xref: /openbmc/linux/security/security.c (revision 6a9de491)
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *	This program is free software; you can redistribute it and/or modify
9  *	it under the terms of the GNU General Public License as published by
10  *	the Free Software Foundation; either version 2 of the License, or
11  *	(at your option) any later version.
12  */
13 
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/ima.h>
20 
21 /* Boot-time LSM user choice */
22 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
23 	CONFIG_DEFAULT_SECURITY;
24 
25 /* things that live in capability.c */
26 extern void __init security_fixup_ops(struct security_operations *ops);
27 
28 static struct security_operations *security_ops;
29 static struct security_operations default_security_ops = {
30 	.name	= "default",
31 };
32 
33 static inline int __init verify(struct security_operations *ops)
34 {
35 	/* verify the security_operations structure exists */
36 	if (!ops)
37 		return -EINVAL;
38 	security_fixup_ops(ops);
39 	return 0;
40 }
41 
42 static void __init do_security_initcalls(void)
43 {
44 	initcall_t *call;
45 	call = __security_initcall_start;
46 	while (call < __security_initcall_end) {
47 		(*call) ();
48 		call++;
49 	}
50 }
51 
52 /**
53  * security_init - initializes the security framework
54  *
55  * This should be called early in the kernel initialization sequence.
56  */
57 int __init security_init(void)
58 {
59 	printk(KERN_INFO "Security Framework initialized\n");
60 
61 	security_fixup_ops(&default_security_ops);
62 	security_ops = &default_security_ops;
63 	do_security_initcalls();
64 
65 	return 0;
66 }
67 
68 void reset_security_ops(void)
69 {
70 	security_ops = &default_security_ops;
71 }
72 
73 /* Save user chosen LSM */
74 static int __init choose_lsm(char *str)
75 {
76 	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
77 	return 1;
78 }
79 __setup("security=", choose_lsm);
80 
81 /**
82  * security_module_enable - Load given security module on boot ?
83  * @ops: a pointer to the struct security_operations that is to be checked.
84  *
85  * Each LSM must pass this method before registering its own operations
86  * to avoid security registration races. This method may also be used
87  * to check if your LSM is currently loaded during kernel initialization.
88  *
89  * Return true if:
90  *	-The passed LSM is the one chosen by user at boot time,
91  *	-or the passed LSM is configured as the default and the user did not
92  *	 choose an alternate LSM at boot time.
93  * Otherwise, return false.
94  */
95 int __init security_module_enable(struct security_operations *ops)
96 {
97 	return !strcmp(ops->name, chosen_lsm);
98 }
99 
100 /**
101  * register_security - registers a security framework with the kernel
102  * @ops: a pointer to the struct security_options that is to be registered
103  *
104  * This function allows a security module to register itself with the
105  * kernel security subsystem.  Some rudimentary checking is done on the @ops
106  * value passed to this function. You'll need to check first if your LSM
107  * is allowed to register its @ops by calling security_module_enable(@ops).
108  *
109  * If there is already a security module registered with the kernel,
110  * an error will be returned.  Otherwise %0 is returned on success.
111  */
112 int __init register_security(struct security_operations *ops)
113 {
114 	if (verify(ops)) {
115 		printk(KERN_DEBUG "%s could not verify "
116 		       "security_operations structure.\n", __func__);
117 		return -EINVAL;
118 	}
119 
120 	if (security_ops != &default_security_ops)
121 		return -EAGAIN;
122 
123 	security_ops = ops;
124 
125 	return 0;
126 }
127 
128 /* Security operations */
129 
130 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
131 {
132 	return security_ops->ptrace_access_check(child, mode);
133 }
134 
135 int security_ptrace_traceme(struct task_struct *parent)
136 {
137 	return security_ops->ptrace_traceme(parent);
138 }
139 
140 int security_capget(struct task_struct *target,
141 		     kernel_cap_t *effective,
142 		     kernel_cap_t *inheritable,
143 		     kernel_cap_t *permitted)
144 {
145 	return security_ops->capget(target, effective, inheritable, permitted);
146 }
147 
148 int security_capset(struct cred *new, const struct cred *old,
149 		    const kernel_cap_t *effective,
150 		    const kernel_cap_t *inheritable,
151 		    const kernel_cap_t *permitted)
152 {
153 	return security_ops->capset(new, old,
154 				    effective, inheritable, permitted);
155 }
156 
157 int security_capable(struct user_namespace *ns, const struct cred *cred,
158 		     int cap)
159 {
160 	return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
161 }
162 
163 int security_real_capable(struct task_struct *tsk, struct user_namespace *ns,
164 			  int cap)
165 {
166 	const struct cred *cred;
167 	int ret;
168 
169 	cred = get_task_cred(tsk);
170 	ret = security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
171 	put_cred(cred);
172 	return ret;
173 }
174 
175 int security_real_capable_noaudit(struct task_struct *tsk,
176 				  struct user_namespace *ns, int cap)
177 {
178 	const struct cred *cred;
179 	int ret;
180 
181 	cred = get_task_cred(tsk);
182 	ret = security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
183 	put_cred(cred);
184 	return ret;
185 }
186 
187 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
188 {
189 	return security_ops->quotactl(cmds, type, id, sb);
190 }
191 
192 int security_quota_on(struct dentry *dentry)
193 {
194 	return security_ops->quota_on(dentry);
195 }
196 
197 int security_syslog(int type)
198 {
199 	return security_ops->syslog(type);
200 }
201 
202 int security_settime(const struct timespec *ts, const struct timezone *tz)
203 {
204 	return security_ops->settime(ts, tz);
205 }
206 
207 int security_vm_enough_memory(long pages)
208 {
209 	WARN_ON(current->mm == NULL);
210 	return security_ops->vm_enough_memory(current->mm, pages);
211 }
212 
213 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
214 {
215 	WARN_ON(mm == NULL);
216 	return security_ops->vm_enough_memory(mm, pages);
217 }
218 
219 int security_vm_enough_memory_kern(long pages)
220 {
221 	/* If current->mm is a kernel thread then we will pass NULL,
222 	   for this specific case that is fine */
223 	return security_ops->vm_enough_memory(current->mm, pages);
224 }
225 
226 int security_bprm_set_creds(struct linux_binprm *bprm)
227 {
228 	return security_ops->bprm_set_creds(bprm);
229 }
230 
231 int security_bprm_check(struct linux_binprm *bprm)
232 {
233 	int ret;
234 
235 	ret = security_ops->bprm_check_security(bprm);
236 	if (ret)
237 		return ret;
238 	return ima_bprm_check(bprm);
239 }
240 
241 void security_bprm_committing_creds(struct linux_binprm *bprm)
242 {
243 	security_ops->bprm_committing_creds(bprm);
244 }
245 
246 void security_bprm_committed_creds(struct linux_binprm *bprm)
247 {
248 	security_ops->bprm_committed_creds(bprm);
249 }
250 
251 int security_bprm_secureexec(struct linux_binprm *bprm)
252 {
253 	return security_ops->bprm_secureexec(bprm);
254 }
255 
256 int security_sb_alloc(struct super_block *sb)
257 {
258 	return security_ops->sb_alloc_security(sb);
259 }
260 
261 void security_sb_free(struct super_block *sb)
262 {
263 	security_ops->sb_free_security(sb);
264 }
265 
266 int security_sb_copy_data(char *orig, char *copy)
267 {
268 	return security_ops->sb_copy_data(orig, copy);
269 }
270 EXPORT_SYMBOL(security_sb_copy_data);
271 
272 int security_sb_remount(struct super_block *sb, void *data)
273 {
274 	return security_ops->sb_remount(sb, data);
275 }
276 
277 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
278 {
279 	return security_ops->sb_kern_mount(sb, flags, data);
280 }
281 
282 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
283 {
284 	return security_ops->sb_show_options(m, sb);
285 }
286 
287 int security_sb_statfs(struct dentry *dentry)
288 {
289 	return security_ops->sb_statfs(dentry);
290 }
291 
292 int security_sb_mount(char *dev_name, struct path *path,
293                        char *type, unsigned long flags, void *data)
294 {
295 	return security_ops->sb_mount(dev_name, path, type, flags, data);
296 }
297 
298 int security_sb_umount(struct vfsmount *mnt, int flags)
299 {
300 	return security_ops->sb_umount(mnt, flags);
301 }
302 
303 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
304 {
305 	return security_ops->sb_pivotroot(old_path, new_path);
306 }
307 
308 int security_sb_set_mnt_opts(struct super_block *sb,
309 				struct security_mnt_opts *opts)
310 {
311 	return security_ops->sb_set_mnt_opts(sb, opts);
312 }
313 EXPORT_SYMBOL(security_sb_set_mnt_opts);
314 
315 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
316 				struct super_block *newsb)
317 {
318 	security_ops->sb_clone_mnt_opts(oldsb, newsb);
319 }
320 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
321 
322 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
323 {
324 	return security_ops->sb_parse_opts_str(options, opts);
325 }
326 EXPORT_SYMBOL(security_sb_parse_opts_str);
327 
328 int security_inode_alloc(struct inode *inode)
329 {
330 	inode->i_security = NULL;
331 	return security_ops->inode_alloc_security(inode);
332 }
333 
334 void security_inode_free(struct inode *inode)
335 {
336 	ima_inode_free(inode);
337 	security_ops->inode_free_security(inode);
338 }
339 
340 int security_inode_init_security(struct inode *inode, struct inode *dir,
341 				 const struct qstr *qstr, char **name,
342 				 void **value, size_t *len)
343 {
344 	if (unlikely(IS_PRIVATE(inode)))
345 		return -EOPNOTSUPP;
346 	return security_ops->inode_init_security(inode, dir, qstr, name, value,
347 						 len);
348 }
349 EXPORT_SYMBOL(security_inode_init_security);
350 
351 #ifdef CONFIG_SECURITY_PATH
352 int security_path_mknod(struct path *dir, struct dentry *dentry, int mode,
353 			unsigned int dev)
354 {
355 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
356 		return 0;
357 	return security_ops->path_mknod(dir, dentry, mode, dev);
358 }
359 EXPORT_SYMBOL(security_path_mknod);
360 
361 int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode)
362 {
363 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
364 		return 0;
365 	return security_ops->path_mkdir(dir, dentry, mode);
366 }
367 EXPORT_SYMBOL(security_path_mkdir);
368 
369 int security_path_rmdir(struct path *dir, struct dentry *dentry)
370 {
371 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
372 		return 0;
373 	return security_ops->path_rmdir(dir, dentry);
374 }
375 
376 int security_path_unlink(struct path *dir, struct dentry *dentry)
377 {
378 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
379 		return 0;
380 	return security_ops->path_unlink(dir, dentry);
381 }
382 EXPORT_SYMBOL(security_path_unlink);
383 
384 int security_path_symlink(struct path *dir, struct dentry *dentry,
385 			  const char *old_name)
386 {
387 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
388 		return 0;
389 	return security_ops->path_symlink(dir, dentry, old_name);
390 }
391 
392 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
393 		       struct dentry *new_dentry)
394 {
395 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
396 		return 0;
397 	return security_ops->path_link(old_dentry, new_dir, new_dentry);
398 }
399 
400 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
401 			 struct path *new_dir, struct dentry *new_dentry)
402 {
403 	if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
404 		     (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
405 		return 0;
406 	return security_ops->path_rename(old_dir, old_dentry, new_dir,
407 					 new_dentry);
408 }
409 EXPORT_SYMBOL(security_path_rename);
410 
411 int security_path_truncate(struct path *path)
412 {
413 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
414 		return 0;
415 	return security_ops->path_truncate(path);
416 }
417 
418 int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt,
419 			mode_t mode)
420 {
421 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
422 		return 0;
423 	return security_ops->path_chmod(dentry, mnt, mode);
424 }
425 
426 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
427 {
428 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
429 		return 0;
430 	return security_ops->path_chown(path, uid, gid);
431 }
432 
433 int security_path_chroot(struct path *path)
434 {
435 	return security_ops->path_chroot(path);
436 }
437 #endif
438 
439 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
440 {
441 	if (unlikely(IS_PRIVATE(dir)))
442 		return 0;
443 	return security_ops->inode_create(dir, dentry, mode);
444 }
445 EXPORT_SYMBOL_GPL(security_inode_create);
446 
447 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
448 			 struct dentry *new_dentry)
449 {
450 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
451 		return 0;
452 	return security_ops->inode_link(old_dentry, dir, new_dentry);
453 }
454 
455 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
456 {
457 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
458 		return 0;
459 	return security_ops->inode_unlink(dir, dentry);
460 }
461 
462 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
463 			    const char *old_name)
464 {
465 	if (unlikely(IS_PRIVATE(dir)))
466 		return 0;
467 	return security_ops->inode_symlink(dir, dentry, old_name);
468 }
469 
470 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
471 {
472 	if (unlikely(IS_PRIVATE(dir)))
473 		return 0;
474 	return security_ops->inode_mkdir(dir, dentry, mode);
475 }
476 EXPORT_SYMBOL_GPL(security_inode_mkdir);
477 
478 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
479 {
480 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
481 		return 0;
482 	return security_ops->inode_rmdir(dir, dentry);
483 }
484 
485 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
486 {
487 	if (unlikely(IS_PRIVATE(dir)))
488 		return 0;
489 	return security_ops->inode_mknod(dir, dentry, mode, dev);
490 }
491 
492 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
493 			   struct inode *new_dir, struct dentry *new_dentry)
494 {
495         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
496             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
497 		return 0;
498 	return security_ops->inode_rename(old_dir, old_dentry,
499 					   new_dir, new_dentry);
500 }
501 
502 int security_inode_readlink(struct dentry *dentry)
503 {
504 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
505 		return 0;
506 	return security_ops->inode_readlink(dentry);
507 }
508 
509 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
510 {
511 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
512 		return 0;
513 	return security_ops->inode_follow_link(dentry, nd);
514 }
515 
516 int security_inode_permission(struct inode *inode, int mask)
517 {
518 	if (unlikely(IS_PRIVATE(inode)))
519 		return 0;
520 	return security_ops->inode_permission(inode, mask);
521 }
522 
523 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
524 {
525 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
526 		return 0;
527 	return security_ops->inode_setattr(dentry, attr);
528 }
529 EXPORT_SYMBOL_GPL(security_inode_setattr);
530 
531 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
532 {
533 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
534 		return 0;
535 	return security_ops->inode_getattr(mnt, dentry);
536 }
537 
538 int security_inode_setxattr(struct dentry *dentry, const char *name,
539 			    const void *value, size_t size, int flags)
540 {
541 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
542 		return 0;
543 	return security_ops->inode_setxattr(dentry, name, value, size, flags);
544 }
545 
546 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
547 				  const void *value, size_t size, int flags)
548 {
549 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
550 		return;
551 	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
552 }
553 
554 int security_inode_getxattr(struct dentry *dentry, const char *name)
555 {
556 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
557 		return 0;
558 	return security_ops->inode_getxattr(dentry, name);
559 }
560 
561 int security_inode_listxattr(struct dentry *dentry)
562 {
563 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
564 		return 0;
565 	return security_ops->inode_listxattr(dentry);
566 }
567 
568 int security_inode_removexattr(struct dentry *dentry, const char *name)
569 {
570 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
571 		return 0;
572 	return security_ops->inode_removexattr(dentry, name);
573 }
574 
575 int security_inode_need_killpriv(struct dentry *dentry)
576 {
577 	return security_ops->inode_need_killpriv(dentry);
578 }
579 
580 int security_inode_killpriv(struct dentry *dentry)
581 {
582 	return security_ops->inode_killpriv(dentry);
583 }
584 
585 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
586 {
587 	if (unlikely(IS_PRIVATE(inode)))
588 		return -EOPNOTSUPP;
589 	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
590 }
591 
592 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
593 {
594 	if (unlikely(IS_PRIVATE(inode)))
595 		return -EOPNOTSUPP;
596 	return security_ops->inode_setsecurity(inode, name, value, size, flags);
597 }
598 
599 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
600 {
601 	if (unlikely(IS_PRIVATE(inode)))
602 		return 0;
603 	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
604 }
605 
606 void security_inode_getsecid(const struct inode *inode, u32 *secid)
607 {
608 	security_ops->inode_getsecid(inode, secid);
609 }
610 
611 int security_file_permission(struct file *file, int mask)
612 {
613 	int ret;
614 
615 	ret = security_ops->file_permission(file, mask);
616 	if (ret)
617 		return ret;
618 
619 	return fsnotify_perm(file, mask);
620 }
621 
622 int security_file_alloc(struct file *file)
623 {
624 	return security_ops->file_alloc_security(file);
625 }
626 
627 void security_file_free(struct file *file)
628 {
629 	security_ops->file_free_security(file);
630 }
631 
632 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
633 {
634 	return security_ops->file_ioctl(file, cmd, arg);
635 }
636 
637 int security_file_mmap(struct file *file, unsigned long reqprot,
638 			unsigned long prot, unsigned long flags,
639 			unsigned long addr, unsigned long addr_only)
640 {
641 	int ret;
642 
643 	ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
644 	if (ret)
645 		return ret;
646 	return ima_file_mmap(file, prot);
647 }
648 
649 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
650 			    unsigned long prot)
651 {
652 	return security_ops->file_mprotect(vma, reqprot, prot);
653 }
654 
655 int security_file_lock(struct file *file, unsigned int cmd)
656 {
657 	return security_ops->file_lock(file, cmd);
658 }
659 
660 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
661 {
662 	return security_ops->file_fcntl(file, cmd, arg);
663 }
664 
665 int security_file_set_fowner(struct file *file)
666 {
667 	return security_ops->file_set_fowner(file);
668 }
669 
670 int security_file_send_sigiotask(struct task_struct *tsk,
671 				  struct fown_struct *fown, int sig)
672 {
673 	return security_ops->file_send_sigiotask(tsk, fown, sig);
674 }
675 
676 int security_file_receive(struct file *file)
677 {
678 	return security_ops->file_receive(file);
679 }
680 
681 int security_dentry_open(struct file *file, const struct cred *cred)
682 {
683 	int ret;
684 
685 	ret = security_ops->dentry_open(file, cred);
686 	if (ret)
687 		return ret;
688 
689 	return fsnotify_perm(file, MAY_OPEN);
690 }
691 
692 int security_task_create(unsigned long clone_flags)
693 {
694 	return security_ops->task_create(clone_flags);
695 }
696 
697 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
698 {
699 	return security_ops->cred_alloc_blank(cred, gfp);
700 }
701 
702 void security_cred_free(struct cred *cred)
703 {
704 	security_ops->cred_free(cred);
705 }
706 
707 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
708 {
709 	return security_ops->cred_prepare(new, old, gfp);
710 }
711 
712 void security_transfer_creds(struct cred *new, const struct cred *old)
713 {
714 	security_ops->cred_transfer(new, old);
715 }
716 
717 int security_kernel_act_as(struct cred *new, u32 secid)
718 {
719 	return security_ops->kernel_act_as(new, secid);
720 }
721 
722 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
723 {
724 	return security_ops->kernel_create_files_as(new, inode);
725 }
726 
727 int security_kernel_module_request(char *kmod_name)
728 {
729 	return security_ops->kernel_module_request(kmod_name);
730 }
731 
732 int security_task_fix_setuid(struct cred *new, const struct cred *old,
733 			     int flags)
734 {
735 	return security_ops->task_fix_setuid(new, old, flags);
736 }
737 
738 int security_task_setpgid(struct task_struct *p, pid_t pgid)
739 {
740 	return security_ops->task_setpgid(p, pgid);
741 }
742 
743 int security_task_getpgid(struct task_struct *p)
744 {
745 	return security_ops->task_getpgid(p);
746 }
747 
748 int security_task_getsid(struct task_struct *p)
749 {
750 	return security_ops->task_getsid(p);
751 }
752 
753 void security_task_getsecid(struct task_struct *p, u32 *secid)
754 {
755 	security_ops->task_getsecid(p, secid);
756 }
757 EXPORT_SYMBOL(security_task_getsecid);
758 
759 int security_task_setnice(struct task_struct *p, int nice)
760 {
761 	return security_ops->task_setnice(p, nice);
762 }
763 
764 int security_task_setioprio(struct task_struct *p, int ioprio)
765 {
766 	return security_ops->task_setioprio(p, ioprio);
767 }
768 
769 int security_task_getioprio(struct task_struct *p)
770 {
771 	return security_ops->task_getioprio(p);
772 }
773 
774 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
775 		struct rlimit *new_rlim)
776 {
777 	return security_ops->task_setrlimit(p, resource, new_rlim);
778 }
779 
780 int security_task_setscheduler(struct task_struct *p)
781 {
782 	return security_ops->task_setscheduler(p);
783 }
784 
785 int security_task_getscheduler(struct task_struct *p)
786 {
787 	return security_ops->task_getscheduler(p);
788 }
789 
790 int security_task_movememory(struct task_struct *p)
791 {
792 	return security_ops->task_movememory(p);
793 }
794 
795 int security_task_kill(struct task_struct *p, struct siginfo *info,
796 			int sig, u32 secid)
797 {
798 	return security_ops->task_kill(p, info, sig, secid);
799 }
800 
801 int security_task_wait(struct task_struct *p)
802 {
803 	return security_ops->task_wait(p);
804 }
805 
806 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
807 			 unsigned long arg4, unsigned long arg5)
808 {
809 	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
810 }
811 
812 void security_task_to_inode(struct task_struct *p, struct inode *inode)
813 {
814 	security_ops->task_to_inode(p, inode);
815 }
816 
817 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
818 {
819 	return security_ops->ipc_permission(ipcp, flag);
820 }
821 
822 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
823 {
824 	security_ops->ipc_getsecid(ipcp, secid);
825 }
826 
827 int security_msg_msg_alloc(struct msg_msg *msg)
828 {
829 	return security_ops->msg_msg_alloc_security(msg);
830 }
831 
832 void security_msg_msg_free(struct msg_msg *msg)
833 {
834 	security_ops->msg_msg_free_security(msg);
835 }
836 
837 int security_msg_queue_alloc(struct msg_queue *msq)
838 {
839 	return security_ops->msg_queue_alloc_security(msq);
840 }
841 
842 void security_msg_queue_free(struct msg_queue *msq)
843 {
844 	security_ops->msg_queue_free_security(msq);
845 }
846 
847 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
848 {
849 	return security_ops->msg_queue_associate(msq, msqflg);
850 }
851 
852 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
853 {
854 	return security_ops->msg_queue_msgctl(msq, cmd);
855 }
856 
857 int security_msg_queue_msgsnd(struct msg_queue *msq,
858 			       struct msg_msg *msg, int msqflg)
859 {
860 	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
861 }
862 
863 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
864 			       struct task_struct *target, long type, int mode)
865 {
866 	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
867 }
868 
869 int security_shm_alloc(struct shmid_kernel *shp)
870 {
871 	return security_ops->shm_alloc_security(shp);
872 }
873 
874 void security_shm_free(struct shmid_kernel *shp)
875 {
876 	security_ops->shm_free_security(shp);
877 }
878 
879 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
880 {
881 	return security_ops->shm_associate(shp, shmflg);
882 }
883 
884 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
885 {
886 	return security_ops->shm_shmctl(shp, cmd);
887 }
888 
889 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
890 {
891 	return security_ops->shm_shmat(shp, shmaddr, shmflg);
892 }
893 
894 int security_sem_alloc(struct sem_array *sma)
895 {
896 	return security_ops->sem_alloc_security(sma);
897 }
898 
899 void security_sem_free(struct sem_array *sma)
900 {
901 	security_ops->sem_free_security(sma);
902 }
903 
904 int security_sem_associate(struct sem_array *sma, int semflg)
905 {
906 	return security_ops->sem_associate(sma, semflg);
907 }
908 
909 int security_sem_semctl(struct sem_array *sma, int cmd)
910 {
911 	return security_ops->sem_semctl(sma, cmd);
912 }
913 
914 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
915 			unsigned nsops, int alter)
916 {
917 	return security_ops->sem_semop(sma, sops, nsops, alter);
918 }
919 
920 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
921 {
922 	if (unlikely(inode && IS_PRIVATE(inode)))
923 		return;
924 	security_ops->d_instantiate(dentry, inode);
925 }
926 EXPORT_SYMBOL(security_d_instantiate);
927 
928 int security_getprocattr(struct task_struct *p, char *name, char **value)
929 {
930 	return security_ops->getprocattr(p, name, value);
931 }
932 
933 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
934 {
935 	return security_ops->setprocattr(p, name, value, size);
936 }
937 
938 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
939 {
940 	return security_ops->netlink_send(sk, skb);
941 }
942 
943 int security_netlink_recv(struct sk_buff *skb, int cap)
944 {
945 	return security_ops->netlink_recv(skb, cap);
946 }
947 EXPORT_SYMBOL(security_netlink_recv);
948 
949 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
950 {
951 	return security_ops->secid_to_secctx(secid, secdata, seclen);
952 }
953 EXPORT_SYMBOL(security_secid_to_secctx);
954 
955 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
956 {
957 	return security_ops->secctx_to_secid(secdata, seclen, secid);
958 }
959 EXPORT_SYMBOL(security_secctx_to_secid);
960 
961 void security_release_secctx(char *secdata, u32 seclen)
962 {
963 	security_ops->release_secctx(secdata, seclen);
964 }
965 EXPORT_SYMBOL(security_release_secctx);
966 
967 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
968 {
969 	return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
970 }
971 EXPORT_SYMBOL(security_inode_notifysecctx);
972 
973 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
974 {
975 	return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
976 }
977 EXPORT_SYMBOL(security_inode_setsecctx);
978 
979 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
980 {
981 	return security_ops->inode_getsecctx(inode, ctx, ctxlen);
982 }
983 EXPORT_SYMBOL(security_inode_getsecctx);
984 
985 #ifdef CONFIG_SECURITY_NETWORK
986 
987 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
988 {
989 	return security_ops->unix_stream_connect(sock, other, newsk);
990 }
991 EXPORT_SYMBOL(security_unix_stream_connect);
992 
993 int security_unix_may_send(struct socket *sock,  struct socket *other)
994 {
995 	return security_ops->unix_may_send(sock, other);
996 }
997 EXPORT_SYMBOL(security_unix_may_send);
998 
999 int security_socket_create(int family, int type, int protocol, int kern)
1000 {
1001 	return security_ops->socket_create(family, type, protocol, kern);
1002 }
1003 
1004 int security_socket_post_create(struct socket *sock, int family,
1005 				int type, int protocol, int kern)
1006 {
1007 	return security_ops->socket_post_create(sock, family, type,
1008 						protocol, kern);
1009 }
1010 
1011 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1012 {
1013 	return security_ops->socket_bind(sock, address, addrlen);
1014 }
1015 
1016 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1017 {
1018 	return security_ops->socket_connect(sock, address, addrlen);
1019 }
1020 
1021 int security_socket_listen(struct socket *sock, int backlog)
1022 {
1023 	return security_ops->socket_listen(sock, backlog);
1024 }
1025 
1026 int security_socket_accept(struct socket *sock, struct socket *newsock)
1027 {
1028 	return security_ops->socket_accept(sock, newsock);
1029 }
1030 
1031 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1032 {
1033 	return security_ops->socket_sendmsg(sock, msg, size);
1034 }
1035 
1036 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1037 			    int size, int flags)
1038 {
1039 	return security_ops->socket_recvmsg(sock, msg, size, flags);
1040 }
1041 
1042 int security_socket_getsockname(struct socket *sock)
1043 {
1044 	return security_ops->socket_getsockname(sock);
1045 }
1046 
1047 int security_socket_getpeername(struct socket *sock)
1048 {
1049 	return security_ops->socket_getpeername(sock);
1050 }
1051 
1052 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1053 {
1054 	return security_ops->socket_getsockopt(sock, level, optname);
1055 }
1056 
1057 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1058 {
1059 	return security_ops->socket_setsockopt(sock, level, optname);
1060 }
1061 
1062 int security_socket_shutdown(struct socket *sock, int how)
1063 {
1064 	return security_ops->socket_shutdown(sock, how);
1065 }
1066 
1067 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1068 {
1069 	return security_ops->socket_sock_rcv_skb(sk, skb);
1070 }
1071 EXPORT_SYMBOL(security_sock_rcv_skb);
1072 
1073 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1074 				      int __user *optlen, unsigned len)
1075 {
1076 	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1077 }
1078 
1079 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1080 {
1081 	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1082 }
1083 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1084 
1085 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1086 {
1087 	return security_ops->sk_alloc_security(sk, family, priority);
1088 }
1089 
1090 void security_sk_free(struct sock *sk)
1091 {
1092 	security_ops->sk_free_security(sk);
1093 }
1094 
1095 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1096 {
1097 	security_ops->sk_clone_security(sk, newsk);
1098 }
1099 EXPORT_SYMBOL(security_sk_clone);
1100 
1101 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1102 {
1103 	security_ops->sk_getsecid(sk, &fl->flowi_secid);
1104 }
1105 EXPORT_SYMBOL(security_sk_classify_flow);
1106 
1107 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1108 {
1109 	security_ops->req_classify_flow(req, fl);
1110 }
1111 EXPORT_SYMBOL(security_req_classify_flow);
1112 
1113 void security_sock_graft(struct sock *sk, struct socket *parent)
1114 {
1115 	security_ops->sock_graft(sk, parent);
1116 }
1117 EXPORT_SYMBOL(security_sock_graft);
1118 
1119 int security_inet_conn_request(struct sock *sk,
1120 			struct sk_buff *skb, struct request_sock *req)
1121 {
1122 	return security_ops->inet_conn_request(sk, skb, req);
1123 }
1124 EXPORT_SYMBOL(security_inet_conn_request);
1125 
1126 void security_inet_csk_clone(struct sock *newsk,
1127 			const struct request_sock *req)
1128 {
1129 	security_ops->inet_csk_clone(newsk, req);
1130 }
1131 
1132 void security_inet_conn_established(struct sock *sk,
1133 			struct sk_buff *skb)
1134 {
1135 	security_ops->inet_conn_established(sk, skb);
1136 }
1137 
1138 int security_secmark_relabel_packet(u32 secid)
1139 {
1140 	return security_ops->secmark_relabel_packet(secid);
1141 }
1142 EXPORT_SYMBOL(security_secmark_relabel_packet);
1143 
1144 void security_secmark_refcount_inc(void)
1145 {
1146 	security_ops->secmark_refcount_inc();
1147 }
1148 EXPORT_SYMBOL(security_secmark_refcount_inc);
1149 
1150 void security_secmark_refcount_dec(void)
1151 {
1152 	security_ops->secmark_refcount_dec();
1153 }
1154 EXPORT_SYMBOL(security_secmark_refcount_dec);
1155 
1156 int security_tun_dev_create(void)
1157 {
1158 	return security_ops->tun_dev_create();
1159 }
1160 EXPORT_SYMBOL(security_tun_dev_create);
1161 
1162 void security_tun_dev_post_create(struct sock *sk)
1163 {
1164 	return security_ops->tun_dev_post_create(sk);
1165 }
1166 EXPORT_SYMBOL(security_tun_dev_post_create);
1167 
1168 int security_tun_dev_attach(struct sock *sk)
1169 {
1170 	return security_ops->tun_dev_attach(sk);
1171 }
1172 EXPORT_SYMBOL(security_tun_dev_attach);
1173 
1174 #endif	/* CONFIG_SECURITY_NETWORK */
1175 
1176 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1177 
1178 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1179 {
1180 	return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1181 }
1182 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1183 
1184 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1185 			      struct xfrm_sec_ctx **new_ctxp)
1186 {
1187 	return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1188 }
1189 
1190 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1191 {
1192 	security_ops->xfrm_policy_free_security(ctx);
1193 }
1194 EXPORT_SYMBOL(security_xfrm_policy_free);
1195 
1196 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1197 {
1198 	return security_ops->xfrm_policy_delete_security(ctx);
1199 }
1200 
1201 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1202 {
1203 	return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1204 }
1205 EXPORT_SYMBOL(security_xfrm_state_alloc);
1206 
1207 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1208 				      struct xfrm_sec_ctx *polsec, u32 secid)
1209 {
1210 	if (!polsec)
1211 		return 0;
1212 	/*
1213 	 * We want the context to be taken from secid which is usually
1214 	 * from the sock.
1215 	 */
1216 	return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1217 }
1218 
1219 int security_xfrm_state_delete(struct xfrm_state *x)
1220 {
1221 	return security_ops->xfrm_state_delete_security(x);
1222 }
1223 EXPORT_SYMBOL(security_xfrm_state_delete);
1224 
1225 void security_xfrm_state_free(struct xfrm_state *x)
1226 {
1227 	security_ops->xfrm_state_free_security(x);
1228 }
1229 
1230 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1231 {
1232 	return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1233 }
1234 
1235 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1236 				       struct xfrm_policy *xp,
1237 				       const struct flowi *fl)
1238 {
1239 	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1240 }
1241 
1242 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1243 {
1244 	return security_ops->xfrm_decode_session(skb, secid, 1);
1245 }
1246 
1247 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1248 {
1249 	int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1250 
1251 	BUG_ON(rc);
1252 }
1253 EXPORT_SYMBOL(security_skb_classify_flow);
1254 
1255 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1256 
1257 #ifdef CONFIG_KEYS
1258 
1259 int security_key_alloc(struct key *key, const struct cred *cred,
1260 		       unsigned long flags)
1261 {
1262 	return security_ops->key_alloc(key, cred, flags);
1263 }
1264 
1265 void security_key_free(struct key *key)
1266 {
1267 	security_ops->key_free(key);
1268 }
1269 
1270 int security_key_permission(key_ref_t key_ref,
1271 			    const struct cred *cred, key_perm_t perm)
1272 {
1273 	return security_ops->key_permission(key_ref, cred, perm);
1274 }
1275 
1276 int security_key_getsecurity(struct key *key, char **_buffer)
1277 {
1278 	return security_ops->key_getsecurity(key, _buffer);
1279 }
1280 
1281 #endif	/* CONFIG_KEYS */
1282 
1283 #ifdef CONFIG_AUDIT
1284 
1285 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1286 {
1287 	return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1288 }
1289 
1290 int security_audit_rule_known(struct audit_krule *krule)
1291 {
1292 	return security_ops->audit_rule_known(krule);
1293 }
1294 
1295 void security_audit_rule_free(void *lsmrule)
1296 {
1297 	security_ops->audit_rule_free(lsmrule);
1298 }
1299 
1300 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1301 			      struct audit_context *actx)
1302 {
1303 	return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1304 }
1305 
1306 #endif /* CONFIG_AUDIT */
1307