1 /* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/capability.h> 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/kernel.h> 18 #include <linux/security.h> 19 20 /* Boot-time LSM user choice */ 21 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1]; 22 23 /* things that live in capability.c */ 24 extern struct security_operations default_security_ops; 25 extern void security_fixup_ops(struct security_operations *ops); 26 27 struct security_operations *security_ops; /* Initialized to NULL */ 28 29 /* amount of vm to protect from userspace access */ 30 unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR; 31 32 static inline int verify(struct security_operations *ops) 33 { 34 /* verify the security_operations structure exists */ 35 if (!ops) 36 return -EINVAL; 37 security_fixup_ops(ops); 38 return 0; 39 } 40 41 static void __init do_security_initcalls(void) 42 { 43 initcall_t *call; 44 call = __security_initcall_start; 45 while (call < __security_initcall_end) { 46 (*call) (); 47 call++; 48 } 49 } 50 51 /** 52 * security_init - initializes the security framework 53 * 54 * This should be called early in the kernel initialization sequence. 55 */ 56 int __init security_init(void) 57 { 58 printk(KERN_INFO "Security Framework initialized\n"); 59 60 security_fixup_ops(&default_security_ops); 61 security_ops = &default_security_ops; 62 do_security_initcalls(); 63 64 return 0; 65 } 66 67 /* Save user chosen LSM */ 68 static int __init choose_lsm(char *str) 69 { 70 strncpy(chosen_lsm, str, SECURITY_NAME_MAX); 71 return 1; 72 } 73 __setup("security=", choose_lsm); 74 75 /** 76 * security_module_enable - Load given security module on boot ? 77 * @ops: a pointer to the struct security_operations that is to be checked. 78 * 79 * Each LSM must pass this method before registering its own operations 80 * to avoid security registration races. This method may also be used 81 * to check if your LSM is currently loaded during kernel initialization. 82 * 83 * Return true if: 84 * -The passed LSM is the one chosen by user at boot time, 85 * -or user didsn't specify a specific LSM and we're the first to ask 86 * for registeration permissoin, 87 * -or the passed LSM is currently loaded. 88 * Otherwise, return false. 89 */ 90 int __init security_module_enable(struct security_operations *ops) 91 { 92 if (!*chosen_lsm) 93 strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX); 94 else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX)) 95 return 0; 96 97 return 1; 98 } 99 100 /** 101 * register_security - registers a security framework with the kernel 102 * @ops: a pointer to the struct security_options that is to be registered 103 * 104 * This function is to allow a security module to register itself with the 105 * kernel security subsystem. Some rudimentary checking is done on the @ops 106 * value passed to this function. You'll need to check first if your LSM 107 * is allowed to register its @ops by calling security_module_enable(@ops). 108 * 109 * If there is already a security module registered with the kernel, 110 * an error will be returned. Otherwise 0 is returned on success. 111 */ 112 int register_security(struct security_operations *ops) 113 { 114 if (verify(ops)) { 115 printk(KERN_DEBUG "%s could not verify " 116 "security_operations structure.\n", __func__); 117 return -EINVAL; 118 } 119 120 if (security_ops != &default_security_ops) 121 return -EAGAIN; 122 123 security_ops = ops; 124 125 return 0; 126 } 127 128 /* Security operations */ 129 130 int security_ptrace(struct task_struct *parent, struct task_struct *child, 131 unsigned int mode) 132 { 133 return security_ops->ptrace(parent, child, mode); 134 } 135 136 int security_capget(struct task_struct *target, 137 kernel_cap_t *effective, 138 kernel_cap_t *inheritable, 139 kernel_cap_t *permitted) 140 { 141 return security_ops->capget(target, effective, inheritable, permitted); 142 } 143 144 int security_capset_check(struct task_struct *target, 145 kernel_cap_t *effective, 146 kernel_cap_t *inheritable, 147 kernel_cap_t *permitted) 148 { 149 return security_ops->capset_check(target, effective, inheritable, permitted); 150 } 151 152 void security_capset_set(struct task_struct *target, 153 kernel_cap_t *effective, 154 kernel_cap_t *inheritable, 155 kernel_cap_t *permitted) 156 { 157 security_ops->capset_set(target, effective, inheritable, permitted); 158 } 159 160 int security_capable(struct task_struct *tsk, int cap) 161 { 162 return security_ops->capable(tsk, cap); 163 } 164 165 int security_acct(struct file *file) 166 { 167 return security_ops->acct(file); 168 } 169 170 int security_sysctl(struct ctl_table *table, int op) 171 { 172 return security_ops->sysctl(table, op); 173 } 174 175 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 176 { 177 return security_ops->quotactl(cmds, type, id, sb); 178 } 179 180 int security_quota_on(struct dentry *dentry) 181 { 182 return security_ops->quota_on(dentry); 183 } 184 185 int security_syslog(int type) 186 { 187 return security_ops->syslog(type); 188 } 189 190 int security_settime(struct timespec *ts, struct timezone *tz) 191 { 192 return security_ops->settime(ts, tz); 193 } 194 195 int security_vm_enough_memory(long pages) 196 { 197 return security_ops->vm_enough_memory(current->mm, pages); 198 } 199 200 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 201 { 202 return security_ops->vm_enough_memory(mm, pages); 203 } 204 205 int security_bprm_alloc(struct linux_binprm *bprm) 206 { 207 return security_ops->bprm_alloc_security(bprm); 208 } 209 210 void security_bprm_free(struct linux_binprm *bprm) 211 { 212 security_ops->bprm_free_security(bprm); 213 } 214 215 void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe) 216 { 217 security_ops->bprm_apply_creds(bprm, unsafe); 218 } 219 220 void security_bprm_post_apply_creds(struct linux_binprm *bprm) 221 { 222 security_ops->bprm_post_apply_creds(bprm); 223 } 224 225 int security_bprm_set(struct linux_binprm *bprm) 226 { 227 return security_ops->bprm_set_security(bprm); 228 } 229 230 int security_bprm_check(struct linux_binprm *bprm) 231 { 232 return security_ops->bprm_check_security(bprm); 233 } 234 235 int security_bprm_secureexec(struct linux_binprm *bprm) 236 { 237 return security_ops->bprm_secureexec(bprm); 238 } 239 240 int security_sb_alloc(struct super_block *sb) 241 { 242 return security_ops->sb_alloc_security(sb); 243 } 244 245 void security_sb_free(struct super_block *sb) 246 { 247 security_ops->sb_free_security(sb); 248 } 249 250 int security_sb_copy_data(char *orig, char *copy) 251 { 252 return security_ops->sb_copy_data(orig, copy); 253 } 254 EXPORT_SYMBOL(security_sb_copy_data); 255 256 int security_sb_kern_mount(struct super_block *sb, void *data) 257 { 258 return security_ops->sb_kern_mount(sb, data); 259 } 260 261 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 262 { 263 return security_ops->sb_show_options(m, sb); 264 } 265 266 int security_sb_statfs(struct dentry *dentry) 267 { 268 return security_ops->sb_statfs(dentry); 269 } 270 271 int security_sb_mount(char *dev_name, struct path *path, 272 char *type, unsigned long flags, void *data) 273 { 274 return security_ops->sb_mount(dev_name, path, type, flags, data); 275 } 276 277 int security_sb_check_sb(struct vfsmount *mnt, struct path *path) 278 { 279 return security_ops->sb_check_sb(mnt, path); 280 } 281 282 int security_sb_umount(struct vfsmount *mnt, int flags) 283 { 284 return security_ops->sb_umount(mnt, flags); 285 } 286 287 void security_sb_umount_close(struct vfsmount *mnt) 288 { 289 security_ops->sb_umount_close(mnt); 290 } 291 292 void security_sb_umount_busy(struct vfsmount *mnt) 293 { 294 security_ops->sb_umount_busy(mnt); 295 } 296 297 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data) 298 { 299 security_ops->sb_post_remount(mnt, flags, data); 300 } 301 302 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint) 303 { 304 security_ops->sb_post_addmount(mnt, mountpoint); 305 } 306 307 int security_sb_pivotroot(struct path *old_path, struct path *new_path) 308 { 309 return security_ops->sb_pivotroot(old_path, new_path); 310 } 311 312 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path) 313 { 314 security_ops->sb_post_pivotroot(old_path, new_path); 315 } 316 317 int security_sb_set_mnt_opts(struct super_block *sb, 318 struct security_mnt_opts *opts) 319 { 320 return security_ops->sb_set_mnt_opts(sb, opts); 321 } 322 EXPORT_SYMBOL(security_sb_set_mnt_opts); 323 324 void security_sb_clone_mnt_opts(const struct super_block *oldsb, 325 struct super_block *newsb) 326 { 327 security_ops->sb_clone_mnt_opts(oldsb, newsb); 328 } 329 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 330 331 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) 332 { 333 return security_ops->sb_parse_opts_str(options, opts); 334 } 335 EXPORT_SYMBOL(security_sb_parse_opts_str); 336 337 int security_inode_alloc(struct inode *inode) 338 { 339 inode->i_security = NULL; 340 return security_ops->inode_alloc_security(inode); 341 } 342 343 void security_inode_free(struct inode *inode) 344 { 345 security_ops->inode_free_security(inode); 346 } 347 348 int security_inode_init_security(struct inode *inode, struct inode *dir, 349 char **name, void **value, size_t *len) 350 { 351 if (unlikely(IS_PRIVATE(inode))) 352 return -EOPNOTSUPP; 353 return security_ops->inode_init_security(inode, dir, name, value, len); 354 } 355 EXPORT_SYMBOL(security_inode_init_security); 356 357 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode) 358 { 359 if (unlikely(IS_PRIVATE(dir))) 360 return 0; 361 return security_ops->inode_create(dir, dentry, mode); 362 } 363 364 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 365 struct dentry *new_dentry) 366 { 367 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 368 return 0; 369 return security_ops->inode_link(old_dentry, dir, new_dentry); 370 } 371 372 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 373 { 374 if (unlikely(IS_PRIVATE(dentry->d_inode))) 375 return 0; 376 return security_ops->inode_unlink(dir, dentry); 377 } 378 379 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 380 const char *old_name) 381 { 382 if (unlikely(IS_PRIVATE(dir))) 383 return 0; 384 return security_ops->inode_symlink(dir, dentry, old_name); 385 } 386 387 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode) 388 { 389 if (unlikely(IS_PRIVATE(dir))) 390 return 0; 391 return security_ops->inode_mkdir(dir, dentry, mode); 392 } 393 394 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 395 { 396 if (unlikely(IS_PRIVATE(dentry->d_inode))) 397 return 0; 398 return security_ops->inode_rmdir(dir, dentry); 399 } 400 401 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 402 { 403 if (unlikely(IS_PRIVATE(dir))) 404 return 0; 405 return security_ops->inode_mknod(dir, dentry, mode, dev); 406 } 407 408 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 409 struct inode *new_dir, struct dentry *new_dentry) 410 { 411 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 412 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 413 return 0; 414 return security_ops->inode_rename(old_dir, old_dentry, 415 new_dir, new_dentry); 416 } 417 418 int security_inode_readlink(struct dentry *dentry) 419 { 420 if (unlikely(IS_PRIVATE(dentry->d_inode))) 421 return 0; 422 return security_ops->inode_readlink(dentry); 423 } 424 425 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd) 426 { 427 if (unlikely(IS_PRIVATE(dentry->d_inode))) 428 return 0; 429 return security_ops->inode_follow_link(dentry, nd); 430 } 431 432 int security_inode_permission(struct inode *inode, int mask, struct nameidata *nd) 433 { 434 if (unlikely(IS_PRIVATE(inode))) 435 return 0; 436 return security_ops->inode_permission(inode, mask, nd); 437 } 438 439 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 440 { 441 if (unlikely(IS_PRIVATE(dentry->d_inode))) 442 return 0; 443 return security_ops->inode_setattr(dentry, attr); 444 } 445 446 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 447 { 448 if (unlikely(IS_PRIVATE(dentry->d_inode))) 449 return 0; 450 return security_ops->inode_getattr(mnt, dentry); 451 } 452 453 void security_inode_delete(struct inode *inode) 454 { 455 if (unlikely(IS_PRIVATE(inode))) 456 return; 457 security_ops->inode_delete(inode); 458 } 459 460 int security_inode_setxattr(struct dentry *dentry, const char *name, 461 const void *value, size_t size, int flags) 462 { 463 if (unlikely(IS_PRIVATE(dentry->d_inode))) 464 return 0; 465 return security_ops->inode_setxattr(dentry, name, value, size, flags); 466 } 467 468 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 469 const void *value, size_t size, int flags) 470 { 471 if (unlikely(IS_PRIVATE(dentry->d_inode))) 472 return; 473 security_ops->inode_post_setxattr(dentry, name, value, size, flags); 474 } 475 476 int security_inode_getxattr(struct dentry *dentry, const char *name) 477 { 478 if (unlikely(IS_PRIVATE(dentry->d_inode))) 479 return 0; 480 return security_ops->inode_getxattr(dentry, name); 481 } 482 483 int security_inode_listxattr(struct dentry *dentry) 484 { 485 if (unlikely(IS_PRIVATE(dentry->d_inode))) 486 return 0; 487 return security_ops->inode_listxattr(dentry); 488 } 489 490 int security_inode_removexattr(struct dentry *dentry, const char *name) 491 { 492 if (unlikely(IS_PRIVATE(dentry->d_inode))) 493 return 0; 494 return security_ops->inode_removexattr(dentry, name); 495 } 496 497 int security_inode_need_killpriv(struct dentry *dentry) 498 { 499 return security_ops->inode_need_killpriv(dentry); 500 } 501 502 int security_inode_killpriv(struct dentry *dentry) 503 { 504 return security_ops->inode_killpriv(dentry); 505 } 506 507 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 508 { 509 if (unlikely(IS_PRIVATE(inode))) 510 return 0; 511 return security_ops->inode_getsecurity(inode, name, buffer, alloc); 512 } 513 514 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 515 { 516 if (unlikely(IS_PRIVATE(inode))) 517 return 0; 518 return security_ops->inode_setsecurity(inode, name, value, size, flags); 519 } 520 521 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 522 { 523 if (unlikely(IS_PRIVATE(inode))) 524 return 0; 525 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 526 } 527 528 void security_inode_getsecid(const struct inode *inode, u32 *secid) 529 { 530 security_ops->inode_getsecid(inode, secid); 531 } 532 533 int security_file_permission(struct file *file, int mask) 534 { 535 return security_ops->file_permission(file, mask); 536 } 537 538 int security_file_alloc(struct file *file) 539 { 540 return security_ops->file_alloc_security(file); 541 } 542 543 void security_file_free(struct file *file) 544 { 545 security_ops->file_free_security(file); 546 } 547 548 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 549 { 550 return security_ops->file_ioctl(file, cmd, arg); 551 } 552 553 int security_file_mmap(struct file *file, unsigned long reqprot, 554 unsigned long prot, unsigned long flags, 555 unsigned long addr, unsigned long addr_only) 556 { 557 return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only); 558 } 559 560 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 561 unsigned long prot) 562 { 563 return security_ops->file_mprotect(vma, reqprot, prot); 564 } 565 566 int security_file_lock(struct file *file, unsigned int cmd) 567 { 568 return security_ops->file_lock(file, cmd); 569 } 570 571 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 572 { 573 return security_ops->file_fcntl(file, cmd, arg); 574 } 575 576 int security_file_set_fowner(struct file *file) 577 { 578 return security_ops->file_set_fowner(file); 579 } 580 581 int security_file_send_sigiotask(struct task_struct *tsk, 582 struct fown_struct *fown, int sig) 583 { 584 return security_ops->file_send_sigiotask(tsk, fown, sig); 585 } 586 587 int security_file_receive(struct file *file) 588 { 589 return security_ops->file_receive(file); 590 } 591 592 int security_dentry_open(struct file *file) 593 { 594 return security_ops->dentry_open(file); 595 } 596 597 int security_task_create(unsigned long clone_flags) 598 { 599 return security_ops->task_create(clone_flags); 600 } 601 602 int security_task_alloc(struct task_struct *p) 603 { 604 return security_ops->task_alloc_security(p); 605 } 606 607 void security_task_free(struct task_struct *p) 608 { 609 security_ops->task_free_security(p); 610 } 611 612 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags) 613 { 614 return security_ops->task_setuid(id0, id1, id2, flags); 615 } 616 617 int security_task_post_setuid(uid_t old_ruid, uid_t old_euid, 618 uid_t old_suid, int flags) 619 { 620 return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags); 621 } 622 623 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags) 624 { 625 return security_ops->task_setgid(id0, id1, id2, flags); 626 } 627 628 int security_task_setpgid(struct task_struct *p, pid_t pgid) 629 { 630 return security_ops->task_setpgid(p, pgid); 631 } 632 633 int security_task_getpgid(struct task_struct *p) 634 { 635 return security_ops->task_getpgid(p); 636 } 637 638 int security_task_getsid(struct task_struct *p) 639 { 640 return security_ops->task_getsid(p); 641 } 642 643 void security_task_getsecid(struct task_struct *p, u32 *secid) 644 { 645 security_ops->task_getsecid(p, secid); 646 } 647 EXPORT_SYMBOL(security_task_getsecid); 648 649 int security_task_setgroups(struct group_info *group_info) 650 { 651 return security_ops->task_setgroups(group_info); 652 } 653 654 int security_task_setnice(struct task_struct *p, int nice) 655 { 656 return security_ops->task_setnice(p, nice); 657 } 658 659 int security_task_setioprio(struct task_struct *p, int ioprio) 660 { 661 return security_ops->task_setioprio(p, ioprio); 662 } 663 664 int security_task_getioprio(struct task_struct *p) 665 { 666 return security_ops->task_getioprio(p); 667 } 668 669 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim) 670 { 671 return security_ops->task_setrlimit(resource, new_rlim); 672 } 673 674 int security_task_setscheduler(struct task_struct *p, 675 int policy, struct sched_param *lp) 676 { 677 return security_ops->task_setscheduler(p, policy, lp); 678 } 679 680 int security_task_getscheduler(struct task_struct *p) 681 { 682 return security_ops->task_getscheduler(p); 683 } 684 685 int security_task_movememory(struct task_struct *p) 686 { 687 return security_ops->task_movememory(p); 688 } 689 690 int security_task_kill(struct task_struct *p, struct siginfo *info, 691 int sig, u32 secid) 692 { 693 return security_ops->task_kill(p, info, sig, secid); 694 } 695 696 int security_task_wait(struct task_struct *p) 697 { 698 return security_ops->task_wait(p); 699 } 700 701 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 702 unsigned long arg4, unsigned long arg5, long *rc_p) 703 { 704 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p); 705 } 706 707 void security_task_reparent_to_init(struct task_struct *p) 708 { 709 security_ops->task_reparent_to_init(p); 710 } 711 712 void security_task_to_inode(struct task_struct *p, struct inode *inode) 713 { 714 security_ops->task_to_inode(p, inode); 715 } 716 717 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 718 { 719 return security_ops->ipc_permission(ipcp, flag); 720 } 721 722 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 723 { 724 security_ops->ipc_getsecid(ipcp, secid); 725 } 726 727 int security_msg_msg_alloc(struct msg_msg *msg) 728 { 729 return security_ops->msg_msg_alloc_security(msg); 730 } 731 732 void security_msg_msg_free(struct msg_msg *msg) 733 { 734 security_ops->msg_msg_free_security(msg); 735 } 736 737 int security_msg_queue_alloc(struct msg_queue *msq) 738 { 739 return security_ops->msg_queue_alloc_security(msq); 740 } 741 742 void security_msg_queue_free(struct msg_queue *msq) 743 { 744 security_ops->msg_queue_free_security(msq); 745 } 746 747 int security_msg_queue_associate(struct msg_queue *msq, int msqflg) 748 { 749 return security_ops->msg_queue_associate(msq, msqflg); 750 } 751 752 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) 753 { 754 return security_ops->msg_queue_msgctl(msq, cmd); 755 } 756 757 int security_msg_queue_msgsnd(struct msg_queue *msq, 758 struct msg_msg *msg, int msqflg) 759 { 760 return security_ops->msg_queue_msgsnd(msq, msg, msqflg); 761 } 762 763 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 764 struct task_struct *target, long type, int mode) 765 { 766 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode); 767 } 768 769 int security_shm_alloc(struct shmid_kernel *shp) 770 { 771 return security_ops->shm_alloc_security(shp); 772 } 773 774 void security_shm_free(struct shmid_kernel *shp) 775 { 776 security_ops->shm_free_security(shp); 777 } 778 779 int security_shm_associate(struct shmid_kernel *shp, int shmflg) 780 { 781 return security_ops->shm_associate(shp, shmflg); 782 } 783 784 int security_shm_shmctl(struct shmid_kernel *shp, int cmd) 785 { 786 return security_ops->shm_shmctl(shp, cmd); 787 } 788 789 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg) 790 { 791 return security_ops->shm_shmat(shp, shmaddr, shmflg); 792 } 793 794 int security_sem_alloc(struct sem_array *sma) 795 { 796 return security_ops->sem_alloc_security(sma); 797 } 798 799 void security_sem_free(struct sem_array *sma) 800 { 801 security_ops->sem_free_security(sma); 802 } 803 804 int security_sem_associate(struct sem_array *sma, int semflg) 805 { 806 return security_ops->sem_associate(sma, semflg); 807 } 808 809 int security_sem_semctl(struct sem_array *sma, int cmd) 810 { 811 return security_ops->sem_semctl(sma, cmd); 812 } 813 814 int security_sem_semop(struct sem_array *sma, struct sembuf *sops, 815 unsigned nsops, int alter) 816 { 817 return security_ops->sem_semop(sma, sops, nsops, alter); 818 } 819 820 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 821 { 822 if (unlikely(inode && IS_PRIVATE(inode))) 823 return; 824 security_ops->d_instantiate(dentry, inode); 825 } 826 EXPORT_SYMBOL(security_d_instantiate); 827 828 int security_getprocattr(struct task_struct *p, char *name, char **value) 829 { 830 return security_ops->getprocattr(p, name, value); 831 } 832 833 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 834 { 835 return security_ops->setprocattr(p, name, value, size); 836 } 837 838 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 839 { 840 return security_ops->netlink_send(sk, skb); 841 } 842 843 int security_netlink_recv(struct sk_buff *skb, int cap) 844 { 845 return security_ops->netlink_recv(skb, cap); 846 } 847 EXPORT_SYMBOL(security_netlink_recv); 848 849 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 850 { 851 return security_ops->secid_to_secctx(secid, secdata, seclen); 852 } 853 EXPORT_SYMBOL(security_secid_to_secctx); 854 855 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 856 { 857 return security_ops->secctx_to_secid(secdata, seclen, secid); 858 } 859 EXPORT_SYMBOL(security_secctx_to_secid); 860 861 void security_release_secctx(char *secdata, u32 seclen) 862 { 863 security_ops->release_secctx(secdata, seclen); 864 } 865 EXPORT_SYMBOL(security_release_secctx); 866 867 #ifdef CONFIG_SECURITY_NETWORK 868 869 int security_unix_stream_connect(struct socket *sock, struct socket *other, 870 struct sock *newsk) 871 { 872 return security_ops->unix_stream_connect(sock, other, newsk); 873 } 874 EXPORT_SYMBOL(security_unix_stream_connect); 875 876 int security_unix_may_send(struct socket *sock, struct socket *other) 877 { 878 return security_ops->unix_may_send(sock, other); 879 } 880 EXPORT_SYMBOL(security_unix_may_send); 881 882 int security_socket_create(int family, int type, int protocol, int kern) 883 { 884 return security_ops->socket_create(family, type, protocol, kern); 885 } 886 887 int security_socket_post_create(struct socket *sock, int family, 888 int type, int protocol, int kern) 889 { 890 return security_ops->socket_post_create(sock, family, type, 891 protocol, kern); 892 } 893 894 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 895 { 896 return security_ops->socket_bind(sock, address, addrlen); 897 } 898 899 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 900 { 901 return security_ops->socket_connect(sock, address, addrlen); 902 } 903 904 int security_socket_listen(struct socket *sock, int backlog) 905 { 906 return security_ops->socket_listen(sock, backlog); 907 } 908 909 int security_socket_accept(struct socket *sock, struct socket *newsock) 910 { 911 return security_ops->socket_accept(sock, newsock); 912 } 913 914 void security_socket_post_accept(struct socket *sock, struct socket *newsock) 915 { 916 security_ops->socket_post_accept(sock, newsock); 917 } 918 919 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 920 { 921 return security_ops->socket_sendmsg(sock, msg, size); 922 } 923 924 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 925 int size, int flags) 926 { 927 return security_ops->socket_recvmsg(sock, msg, size, flags); 928 } 929 930 int security_socket_getsockname(struct socket *sock) 931 { 932 return security_ops->socket_getsockname(sock); 933 } 934 935 int security_socket_getpeername(struct socket *sock) 936 { 937 return security_ops->socket_getpeername(sock); 938 } 939 940 int security_socket_getsockopt(struct socket *sock, int level, int optname) 941 { 942 return security_ops->socket_getsockopt(sock, level, optname); 943 } 944 945 int security_socket_setsockopt(struct socket *sock, int level, int optname) 946 { 947 return security_ops->socket_setsockopt(sock, level, optname); 948 } 949 950 int security_socket_shutdown(struct socket *sock, int how) 951 { 952 return security_ops->socket_shutdown(sock, how); 953 } 954 955 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 956 { 957 return security_ops->socket_sock_rcv_skb(sk, skb); 958 } 959 EXPORT_SYMBOL(security_sock_rcv_skb); 960 961 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 962 int __user *optlen, unsigned len) 963 { 964 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 965 } 966 967 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 968 { 969 return security_ops->socket_getpeersec_dgram(sock, skb, secid); 970 } 971 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 972 973 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 974 { 975 return security_ops->sk_alloc_security(sk, family, priority); 976 } 977 978 void security_sk_free(struct sock *sk) 979 { 980 security_ops->sk_free_security(sk); 981 } 982 983 void security_sk_clone(const struct sock *sk, struct sock *newsk) 984 { 985 security_ops->sk_clone_security(sk, newsk); 986 } 987 988 void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 989 { 990 security_ops->sk_getsecid(sk, &fl->secid); 991 } 992 EXPORT_SYMBOL(security_sk_classify_flow); 993 994 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 995 { 996 security_ops->req_classify_flow(req, fl); 997 } 998 EXPORT_SYMBOL(security_req_classify_flow); 999 1000 void security_sock_graft(struct sock *sk, struct socket *parent) 1001 { 1002 security_ops->sock_graft(sk, parent); 1003 } 1004 EXPORT_SYMBOL(security_sock_graft); 1005 1006 int security_inet_conn_request(struct sock *sk, 1007 struct sk_buff *skb, struct request_sock *req) 1008 { 1009 return security_ops->inet_conn_request(sk, skb, req); 1010 } 1011 EXPORT_SYMBOL(security_inet_conn_request); 1012 1013 void security_inet_csk_clone(struct sock *newsk, 1014 const struct request_sock *req) 1015 { 1016 security_ops->inet_csk_clone(newsk, req); 1017 } 1018 1019 void security_inet_conn_established(struct sock *sk, 1020 struct sk_buff *skb) 1021 { 1022 security_ops->inet_conn_established(sk, skb); 1023 } 1024 1025 #endif /* CONFIG_SECURITY_NETWORK */ 1026 1027 #ifdef CONFIG_SECURITY_NETWORK_XFRM 1028 1029 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx) 1030 { 1031 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx); 1032 } 1033 EXPORT_SYMBOL(security_xfrm_policy_alloc); 1034 1035 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 1036 struct xfrm_sec_ctx **new_ctxp) 1037 { 1038 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp); 1039 } 1040 1041 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 1042 { 1043 security_ops->xfrm_policy_free_security(ctx); 1044 } 1045 EXPORT_SYMBOL(security_xfrm_policy_free); 1046 1047 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 1048 { 1049 return security_ops->xfrm_policy_delete_security(ctx); 1050 } 1051 1052 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 1053 { 1054 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0); 1055 } 1056 EXPORT_SYMBOL(security_xfrm_state_alloc); 1057 1058 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1059 struct xfrm_sec_ctx *polsec, u32 secid) 1060 { 1061 if (!polsec) 1062 return 0; 1063 /* 1064 * We want the context to be taken from secid which is usually 1065 * from the sock. 1066 */ 1067 return security_ops->xfrm_state_alloc_security(x, NULL, secid); 1068 } 1069 1070 int security_xfrm_state_delete(struct xfrm_state *x) 1071 { 1072 return security_ops->xfrm_state_delete_security(x); 1073 } 1074 EXPORT_SYMBOL(security_xfrm_state_delete); 1075 1076 void security_xfrm_state_free(struct xfrm_state *x) 1077 { 1078 security_ops->xfrm_state_free_security(x); 1079 } 1080 1081 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 1082 { 1083 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir); 1084 } 1085 1086 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1087 struct xfrm_policy *xp, struct flowi *fl) 1088 { 1089 return security_ops->xfrm_state_pol_flow_match(x, xp, fl); 1090 } 1091 1092 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1093 { 1094 return security_ops->xfrm_decode_session(skb, secid, 1); 1095 } 1096 1097 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1098 { 1099 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0); 1100 1101 BUG_ON(rc); 1102 } 1103 EXPORT_SYMBOL(security_skb_classify_flow); 1104 1105 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1106 1107 #ifdef CONFIG_KEYS 1108 1109 int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags) 1110 { 1111 return security_ops->key_alloc(key, tsk, flags); 1112 } 1113 1114 void security_key_free(struct key *key) 1115 { 1116 security_ops->key_free(key); 1117 } 1118 1119 int security_key_permission(key_ref_t key_ref, 1120 struct task_struct *context, key_perm_t perm) 1121 { 1122 return security_ops->key_permission(key_ref, context, perm); 1123 } 1124 1125 int security_key_getsecurity(struct key *key, char **_buffer) 1126 { 1127 return security_ops->key_getsecurity(key, _buffer); 1128 } 1129 1130 #endif /* CONFIG_KEYS */ 1131 1132 #ifdef CONFIG_AUDIT 1133 1134 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 1135 { 1136 return security_ops->audit_rule_init(field, op, rulestr, lsmrule); 1137 } 1138 1139 int security_audit_rule_known(struct audit_krule *krule) 1140 { 1141 return security_ops->audit_rule_known(krule); 1142 } 1143 1144 void security_audit_rule_free(void *lsmrule) 1145 { 1146 security_ops->audit_rule_free(lsmrule); 1147 } 1148 1149 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 1150 struct audit_context *actx) 1151 { 1152 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx); 1153 } 1154 1155 #endif /* CONFIG_AUDIT */ 1156