 1744 1745 ret = call_int_hook(kernel_module_request, 0, kmod_name); 1746 if (ret) 1747 return ret; 1748 return integrity_kernel_module_request(kmod_name); 1749 } 1750 1751 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id, 1752 bool contents) 1753 { 1754 int ret; 1755 1756 ret = call_int_hook(kernel_read_file, 0, file, id, contents); 1757 if (ret) 1758 return ret; 1759 return ima_read_file(file, id, contents); 1760 } 1761 EXPORT_SYMBOL_GPL(security_kernel_read_file); 1762 1763 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 1764 enum kernel_read_file_id id) 1765 { 1766 int ret; 1767 1768 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id); 1769 if (ret) 1770 return ret; 1771 return ima_post_read_file(file, buf, size, id); 1772 } 1773 EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 1774 1775 int security_kernel_load_data(enum kernel_load_data_id id, bool contents) 1776 { 1777 int ret; 1778 1779 ret = call_int_hook(kernel_load_data, 0, id, contents); 1780 if (ret) 1781 return ret; 1782 return ima_load_data(id, contents); 1783 } 1784 EXPORT_SYMBOL_GPL(security_kernel_load_data); 1785 1786 int security_kernel_post_load_data(char *buf, loff_t size, 1787 enum kernel_load_data_id id, 1788 char *description) 1789 { 1790 int ret; 1791 1792 ret = call_int_hook(kernel_post_load_data, 0, buf, size, id, 1793 description); 1794 if (ret) 1795 return ret; 1796 return ima_post_load_data(buf, size, id, description); 1797 } 1798 EXPORT_SYMBOL_GPL(security_kernel_post_load_data); 1799 1800 int security_task_fix_setuid(struct cred *new, const struct cred *old, 1801 int flags) 1802 { 1803 return call_int_hook(task_fix_setuid, 0, new, old, flags); 1804 } 1805 1806 int security_task_fix_setgid(struct cred *new, const struct cred *old, 1807 int flags) 1808 { 1809 return call_int_hook(task_fix_setgid, 0, new, old, flags); 1810 } 1811 1812 int security_task_setpgid(struct task_struct *p, pid_t pgid) 1813 { 1814 return call_int_hook(task_setpgid, 0, p, pgid); 1815 } 1816 1817 int security_task_getpgid(struct task_struct *p) 1818 { 1819 return call_int_hook(task_getpgid, 0, p); 1820 } 1821 1822 int security_task_getsid(struct task_struct *p) 1823 { 1824 return call_int_hook(task_getsid, 0, p); 1825 } 1826 1827 void security_current_getsecid_subj(u32 *secid) 1828 { 1829 *secid = 0; 1830 call_void_hook(current_getsecid_subj, secid); 1831 } 1832 EXPORT_SYMBOL(security_current_getsecid_subj); 1833 1834 void security_task_getsecid_obj(struct task_struct *p, u32 *secid) 1835 { 1836 *secid = 0; 1837 call_void_hook(task_getsecid_obj, p, secid); 1838 } 1839 EXPORT_SYMBOL(security_task_getsecid_obj); 1840 1841 int security_task_setnice(struct task_struct *p, int nice) 1842 { 1843 return call_int_hook(task_setnice, 0, p, nice); 1844 } 1845 1846 int security_task_setioprio(struct task_struct *p, int ioprio) 1847 { 1848 return call_int_hook(task_setioprio, 0, p, ioprio); 1849 } 1850 1851 int security_task_getioprio(struct task_struct *p) 1852 { 1853 return call_int_hook(task_getioprio, 0, p); 1854 } 1855 1856 int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 1857 unsigned int flags) 1858 { 1859 return call_int_hook(task_prlimit, 0, cred, tcred, flags); 1860 } 1861 1862 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 1863 struct rlimit *new_rlim) 1864 { 1865 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim); 1866 } 1867 1868 int security_task_setscheduler(struct task_struct *p) 1869 { 1870 return call_int_hook(task_setscheduler, 0, p); 1871 } 1872 1873 int security_task_getscheduler(struct task_struct *p) 1874 { 1875 return call_int_hook(task_getscheduler, 0, p); 1876 } 1877 1878 int security_task_movememory(struct task_struct *p) 1879 { 1880 return call_int_hook(task_movememory, 0, p); 1881 } 1882 1883 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, 1884 int sig, const struct cred *cred) 1885 { 1886 return call_int_hook(task_kill, 0, p, info, sig, cred); 1887 } 1888 1889 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 1890 unsigned long arg4, unsigned long arg5) 1891 { 1892 int thisrc; 1893 int rc = LSM_RET_DEFAULT(task_prctl); 1894 struct security_hook_list *hp; 1895 1896 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 1897 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 1898 if (thisrc != LSM_RET_DEFAULT(task_prctl)) { 1899 rc = thisrc; 1900 if (thisrc != 0) 1901 break; 1902 } 1903 } 1904 return rc; 1905 } 1906 1907 void security_task_to_inode(struct task_struct *p, struct inode *inode) 1908 { 1909 call_void_hook(task_to_inode, p, inode); 1910 } 1911 1912 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 1913 { 1914 return call_int_hook(ipc_permission, 0, ipcp, flag); 1915 } 1916 1917 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 1918 { 1919 *secid = 0; 1920 call_void_hook(ipc_getsecid, ipcp, secid); 1921 } 1922 1923 int security_msg_msg_alloc(struct msg_msg *msg) 1924 { 1925 int rc = lsm_msg_msg_alloc(msg); 1926 1927 if (unlikely(rc)) 1928 return rc; 1929 rc = call_int_hook(msg_msg_alloc_security, 0, msg); 1930 if (unlikely(rc)) 1931 security_msg_msg_free(msg); 1932 return rc; 1933 } 1934 1935 void security_msg_msg_free(struct msg_msg *msg) 1936 { 1937 call_void_hook(msg_msg_free_security, msg); 1938 kfree(msg->security); 1939 msg->security = NULL; 1940 } 1941 1942 int security_msg_queue_alloc(struct kern_ipc_perm *msq) 1943 { 1944 int rc = lsm_ipc_alloc(msq); 1945 1946 if (unlikely(rc)) 1947 return rc; 1948 rc = call_int_hook(msg_queue_alloc_security, 0, msq); 1949 if (unlikely(rc)) 1950 security_msg_queue_free(msq); 1951 return rc; 1952 } 1953 1954 void security_msg_queue_free(struct kern_ipc_perm *msq) 1955 { 1956 call_void_hook(msg_queue_free_security, msq); 1957 kfree(msq->security); 1958 msq->security = NULL; 1959 } 1960 1961 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 1962 { 1963 return call_int_hook(msg_queue_associate, 0, msq, msqflg); 1964 } 1965 1966 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 1967 { 1968 return call_int_hook(msg_queue_msgctl, 0, msq, cmd); 1969 } 1970 1971 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 1972 struct msg_msg *msg, int msqflg) 1973 { 1974 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg); 1975 } 1976 1977 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 1978 struct task_struct *target, long type, int mode) 1979 { 1980 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode); 1981 } 1982 1983 int security_shm_alloc(struct kern_ipc_perm *shp) 1984 { 1985 int rc = lsm_ipc_alloc(shp); 1986 1987 if (unlikely(rc)) 1988 return rc; 1989 rc = call_int_hook(shm_alloc_security, 0, shp); 1990 if (unlikely(rc)) 1991 security_shm_free(shp); 1992 return rc; 1993 } 1994 1995 void security_shm_free(struct kern_ipc_perm *shp) 1996 { 1997 call_void_hook(shm_free_security, shp); 1998 kfree(shp->security); 1999 shp->security = NULL; 2000 } 2001 2002 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 2003 { 2004 return call_int_hook(shm_associate, 0, shp, shmflg); 2005 } 2006 2007 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 2008 { 2009 return call_int_hook(shm_shmctl, 0, shp, cmd); 2010 } 2011 2012 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg) 2013 { 2014 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg); 2015 } 2016 2017 int security_sem_alloc(struct kern_ipc_perm *sma) 2018 { 2019 int rc = lsm_ipc_alloc(sma); 2020 2021 if (unlikely(rc)) 2022 return rc; 2023 rc = call_int_hook(sem_alloc_security, 0, sma); 2024 if (unlikely(rc)) 2025 security_sem_free(sma); 2026 return rc; 2027 } 2028 2029 void security_sem_free(struct kern_ipc_perm *sma) 2030 { 2031 call_void_hook(sem_free_security, sma); 2032 kfree(sma->security); 2033 sma->security = NULL; 2034 } 2035 2036 int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 2037 { 2038 return call_int_hook(sem_associate, 0, sma, semflg); 2039 } 2040 2041 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 2042 { 2043 return call_int_hook(sem_semctl, 0, sma, cmd); 2044 } 2045 2046 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 2047 unsigned nsops, int alter) 2048 { 2049 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter); 2050 } 2051 2052 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 2053 { 2054 if (unlikely(inode && IS_PRIVATE(inode))) 2055 return; 2056 call_void_hook(d_instantiate, dentry, inode); 2057 } 2058 EXPORT_SYMBOL(security_d_instantiate); 2059 2060 int security_getprocattr(struct task_struct *p, const char *lsm, char *name, 2061 char **value) 2062 { 2063 struct security_hook_list *hp; 2064 2065 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) { 2066 if (lsm != NULL && strcmp(lsm, hp->lsm)) 2067 continue; 2068 return hp->hook.getprocattr(p, name, value); 2069 } 2070 return LSM_RET_DEFAULT(getprocattr); 2071 } 2072 2073 int security_setprocattr(const char *lsm, const char *name, void *value, 2074 size_t size) 2075 { 2076 struct security_hook_list *hp; 2077 2078 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) { 2079 if (lsm != NULL && strcmp(lsm, hp->lsm)) 2080 continue; 2081 return hp->hook.setprocattr(name, value, size); 2082 } 2083 return LSM_RET_DEFAULT(setprocattr); 2084 } 2085 2086 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 2087 { 2088 return call_int_hook(netlink_send, 0, sk, skb); 2089 } 2090 2091 int security_ismaclabel(const char *name) 2092 { 2093 return call_int_hook(ismaclabel, 0, name); 2094 } 2095 EXPORT_SYMBOL(security_ismaclabel); 2096 2097 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 2098 { 2099 struct security_hook_list *hp; 2100 int rc; 2101 2102 /* 2103 * Currently, only one LSM can implement secid_to_secctx (i.e this 2104 * LSM hook is not "stackable"). 2105 */ 2106 hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) { 2107 rc = hp->hook.secid_to_secctx(secid, secdata, seclen); 2108 if (rc != LSM_RET_DEFAULT(secid_to_secctx)) 2109 return rc; 2110 } 2111 2112 return LSM_RET_DEFAULT(secid_to_secctx); 2113 } 2114 EXPORT_SYMBOL(security_secid_to_secctx); 2115 2116 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 2117 { 2118 *secid = 0; 2119 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid); 2120 } 2121 EXPORT_SYMBOL(security_secctx_to_secid); 2122 2123 void security_release_secctx(char *secdata, u32 seclen) 2124 { 2125 call_void_hook(release_secctx, secdata, seclen); 2126 } 2127 EXPORT_SYMBOL(security_release_secctx); 2128 2129 void security_inode_invalidate_secctx(struct inode *inode) 2130 { 2131 call_void_hook(inode_invalidate_secctx, inode); 2132 } 2133 EXPORT_SYMBOL(security_inode_invalidate_secctx); 2134 2135 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 2136 { 2137 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen); 2138 } 2139 EXPORT_SYMBOL(security_inode_notifysecctx); 2140 2141 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 2142 { 2143 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen); 2144 } 2145 EXPORT_SYMBOL(security_inode_setsecctx); 2146 2147 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 2148 { 2149 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen); 2150 } 2151 EXPORT_SYMBOL(security_inode_getsecctx); 2152 2153 #ifdef CONFIG_WATCH_QUEUE 2154 int security_post_notification(const struct cred *w_cred, 2155 const struct cred *cred, 2156 struct watch_notification *n) 2157 { 2158 return call_int_hook(post_notification, 0, w_cred, cred, n); 2159 } 2160 #endif /* CONFIG_WATCH_QUEUE */ 2161 2162 #ifdef CONFIG_KEY_NOTIFICATIONS 2163 int security_watch_key(struct key *key) 2164 { 2165 return call_int_hook(watch_key, 0, key); 2166 } 2167 #endif 2168 2169 #ifdef CONFIG_SECURITY_NETWORK 2170 2171 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 2172 { 2173 return call_int_hook(unix_stream_connect, 0, sock, other, newsk); 2174 } 2175 EXPORT_SYMBOL(security_unix_stream_connect); 2176 2177 int security_unix_may_send(struct socket *sock, struct socket *other) 2178 { 2179 return call_int_hook(unix_may_send, 0, sock, other); 2180 } 2181 EXPORT_SYMBOL(security_unix_may_send); 2182 2183 int security_socket_create(int family, int type, int protocol, int kern) 2184 { 2185 return call_int_hook(socket_create, 0, family, type, protocol, kern); 2186 } 2187 2188 int security_socket_post_create(struct socket *sock, int family, 2189 int type, int protocol, int kern) 2190 { 2191 return call_int_hook(socket_post_create, 0, sock, family, type, 2192 protocol, kern); 2193 } 2194 2195 int security_socket_socketpair(struct socket *socka, struct socket *sockb) 2196 { 2197 return call_int_hook(socket_socketpair, 0, socka, sockb); 2198 } 2199 EXPORT_SYMBOL(security_socket_socketpair); 2200 2201 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 2202 { 2203 return call_int_hook(socket_bind, 0, sock, address, addrlen); 2204 } 2205 2206 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 2207 { 2208 return call_int_hook(socket_connect, 0, sock, address, addrlen); 2209 } 2210 2211 int security_socket_listen(struct socket *sock, int backlog) 2212 { 2213 return call_int_hook(socket_listen, 0, sock, backlog); 2214 } 2215 2216 int security_socket_accept(struct socket *sock, struct socket *newsock) 2217 { 2218 return call_int_hook(socket_accept, 0, sock, newsock); 2219 } 2220 2221 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 2222 { 2223 return call_int_hook(socket_sendmsg, 0, sock, msg, size); 2224 } 2225 2226 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 2227 int size, int flags) 2228 { 2229 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags); 2230 } 2231 2232 int security_socket_getsockname(struct socket *sock) 2233 { 2234 return call_int_hook(socket_getsockname, 0, sock); 2235 } 2236 2237 int security_socket_getpeername(struct socket *sock) 2238 { 2239 return call_int_hook(socket_getpeername, 0, sock); 2240 } 2241 2242 int security_socket_getsockopt(struct socket *sock, int level, int optname) 2243 { 2244 return call_int_hook(socket_getsockopt, 0, sock, level, optname); 2245 } 2246 2247 int security_socket_setsockopt(struct socket *sock, int level, int optname) 2248 { 2249 return call_int_hook(socket_setsockopt, 0, sock, level, optname); 2250 } 2251 2252 int security_socket_shutdown(struct socket *sock, int how) 2253 { 2254 return call_int_hook(socket_shutdown, 0, sock, how); 2255 } 2256 2257 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 2258 { 2259 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb); 2260 } 2261 EXPORT_SYMBOL(security_sock_rcv_skb); 2262 2263 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 2264 int __user *optlen, unsigned len) 2265 { 2266 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock, 2267 optval, optlen, len); 2268 } 2269 2270 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 2271 { 2272 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock, 2273 skb, secid); 2274 } 2275 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 2276 2277 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 2278 { 2279 return call_int_hook(sk_alloc_security, 0, sk, family, priority); 2280 } 2281 2282 void security_sk_free(struct sock *sk) 2283 { 2284 call_void_hook(sk_free_security, sk); 2285 } 2286 2287 void security_sk_clone(const struct sock *sk, struct sock *newsk) 2288 { 2289 call_void_hook(sk_clone_security, sk, newsk); 2290 } 2291 EXPORT_SYMBOL(security_sk_clone); 2292 2293 void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic) 2294 { 2295 call_void_hook(sk_getsecid, sk, &flic->flowic_secid); 2296 } 2297 EXPORT_SYMBOL(security_sk_classify_flow); 2298 2299 void security_req_classify_flow(const struct request_sock *req, 2300 struct flowi_common *flic) 2301 { 2302 call_void_hook(req_classify_flow, req, flic); 2303 } 2304 EXPORT_SYMBOL(security_req_classify_flow); 2305 2306 void security_sock_graft(struct sock *sk, struct socket *parent) 2307 { 2308 call_void_hook(sock_graft, sk, parent); 2309 } 2310 EXPORT_SYMBOL(security_sock_graft); 2311 2312 int security_inet_conn_request(const struct sock *sk, 2313 struct sk_buff *skb, struct request_sock *req) 2314 { 2315 return call_int_hook(inet_conn_request, 0, sk, skb, req); 2316 } 2317 EXPORT_SYMBOL(security_inet_conn_request); 2318 2319 void security_inet_csk_clone(struct sock *newsk, 2320 const struct request_sock *req) 2321 { 2322 call_void_hook(inet_csk_clone, newsk, req); 2323 } 2324 2325 void security_inet_conn_established(struct sock *sk, 2326 struct sk_buff *skb) 2327 { 2328 call_void_hook(inet_conn_established, sk, skb); 2329 } 2330 EXPORT_SYMBOL(security_inet_conn_established); 2331 2332 int security_secmark_relabel_packet(u32 secid) 2333 { 2334 return call_int_hook(secmark_relabel_packet, 0, secid); 2335 } 2336 EXPORT_SYMBOL(security_secmark_relabel_packet); 2337 2338 void security_secmark_refcount_inc(void) 2339 { 2340 call_void_hook(secmark_refcount_inc); 2341 } 2342 EXPORT_SYMBOL(security_secmark_refcount_inc); 2343 2344 void security_secmark_refcount_dec(void) 2345 { 2346 call_void_hook(secmark_refcount_dec); 2347 } 2348 EXPORT_SYMBOL(security_secmark_refcount_dec); 2349 2350 int security_tun_dev_alloc_security(void **security) 2351 { 2352 return call_int_hook(tun_dev_alloc_security, 0, security); 2353 } 2354 EXPORT_SYMBOL(security_tun_dev_alloc_security); 2355 2356 void security_tun_dev_free_security(void *security) 2357 { 2358 call_void_hook(tun_dev_free_security, security); 2359 } 2360 EXPORT_SYMBOL(security_tun_dev_free_security); 2361 2362 int security_tun_dev_create(void) 2363 { 2364 return call_int_hook(tun_dev_create, 0); 2365 } 2366 EXPORT_SYMBOL(security_tun_dev_create); 2367 2368 int security_tun_dev_attach_queue(void *security) 2369 { 2370 return call_int_hook(tun_dev_attach_queue, 0, security); 2371 } 2372 EXPORT_SYMBOL(security_tun_dev_attach_queue); 2373 2374 int security_tun_dev_attach(struct sock *sk, void *security) 2375 { 2376 return call_int_hook(tun_dev_attach, 0, sk, security); 2377 } 2378 EXPORT_SYMBOL(security_tun_dev_attach); 2379 2380 int security_tun_dev_open(void *security) 2381 { 2382 return call_int_hook(tun_dev_open, 0, security); 2383 } 2384 EXPORT_SYMBOL(security_tun_dev_open); 2385 2386 int security_sctp_assoc_request(struct sctp_association *asoc, struct sk_buff *skb) 2387 { 2388 return call_int_hook(sctp_assoc_request, 0, asoc, skb); 2389 } 2390 EXPORT_SYMBOL(security_sctp_assoc_request); 2391 2392 int security_sctp_bind_connect(struct sock *sk, int optname, 2393 struct sockaddr *address, int addrlen) 2394 { 2395 return call_int_hook(sctp_bind_connect, 0, sk, optname, 2396 address, addrlen); 2397 } 2398 EXPORT_SYMBOL(security_sctp_bind_connect); 2399 2400 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk, 2401 struct sock *newsk) 2402 { 2403 call_void_hook(sctp_sk_clone, asoc, sk, newsk); 2404 } 2405 EXPORT_SYMBOL(security_sctp_sk_clone); 2406 2407 int security_sctp_assoc_established(struct sctp_association *asoc, 2408 struct sk_buff *skb) 2409 { 2410 return call_int_hook(sctp_assoc_established, 0, asoc, skb); 2411 } 2412 EXPORT_SYMBOL(security_sctp_assoc_established); 2413 2414 #endif /* CONFIG_SECURITY_NETWORK */ 2415 2416 #ifdef CONFIG_SECURITY_INFINIBAND 2417 2418 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 2419 { 2420 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey); 2421 } 2422 EXPORT_SYMBOL(security_ib_pkey_access); 2423 2424 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num) 2425 { 2426 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num); 2427 } 2428 EXPORT_SYMBOL(security_ib_endport_manage_subnet); 2429 2430 int security_ib_alloc_security(void **sec) 2431 { 2432 return call_int_hook(ib_alloc_security, 0, sec); 2433 } 2434 EXPORT_SYMBOL(security_ib_alloc_security); 2435 2436 void security_ib_free_security(void *sec) 2437 { 2438 call_void_hook(ib_free_security, sec); 2439 } 2440 EXPORT_SYMBOL(security_ib_free_security); 2441 #endif /* CONFIG_SECURITY_INFINIBAND */ 2442 2443 #ifdef CONFIG_SECURITY_NETWORK_XFRM 2444 2445 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 2446 struct xfrm_user_sec_ctx *sec_ctx, 2447 gfp_t gfp) 2448 { 2449 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp); 2450 } 2451 EXPORT_SYMBOL(security_xfrm_policy_alloc); 2452 2453 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 2454 struct xfrm_sec_ctx **new_ctxp) 2455 { 2456 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp); 2457 } 2458 2459 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 2460 { 2461 call_void_hook(xfrm_policy_free_security, ctx); 2462 } 2463 EXPORT_SYMBOL(security_xfrm_policy_free); 2464 2465 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 2466 { 2467 return call_int_hook(xfrm_policy_delete_security, 0, ctx); 2468 } 2469 2470 int security_xfrm_state_alloc(struct xfrm_state *x, 2471 struct xfrm_user_sec_ctx *sec_ctx) 2472 { 2473 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx); 2474 } 2475 EXPORT_SYMBOL(security_xfrm_state_alloc); 2476 2477 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 2478 struct xfrm_sec_ctx *polsec, u32 secid) 2479 { 2480 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid); 2481 } 2482 2483 int security_xfrm_state_delete(struct xfrm_state *x) 2484 { 2485 return call_int_hook(xfrm_state_delete_security, 0, x); 2486 } 2487 EXPORT_SYMBOL(security_xfrm_state_delete); 2488 2489 void security_xfrm_state_free(struct xfrm_state *x) 2490 { 2491 call_void_hook(xfrm_state_free_security, x); 2492 } 2493 2494 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid) 2495 { 2496 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid); 2497 } 2498 2499 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 2500 struct xfrm_policy *xp, 2501 const struct flowi_common *flic) 2502 { 2503 struct security_hook_list *hp; 2504 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match); 2505 2506 /* 2507 * Since this function is expected to return 0 or 1, the judgment 2508 * becomes difficult if multiple LSMs supply this call. Fortunately, 2509 * we can use the first LSM's judgment because currently only SELinux 2510 * supplies this call. 2511 * 2512 * For speed optimization, we explicitly break the loop rather than 2513 * using the macro 2514 */ 2515 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 2516 list) { 2517 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic); 2518 break; 2519 } 2520 return rc; 2521 } 2522 2523 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 2524 { 2525 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1); 2526 } 2527 2528 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic) 2529 { 2530 int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid, 2531 0); 2532 2533 BUG_ON(rc); 2534 } 2535 EXPORT_SYMBOL(security_skb_classify_flow); 2536 2537 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 2538 2539 #ifdef CONFIG_KEYS 2540 2541 int security_key_alloc(struct key *key, const struct cred *cred, 2542 unsigned long flags) 2543 { 2544 return call_int_hook(key_alloc, 0, key, cred, flags); 2545 } 2546 2547 void security_key_free(struct key *key) 2548 { 2549 call_void_hook(key_free, key); 2550 } 2551 2552 int security_key_permission(key_ref_t key_ref, const struct cred *cred, 2553 enum key_need_perm need_perm) 2554 { 2555 return call_int_hook(key_permission, 0, key_ref, cred, need_perm); 2556 } 2557 2558 int security_key_getsecurity(struct key *key, char **_buffer) 2559 { 2560 *_buffer = NULL; 2561 return call_int_hook(key_getsecurity, 0, key, _buffer); 2562 } 2563 2564 #endif /* CONFIG_KEYS */ 2565 2566 #ifdef CONFIG_AUDIT 2567 2568 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 2569 { 2570 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule); 2571 } 2572 2573 int security_audit_rule_known(struct audit_krule *krule) 2574 { 2575 return call_int_hook(audit_rule_known, 0, krule); 2576 } 2577 2578 void security_audit_rule_free(void *lsmrule) 2579 { 2580 call_void_hook(audit_rule_free, lsmrule); 2581 } 2582 2583 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule) 2584 { 2585 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule); 2586 } 2587 #endif /* CONFIG_AUDIT */ 2588 2589 #ifdef CONFIG_BPF_SYSCALL 2590 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 2591 { 2592 return call_int_hook(bpf, 0, cmd, attr, size); 2593 } 2594 int security_bpf_map(struct bpf_map *map, fmode_t fmode) 2595 { 2596 return call_int_hook(bpf_map, 0, map, fmode); 2597 } 2598 int security_bpf_prog(struct bpf_prog *prog) 2599 { 2600 return call_int_hook(bpf_prog, 0, prog); 2601 } 2602 int security_bpf_map_alloc(struct bpf_map *map) 2603 { 2604 return call_int_hook(bpf_map_alloc_security, 0, map); 2605 } 2606 int security_bpf_prog_alloc(struct bpf_prog_aux *aux) 2607 { 2608 return call_int_hook(bpf_prog_alloc_security, 0, aux); 2609 } 2610 void security_bpf_map_free(struct bpf_map *map) 2611 { 2612 call_void_hook(bpf_map_free_security, map); 2613 } 2614 void security_bpf_prog_free(struct bpf_prog_aux *aux) 2615 { 2616 call_void_hook(bpf_prog_free_security, aux); 2617 } 2618 #endif /* CONFIG_BPF_SYSCALL */ 2619 2620 int security_locked_down(enum lockdown_reason what) 2621 { 2622 return call_int_hook(locked_down, 0, what); 2623 } 2624 EXPORT_SYMBOL(security_locked_down); 2625 2626 #ifdef CONFIG_PERF_EVENTS 2627 int security_perf_event_open(struct perf_event_attr *attr, int type) 2628 { 2629 return call_int_hook(perf_event_open, 0, attr, type); 2630 } 2631 2632 int security_perf_event_alloc(struct perf_event *event) 2633 { 2634 return call_int_hook(perf_event_alloc, 0, event); 2635 } 2636 2637 void security_perf_event_free(struct perf_event *event) 2638 { 2639 call_void_hook(perf_event_free, event); 2640 } 2641 2642 int security_perf_event_read(struct perf_event *event) 2643 { 2644 return call_int_hook(perf_event_read, 0, event); 2645 } 2646 2647 int security_perf_event_write(struct perf_event *event) 2648 { 2649 return call_int_hook(perf_event_write, 0, event); 2650 } 2651 #endif /* CONFIG_PERF_EVENTS */ 2652 2653 #ifdef CONFIG_IO_URING 2654 int security_uring_override_creds(const struct cred *new) 2655 { 2656 return call_int_hook(uring_override_creds, 0, new); 2657 } 2658 2659 int security_uring_sqpoll(void) 2660 { 2661 return call_int_hook(uring_sqpoll, 0); 2662 } 2663 #endif /* CONFIG_IO_URING */ 2664