xref: /openbmc/linux/security/security.c (revision 6f0f0fd4)
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *	This program is free software; you can redistribute it and/or modify
9  *	it under the terms of the GNU General Public License as published by
10  *	the Free Software Foundation; either version 2 of the License, or
11  *	(at your option) any later version.
12  */
13 
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 
20 /* Boot-time LSM user choice */
21 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1];
22 
23 /* things that live in capability.c */
24 extern struct security_operations default_security_ops;
25 extern void security_fixup_ops(struct security_operations *ops);
26 
27 struct security_operations *security_ops;	/* Initialized to NULL */
28 
29 /* amount of vm to protect from userspace access */
30 unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR;
31 
32 static inline int verify(struct security_operations *ops)
33 {
34 	/* verify the security_operations structure exists */
35 	if (!ops)
36 		return -EINVAL;
37 	security_fixup_ops(ops);
38 	return 0;
39 }
40 
41 static void __init do_security_initcalls(void)
42 {
43 	initcall_t *call;
44 	call = __security_initcall_start;
45 	while (call < __security_initcall_end) {
46 		(*call) ();
47 		call++;
48 	}
49 }
50 
51 /**
52  * security_init - initializes the security framework
53  *
54  * This should be called early in the kernel initialization sequence.
55  */
56 int __init security_init(void)
57 {
58 	printk(KERN_INFO "Security Framework initialized\n");
59 
60 	security_fixup_ops(&default_security_ops);
61 	security_ops = &default_security_ops;
62 	do_security_initcalls();
63 
64 	return 0;
65 }
66 
67 /* Save user chosen LSM */
68 static int __init choose_lsm(char *str)
69 {
70 	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
71 	return 1;
72 }
73 __setup("security=", choose_lsm);
74 
75 /**
76  * security_module_enable - Load given security module on boot ?
77  * @ops: a pointer to the struct security_operations that is to be checked.
78  *
79  * Each LSM must pass this method before registering its own operations
80  * to avoid security registration races. This method may also be used
81  * to check if your LSM is currently loaded during kernel initialization.
82  *
83  * Return true if:
84  *	-The passed LSM is the one chosen by user at boot time,
85  *	-or user didsn't specify a specific LSM and we're the first to ask
86  *	 for registeration permissoin,
87  *	-or the passed LSM is currently loaded.
88  * Otherwise, return false.
89  */
90 int __init security_module_enable(struct security_operations *ops)
91 {
92 	if (!*chosen_lsm)
93 		strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
94 	else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
95 		return 0;
96 
97 	return 1;
98 }
99 
100 /**
101  * register_security - registers a security framework with the kernel
102  * @ops: a pointer to the struct security_options that is to be registered
103  *
104  * This function is to allow a security module to register itself with the
105  * kernel security subsystem.  Some rudimentary checking is done on the @ops
106  * value passed to this function. You'll need to check first if your LSM
107  * is allowed to register its @ops by calling security_module_enable(@ops).
108  *
109  * If there is already a security module registered with the kernel,
110  * an error will be returned.  Otherwise 0 is returned on success.
111  */
112 int register_security(struct security_operations *ops)
113 {
114 	if (verify(ops)) {
115 		printk(KERN_DEBUG "%s could not verify "
116 		       "security_operations structure.\n", __func__);
117 		return -EINVAL;
118 	}
119 
120 	if (security_ops != &default_security_ops)
121 		return -EAGAIN;
122 
123 	security_ops = ops;
124 
125 	return 0;
126 }
127 
128 /* Security operations */
129 
130 int security_ptrace(struct task_struct *parent, struct task_struct *child,
131 		    unsigned int mode)
132 {
133 	return security_ops->ptrace(parent, child, mode);
134 }
135 
136 int security_capget(struct task_struct *target,
137 		     kernel_cap_t *effective,
138 		     kernel_cap_t *inheritable,
139 		     kernel_cap_t *permitted)
140 {
141 	return security_ops->capget(target, effective, inheritable, permitted);
142 }
143 
144 int security_capset_check(struct task_struct *target,
145 			   kernel_cap_t *effective,
146 			   kernel_cap_t *inheritable,
147 			   kernel_cap_t *permitted)
148 {
149 	return security_ops->capset_check(target, effective, inheritable, permitted);
150 }
151 
152 void security_capset_set(struct task_struct *target,
153 			  kernel_cap_t *effective,
154 			  kernel_cap_t *inheritable,
155 			  kernel_cap_t *permitted)
156 {
157 	security_ops->capset_set(target, effective, inheritable, permitted);
158 }
159 
160 int security_capable(struct task_struct *tsk, int cap)
161 {
162 	return security_ops->capable(tsk, cap);
163 }
164 
165 int security_acct(struct file *file)
166 {
167 	return security_ops->acct(file);
168 }
169 
170 int security_sysctl(struct ctl_table *table, int op)
171 {
172 	return security_ops->sysctl(table, op);
173 }
174 
175 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
176 {
177 	return security_ops->quotactl(cmds, type, id, sb);
178 }
179 
180 int security_quota_on(struct dentry *dentry)
181 {
182 	return security_ops->quota_on(dentry);
183 }
184 
185 int security_syslog(int type)
186 {
187 	return security_ops->syslog(type);
188 }
189 
190 int security_settime(struct timespec *ts, struct timezone *tz)
191 {
192 	return security_ops->settime(ts, tz);
193 }
194 
195 int security_vm_enough_memory(long pages)
196 {
197 	return security_ops->vm_enough_memory(current->mm, pages);
198 }
199 
200 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
201 {
202 	return security_ops->vm_enough_memory(mm, pages);
203 }
204 
205 int security_bprm_alloc(struct linux_binprm *bprm)
206 {
207 	return security_ops->bprm_alloc_security(bprm);
208 }
209 
210 void security_bprm_free(struct linux_binprm *bprm)
211 {
212 	security_ops->bprm_free_security(bprm);
213 }
214 
215 void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
216 {
217 	security_ops->bprm_apply_creds(bprm, unsafe);
218 }
219 
220 void security_bprm_post_apply_creds(struct linux_binprm *bprm)
221 {
222 	security_ops->bprm_post_apply_creds(bprm);
223 }
224 
225 int security_bprm_set(struct linux_binprm *bprm)
226 {
227 	return security_ops->bprm_set_security(bprm);
228 }
229 
230 int security_bprm_check(struct linux_binprm *bprm)
231 {
232 	return security_ops->bprm_check_security(bprm);
233 }
234 
235 int security_bprm_secureexec(struct linux_binprm *bprm)
236 {
237 	return security_ops->bprm_secureexec(bprm);
238 }
239 
240 int security_sb_alloc(struct super_block *sb)
241 {
242 	return security_ops->sb_alloc_security(sb);
243 }
244 
245 void security_sb_free(struct super_block *sb)
246 {
247 	security_ops->sb_free_security(sb);
248 }
249 
250 int security_sb_copy_data(char *orig, char *copy)
251 {
252 	return security_ops->sb_copy_data(orig, copy);
253 }
254 EXPORT_SYMBOL(security_sb_copy_data);
255 
256 int security_sb_kern_mount(struct super_block *sb, void *data)
257 {
258 	return security_ops->sb_kern_mount(sb, data);
259 }
260 
261 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
262 {
263 	return security_ops->sb_show_options(m, sb);
264 }
265 
266 int security_sb_statfs(struct dentry *dentry)
267 {
268 	return security_ops->sb_statfs(dentry);
269 }
270 
271 int security_sb_mount(char *dev_name, struct path *path,
272                        char *type, unsigned long flags, void *data)
273 {
274 	return security_ops->sb_mount(dev_name, path, type, flags, data);
275 }
276 
277 int security_sb_check_sb(struct vfsmount *mnt, struct path *path)
278 {
279 	return security_ops->sb_check_sb(mnt, path);
280 }
281 
282 int security_sb_umount(struct vfsmount *mnt, int flags)
283 {
284 	return security_ops->sb_umount(mnt, flags);
285 }
286 
287 void security_sb_umount_close(struct vfsmount *mnt)
288 {
289 	security_ops->sb_umount_close(mnt);
290 }
291 
292 void security_sb_umount_busy(struct vfsmount *mnt)
293 {
294 	security_ops->sb_umount_busy(mnt);
295 }
296 
297 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
298 {
299 	security_ops->sb_post_remount(mnt, flags, data);
300 }
301 
302 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint)
303 {
304 	security_ops->sb_post_addmount(mnt, mountpoint);
305 }
306 
307 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
308 {
309 	return security_ops->sb_pivotroot(old_path, new_path);
310 }
311 
312 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path)
313 {
314 	security_ops->sb_post_pivotroot(old_path, new_path);
315 }
316 
317 int security_sb_set_mnt_opts(struct super_block *sb,
318 				struct security_mnt_opts *opts)
319 {
320 	return security_ops->sb_set_mnt_opts(sb, opts);
321 }
322 EXPORT_SYMBOL(security_sb_set_mnt_opts);
323 
324 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
325 				struct super_block *newsb)
326 {
327 	security_ops->sb_clone_mnt_opts(oldsb, newsb);
328 }
329 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
330 
331 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
332 {
333 	return security_ops->sb_parse_opts_str(options, opts);
334 }
335 EXPORT_SYMBOL(security_sb_parse_opts_str);
336 
337 int security_inode_alloc(struct inode *inode)
338 {
339 	inode->i_security = NULL;
340 	return security_ops->inode_alloc_security(inode);
341 }
342 
343 void security_inode_free(struct inode *inode)
344 {
345 	security_ops->inode_free_security(inode);
346 }
347 
348 int security_inode_init_security(struct inode *inode, struct inode *dir,
349 				  char **name, void **value, size_t *len)
350 {
351 	if (unlikely(IS_PRIVATE(inode)))
352 		return -EOPNOTSUPP;
353 	return security_ops->inode_init_security(inode, dir, name, value, len);
354 }
355 EXPORT_SYMBOL(security_inode_init_security);
356 
357 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
358 {
359 	if (unlikely(IS_PRIVATE(dir)))
360 		return 0;
361 	return security_ops->inode_create(dir, dentry, mode);
362 }
363 
364 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
365 			 struct dentry *new_dentry)
366 {
367 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
368 		return 0;
369 	return security_ops->inode_link(old_dentry, dir, new_dentry);
370 }
371 
372 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
373 {
374 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
375 		return 0;
376 	return security_ops->inode_unlink(dir, dentry);
377 }
378 
379 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
380 			    const char *old_name)
381 {
382 	if (unlikely(IS_PRIVATE(dir)))
383 		return 0;
384 	return security_ops->inode_symlink(dir, dentry, old_name);
385 }
386 
387 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
388 {
389 	if (unlikely(IS_PRIVATE(dir)))
390 		return 0;
391 	return security_ops->inode_mkdir(dir, dentry, mode);
392 }
393 
394 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
395 {
396 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
397 		return 0;
398 	return security_ops->inode_rmdir(dir, dentry);
399 }
400 
401 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
402 {
403 	if (unlikely(IS_PRIVATE(dir)))
404 		return 0;
405 	return security_ops->inode_mknod(dir, dentry, mode, dev);
406 }
407 
408 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
409 			   struct inode *new_dir, struct dentry *new_dentry)
410 {
411         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
412             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
413 		return 0;
414 	return security_ops->inode_rename(old_dir, old_dentry,
415 					   new_dir, new_dentry);
416 }
417 
418 int security_inode_readlink(struct dentry *dentry)
419 {
420 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
421 		return 0;
422 	return security_ops->inode_readlink(dentry);
423 }
424 
425 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
426 {
427 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
428 		return 0;
429 	return security_ops->inode_follow_link(dentry, nd);
430 }
431 
432 int security_inode_permission(struct inode *inode, int mask, struct nameidata *nd)
433 {
434 	if (unlikely(IS_PRIVATE(inode)))
435 		return 0;
436 	return security_ops->inode_permission(inode, mask, nd);
437 }
438 
439 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
440 {
441 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
442 		return 0;
443 	return security_ops->inode_setattr(dentry, attr);
444 }
445 
446 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
447 {
448 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
449 		return 0;
450 	return security_ops->inode_getattr(mnt, dentry);
451 }
452 
453 void security_inode_delete(struct inode *inode)
454 {
455 	if (unlikely(IS_PRIVATE(inode)))
456 		return;
457 	security_ops->inode_delete(inode);
458 }
459 
460 int security_inode_setxattr(struct dentry *dentry, const char *name,
461 			    const void *value, size_t size, int flags)
462 {
463 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
464 		return 0;
465 	return security_ops->inode_setxattr(dentry, name, value, size, flags);
466 }
467 
468 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
469 				  const void *value, size_t size, int flags)
470 {
471 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
472 		return;
473 	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
474 }
475 
476 int security_inode_getxattr(struct dentry *dentry, const char *name)
477 {
478 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
479 		return 0;
480 	return security_ops->inode_getxattr(dentry, name);
481 }
482 
483 int security_inode_listxattr(struct dentry *dentry)
484 {
485 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
486 		return 0;
487 	return security_ops->inode_listxattr(dentry);
488 }
489 
490 int security_inode_removexattr(struct dentry *dentry, const char *name)
491 {
492 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
493 		return 0;
494 	return security_ops->inode_removexattr(dentry, name);
495 }
496 
497 int security_inode_need_killpriv(struct dentry *dentry)
498 {
499 	return security_ops->inode_need_killpriv(dentry);
500 }
501 
502 int security_inode_killpriv(struct dentry *dentry)
503 {
504 	return security_ops->inode_killpriv(dentry);
505 }
506 
507 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
508 {
509 	if (unlikely(IS_PRIVATE(inode)))
510 		return 0;
511 	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
512 }
513 
514 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
515 {
516 	if (unlikely(IS_PRIVATE(inode)))
517 		return 0;
518 	return security_ops->inode_setsecurity(inode, name, value, size, flags);
519 }
520 
521 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
522 {
523 	if (unlikely(IS_PRIVATE(inode)))
524 		return 0;
525 	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
526 }
527 
528 void security_inode_getsecid(const struct inode *inode, u32 *secid)
529 {
530 	security_ops->inode_getsecid(inode, secid);
531 }
532 
533 int security_file_permission(struct file *file, int mask)
534 {
535 	return security_ops->file_permission(file, mask);
536 }
537 
538 int security_file_alloc(struct file *file)
539 {
540 	return security_ops->file_alloc_security(file);
541 }
542 
543 void security_file_free(struct file *file)
544 {
545 	security_ops->file_free_security(file);
546 }
547 
548 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
549 {
550 	return security_ops->file_ioctl(file, cmd, arg);
551 }
552 
553 int security_file_mmap(struct file *file, unsigned long reqprot,
554 			unsigned long prot, unsigned long flags,
555 			unsigned long addr, unsigned long addr_only)
556 {
557 	return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
558 }
559 
560 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
561 			    unsigned long prot)
562 {
563 	return security_ops->file_mprotect(vma, reqprot, prot);
564 }
565 
566 int security_file_lock(struct file *file, unsigned int cmd)
567 {
568 	return security_ops->file_lock(file, cmd);
569 }
570 
571 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
572 {
573 	return security_ops->file_fcntl(file, cmd, arg);
574 }
575 
576 int security_file_set_fowner(struct file *file)
577 {
578 	return security_ops->file_set_fowner(file);
579 }
580 
581 int security_file_send_sigiotask(struct task_struct *tsk,
582 				  struct fown_struct *fown, int sig)
583 {
584 	return security_ops->file_send_sigiotask(tsk, fown, sig);
585 }
586 
587 int security_file_receive(struct file *file)
588 {
589 	return security_ops->file_receive(file);
590 }
591 
592 int security_dentry_open(struct file *file)
593 {
594 	return security_ops->dentry_open(file);
595 }
596 
597 int security_task_create(unsigned long clone_flags)
598 {
599 	return security_ops->task_create(clone_flags);
600 }
601 
602 int security_task_alloc(struct task_struct *p)
603 {
604 	return security_ops->task_alloc_security(p);
605 }
606 
607 void security_task_free(struct task_struct *p)
608 {
609 	security_ops->task_free_security(p);
610 }
611 
612 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
613 {
614 	return security_ops->task_setuid(id0, id1, id2, flags);
615 }
616 
617 int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
618 			       uid_t old_suid, int flags)
619 {
620 	return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags);
621 }
622 
623 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
624 {
625 	return security_ops->task_setgid(id0, id1, id2, flags);
626 }
627 
628 int security_task_setpgid(struct task_struct *p, pid_t pgid)
629 {
630 	return security_ops->task_setpgid(p, pgid);
631 }
632 
633 int security_task_getpgid(struct task_struct *p)
634 {
635 	return security_ops->task_getpgid(p);
636 }
637 
638 int security_task_getsid(struct task_struct *p)
639 {
640 	return security_ops->task_getsid(p);
641 }
642 
643 void security_task_getsecid(struct task_struct *p, u32 *secid)
644 {
645 	security_ops->task_getsecid(p, secid);
646 }
647 EXPORT_SYMBOL(security_task_getsecid);
648 
649 int security_task_setgroups(struct group_info *group_info)
650 {
651 	return security_ops->task_setgroups(group_info);
652 }
653 
654 int security_task_setnice(struct task_struct *p, int nice)
655 {
656 	return security_ops->task_setnice(p, nice);
657 }
658 
659 int security_task_setioprio(struct task_struct *p, int ioprio)
660 {
661 	return security_ops->task_setioprio(p, ioprio);
662 }
663 
664 int security_task_getioprio(struct task_struct *p)
665 {
666 	return security_ops->task_getioprio(p);
667 }
668 
669 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
670 {
671 	return security_ops->task_setrlimit(resource, new_rlim);
672 }
673 
674 int security_task_setscheduler(struct task_struct *p,
675 				int policy, struct sched_param *lp)
676 {
677 	return security_ops->task_setscheduler(p, policy, lp);
678 }
679 
680 int security_task_getscheduler(struct task_struct *p)
681 {
682 	return security_ops->task_getscheduler(p);
683 }
684 
685 int security_task_movememory(struct task_struct *p)
686 {
687 	return security_ops->task_movememory(p);
688 }
689 
690 int security_task_kill(struct task_struct *p, struct siginfo *info,
691 			int sig, u32 secid)
692 {
693 	return security_ops->task_kill(p, info, sig, secid);
694 }
695 
696 int security_task_wait(struct task_struct *p)
697 {
698 	return security_ops->task_wait(p);
699 }
700 
701 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
702 			 unsigned long arg4, unsigned long arg5, long *rc_p)
703 {
704 	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p);
705 }
706 
707 void security_task_reparent_to_init(struct task_struct *p)
708 {
709 	security_ops->task_reparent_to_init(p);
710 }
711 
712 void security_task_to_inode(struct task_struct *p, struct inode *inode)
713 {
714 	security_ops->task_to_inode(p, inode);
715 }
716 
717 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
718 {
719 	return security_ops->ipc_permission(ipcp, flag);
720 }
721 
722 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
723 {
724 	security_ops->ipc_getsecid(ipcp, secid);
725 }
726 
727 int security_msg_msg_alloc(struct msg_msg *msg)
728 {
729 	return security_ops->msg_msg_alloc_security(msg);
730 }
731 
732 void security_msg_msg_free(struct msg_msg *msg)
733 {
734 	security_ops->msg_msg_free_security(msg);
735 }
736 
737 int security_msg_queue_alloc(struct msg_queue *msq)
738 {
739 	return security_ops->msg_queue_alloc_security(msq);
740 }
741 
742 void security_msg_queue_free(struct msg_queue *msq)
743 {
744 	security_ops->msg_queue_free_security(msq);
745 }
746 
747 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
748 {
749 	return security_ops->msg_queue_associate(msq, msqflg);
750 }
751 
752 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
753 {
754 	return security_ops->msg_queue_msgctl(msq, cmd);
755 }
756 
757 int security_msg_queue_msgsnd(struct msg_queue *msq,
758 			       struct msg_msg *msg, int msqflg)
759 {
760 	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
761 }
762 
763 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
764 			       struct task_struct *target, long type, int mode)
765 {
766 	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
767 }
768 
769 int security_shm_alloc(struct shmid_kernel *shp)
770 {
771 	return security_ops->shm_alloc_security(shp);
772 }
773 
774 void security_shm_free(struct shmid_kernel *shp)
775 {
776 	security_ops->shm_free_security(shp);
777 }
778 
779 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
780 {
781 	return security_ops->shm_associate(shp, shmflg);
782 }
783 
784 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
785 {
786 	return security_ops->shm_shmctl(shp, cmd);
787 }
788 
789 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
790 {
791 	return security_ops->shm_shmat(shp, shmaddr, shmflg);
792 }
793 
794 int security_sem_alloc(struct sem_array *sma)
795 {
796 	return security_ops->sem_alloc_security(sma);
797 }
798 
799 void security_sem_free(struct sem_array *sma)
800 {
801 	security_ops->sem_free_security(sma);
802 }
803 
804 int security_sem_associate(struct sem_array *sma, int semflg)
805 {
806 	return security_ops->sem_associate(sma, semflg);
807 }
808 
809 int security_sem_semctl(struct sem_array *sma, int cmd)
810 {
811 	return security_ops->sem_semctl(sma, cmd);
812 }
813 
814 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
815 			unsigned nsops, int alter)
816 {
817 	return security_ops->sem_semop(sma, sops, nsops, alter);
818 }
819 
820 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
821 {
822 	if (unlikely(inode && IS_PRIVATE(inode)))
823 		return;
824 	security_ops->d_instantiate(dentry, inode);
825 }
826 EXPORT_SYMBOL(security_d_instantiate);
827 
828 int security_getprocattr(struct task_struct *p, char *name, char **value)
829 {
830 	return security_ops->getprocattr(p, name, value);
831 }
832 
833 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
834 {
835 	return security_ops->setprocattr(p, name, value, size);
836 }
837 
838 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
839 {
840 	return security_ops->netlink_send(sk, skb);
841 }
842 
843 int security_netlink_recv(struct sk_buff *skb, int cap)
844 {
845 	return security_ops->netlink_recv(skb, cap);
846 }
847 EXPORT_SYMBOL(security_netlink_recv);
848 
849 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
850 {
851 	return security_ops->secid_to_secctx(secid, secdata, seclen);
852 }
853 EXPORT_SYMBOL(security_secid_to_secctx);
854 
855 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
856 {
857 	return security_ops->secctx_to_secid(secdata, seclen, secid);
858 }
859 EXPORT_SYMBOL(security_secctx_to_secid);
860 
861 void security_release_secctx(char *secdata, u32 seclen)
862 {
863 	security_ops->release_secctx(secdata, seclen);
864 }
865 EXPORT_SYMBOL(security_release_secctx);
866 
867 #ifdef CONFIG_SECURITY_NETWORK
868 
869 int security_unix_stream_connect(struct socket *sock, struct socket *other,
870 				 struct sock *newsk)
871 {
872 	return security_ops->unix_stream_connect(sock, other, newsk);
873 }
874 EXPORT_SYMBOL(security_unix_stream_connect);
875 
876 int security_unix_may_send(struct socket *sock,  struct socket *other)
877 {
878 	return security_ops->unix_may_send(sock, other);
879 }
880 EXPORT_SYMBOL(security_unix_may_send);
881 
882 int security_socket_create(int family, int type, int protocol, int kern)
883 {
884 	return security_ops->socket_create(family, type, protocol, kern);
885 }
886 
887 int security_socket_post_create(struct socket *sock, int family,
888 				int type, int protocol, int kern)
889 {
890 	return security_ops->socket_post_create(sock, family, type,
891 						protocol, kern);
892 }
893 
894 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
895 {
896 	return security_ops->socket_bind(sock, address, addrlen);
897 }
898 
899 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
900 {
901 	return security_ops->socket_connect(sock, address, addrlen);
902 }
903 
904 int security_socket_listen(struct socket *sock, int backlog)
905 {
906 	return security_ops->socket_listen(sock, backlog);
907 }
908 
909 int security_socket_accept(struct socket *sock, struct socket *newsock)
910 {
911 	return security_ops->socket_accept(sock, newsock);
912 }
913 
914 void security_socket_post_accept(struct socket *sock, struct socket *newsock)
915 {
916 	security_ops->socket_post_accept(sock, newsock);
917 }
918 
919 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
920 {
921 	return security_ops->socket_sendmsg(sock, msg, size);
922 }
923 
924 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
925 			    int size, int flags)
926 {
927 	return security_ops->socket_recvmsg(sock, msg, size, flags);
928 }
929 
930 int security_socket_getsockname(struct socket *sock)
931 {
932 	return security_ops->socket_getsockname(sock);
933 }
934 
935 int security_socket_getpeername(struct socket *sock)
936 {
937 	return security_ops->socket_getpeername(sock);
938 }
939 
940 int security_socket_getsockopt(struct socket *sock, int level, int optname)
941 {
942 	return security_ops->socket_getsockopt(sock, level, optname);
943 }
944 
945 int security_socket_setsockopt(struct socket *sock, int level, int optname)
946 {
947 	return security_ops->socket_setsockopt(sock, level, optname);
948 }
949 
950 int security_socket_shutdown(struct socket *sock, int how)
951 {
952 	return security_ops->socket_shutdown(sock, how);
953 }
954 
955 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
956 {
957 	return security_ops->socket_sock_rcv_skb(sk, skb);
958 }
959 EXPORT_SYMBOL(security_sock_rcv_skb);
960 
961 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
962 				      int __user *optlen, unsigned len)
963 {
964 	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
965 }
966 
967 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
968 {
969 	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
970 }
971 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
972 
973 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
974 {
975 	return security_ops->sk_alloc_security(sk, family, priority);
976 }
977 
978 void security_sk_free(struct sock *sk)
979 {
980 	security_ops->sk_free_security(sk);
981 }
982 
983 void security_sk_clone(const struct sock *sk, struct sock *newsk)
984 {
985 	security_ops->sk_clone_security(sk, newsk);
986 }
987 
988 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
989 {
990 	security_ops->sk_getsecid(sk, &fl->secid);
991 }
992 EXPORT_SYMBOL(security_sk_classify_flow);
993 
994 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
995 {
996 	security_ops->req_classify_flow(req, fl);
997 }
998 EXPORT_SYMBOL(security_req_classify_flow);
999 
1000 void security_sock_graft(struct sock *sk, struct socket *parent)
1001 {
1002 	security_ops->sock_graft(sk, parent);
1003 }
1004 EXPORT_SYMBOL(security_sock_graft);
1005 
1006 int security_inet_conn_request(struct sock *sk,
1007 			struct sk_buff *skb, struct request_sock *req)
1008 {
1009 	return security_ops->inet_conn_request(sk, skb, req);
1010 }
1011 EXPORT_SYMBOL(security_inet_conn_request);
1012 
1013 void security_inet_csk_clone(struct sock *newsk,
1014 			const struct request_sock *req)
1015 {
1016 	security_ops->inet_csk_clone(newsk, req);
1017 }
1018 
1019 void security_inet_conn_established(struct sock *sk,
1020 			struct sk_buff *skb)
1021 {
1022 	security_ops->inet_conn_established(sk, skb);
1023 }
1024 
1025 #endif	/* CONFIG_SECURITY_NETWORK */
1026 
1027 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1028 
1029 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1030 {
1031 	return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1032 }
1033 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1034 
1035 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1036 			      struct xfrm_sec_ctx **new_ctxp)
1037 {
1038 	return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1039 }
1040 
1041 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1042 {
1043 	security_ops->xfrm_policy_free_security(ctx);
1044 }
1045 EXPORT_SYMBOL(security_xfrm_policy_free);
1046 
1047 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1048 {
1049 	return security_ops->xfrm_policy_delete_security(ctx);
1050 }
1051 
1052 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1053 {
1054 	return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1055 }
1056 EXPORT_SYMBOL(security_xfrm_state_alloc);
1057 
1058 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1059 				      struct xfrm_sec_ctx *polsec, u32 secid)
1060 {
1061 	if (!polsec)
1062 		return 0;
1063 	/*
1064 	 * We want the context to be taken from secid which is usually
1065 	 * from the sock.
1066 	 */
1067 	return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1068 }
1069 
1070 int security_xfrm_state_delete(struct xfrm_state *x)
1071 {
1072 	return security_ops->xfrm_state_delete_security(x);
1073 }
1074 EXPORT_SYMBOL(security_xfrm_state_delete);
1075 
1076 void security_xfrm_state_free(struct xfrm_state *x)
1077 {
1078 	security_ops->xfrm_state_free_security(x);
1079 }
1080 
1081 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1082 {
1083 	return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1084 }
1085 
1086 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1087 				       struct xfrm_policy *xp, struct flowi *fl)
1088 {
1089 	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1090 }
1091 
1092 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1093 {
1094 	return security_ops->xfrm_decode_session(skb, secid, 1);
1095 }
1096 
1097 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1098 {
1099 	int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1100 
1101 	BUG_ON(rc);
1102 }
1103 EXPORT_SYMBOL(security_skb_classify_flow);
1104 
1105 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1106 
1107 #ifdef CONFIG_KEYS
1108 
1109 int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags)
1110 {
1111 	return security_ops->key_alloc(key, tsk, flags);
1112 }
1113 
1114 void security_key_free(struct key *key)
1115 {
1116 	security_ops->key_free(key);
1117 }
1118 
1119 int security_key_permission(key_ref_t key_ref,
1120 			    struct task_struct *context, key_perm_t perm)
1121 {
1122 	return security_ops->key_permission(key_ref, context, perm);
1123 }
1124 
1125 int security_key_getsecurity(struct key *key, char **_buffer)
1126 {
1127 	return security_ops->key_getsecurity(key, _buffer);
1128 }
1129 
1130 #endif	/* CONFIG_KEYS */
1131 
1132 #ifdef CONFIG_AUDIT
1133 
1134 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1135 {
1136 	return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1137 }
1138 
1139 int security_audit_rule_known(struct audit_krule *krule)
1140 {
1141 	return security_ops->audit_rule_known(krule);
1142 }
1143 
1144 void security_audit_rule_free(void *lsmrule)
1145 {
1146 	security_ops->audit_rule_free(lsmrule);
1147 }
1148 
1149 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1150 			      struct audit_context *actx)
1151 {
1152 	return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1153 }
1154 
1155 #endif /* CONFIG_AUDIT */
1156