xref: /openbmc/linux/security/security.c (revision 75f25bd3)
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *	This program is free software; you can redistribute it and/or modify
9  *	it under the terms of the GNU General Public License as published by
10  *	the Free Software Foundation; either version 2 of the License, or
11  *	(at your option) any later version.
12  */
13 
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/ima.h>
20 
21 /* Boot-time LSM user choice */
22 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
23 	CONFIG_DEFAULT_SECURITY;
24 
25 /* things that live in capability.c */
26 extern void __init security_fixup_ops(struct security_operations *ops);
27 
28 static struct security_operations *security_ops;
29 static struct security_operations default_security_ops = {
30 	.name	= "default",
31 };
32 
33 static inline int __init verify(struct security_operations *ops)
34 {
35 	/* verify the security_operations structure exists */
36 	if (!ops)
37 		return -EINVAL;
38 	security_fixup_ops(ops);
39 	return 0;
40 }
41 
42 static void __init do_security_initcalls(void)
43 {
44 	initcall_t *call;
45 	call = __security_initcall_start;
46 	while (call < __security_initcall_end) {
47 		(*call) ();
48 		call++;
49 	}
50 }
51 
52 /**
53  * security_init - initializes the security framework
54  *
55  * This should be called early in the kernel initialization sequence.
56  */
57 int __init security_init(void)
58 {
59 	printk(KERN_INFO "Security Framework initialized\n");
60 
61 	security_fixup_ops(&default_security_ops);
62 	security_ops = &default_security_ops;
63 	do_security_initcalls();
64 
65 	return 0;
66 }
67 
68 void reset_security_ops(void)
69 {
70 	security_ops = &default_security_ops;
71 }
72 
73 /* Save user chosen LSM */
74 static int __init choose_lsm(char *str)
75 {
76 	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
77 	return 1;
78 }
79 __setup("security=", choose_lsm);
80 
81 /**
82  * security_module_enable - Load given security module on boot ?
83  * @ops: a pointer to the struct security_operations that is to be checked.
84  *
85  * Each LSM must pass this method before registering its own operations
86  * to avoid security registration races. This method may also be used
87  * to check if your LSM is currently loaded during kernel initialization.
88  *
89  * Return true if:
90  *	-The passed LSM is the one chosen by user at boot time,
91  *	-or the passed LSM is configured as the default and the user did not
92  *	 choose an alternate LSM at boot time.
93  * Otherwise, return false.
94  */
95 int __init security_module_enable(struct security_operations *ops)
96 {
97 	return !strcmp(ops->name, chosen_lsm);
98 }
99 
100 /**
101  * register_security - registers a security framework with the kernel
102  * @ops: a pointer to the struct security_options that is to be registered
103  *
104  * This function allows a security module to register itself with the
105  * kernel security subsystem.  Some rudimentary checking is done on the @ops
106  * value passed to this function. You'll need to check first if your LSM
107  * is allowed to register its @ops by calling security_module_enable(@ops).
108  *
109  * If there is already a security module registered with the kernel,
110  * an error will be returned.  Otherwise %0 is returned on success.
111  */
112 int __init register_security(struct security_operations *ops)
113 {
114 	if (verify(ops)) {
115 		printk(KERN_DEBUG "%s could not verify "
116 		       "security_operations structure.\n", __func__);
117 		return -EINVAL;
118 	}
119 
120 	if (security_ops != &default_security_ops)
121 		return -EAGAIN;
122 
123 	security_ops = ops;
124 
125 	return 0;
126 }
127 
128 /* Security operations */
129 
130 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
131 {
132 	return security_ops->ptrace_access_check(child, mode);
133 }
134 
135 int security_ptrace_traceme(struct task_struct *parent)
136 {
137 	return security_ops->ptrace_traceme(parent);
138 }
139 
140 int security_capget(struct task_struct *target,
141 		     kernel_cap_t *effective,
142 		     kernel_cap_t *inheritable,
143 		     kernel_cap_t *permitted)
144 {
145 	return security_ops->capget(target, effective, inheritable, permitted);
146 }
147 
148 int security_capset(struct cred *new, const struct cred *old,
149 		    const kernel_cap_t *effective,
150 		    const kernel_cap_t *inheritable,
151 		    const kernel_cap_t *permitted)
152 {
153 	return security_ops->capset(new, old,
154 				    effective, inheritable, permitted);
155 }
156 
157 int security_capable(struct user_namespace *ns, const struct cred *cred,
158 		     int cap)
159 {
160 	return security_ops->capable(current, cred, ns, cap,
161 				     SECURITY_CAP_AUDIT);
162 }
163 
164 int security_real_capable(struct task_struct *tsk, struct user_namespace *ns,
165 			  int cap)
166 {
167 	const struct cred *cred;
168 	int ret;
169 
170 	cred = get_task_cred(tsk);
171 	ret = security_ops->capable(tsk, cred, ns, cap, SECURITY_CAP_AUDIT);
172 	put_cred(cred);
173 	return ret;
174 }
175 
176 int security_real_capable_noaudit(struct task_struct *tsk,
177 				  struct user_namespace *ns, int cap)
178 {
179 	const struct cred *cred;
180 	int ret;
181 
182 	cred = get_task_cred(tsk);
183 	ret = security_ops->capable(tsk, cred, ns, cap, SECURITY_CAP_NOAUDIT);
184 	put_cred(cred);
185 	return ret;
186 }
187 
188 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
189 {
190 	return security_ops->quotactl(cmds, type, id, sb);
191 }
192 
193 int security_quota_on(struct dentry *dentry)
194 {
195 	return security_ops->quota_on(dentry);
196 }
197 
198 int security_syslog(int type)
199 {
200 	return security_ops->syslog(type);
201 }
202 
203 int security_settime(const struct timespec *ts, const struct timezone *tz)
204 {
205 	return security_ops->settime(ts, tz);
206 }
207 
208 int security_vm_enough_memory(long pages)
209 {
210 	WARN_ON(current->mm == NULL);
211 	return security_ops->vm_enough_memory(current->mm, pages);
212 }
213 
214 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
215 {
216 	WARN_ON(mm == NULL);
217 	return security_ops->vm_enough_memory(mm, pages);
218 }
219 
220 int security_vm_enough_memory_kern(long pages)
221 {
222 	/* If current->mm is a kernel thread then we will pass NULL,
223 	   for this specific case that is fine */
224 	return security_ops->vm_enough_memory(current->mm, pages);
225 }
226 
227 int security_bprm_set_creds(struct linux_binprm *bprm)
228 {
229 	return security_ops->bprm_set_creds(bprm);
230 }
231 
232 int security_bprm_check(struct linux_binprm *bprm)
233 {
234 	int ret;
235 
236 	ret = security_ops->bprm_check_security(bprm);
237 	if (ret)
238 		return ret;
239 	return ima_bprm_check(bprm);
240 }
241 
242 void security_bprm_committing_creds(struct linux_binprm *bprm)
243 {
244 	security_ops->bprm_committing_creds(bprm);
245 }
246 
247 void security_bprm_committed_creds(struct linux_binprm *bprm)
248 {
249 	security_ops->bprm_committed_creds(bprm);
250 }
251 
252 int security_bprm_secureexec(struct linux_binprm *bprm)
253 {
254 	return security_ops->bprm_secureexec(bprm);
255 }
256 
257 int security_sb_alloc(struct super_block *sb)
258 {
259 	return security_ops->sb_alloc_security(sb);
260 }
261 
262 void security_sb_free(struct super_block *sb)
263 {
264 	security_ops->sb_free_security(sb);
265 }
266 
267 int security_sb_copy_data(char *orig, char *copy)
268 {
269 	return security_ops->sb_copy_data(orig, copy);
270 }
271 EXPORT_SYMBOL(security_sb_copy_data);
272 
273 int security_sb_remount(struct super_block *sb, void *data)
274 {
275 	return security_ops->sb_remount(sb, data);
276 }
277 
278 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
279 {
280 	return security_ops->sb_kern_mount(sb, flags, data);
281 }
282 
283 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
284 {
285 	return security_ops->sb_show_options(m, sb);
286 }
287 
288 int security_sb_statfs(struct dentry *dentry)
289 {
290 	return security_ops->sb_statfs(dentry);
291 }
292 
293 int security_sb_mount(char *dev_name, struct path *path,
294                        char *type, unsigned long flags, void *data)
295 {
296 	return security_ops->sb_mount(dev_name, path, type, flags, data);
297 }
298 
299 int security_sb_umount(struct vfsmount *mnt, int flags)
300 {
301 	return security_ops->sb_umount(mnt, flags);
302 }
303 
304 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
305 {
306 	return security_ops->sb_pivotroot(old_path, new_path);
307 }
308 
309 int security_sb_set_mnt_opts(struct super_block *sb,
310 				struct security_mnt_opts *opts)
311 {
312 	return security_ops->sb_set_mnt_opts(sb, opts);
313 }
314 EXPORT_SYMBOL(security_sb_set_mnt_opts);
315 
316 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
317 				struct super_block *newsb)
318 {
319 	security_ops->sb_clone_mnt_opts(oldsb, newsb);
320 }
321 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
322 
323 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
324 {
325 	return security_ops->sb_parse_opts_str(options, opts);
326 }
327 EXPORT_SYMBOL(security_sb_parse_opts_str);
328 
329 int security_inode_alloc(struct inode *inode)
330 {
331 	inode->i_security = NULL;
332 	return security_ops->inode_alloc_security(inode);
333 }
334 
335 void security_inode_free(struct inode *inode)
336 {
337 	ima_inode_free(inode);
338 	security_ops->inode_free_security(inode);
339 }
340 
341 int security_inode_init_security(struct inode *inode, struct inode *dir,
342 				 const struct qstr *qstr, char **name,
343 				 void **value, size_t *len)
344 {
345 	if (unlikely(IS_PRIVATE(inode)))
346 		return -EOPNOTSUPP;
347 	return security_ops->inode_init_security(inode, dir, qstr, name, value,
348 						 len);
349 }
350 EXPORT_SYMBOL(security_inode_init_security);
351 
352 #ifdef CONFIG_SECURITY_PATH
353 int security_path_mknod(struct path *dir, struct dentry *dentry, int mode,
354 			unsigned int dev)
355 {
356 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
357 		return 0;
358 	return security_ops->path_mknod(dir, dentry, mode, dev);
359 }
360 EXPORT_SYMBOL(security_path_mknod);
361 
362 int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode)
363 {
364 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
365 		return 0;
366 	return security_ops->path_mkdir(dir, dentry, mode);
367 }
368 EXPORT_SYMBOL(security_path_mkdir);
369 
370 int security_path_rmdir(struct path *dir, struct dentry *dentry)
371 {
372 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
373 		return 0;
374 	return security_ops->path_rmdir(dir, dentry);
375 }
376 
377 int security_path_unlink(struct path *dir, struct dentry *dentry)
378 {
379 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
380 		return 0;
381 	return security_ops->path_unlink(dir, dentry);
382 }
383 EXPORT_SYMBOL(security_path_unlink);
384 
385 int security_path_symlink(struct path *dir, struct dentry *dentry,
386 			  const char *old_name)
387 {
388 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
389 		return 0;
390 	return security_ops->path_symlink(dir, dentry, old_name);
391 }
392 
393 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
394 		       struct dentry *new_dentry)
395 {
396 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
397 		return 0;
398 	return security_ops->path_link(old_dentry, new_dir, new_dentry);
399 }
400 
401 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
402 			 struct path *new_dir, struct dentry *new_dentry)
403 {
404 	if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
405 		     (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
406 		return 0;
407 	return security_ops->path_rename(old_dir, old_dentry, new_dir,
408 					 new_dentry);
409 }
410 EXPORT_SYMBOL(security_path_rename);
411 
412 int security_path_truncate(struct path *path)
413 {
414 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
415 		return 0;
416 	return security_ops->path_truncate(path);
417 }
418 
419 int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt,
420 			mode_t mode)
421 {
422 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
423 		return 0;
424 	return security_ops->path_chmod(dentry, mnt, mode);
425 }
426 
427 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
428 {
429 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
430 		return 0;
431 	return security_ops->path_chown(path, uid, gid);
432 }
433 
434 int security_path_chroot(struct path *path)
435 {
436 	return security_ops->path_chroot(path);
437 }
438 #endif
439 
440 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
441 {
442 	if (unlikely(IS_PRIVATE(dir)))
443 		return 0;
444 	return security_ops->inode_create(dir, dentry, mode);
445 }
446 EXPORT_SYMBOL_GPL(security_inode_create);
447 
448 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
449 			 struct dentry *new_dentry)
450 {
451 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
452 		return 0;
453 	return security_ops->inode_link(old_dentry, dir, new_dentry);
454 }
455 
456 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
457 {
458 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
459 		return 0;
460 	return security_ops->inode_unlink(dir, dentry);
461 }
462 
463 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
464 			    const char *old_name)
465 {
466 	if (unlikely(IS_PRIVATE(dir)))
467 		return 0;
468 	return security_ops->inode_symlink(dir, dentry, old_name);
469 }
470 
471 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
472 {
473 	if (unlikely(IS_PRIVATE(dir)))
474 		return 0;
475 	return security_ops->inode_mkdir(dir, dentry, mode);
476 }
477 EXPORT_SYMBOL_GPL(security_inode_mkdir);
478 
479 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
480 {
481 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
482 		return 0;
483 	return security_ops->inode_rmdir(dir, dentry);
484 }
485 
486 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
487 {
488 	if (unlikely(IS_PRIVATE(dir)))
489 		return 0;
490 	return security_ops->inode_mknod(dir, dentry, mode, dev);
491 }
492 
493 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
494 			   struct inode *new_dir, struct dentry *new_dentry)
495 {
496         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
497             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
498 		return 0;
499 	return security_ops->inode_rename(old_dir, old_dentry,
500 					   new_dir, new_dentry);
501 }
502 
503 int security_inode_readlink(struct dentry *dentry)
504 {
505 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
506 		return 0;
507 	return security_ops->inode_readlink(dentry);
508 }
509 
510 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
511 {
512 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
513 		return 0;
514 	return security_ops->inode_follow_link(dentry, nd);
515 }
516 
517 int security_inode_permission(struct inode *inode, int mask)
518 {
519 	if (unlikely(IS_PRIVATE(inode)))
520 		return 0;
521 	return security_ops->inode_permission(inode, mask);
522 }
523 
524 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
525 {
526 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
527 		return 0;
528 	return security_ops->inode_setattr(dentry, attr);
529 }
530 EXPORT_SYMBOL_GPL(security_inode_setattr);
531 
532 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
533 {
534 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
535 		return 0;
536 	return security_ops->inode_getattr(mnt, dentry);
537 }
538 
539 int security_inode_setxattr(struct dentry *dentry, const char *name,
540 			    const void *value, size_t size, int flags)
541 {
542 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
543 		return 0;
544 	return security_ops->inode_setxattr(dentry, name, value, size, flags);
545 }
546 
547 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
548 				  const void *value, size_t size, int flags)
549 {
550 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
551 		return;
552 	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
553 }
554 
555 int security_inode_getxattr(struct dentry *dentry, const char *name)
556 {
557 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
558 		return 0;
559 	return security_ops->inode_getxattr(dentry, name);
560 }
561 
562 int security_inode_listxattr(struct dentry *dentry)
563 {
564 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
565 		return 0;
566 	return security_ops->inode_listxattr(dentry);
567 }
568 
569 int security_inode_removexattr(struct dentry *dentry, const char *name)
570 {
571 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
572 		return 0;
573 	return security_ops->inode_removexattr(dentry, name);
574 }
575 
576 int security_inode_need_killpriv(struct dentry *dentry)
577 {
578 	return security_ops->inode_need_killpriv(dentry);
579 }
580 
581 int security_inode_killpriv(struct dentry *dentry)
582 {
583 	return security_ops->inode_killpriv(dentry);
584 }
585 
586 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
587 {
588 	if (unlikely(IS_PRIVATE(inode)))
589 		return -EOPNOTSUPP;
590 	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
591 }
592 
593 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
594 {
595 	if (unlikely(IS_PRIVATE(inode)))
596 		return -EOPNOTSUPP;
597 	return security_ops->inode_setsecurity(inode, name, value, size, flags);
598 }
599 
600 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
601 {
602 	if (unlikely(IS_PRIVATE(inode)))
603 		return 0;
604 	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
605 }
606 
607 void security_inode_getsecid(const struct inode *inode, u32 *secid)
608 {
609 	security_ops->inode_getsecid(inode, secid);
610 }
611 
612 int security_file_permission(struct file *file, int mask)
613 {
614 	int ret;
615 
616 	ret = security_ops->file_permission(file, mask);
617 	if (ret)
618 		return ret;
619 
620 	return fsnotify_perm(file, mask);
621 }
622 
623 int security_file_alloc(struct file *file)
624 {
625 	return security_ops->file_alloc_security(file);
626 }
627 
628 void security_file_free(struct file *file)
629 {
630 	security_ops->file_free_security(file);
631 }
632 
633 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
634 {
635 	return security_ops->file_ioctl(file, cmd, arg);
636 }
637 
638 int security_file_mmap(struct file *file, unsigned long reqprot,
639 			unsigned long prot, unsigned long flags,
640 			unsigned long addr, unsigned long addr_only)
641 {
642 	int ret;
643 
644 	ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
645 	if (ret)
646 		return ret;
647 	return ima_file_mmap(file, prot);
648 }
649 
650 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
651 			    unsigned long prot)
652 {
653 	return security_ops->file_mprotect(vma, reqprot, prot);
654 }
655 
656 int security_file_lock(struct file *file, unsigned int cmd)
657 {
658 	return security_ops->file_lock(file, cmd);
659 }
660 
661 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
662 {
663 	return security_ops->file_fcntl(file, cmd, arg);
664 }
665 
666 int security_file_set_fowner(struct file *file)
667 {
668 	return security_ops->file_set_fowner(file);
669 }
670 
671 int security_file_send_sigiotask(struct task_struct *tsk,
672 				  struct fown_struct *fown, int sig)
673 {
674 	return security_ops->file_send_sigiotask(tsk, fown, sig);
675 }
676 
677 int security_file_receive(struct file *file)
678 {
679 	return security_ops->file_receive(file);
680 }
681 
682 int security_dentry_open(struct file *file, const struct cred *cred)
683 {
684 	int ret;
685 
686 	ret = security_ops->dentry_open(file, cred);
687 	if (ret)
688 		return ret;
689 
690 	return fsnotify_perm(file, MAY_OPEN);
691 }
692 
693 int security_task_create(unsigned long clone_flags)
694 {
695 	return security_ops->task_create(clone_flags);
696 }
697 
698 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
699 {
700 	return security_ops->cred_alloc_blank(cred, gfp);
701 }
702 
703 void security_cred_free(struct cred *cred)
704 {
705 	security_ops->cred_free(cred);
706 }
707 
708 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
709 {
710 	return security_ops->cred_prepare(new, old, gfp);
711 }
712 
713 void security_transfer_creds(struct cred *new, const struct cred *old)
714 {
715 	security_ops->cred_transfer(new, old);
716 }
717 
718 int security_kernel_act_as(struct cred *new, u32 secid)
719 {
720 	return security_ops->kernel_act_as(new, secid);
721 }
722 
723 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
724 {
725 	return security_ops->kernel_create_files_as(new, inode);
726 }
727 
728 int security_kernel_module_request(char *kmod_name)
729 {
730 	return security_ops->kernel_module_request(kmod_name);
731 }
732 
733 int security_task_fix_setuid(struct cred *new, const struct cred *old,
734 			     int flags)
735 {
736 	return security_ops->task_fix_setuid(new, old, flags);
737 }
738 
739 int security_task_setpgid(struct task_struct *p, pid_t pgid)
740 {
741 	return security_ops->task_setpgid(p, pgid);
742 }
743 
744 int security_task_getpgid(struct task_struct *p)
745 {
746 	return security_ops->task_getpgid(p);
747 }
748 
749 int security_task_getsid(struct task_struct *p)
750 {
751 	return security_ops->task_getsid(p);
752 }
753 
754 void security_task_getsecid(struct task_struct *p, u32 *secid)
755 {
756 	security_ops->task_getsecid(p, secid);
757 }
758 EXPORT_SYMBOL(security_task_getsecid);
759 
760 int security_task_setnice(struct task_struct *p, int nice)
761 {
762 	return security_ops->task_setnice(p, nice);
763 }
764 
765 int security_task_setioprio(struct task_struct *p, int ioprio)
766 {
767 	return security_ops->task_setioprio(p, ioprio);
768 }
769 
770 int security_task_getioprio(struct task_struct *p)
771 {
772 	return security_ops->task_getioprio(p);
773 }
774 
775 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
776 		struct rlimit *new_rlim)
777 {
778 	return security_ops->task_setrlimit(p, resource, new_rlim);
779 }
780 
781 int security_task_setscheduler(struct task_struct *p)
782 {
783 	return security_ops->task_setscheduler(p);
784 }
785 
786 int security_task_getscheduler(struct task_struct *p)
787 {
788 	return security_ops->task_getscheduler(p);
789 }
790 
791 int security_task_movememory(struct task_struct *p)
792 {
793 	return security_ops->task_movememory(p);
794 }
795 
796 int security_task_kill(struct task_struct *p, struct siginfo *info,
797 			int sig, u32 secid)
798 {
799 	return security_ops->task_kill(p, info, sig, secid);
800 }
801 
802 int security_task_wait(struct task_struct *p)
803 {
804 	return security_ops->task_wait(p);
805 }
806 
807 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
808 			 unsigned long arg4, unsigned long arg5)
809 {
810 	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
811 }
812 
813 void security_task_to_inode(struct task_struct *p, struct inode *inode)
814 {
815 	security_ops->task_to_inode(p, inode);
816 }
817 
818 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
819 {
820 	return security_ops->ipc_permission(ipcp, flag);
821 }
822 
823 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
824 {
825 	security_ops->ipc_getsecid(ipcp, secid);
826 }
827 
828 int security_msg_msg_alloc(struct msg_msg *msg)
829 {
830 	return security_ops->msg_msg_alloc_security(msg);
831 }
832 
833 void security_msg_msg_free(struct msg_msg *msg)
834 {
835 	security_ops->msg_msg_free_security(msg);
836 }
837 
838 int security_msg_queue_alloc(struct msg_queue *msq)
839 {
840 	return security_ops->msg_queue_alloc_security(msq);
841 }
842 
843 void security_msg_queue_free(struct msg_queue *msq)
844 {
845 	security_ops->msg_queue_free_security(msq);
846 }
847 
848 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
849 {
850 	return security_ops->msg_queue_associate(msq, msqflg);
851 }
852 
853 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
854 {
855 	return security_ops->msg_queue_msgctl(msq, cmd);
856 }
857 
858 int security_msg_queue_msgsnd(struct msg_queue *msq,
859 			       struct msg_msg *msg, int msqflg)
860 {
861 	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
862 }
863 
864 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
865 			       struct task_struct *target, long type, int mode)
866 {
867 	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
868 }
869 
870 int security_shm_alloc(struct shmid_kernel *shp)
871 {
872 	return security_ops->shm_alloc_security(shp);
873 }
874 
875 void security_shm_free(struct shmid_kernel *shp)
876 {
877 	security_ops->shm_free_security(shp);
878 }
879 
880 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
881 {
882 	return security_ops->shm_associate(shp, shmflg);
883 }
884 
885 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
886 {
887 	return security_ops->shm_shmctl(shp, cmd);
888 }
889 
890 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
891 {
892 	return security_ops->shm_shmat(shp, shmaddr, shmflg);
893 }
894 
895 int security_sem_alloc(struct sem_array *sma)
896 {
897 	return security_ops->sem_alloc_security(sma);
898 }
899 
900 void security_sem_free(struct sem_array *sma)
901 {
902 	security_ops->sem_free_security(sma);
903 }
904 
905 int security_sem_associate(struct sem_array *sma, int semflg)
906 {
907 	return security_ops->sem_associate(sma, semflg);
908 }
909 
910 int security_sem_semctl(struct sem_array *sma, int cmd)
911 {
912 	return security_ops->sem_semctl(sma, cmd);
913 }
914 
915 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
916 			unsigned nsops, int alter)
917 {
918 	return security_ops->sem_semop(sma, sops, nsops, alter);
919 }
920 
921 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
922 {
923 	if (unlikely(inode && IS_PRIVATE(inode)))
924 		return;
925 	security_ops->d_instantiate(dentry, inode);
926 }
927 EXPORT_SYMBOL(security_d_instantiate);
928 
929 int security_getprocattr(struct task_struct *p, char *name, char **value)
930 {
931 	return security_ops->getprocattr(p, name, value);
932 }
933 
934 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
935 {
936 	return security_ops->setprocattr(p, name, value, size);
937 }
938 
939 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
940 {
941 	return security_ops->netlink_send(sk, skb);
942 }
943 
944 int security_netlink_recv(struct sk_buff *skb, int cap)
945 {
946 	return security_ops->netlink_recv(skb, cap);
947 }
948 EXPORT_SYMBOL(security_netlink_recv);
949 
950 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
951 {
952 	return security_ops->secid_to_secctx(secid, secdata, seclen);
953 }
954 EXPORT_SYMBOL(security_secid_to_secctx);
955 
956 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
957 {
958 	return security_ops->secctx_to_secid(secdata, seclen, secid);
959 }
960 EXPORT_SYMBOL(security_secctx_to_secid);
961 
962 void security_release_secctx(char *secdata, u32 seclen)
963 {
964 	security_ops->release_secctx(secdata, seclen);
965 }
966 EXPORT_SYMBOL(security_release_secctx);
967 
968 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
969 {
970 	return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
971 }
972 EXPORT_SYMBOL(security_inode_notifysecctx);
973 
974 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
975 {
976 	return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
977 }
978 EXPORT_SYMBOL(security_inode_setsecctx);
979 
980 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
981 {
982 	return security_ops->inode_getsecctx(inode, ctx, ctxlen);
983 }
984 EXPORT_SYMBOL(security_inode_getsecctx);
985 
986 #ifdef CONFIG_SECURITY_NETWORK
987 
988 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
989 {
990 	return security_ops->unix_stream_connect(sock, other, newsk);
991 }
992 EXPORT_SYMBOL(security_unix_stream_connect);
993 
994 int security_unix_may_send(struct socket *sock,  struct socket *other)
995 {
996 	return security_ops->unix_may_send(sock, other);
997 }
998 EXPORT_SYMBOL(security_unix_may_send);
999 
1000 int security_socket_create(int family, int type, int protocol, int kern)
1001 {
1002 	return security_ops->socket_create(family, type, protocol, kern);
1003 }
1004 
1005 int security_socket_post_create(struct socket *sock, int family,
1006 				int type, int protocol, int kern)
1007 {
1008 	return security_ops->socket_post_create(sock, family, type,
1009 						protocol, kern);
1010 }
1011 
1012 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1013 {
1014 	return security_ops->socket_bind(sock, address, addrlen);
1015 }
1016 
1017 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1018 {
1019 	return security_ops->socket_connect(sock, address, addrlen);
1020 }
1021 
1022 int security_socket_listen(struct socket *sock, int backlog)
1023 {
1024 	return security_ops->socket_listen(sock, backlog);
1025 }
1026 
1027 int security_socket_accept(struct socket *sock, struct socket *newsock)
1028 {
1029 	return security_ops->socket_accept(sock, newsock);
1030 }
1031 
1032 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1033 {
1034 	return security_ops->socket_sendmsg(sock, msg, size);
1035 }
1036 
1037 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1038 			    int size, int flags)
1039 {
1040 	return security_ops->socket_recvmsg(sock, msg, size, flags);
1041 }
1042 
1043 int security_socket_getsockname(struct socket *sock)
1044 {
1045 	return security_ops->socket_getsockname(sock);
1046 }
1047 
1048 int security_socket_getpeername(struct socket *sock)
1049 {
1050 	return security_ops->socket_getpeername(sock);
1051 }
1052 
1053 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1054 {
1055 	return security_ops->socket_getsockopt(sock, level, optname);
1056 }
1057 
1058 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1059 {
1060 	return security_ops->socket_setsockopt(sock, level, optname);
1061 }
1062 
1063 int security_socket_shutdown(struct socket *sock, int how)
1064 {
1065 	return security_ops->socket_shutdown(sock, how);
1066 }
1067 
1068 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1069 {
1070 	return security_ops->socket_sock_rcv_skb(sk, skb);
1071 }
1072 EXPORT_SYMBOL(security_sock_rcv_skb);
1073 
1074 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1075 				      int __user *optlen, unsigned len)
1076 {
1077 	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1078 }
1079 
1080 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1081 {
1082 	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1083 }
1084 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1085 
1086 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1087 {
1088 	return security_ops->sk_alloc_security(sk, family, priority);
1089 }
1090 
1091 void security_sk_free(struct sock *sk)
1092 {
1093 	security_ops->sk_free_security(sk);
1094 }
1095 
1096 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1097 {
1098 	security_ops->sk_clone_security(sk, newsk);
1099 }
1100 
1101 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1102 {
1103 	security_ops->sk_getsecid(sk, &fl->flowi_secid);
1104 }
1105 EXPORT_SYMBOL(security_sk_classify_flow);
1106 
1107 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1108 {
1109 	security_ops->req_classify_flow(req, fl);
1110 }
1111 EXPORT_SYMBOL(security_req_classify_flow);
1112 
1113 void security_sock_graft(struct sock *sk, struct socket *parent)
1114 {
1115 	security_ops->sock_graft(sk, parent);
1116 }
1117 EXPORT_SYMBOL(security_sock_graft);
1118 
1119 int security_inet_conn_request(struct sock *sk,
1120 			struct sk_buff *skb, struct request_sock *req)
1121 {
1122 	return security_ops->inet_conn_request(sk, skb, req);
1123 }
1124 EXPORT_SYMBOL(security_inet_conn_request);
1125 
1126 void security_inet_csk_clone(struct sock *newsk,
1127 			const struct request_sock *req)
1128 {
1129 	security_ops->inet_csk_clone(newsk, req);
1130 }
1131 
1132 void security_inet_conn_established(struct sock *sk,
1133 			struct sk_buff *skb)
1134 {
1135 	security_ops->inet_conn_established(sk, skb);
1136 }
1137 
1138 int security_secmark_relabel_packet(u32 secid)
1139 {
1140 	return security_ops->secmark_relabel_packet(secid);
1141 }
1142 EXPORT_SYMBOL(security_secmark_relabel_packet);
1143 
1144 void security_secmark_refcount_inc(void)
1145 {
1146 	security_ops->secmark_refcount_inc();
1147 }
1148 EXPORT_SYMBOL(security_secmark_refcount_inc);
1149 
1150 void security_secmark_refcount_dec(void)
1151 {
1152 	security_ops->secmark_refcount_dec();
1153 }
1154 EXPORT_SYMBOL(security_secmark_refcount_dec);
1155 
1156 int security_tun_dev_create(void)
1157 {
1158 	return security_ops->tun_dev_create();
1159 }
1160 EXPORT_SYMBOL(security_tun_dev_create);
1161 
1162 void security_tun_dev_post_create(struct sock *sk)
1163 {
1164 	return security_ops->tun_dev_post_create(sk);
1165 }
1166 EXPORT_SYMBOL(security_tun_dev_post_create);
1167 
1168 int security_tun_dev_attach(struct sock *sk)
1169 {
1170 	return security_ops->tun_dev_attach(sk);
1171 }
1172 EXPORT_SYMBOL(security_tun_dev_attach);
1173 
1174 #endif	/* CONFIG_SECURITY_NETWORK */
1175 
1176 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1177 
1178 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1179 {
1180 	return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1181 }
1182 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1183 
1184 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1185 			      struct xfrm_sec_ctx **new_ctxp)
1186 {
1187 	return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1188 }
1189 
1190 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1191 {
1192 	security_ops->xfrm_policy_free_security(ctx);
1193 }
1194 EXPORT_SYMBOL(security_xfrm_policy_free);
1195 
1196 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1197 {
1198 	return security_ops->xfrm_policy_delete_security(ctx);
1199 }
1200 
1201 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1202 {
1203 	return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1204 }
1205 EXPORT_SYMBOL(security_xfrm_state_alloc);
1206 
1207 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1208 				      struct xfrm_sec_ctx *polsec, u32 secid)
1209 {
1210 	if (!polsec)
1211 		return 0;
1212 	/*
1213 	 * We want the context to be taken from secid which is usually
1214 	 * from the sock.
1215 	 */
1216 	return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1217 }
1218 
1219 int security_xfrm_state_delete(struct xfrm_state *x)
1220 {
1221 	return security_ops->xfrm_state_delete_security(x);
1222 }
1223 EXPORT_SYMBOL(security_xfrm_state_delete);
1224 
1225 void security_xfrm_state_free(struct xfrm_state *x)
1226 {
1227 	security_ops->xfrm_state_free_security(x);
1228 }
1229 
1230 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1231 {
1232 	return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1233 }
1234 
1235 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1236 				       struct xfrm_policy *xp,
1237 				       const struct flowi *fl)
1238 {
1239 	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1240 }
1241 
1242 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1243 {
1244 	return security_ops->xfrm_decode_session(skb, secid, 1);
1245 }
1246 
1247 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1248 {
1249 	int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1250 
1251 	BUG_ON(rc);
1252 }
1253 EXPORT_SYMBOL(security_skb_classify_flow);
1254 
1255 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1256 
1257 #ifdef CONFIG_KEYS
1258 
1259 int security_key_alloc(struct key *key, const struct cred *cred,
1260 		       unsigned long flags)
1261 {
1262 	return security_ops->key_alloc(key, cred, flags);
1263 }
1264 
1265 void security_key_free(struct key *key)
1266 {
1267 	security_ops->key_free(key);
1268 }
1269 
1270 int security_key_permission(key_ref_t key_ref,
1271 			    const struct cred *cred, key_perm_t perm)
1272 {
1273 	return security_ops->key_permission(key_ref, cred, perm);
1274 }
1275 
1276 int security_key_getsecurity(struct key *key, char **_buffer)
1277 {
1278 	return security_ops->key_getsecurity(key, _buffer);
1279 }
1280 
1281 #endif	/* CONFIG_KEYS */
1282 
1283 #ifdef CONFIG_AUDIT
1284 
1285 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1286 {
1287 	return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1288 }
1289 
1290 int security_audit_rule_known(struct audit_krule *krule)
1291 {
1292 	return security_ops->audit_rule_known(krule);
1293 }
1294 
1295 void security_audit_rule_free(void *lsmrule)
1296 {
1297 	security_ops->audit_rule_free(lsmrule);
1298 }
1299 
1300 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1301 			      struct audit_context *actx)
1302 {
1303 	return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1304 }
1305 
1306 #endif /* CONFIG_AUDIT */
1307