xref: /openbmc/linux/security/security.c (revision 6feb3487)
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *	This program is free software; you can redistribute it and/or modify
9  *	it under the terms of the GNU General Public License as published by
10  *	the Free Software Foundation; either version 2 of the License, or
11  *	(at your option) any later version.
12  */
13 
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 
20 /* Boot-time LSM user choice */
21 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1];
22 
23 /* things that live in capability.c */
24 extern struct security_operations default_security_ops;
25 extern void security_fixup_ops(struct security_operations *ops);
26 
27 struct security_operations *security_ops;	/* Initialized to NULL */
28 
29 /* amount of vm to protect from userspace access */
30 unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR;
31 
32 static inline int verify(struct security_operations *ops)
33 {
34 	/* verify the security_operations structure exists */
35 	if (!ops)
36 		return -EINVAL;
37 	security_fixup_ops(ops);
38 	return 0;
39 }
40 
41 static void __init do_security_initcalls(void)
42 {
43 	initcall_t *call;
44 	call = __security_initcall_start;
45 	while (call < __security_initcall_end) {
46 		(*call) ();
47 		call++;
48 	}
49 }
50 
51 /**
52  * security_init - initializes the security framework
53  *
54  * This should be called early in the kernel initialization sequence.
55  */
56 int __init security_init(void)
57 {
58 	printk(KERN_INFO "Security Framework initialized\n");
59 
60 	security_fixup_ops(&default_security_ops);
61 	security_ops = &default_security_ops;
62 	do_security_initcalls();
63 
64 	return 0;
65 }
66 
67 /* Save user chosen LSM */
68 static int __init choose_lsm(char *str)
69 {
70 	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
71 	return 1;
72 }
73 __setup("security=", choose_lsm);
74 
75 /**
76  * security_module_enable - Load given security module on boot ?
77  * @ops: a pointer to the struct security_operations that is to be checked.
78  *
79  * Each LSM must pass this method before registering its own operations
80  * to avoid security registration races. This method may also be used
81  * to check if your LSM is currently loaded during kernel initialization.
82  *
83  * Return true if:
84  *	-The passed LSM is the one chosen by user at boot time,
85  *	-or user didn't specify a specific LSM and we're the first to ask
86  *	 for registration permission,
87  *	-or the passed LSM is currently loaded.
88  * Otherwise, return false.
89  */
90 int __init security_module_enable(struct security_operations *ops)
91 {
92 	if (!*chosen_lsm)
93 		strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
94 	else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
95 		return 0;
96 
97 	return 1;
98 }
99 
100 /**
101  * register_security - registers a security framework with the kernel
102  * @ops: a pointer to the struct security_options that is to be registered
103  *
104  * This function allows a security module to register itself with the
105  * kernel security subsystem.  Some rudimentary checking is done on the @ops
106  * value passed to this function. You'll need to check first if your LSM
107  * is allowed to register its @ops by calling security_module_enable(@ops).
108  *
109  * If there is already a security module registered with the kernel,
110  * an error will be returned.  Otherwise %0 is returned on success.
111  */
112 int register_security(struct security_operations *ops)
113 {
114 	if (verify(ops)) {
115 		printk(KERN_DEBUG "%s could not verify "
116 		       "security_operations structure.\n", __func__);
117 		return -EINVAL;
118 	}
119 
120 	if (security_ops != &default_security_ops)
121 		return -EAGAIN;
122 
123 	security_ops = ops;
124 
125 	return 0;
126 }
127 
128 /* Security operations */
129 
130 int security_ptrace_may_access(struct task_struct *child, unsigned int mode)
131 {
132 	return security_ops->ptrace_may_access(child, mode);
133 }
134 
135 int security_ptrace_traceme(struct task_struct *parent)
136 {
137 	return security_ops->ptrace_traceme(parent);
138 }
139 
140 int security_capget(struct task_struct *target,
141 		     kernel_cap_t *effective,
142 		     kernel_cap_t *inheritable,
143 		     kernel_cap_t *permitted)
144 {
145 	return security_ops->capget(target, effective, inheritable, permitted);
146 }
147 
148 int security_capset_check(struct task_struct *target,
149 			   kernel_cap_t *effective,
150 			   kernel_cap_t *inheritable,
151 			   kernel_cap_t *permitted)
152 {
153 	return security_ops->capset_check(target, effective, inheritable, permitted);
154 }
155 
156 void security_capset_set(struct task_struct *target,
157 			  kernel_cap_t *effective,
158 			  kernel_cap_t *inheritable,
159 			  kernel_cap_t *permitted)
160 {
161 	security_ops->capset_set(target, effective, inheritable, permitted);
162 }
163 
164 int security_capable(struct task_struct *tsk, int cap)
165 {
166 	return security_ops->capable(tsk, cap);
167 }
168 
169 int security_acct(struct file *file)
170 {
171 	return security_ops->acct(file);
172 }
173 
174 int security_sysctl(struct ctl_table *table, int op)
175 {
176 	return security_ops->sysctl(table, op);
177 }
178 
179 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
180 {
181 	return security_ops->quotactl(cmds, type, id, sb);
182 }
183 
184 int security_quota_on(struct dentry *dentry)
185 {
186 	return security_ops->quota_on(dentry);
187 }
188 
189 int security_syslog(int type)
190 {
191 	return security_ops->syslog(type);
192 }
193 
194 int security_settime(struct timespec *ts, struct timezone *tz)
195 {
196 	return security_ops->settime(ts, tz);
197 }
198 
199 int security_vm_enough_memory(long pages)
200 {
201 	WARN_ON(current->mm == NULL);
202 	return security_ops->vm_enough_memory(current->mm, pages);
203 }
204 
205 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
206 {
207 	WARN_ON(mm == NULL);
208 	return security_ops->vm_enough_memory(mm, pages);
209 }
210 
211 int security_vm_enough_memory_kern(long pages)
212 {
213 	/* If current->mm is a kernel thread then we will pass NULL,
214 	   for this specific case that is fine */
215 	return security_ops->vm_enough_memory(current->mm, pages);
216 }
217 
218 int security_bprm_alloc(struct linux_binprm *bprm)
219 {
220 	return security_ops->bprm_alloc_security(bprm);
221 }
222 
223 void security_bprm_free(struct linux_binprm *bprm)
224 {
225 	security_ops->bprm_free_security(bprm);
226 }
227 
228 void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
229 {
230 	security_ops->bprm_apply_creds(bprm, unsafe);
231 }
232 
233 void security_bprm_post_apply_creds(struct linux_binprm *bprm)
234 {
235 	security_ops->bprm_post_apply_creds(bprm);
236 }
237 
238 int security_bprm_set(struct linux_binprm *bprm)
239 {
240 	return security_ops->bprm_set_security(bprm);
241 }
242 
243 int security_bprm_check(struct linux_binprm *bprm)
244 {
245 	return security_ops->bprm_check_security(bprm);
246 }
247 
248 int security_bprm_secureexec(struct linux_binprm *bprm)
249 {
250 	return security_ops->bprm_secureexec(bprm);
251 }
252 
253 int security_sb_alloc(struct super_block *sb)
254 {
255 	return security_ops->sb_alloc_security(sb);
256 }
257 
258 void security_sb_free(struct super_block *sb)
259 {
260 	security_ops->sb_free_security(sb);
261 }
262 
263 int security_sb_copy_data(char *orig, char *copy)
264 {
265 	return security_ops->sb_copy_data(orig, copy);
266 }
267 EXPORT_SYMBOL(security_sb_copy_data);
268 
269 int security_sb_kern_mount(struct super_block *sb, void *data)
270 {
271 	return security_ops->sb_kern_mount(sb, data);
272 }
273 
274 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
275 {
276 	return security_ops->sb_show_options(m, sb);
277 }
278 
279 int security_sb_statfs(struct dentry *dentry)
280 {
281 	return security_ops->sb_statfs(dentry);
282 }
283 
284 int security_sb_mount(char *dev_name, struct path *path,
285                        char *type, unsigned long flags, void *data)
286 {
287 	return security_ops->sb_mount(dev_name, path, type, flags, data);
288 }
289 
290 int security_sb_check_sb(struct vfsmount *mnt, struct path *path)
291 {
292 	return security_ops->sb_check_sb(mnt, path);
293 }
294 
295 int security_sb_umount(struct vfsmount *mnt, int flags)
296 {
297 	return security_ops->sb_umount(mnt, flags);
298 }
299 
300 void security_sb_umount_close(struct vfsmount *mnt)
301 {
302 	security_ops->sb_umount_close(mnt);
303 }
304 
305 void security_sb_umount_busy(struct vfsmount *mnt)
306 {
307 	security_ops->sb_umount_busy(mnt);
308 }
309 
310 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
311 {
312 	security_ops->sb_post_remount(mnt, flags, data);
313 }
314 
315 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint)
316 {
317 	security_ops->sb_post_addmount(mnt, mountpoint);
318 }
319 
320 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
321 {
322 	return security_ops->sb_pivotroot(old_path, new_path);
323 }
324 
325 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path)
326 {
327 	security_ops->sb_post_pivotroot(old_path, new_path);
328 }
329 
330 int security_sb_set_mnt_opts(struct super_block *sb,
331 				struct security_mnt_opts *opts)
332 {
333 	return security_ops->sb_set_mnt_opts(sb, opts);
334 }
335 EXPORT_SYMBOL(security_sb_set_mnt_opts);
336 
337 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
338 				struct super_block *newsb)
339 {
340 	security_ops->sb_clone_mnt_opts(oldsb, newsb);
341 }
342 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
343 
344 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
345 {
346 	return security_ops->sb_parse_opts_str(options, opts);
347 }
348 EXPORT_SYMBOL(security_sb_parse_opts_str);
349 
350 int security_inode_alloc(struct inode *inode)
351 {
352 	inode->i_security = NULL;
353 	return security_ops->inode_alloc_security(inode);
354 }
355 
356 void security_inode_free(struct inode *inode)
357 {
358 	security_ops->inode_free_security(inode);
359 }
360 
361 int security_inode_init_security(struct inode *inode, struct inode *dir,
362 				  char **name, void **value, size_t *len)
363 {
364 	if (unlikely(IS_PRIVATE(inode)))
365 		return -EOPNOTSUPP;
366 	return security_ops->inode_init_security(inode, dir, name, value, len);
367 }
368 EXPORT_SYMBOL(security_inode_init_security);
369 
370 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
371 {
372 	if (unlikely(IS_PRIVATE(dir)))
373 		return 0;
374 	return security_ops->inode_create(dir, dentry, mode);
375 }
376 
377 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
378 			 struct dentry *new_dentry)
379 {
380 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
381 		return 0;
382 	return security_ops->inode_link(old_dentry, dir, new_dentry);
383 }
384 
385 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
386 {
387 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
388 		return 0;
389 	return security_ops->inode_unlink(dir, dentry);
390 }
391 
392 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
393 			    const char *old_name)
394 {
395 	if (unlikely(IS_PRIVATE(dir)))
396 		return 0;
397 	return security_ops->inode_symlink(dir, dentry, old_name);
398 }
399 
400 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
401 {
402 	if (unlikely(IS_PRIVATE(dir)))
403 		return 0;
404 	return security_ops->inode_mkdir(dir, dentry, mode);
405 }
406 
407 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
408 {
409 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
410 		return 0;
411 	return security_ops->inode_rmdir(dir, dentry);
412 }
413 
414 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
415 {
416 	if (unlikely(IS_PRIVATE(dir)))
417 		return 0;
418 	return security_ops->inode_mknod(dir, dentry, mode, dev);
419 }
420 
421 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
422 			   struct inode *new_dir, struct dentry *new_dentry)
423 {
424         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
425             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
426 		return 0;
427 	return security_ops->inode_rename(old_dir, old_dentry,
428 					   new_dir, new_dentry);
429 }
430 
431 int security_inode_readlink(struct dentry *dentry)
432 {
433 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
434 		return 0;
435 	return security_ops->inode_readlink(dentry);
436 }
437 
438 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
439 {
440 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
441 		return 0;
442 	return security_ops->inode_follow_link(dentry, nd);
443 }
444 
445 int security_inode_permission(struct inode *inode, int mask)
446 {
447 	if (unlikely(IS_PRIVATE(inode)))
448 		return 0;
449 	return security_ops->inode_permission(inode, mask);
450 }
451 
452 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
453 {
454 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
455 		return 0;
456 	return security_ops->inode_setattr(dentry, attr);
457 }
458 EXPORT_SYMBOL_GPL(security_inode_setattr);
459 
460 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
461 {
462 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
463 		return 0;
464 	return security_ops->inode_getattr(mnt, dentry);
465 }
466 
467 void security_inode_delete(struct inode *inode)
468 {
469 	if (unlikely(IS_PRIVATE(inode)))
470 		return;
471 	security_ops->inode_delete(inode);
472 }
473 
474 int security_inode_setxattr(struct dentry *dentry, const char *name,
475 			    const void *value, size_t size, int flags)
476 {
477 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
478 		return 0;
479 	return security_ops->inode_setxattr(dentry, name, value, size, flags);
480 }
481 
482 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
483 				  const void *value, size_t size, int flags)
484 {
485 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
486 		return;
487 	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
488 }
489 
490 int security_inode_getxattr(struct dentry *dentry, const char *name)
491 {
492 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
493 		return 0;
494 	return security_ops->inode_getxattr(dentry, name);
495 }
496 
497 int security_inode_listxattr(struct dentry *dentry)
498 {
499 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
500 		return 0;
501 	return security_ops->inode_listxattr(dentry);
502 }
503 
504 int security_inode_removexattr(struct dentry *dentry, const char *name)
505 {
506 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
507 		return 0;
508 	return security_ops->inode_removexattr(dentry, name);
509 }
510 
511 int security_inode_need_killpriv(struct dentry *dentry)
512 {
513 	return security_ops->inode_need_killpriv(dentry);
514 }
515 
516 int security_inode_killpriv(struct dentry *dentry)
517 {
518 	return security_ops->inode_killpriv(dentry);
519 }
520 
521 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
522 {
523 	if (unlikely(IS_PRIVATE(inode)))
524 		return 0;
525 	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
526 }
527 
528 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
529 {
530 	if (unlikely(IS_PRIVATE(inode)))
531 		return 0;
532 	return security_ops->inode_setsecurity(inode, name, value, size, flags);
533 }
534 
535 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
536 {
537 	if (unlikely(IS_PRIVATE(inode)))
538 		return 0;
539 	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
540 }
541 
542 void security_inode_getsecid(const struct inode *inode, u32 *secid)
543 {
544 	security_ops->inode_getsecid(inode, secid);
545 }
546 
547 int security_file_permission(struct file *file, int mask)
548 {
549 	return security_ops->file_permission(file, mask);
550 }
551 
552 int security_file_alloc(struct file *file)
553 {
554 	return security_ops->file_alloc_security(file);
555 }
556 
557 void security_file_free(struct file *file)
558 {
559 	security_ops->file_free_security(file);
560 }
561 
562 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
563 {
564 	return security_ops->file_ioctl(file, cmd, arg);
565 }
566 
567 int security_file_mmap(struct file *file, unsigned long reqprot,
568 			unsigned long prot, unsigned long flags,
569 			unsigned long addr, unsigned long addr_only)
570 {
571 	return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
572 }
573 
574 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
575 			    unsigned long prot)
576 {
577 	return security_ops->file_mprotect(vma, reqprot, prot);
578 }
579 
580 int security_file_lock(struct file *file, unsigned int cmd)
581 {
582 	return security_ops->file_lock(file, cmd);
583 }
584 
585 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
586 {
587 	return security_ops->file_fcntl(file, cmd, arg);
588 }
589 
590 int security_file_set_fowner(struct file *file)
591 {
592 	return security_ops->file_set_fowner(file);
593 }
594 
595 int security_file_send_sigiotask(struct task_struct *tsk,
596 				  struct fown_struct *fown, int sig)
597 {
598 	return security_ops->file_send_sigiotask(tsk, fown, sig);
599 }
600 
601 int security_file_receive(struct file *file)
602 {
603 	return security_ops->file_receive(file);
604 }
605 
606 int security_dentry_open(struct file *file)
607 {
608 	return security_ops->dentry_open(file);
609 }
610 
611 int security_task_create(unsigned long clone_flags)
612 {
613 	return security_ops->task_create(clone_flags);
614 }
615 
616 int security_task_alloc(struct task_struct *p)
617 {
618 	return security_ops->task_alloc_security(p);
619 }
620 
621 void security_task_free(struct task_struct *p)
622 {
623 	security_ops->task_free_security(p);
624 }
625 
626 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
627 {
628 	return security_ops->task_setuid(id0, id1, id2, flags);
629 }
630 
631 int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
632 			       uid_t old_suid, int flags)
633 {
634 	return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags);
635 }
636 
637 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
638 {
639 	return security_ops->task_setgid(id0, id1, id2, flags);
640 }
641 
642 int security_task_setpgid(struct task_struct *p, pid_t pgid)
643 {
644 	return security_ops->task_setpgid(p, pgid);
645 }
646 
647 int security_task_getpgid(struct task_struct *p)
648 {
649 	return security_ops->task_getpgid(p);
650 }
651 
652 int security_task_getsid(struct task_struct *p)
653 {
654 	return security_ops->task_getsid(p);
655 }
656 
657 void security_task_getsecid(struct task_struct *p, u32 *secid)
658 {
659 	security_ops->task_getsecid(p, secid);
660 }
661 EXPORT_SYMBOL(security_task_getsecid);
662 
663 int security_task_setgroups(struct group_info *group_info)
664 {
665 	return security_ops->task_setgroups(group_info);
666 }
667 
668 int security_task_setnice(struct task_struct *p, int nice)
669 {
670 	return security_ops->task_setnice(p, nice);
671 }
672 
673 int security_task_setioprio(struct task_struct *p, int ioprio)
674 {
675 	return security_ops->task_setioprio(p, ioprio);
676 }
677 
678 int security_task_getioprio(struct task_struct *p)
679 {
680 	return security_ops->task_getioprio(p);
681 }
682 
683 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
684 {
685 	return security_ops->task_setrlimit(resource, new_rlim);
686 }
687 
688 int security_task_setscheduler(struct task_struct *p,
689 				int policy, struct sched_param *lp)
690 {
691 	return security_ops->task_setscheduler(p, policy, lp);
692 }
693 
694 int security_task_getscheduler(struct task_struct *p)
695 {
696 	return security_ops->task_getscheduler(p);
697 }
698 
699 int security_task_movememory(struct task_struct *p)
700 {
701 	return security_ops->task_movememory(p);
702 }
703 
704 int security_task_kill(struct task_struct *p, struct siginfo *info,
705 			int sig, u32 secid)
706 {
707 	return security_ops->task_kill(p, info, sig, secid);
708 }
709 
710 int security_task_wait(struct task_struct *p)
711 {
712 	return security_ops->task_wait(p);
713 }
714 
715 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
716 			 unsigned long arg4, unsigned long arg5, long *rc_p)
717 {
718 	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p);
719 }
720 
721 void security_task_reparent_to_init(struct task_struct *p)
722 {
723 	security_ops->task_reparent_to_init(p);
724 }
725 
726 void security_task_to_inode(struct task_struct *p, struct inode *inode)
727 {
728 	security_ops->task_to_inode(p, inode);
729 }
730 
731 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
732 {
733 	return security_ops->ipc_permission(ipcp, flag);
734 }
735 
736 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
737 {
738 	security_ops->ipc_getsecid(ipcp, secid);
739 }
740 
741 int security_msg_msg_alloc(struct msg_msg *msg)
742 {
743 	return security_ops->msg_msg_alloc_security(msg);
744 }
745 
746 void security_msg_msg_free(struct msg_msg *msg)
747 {
748 	security_ops->msg_msg_free_security(msg);
749 }
750 
751 int security_msg_queue_alloc(struct msg_queue *msq)
752 {
753 	return security_ops->msg_queue_alloc_security(msq);
754 }
755 
756 void security_msg_queue_free(struct msg_queue *msq)
757 {
758 	security_ops->msg_queue_free_security(msq);
759 }
760 
761 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
762 {
763 	return security_ops->msg_queue_associate(msq, msqflg);
764 }
765 
766 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
767 {
768 	return security_ops->msg_queue_msgctl(msq, cmd);
769 }
770 
771 int security_msg_queue_msgsnd(struct msg_queue *msq,
772 			       struct msg_msg *msg, int msqflg)
773 {
774 	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
775 }
776 
777 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
778 			       struct task_struct *target, long type, int mode)
779 {
780 	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
781 }
782 
783 int security_shm_alloc(struct shmid_kernel *shp)
784 {
785 	return security_ops->shm_alloc_security(shp);
786 }
787 
788 void security_shm_free(struct shmid_kernel *shp)
789 {
790 	security_ops->shm_free_security(shp);
791 }
792 
793 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
794 {
795 	return security_ops->shm_associate(shp, shmflg);
796 }
797 
798 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
799 {
800 	return security_ops->shm_shmctl(shp, cmd);
801 }
802 
803 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
804 {
805 	return security_ops->shm_shmat(shp, shmaddr, shmflg);
806 }
807 
808 int security_sem_alloc(struct sem_array *sma)
809 {
810 	return security_ops->sem_alloc_security(sma);
811 }
812 
813 void security_sem_free(struct sem_array *sma)
814 {
815 	security_ops->sem_free_security(sma);
816 }
817 
818 int security_sem_associate(struct sem_array *sma, int semflg)
819 {
820 	return security_ops->sem_associate(sma, semflg);
821 }
822 
823 int security_sem_semctl(struct sem_array *sma, int cmd)
824 {
825 	return security_ops->sem_semctl(sma, cmd);
826 }
827 
828 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
829 			unsigned nsops, int alter)
830 {
831 	return security_ops->sem_semop(sma, sops, nsops, alter);
832 }
833 
834 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
835 {
836 	if (unlikely(inode && IS_PRIVATE(inode)))
837 		return;
838 	security_ops->d_instantiate(dentry, inode);
839 }
840 EXPORT_SYMBOL(security_d_instantiate);
841 
842 int security_getprocattr(struct task_struct *p, char *name, char **value)
843 {
844 	return security_ops->getprocattr(p, name, value);
845 }
846 
847 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
848 {
849 	return security_ops->setprocattr(p, name, value, size);
850 }
851 
852 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
853 {
854 	return security_ops->netlink_send(sk, skb);
855 }
856 
857 int security_netlink_recv(struct sk_buff *skb, int cap)
858 {
859 	return security_ops->netlink_recv(skb, cap);
860 }
861 EXPORT_SYMBOL(security_netlink_recv);
862 
863 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
864 {
865 	return security_ops->secid_to_secctx(secid, secdata, seclen);
866 }
867 EXPORT_SYMBOL(security_secid_to_secctx);
868 
869 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
870 {
871 	return security_ops->secctx_to_secid(secdata, seclen, secid);
872 }
873 EXPORT_SYMBOL(security_secctx_to_secid);
874 
875 void security_release_secctx(char *secdata, u32 seclen)
876 {
877 	security_ops->release_secctx(secdata, seclen);
878 }
879 EXPORT_SYMBOL(security_release_secctx);
880 
881 #ifdef CONFIG_SECURITY_NETWORK
882 
883 int security_unix_stream_connect(struct socket *sock, struct socket *other,
884 				 struct sock *newsk)
885 {
886 	return security_ops->unix_stream_connect(sock, other, newsk);
887 }
888 EXPORT_SYMBOL(security_unix_stream_connect);
889 
890 int security_unix_may_send(struct socket *sock,  struct socket *other)
891 {
892 	return security_ops->unix_may_send(sock, other);
893 }
894 EXPORT_SYMBOL(security_unix_may_send);
895 
896 int security_socket_create(int family, int type, int protocol, int kern)
897 {
898 	return security_ops->socket_create(family, type, protocol, kern);
899 }
900 
901 int security_socket_post_create(struct socket *sock, int family,
902 				int type, int protocol, int kern)
903 {
904 	return security_ops->socket_post_create(sock, family, type,
905 						protocol, kern);
906 }
907 
908 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
909 {
910 	return security_ops->socket_bind(sock, address, addrlen);
911 }
912 
913 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
914 {
915 	return security_ops->socket_connect(sock, address, addrlen);
916 }
917 
918 int security_socket_listen(struct socket *sock, int backlog)
919 {
920 	return security_ops->socket_listen(sock, backlog);
921 }
922 
923 int security_socket_accept(struct socket *sock, struct socket *newsock)
924 {
925 	return security_ops->socket_accept(sock, newsock);
926 }
927 
928 void security_socket_post_accept(struct socket *sock, struct socket *newsock)
929 {
930 	security_ops->socket_post_accept(sock, newsock);
931 }
932 
933 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
934 {
935 	return security_ops->socket_sendmsg(sock, msg, size);
936 }
937 
938 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
939 			    int size, int flags)
940 {
941 	return security_ops->socket_recvmsg(sock, msg, size, flags);
942 }
943 
944 int security_socket_getsockname(struct socket *sock)
945 {
946 	return security_ops->socket_getsockname(sock);
947 }
948 
949 int security_socket_getpeername(struct socket *sock)
950 {
951 	return security_ops->socket_getpeername(sock);
952 }
953 
954 int security_socket_getsockopt(struct socket *sock, int level, int optname)
955 {
956 	return security_ops->socket_getsockopt(sock, level, optname);
957 }
958 
959 int security_socket_setsockopt(struct socket *sock, int level, int optname)
960 {
961 	return security_ops->socket_setsockopt(sock, level, optname);
962 }
963 
964 int security_socket_shutdown(struct socket *sock, int how)
965 {
966 	return security_ops->socket_shutdown(sock, how);
967 }
968 
969 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
970 {
971 	return security_ops->socket_sock_rcv_skb(sk, skb);
972 }
973 EXPORT_SYMBOL(security_sock_rcv_skb);
974 
975 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
976 				      int __user *optlen, unsigned len)
977 {
978 	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
979 }
980 
981 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
982 {
983 	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
984 }
985 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
986 
987 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
988 {
989 	return security_ops->sk_alloc_security(sk, family, priority);
990 }
991 
992 void security_sk_free(struct sock *sk)
993 {
994 	security_ops->sk_free_security(sk);
995 }
996 
997 void security_sk_clone(const struct sock *sk, struct sock *newsk)
998 {
999 	security_ops->sk_clone_security(sk, newsk);
1000 }
1001 
1002 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1003 {
1004 	security_ops->sk_getsecid(sk, &fl->secid);
1005 }
1006 EXPORT_SYMBOL(security_sk_classify_flow);
1007 
1008 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1009 {
1010 	security_ops->req_classify_flow(req, fl);
1011 }
1012 EXPORT_SYMBOL(security_req_classify_flow);
1013 
1014 void security_sock_graft(struct sock *sk, struct socket *parent)
1015 {
1016 	security_ops->sock_graft(sk, parent);
1017 }
1018 EXPORT_SYMBOL(security_sock_graft);
1019 
1020 int security_inet_conn_request(struct sock *sk,
1021 			struct sk_buff *skb, struct request_sock *req)
1022 {
1023 	return security_ops->inet_conn_request(sk, skb, req);
1024 }
1025 EXPORT_SYMBOL(security_inet_conn_request);
1026 
1027 void security_inet_csk_clone(struct sock *newsk,
1028 			const struct request_sock *req)
1029 {
1030 	security_ops->inet_csk_clone(newsk, req);
1031 }
1032 
1033 void security_inet_conn_established(struct sock *sk,
1034 			struct sk_buff *skb)
1035 {
1036 	security_ops->inet_conn_established(sk, skb);
1037 }
1038 
1039 #endif	/* CONFIG_SECURITY_NETWORK */
1040 
1041 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1042 
1043 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1044 {
1045 	return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1046 }
1047 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1048 
1049 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1050 			      struct xfrm_sec_ctx **new_ctxp)
1051 {
1052 	return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1053 }
1054 
1055 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1056 {
1057 	security_ops->xfrm_policy_free_security(ctx);
1058 }
1059 EXPORT_SYMBOL(security_xfrm_policy_free);
1060 
1061 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1062 {
1063 	return security_ops->xfrm_policy_delete_security(ctx);
1064 }
1065 
1066 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1067 {
1068 	return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1069 }
1070 EXPORT_SYMBOL(security_xfrm_state_alloc);
1071 
1072 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1073 				      struct xfrm_sec_ctx *polsec, u32 secid)
1074 {
1075 	if (!polsec)
1076 		return 0;
1077 	/*
1078 	 * We want the context to be taken from secid which is usually
1079 	 * from the sock.
1080 	 */
1081 	return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1082 }
1083 
1084 int security_xfrm_state_delete(struct xfrm_state *x)
1085 {
1086 	return security_ops->xfrm_state_delete_security(x);
1087 }
1088 EXPORT_SYMBOL(security_xfrm_state_delete);
1089 
1090 void security_xfrm_state_free(struct xfrm_state *x)
1091 {
1092 	security_ops->xfrm_state_free_security(x);
1093 }
1094 
1095 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1096 {
1097 	return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1098 }
1099 
1100 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1101 				       struct xfrm_policy *xp, struct flowi *fl)
1102 {
1103 	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1104 }
1105 
1106 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1107 {
1108 	return security_ops->xfrm_decode_session(skb, secid, 1);
1109 }
1110 
1111 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1112 {
1113 	int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1114 
1115 	BUG_ON(rc);
1116 }
1117 EXPORT_SYMBOL(security_skb_classify_flow);
1118 
1119 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1120 
1121 #ifdef CONFIG_KEYS
1122 
1123 int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags)
1124 {
1125 	return security_ops->key_alloc(key, tsk, flags);
1126 }
1127 
1128 void security_key_free(struct key *key)
1129 {
1130 	security_ops->key_free(key);
1131 }
1132 
1133 int security_key_permission(key_ref_t key_ref,
1134 			    struct task_struct *context, key_perm_t perm)
1135 {
1136 	return security_ops->key_permission(key_ref, context, perm);
1137 }
1138 
1139 int security_key_getsecurity(struct key *key, char **_buffer)
1140 {
1141 	return security_ops->key_getsecurity(key, _buffer);
1142 }
1143 
1144 #endif	/* CONFIG_KEYS */
1145 
1146 #ifdef CONFIG_AUDIT
1147 
1148 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1149 {
1150 	return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1151 }
1152 
1153 int security_audit_rule_known(struct audit_krule *krule)
1154 {
1155 	return security_ops->audit_rule_known(krule);
1156 }
1157 
1158 void security_audit_rule_free(void *lsmrule)
1159 {
1160 	security_ops->audit_rule_free(lsmrule);
1161 }
1162 
1163 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1164 			      struct audit_context *actx)
1165 {
1166 	return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1167 }
1168 
1169 #endif /* CONFIG_AUDIT */
1170