xref: /openbmc/linux/security/security.c (revision 643d1f7f)
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *	This program is free software; you can redistribute it and/or modify
9  *	it under the terms of the GNU General Public License as published by
10  *	the Free Software Foundation; either version 2 of the License, or
11  *	(at your option) any later version.
12  */
13 
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 
20 
21 /* things that live in dummy.c */
22 extern struct security_operations dummy_security_ops;
23 extern void security_fixup_ops(struct security_operations *ops);
24 
25 struct security_operations *security_ops;	/* Initialized to NULL */
26 unsigned long mmap_min_addr;		/* 0 means no protection */
27 
28 static inline int verify(struct security_operations *ops)
29 {
30 	/* verify the security_operations structure exists */
31 	if (!ops)
32 		return -EINVAL;
33 	security_fixup_ops(ops);
34 	return 0;
35 }
36 
37 static void __init do_security_initcalls(void)
38 {
39 	initcall_t *call;
40 	call = __security_initcall_start;
41 	while (call < __security_initcall_end) {
42 		(*call) ();
43 		call++;
44 	}
45 }
46 
47 /**
48  * security_init - initializes the security framework
49  *
50  * This should be called early in the kernel initialization sequence.
51  */
52 int __init security_init(void)
53 {
54 	printk(KERN_INFO "Security Framework initialized\n");
55 
56 	if (verify(&dummy_security_ops)) {
57 		printk(KERN_ERR "%s could not verify "
58 		       "dummy_security_ops structure.\n", __FUNCTION__);
59 		return -EIO;
60 	}
61 
62 	security_ops = &dummy_security_ops;
63 	do_security_initcalls();
64 
65 	return 0;
66 }
67 
68 /**
69  * register_security - registers a security framework with the kernel
70  * @ops: a pointer to the struct security_options that is to be registered
71  *
72  * This function is to allow a security module to register itself with the
73  * kernel security subsystem.  Some rudimentary checking is done on the @ops
74  * value passed to this function.
75  *
76  * If there is already a security module registered with the kernel,
77  * an error will be returned.  Otherwise 0 is returned on success.
78  */
79 int register_security(struct security_operations *ops)
80 {
81 	if (verify(ops)) {
82 		printk(KERN_DEBUG "%s could not verify "
83 		       "security_operations structure.\n", __FUNCTION__);
84 		return -EINVAL;
85 	}
86 
87 	if (security_ops != &dummy_security_ops)
88 		return -EAGAIN;
89 
90 	security_ops = ops;
91 
92 	return 0;
93 }
94 
95 /**
96  * mod_reg_security - allows security modules to be "stacked"
97  * @name: a pointer to a string with the name of the security_options to be registered
98  * @ops: a pointer to the struct security_options that is to be registered
99  *
100  * This function allows security modules to be stacked if the currently loaded
101  * security module allows this to happen.  It passes the @name and @ops to the
102  * register_security function of the currently loaded security module.
103  *
104  * The return value depends on the currently loaded security module, with 0 as
105  * success.
106  */
107 int mod_reg_security(const char *name, struct security_operations *ops)
108 {
109 	if (verify(ops)) {
110 		printk(KERN_INFO "%s could not verify "
111 		       "security operations.\n", __FUNCTION__);
112 		return -EINVAL;
113 	}
114 
115 	if (ops == security_ops) {
116 		printk(KERN_INFO "%s security operations "
117 		       "already registered.\n", __FUNCTION__);
118 		return -EINVAL;
119 	}
120 
121 	return security_ops->register_security(name, ops);
122 }
123 
124 /* Security operations */
125 
126 int security_ptrace(struct task_struct *parent, struct task_struct *child)
127 {
128 	return security_ops->ptrace(parent, child);
129 }
130 
131 int security_capget(struct task_struct *target,
132 		     kernel_cap_t *effective,
133 		     kernel_cap_t *inheritable,
134 		     kernel_cap_t *permitted)
135 {
136 	return security_ops->capget(target, effective, inheritable, permitted);
137 }
138 
139 int security_capset_check(struct task_struct *target,
140 			   kernel_cap_t *effective,
141 			   kernel_cap_t *inheritable,
142 			   kernel_cap_t *permitted)
143 {
144 	return security_ops->capset_check(target, effective, inheritable, permitted);
145 }
146 
147 void security_capset_set(struct task_struct *target,
148 			  kernel_cap_t *effective,
149 			  kernel_cap_t *inheritable,
150 			  kernel_cap_t *permitted)
151 {
152 	security_ops->capset_set(target, effective, inheritable, permitted);
153 }
154 
155 int security_capable(struct task_struct *tsk, int cap)
156 {
157 	return security_ops->capable(tsk, cap);
158 }
159 
160 int security_acct(struct file *file)
161 {
162 	return security_ops->acct(file);
163 }
164 
165 int security_sysctl(struct ctl_table *table, int op)
166 {
167 	return security_ops->sysctl(table, op);
168 }
169 
170 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
171 {
172 	return security_ops->quotactl(cmds, type, id, sb);
173 }
174 
175 int security_quota_on(struct dentry *dentry)
176 {
177 	return security_ops->quota_on(dentry);
178 }
179 
180 int security_syslog(int type)
181 {
182 	return security_ops->syslog(type);
183 }
184 
185 int security_settime(struct timespec *ts, struct timezone *tz)
186 {
187 	return security_ops->settime(ts, tz);
188 }
189 
190 int security_vm_enough_memory(long pages)
191 {
192 	return security_ops->vm_enough_memory(current->mm, pages);
193 }
194 
195 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
196 {
197 	return security_ops->vm_enough_memory(mm, pages);
198 }
199 
200 int security_bprm_alloc(struct linux_binprm *bprm)
201 {
202 	return security_ops->bprm_alloc_security(bprm);
203 }
204 
205 void security_bprm_free(struct linux_binprm *bprm)
206 {
207 	security_ops->bprm_free_security(bprm);
208 }
209 
210 void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
211 {
212 	security_ops->bprm_apply_creds(bprm, unsafe);
213 }
214 
215 void security_bprm_post_apply_creds(struct linux_binprm *bprm)
216 {
217 	security_ops->bprm_post_apply_creds(bprm);
218 }
219 
220 int security_bprm_set(struct linux_binprm *bprm)
221 {
222 	return security_ops->bprm_set_security(bprm);
223 }
224 
225 int security_bprm_check(struct linux_binprm *bprm)
226 {
227 	return security_ops->bprm_check_security(bprm);
228 }
229 
230 int security_bprm_secureexec(struct linux_binprm *bprm)
231 {
232 	return security_ops->bprm_secureexec(bprm);
233 }
234 
235 int security_sb_alloc(struct super_block *sb)
236 {
237 	return security_ops->sb_alloc_security(sb);
238 }
239 
240 void security_sb_free(struct super_block *sb)
241 {
242 	security_ops->sb_free_security(sb);
243 }
244 
245 int security_sb_copy_data(struct file_system_type *type, void *orig, void *copy)
246 {
247 	return security_ops->sb_copy_data(type, orig, copy);
248 }
249 
250 int security_sb_kern_mount(struct super_block *sb, void *data)
251 {
252 	return security_ops->sb_kern_mount(sb, data);
253 }
254 
255 int security_sb_statfs(struct dentry *dentry)
256 {
257 	return security_ops->sb_statfs(dentry);
258 }
259 
260 int security_sb_mount(char *dev_name, struct nameidata *nd,
261                        char *type, unsigned long flags, void *data)
262 {
263 	return security_ops->sb_mount(dev_name, nd, type, flags, data);
264 }
265 
266 int security_sb_check_sb(struct vfsmount *mnt, struct nameidata *nd)
267 {
268 	return security_ops->sb_check_sb(mnt, nd);
269 }
270 
271 int security_sb_umount(struct vfsmount *mnt, int flags)
272 {
273 	return security_ops->sb_umount(mnt, flags);
274 }
275 
276 void security_sb_umount_close(struct vfsmount *mnt)
277 {
278 	security_ops->sb_umount_close(mnt);
279 }
280 
281 void security_sb_umount_busy(struct vfsmount *mnt)
282 {
283 	security_ops->sb_umount_busy(mnt);
284 }
285 
286 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
287 {
288 	security_ops->sb_post_remount(mnt, flags, data);
289 }
290 
291 void security_sb_post_addmount(struct vfsmount *mnt, struct nameidata *mountpoint_nd)
292 {
293 	security_ops->sb_post_addmount(mnt, mountpoint_nd);
294 }
295 
296 int security_sb_pivotroot(struct nameidata *old_nd, struct nameidata *new_nd)
297 {
298 	return security_ops->sb_pivotroot(old_nd, new_nd);
299 }
300 
301 void security_sb_post_pivotroot(struct nameidata *old_nd, struct nameidata *new_nd)
302 {
303 	security_ops->sb_post_pivotroot(old_nd, new_nd);
304 }
305 
306 int security_sb_get_mnt_opts(const struct super_block *sb,
307 			      char ***mount_options,
308 			      int **flags, int *num_opts)
309 {
310 	return security_ops->sb_get_mnt_opts(sb, mount_options, flags, num_opts);
311 }
312 
313 int security_sb_set_mnt_opts(struct super_block *sb,
314 			      char **mount_options,
315 			      int *flags, int num_opts)
316 {
317 	return security_ops->sb_set_mnt_opts(sb, mount_options, flags, num_opts);
318 }
319 
320 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
321 				struct super_block *newsb)
322 {
323 	security_ops->sb_clone_mnt_opts(oldsb, newsb);
324 }
325 
326 int security_inode_alloc(struct inode *inode)
327 {
328 	inode->i_security = NULL;
329 	return security_ops->inode_alloc_security(inode);
330 }
331 
332 void security_inode_free(struct inode *inode)
333 {
334 	security_ops->inode_free_security(inode);
335 }
336 
337 int security_inode_init_security(struct inode *inode, struct inode *dir,
338 				  char **name, void **value, size_t *len)
339 {
340 	if (unlikely(IS_PRIVATE(inode)))
341 		return -EOPNOTSUPP;
342 	return security_ops->inode_init_security(inode, dir, name, value, len);
343 }
344 EXPORT_SYMBOL(security_inode_init_security);
345 
346 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
347 {
348 	if (unlikely(IS_PRIVATE(dir)))
349 		return 0;
350 	return security_ops->inode_create(dir, dentry, mode);
351 }
352 
353 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
354 			 struct dentry *new_dentry)
355 {
356 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
357 		return 0;
358 	return security_ops->inode_link(old_dentry, dir, new_dentry);
359 }
360 
361 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
362 {
363 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
364 		return 0;
365 	return security_ops->inode_unlink(dir, dentry);
366 }
367 
368 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
369 			    const char *old_name)
370 {
371 	if (unlikely(IS_PRIVATE(dir)))
372 		return 0;
373 	return security_ops->inode_symlink(dir, dentry, old_name);
374 }
375 
376 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
377 {
378 	if (unlikely(IS_PRIVATE(dir)))
379 		return 0;
380 	return security_ops->inode_mkdir(dir, dentry, mode);
381 }
382 
383 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
384 {
385 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
386 		return 0;
387 	return security_ops->inode_rmdir(dir, dentry);
388 }
389 
390 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
391 {
392 	if (unlikely(IS_PRIVATE(dir)))
393 		return 0;
394 	return security_ops->inode_mknod(dir, dentry, mode, dev);
395 }
396 
397 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
398 			   struct inode *new_dir, struct dentry *new_dentry)
399 {
400         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
401             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
402 		return 0;
403 	return security_ops->inode_rename(old_dir, old_dentry,
404 					   new_dir, new_dentry);
405 }
406 
407 int security_inode_readlink(struct dentry *dentry)
408 {
409 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
410 		return 0;
411 	return security_ops->inode_readlink(dentry);
412 }
413 
414 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
415 {
416 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
417 		return 0;
418 	return security_ops->inode_follow_link(dentry, nd);
419 }
420 
421 int security_inode_permission(struct inode *inode, int mask, struct nameidata *nd)
422 {
423 	if (unlikely(IS_PRIVATE(inode)))
424 		return 0;
425 	return security_ops->inode_permission(inode, mask, nd);
426 }
427 
428 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
429 {
430 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
431 		return 0;
432 	return security_ops->inode_setattr(dentry, attr);
433 }
434 
435 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
436 {
437 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
438 		return 0;
439 	return security_ops->inode_getattr(mnt, dentry);
440 }
441 
442 void security_inode_delete(struct inode *inode)
443 {
444 	if (unlikely(IS_PRIVATE(inode)))
445 		return;
446 	security_ops->inode_delete(inode);
447 }
448 
449 int security_inode_setxattr(struct dentry *dentry, char *name,
450 			     void *value, size_t size, int flags)
451 {
452 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
453 		return 0;
454 	return security_ops->inode_setxattr(dentry, name, value, size, flags);
455 }
456 
457 void security_inode_post_setxattr(struct dentry *dentry, char *name,
458 				   void *value, size_t size, int flags)
459 {
460 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
461 		return;
462 	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
463 }
464 
465 int security_inode_getxattr(struct dentry *dentry, char *name)
466 {
467 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
468 		return 0;
469 	return security_ops->inode_getxattr(dentry, name);
470 }
471 
472 int security_inode_listxattr(struct dentry *dentry)
473 {
474 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
475 		return 0;
476 	return security_ops->inode_listxattr(dentry);
477 }
478 
479 int security_inode_removexattr(struct dentry *dentry, char *name)
480 {
481 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
482 		return 0;
483 	return security_ops->inode_removexattr(dentry, name);
484 }
485 
486 int security_inode_need_killpriv(struct dentry *dentry)
487 {
488 	return security_ops->inode_need_killpriv(dentry);
489 }
490 
491 int security_inode_killpriv(struct dentry *dentry)
492 {
493 	return security_ops->inode_killpriv(dentry);
494 }
495 
496 int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
497 {
498 	if (unlikely(IS_PRIVATE(inode)))
499 		return 0;
500 	return security_ops->inode_getsecurity(inode, name, buffer, size, err);
501 }
502 
503 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
504 {
505 	if (unlikely(IS_PRIVATE(inode)))
506 		return 0;
507 	return security_ops->inode_setsecurity(inode, name, value, size, flags);
508 }
509 
510 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
511 {
512 	if (unlikely(IS_PRIVATE(inode)))
513 		return 0;
514 	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
515 }
516 
517 int security_file_permission(struct file *file, int mask)
518 {
519 	return security_ops->file_permission(file, mask);
520 }
521 
522 int security_file_alloc(struct file *file)
523 {
524 	return security_ops->file_alloc_security(file);
525 }
526 
527 void security_file_free(struct file *file)
528 {
529 	security_ops->file_free_security(file);
530 }
531 
532 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
533 {
534 	return security_ops->file_ioctl(file, cmd, arg);
535 }
536 
537 int security_file_mmap(struct file *file, unsigned long reqprot,
538 			unsigned long prot, unsigned long flags,
539 			unsigned long addr, unsigned long addr_only)
540 {
541 	return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
542 }
543 
544 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
545 			    unsigned long prot)
546 {
547 	return security_ops->file_mprotect(vma, reqprot, prot);
548 }
549 
550 int security_file_lock(struct file *file, unsigned int cmd)
551 {
552 	return security_ops->file_lock(file, cmd);
553 }
554 
555 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
556 {
557 	return security_ops->file_fcntl(file, cmd, arg);
558 }
559 
560 int security_file_set_fowner(struct file *file)
561 {
562 	return security_ops->file_set_fowner(file);
563 }
564 
565 int security_file_send_sigiotask(struct task_struct *tsk,
566 				  struct fown_struct *fown, int sig)
567 {
568 	return security_ops->file_send_sigiotask(tsk, fown, sig);
569 }
570 
571 int security_file_receive(struct file *file)
572 {
573 	return security_ops->file_receive(file);
574 }
575 
576 int security_dentry_open(struct file *file)
577 {
578 	return security_ops->dentry_open(file);
579 }
580 
581 int security_task_create(unsigned long clone_flags)
582 {
583 	return security_ops->task_create(clone_flags);
584 }
585 
586 int security_task_alloc(struct task_struct *p)
587 {
588 	return security_ops->task_alloc_security(p);
589 }
590 
591 void security_task_free(struct task_struct *p)
592 {
593 	security_ops->task_free_security(p);
594 }
595 
596 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
597 {
598 	return security_ops->task_setuid(id0, id1, id2, flags);
599 }
600 
601 int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
602 			       uid_t old_suid, int flags)
603 {
604 	return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags);
605 }
606 
607 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
608 {
609 	return security_ops->task_setgid(id0, id1, id2, flags);
610 }
611 
612 int security_task_setpgid(struct task_struct *p, pid_t pgid)
613 {
614 	return security_ops->task_setpgid(p, pgid);
615 }
616 
617 int security_task_getpgid(struct task_struct *p)
618 {
619 	return security_ops->task_getpgid(p);
620 }
621 
622 int security_task_getsid(struct task_struct *p)
623 {
624 	return security_ops->task_getsid(p);
625 }
626 
627 void security_task_getsecid(struct task_struct *p, u32 *secid)
628 {
629 	security_ops->task_getsecid(p, secid);
630 }
631 EXPORT_SYMBOL(security_task_getsecid);
632 
633 int security_task_setgroups(struct group_info *group_info)
634 {
635 	return security_ops->task_setgroups(group_info);
636 }
637 
638 int security_task_setnice(struct task_struct *p, int nice)
639 {
640 	return security_ops->task_setnice(p, nice);
641 }
642 
643 int security_task_setioprio(struct task_struct *p, int ioprio)
644 {
645 	return security_ops->task_setioprio(p, ioprio);
646 }
647 
648 int security_task_getioprio(struct task_struct *p)
649 {
650 	return security_ops->task_getioprio(p);
651 }
652 
653 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
654 {
655 	return security_ops->task_setrlimit(resource, new_rlim);
656 }
657 
658 int security_task_setscheduler(struct task_struct *p,
659 				int policy, struct sched_param *lp)
660 {
661 	return security_ops->task_setscheduler(p, policy, lp);
662 }
663 
664 int security_task_getscheduler(struct task_struct *p)
665 {
666 	return security_ops->task_getscheduler(p);
667 }
668 
669 int security_task_movememory(struct task_struct *p)
670 {
671 	return security_ops->task_movememory(p);
672 }
673 
674 int security_task_kill(struct task_struct *p, struct siginfo *info,
675 			int sig, u32 secid)
676 {
677 	return security_ops->task_kill(p, info, sig, secid);
678 }
679 
680 int security_task_wait(struct task_struct *p)
681 {
682 	return security_ops->task_wait(p);
683 }
684 
685 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
686 			 unsigned long arg4, unsigned long arg5)
687 {
688 	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
689 }
690 
691 void security_task_reparent_to_init(struct task_struct *p)
692 {
693 	security_ops->task_reparent_to_init(p);
694 }
695 
696 void security_task_to_inode(struct task_struct *p, struct inode *inode)
697 {
698 	security_ops->task_to_inode(p, inode);
699 }
700 
701 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
702 {
703 	return security_ops->ipc_permission(ipcp, flag);
704 }
705 
706 int security_msg_msg_alloc(struct msg_msg *msg)
707 {
708 	return security_ops->msg_msg_alloc_security(msg);
709 }
710 
711 void security_msg_msg_free(struct msg_msg *msg)
712 {
713 	security_ops->msg_msg_free_security(msg);
714 }
715 
716 int security_msg_queue_alloc(struct msg_queue *msq)
717 {
718 	return security_ops->msg_queue_alloc_security(msq);
719 }
720 
721 void security_msg_queue_free(struct msg_queue *msq)
722 {
723 	security_ops->msg_queue_free_security(msq);
724 }
725 
726 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
727 {
728 	return security_ops->msg_queue_associate(msq, msqflg);
729 }
730 
731 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
732 {
733 	return security_ops->msg_queue_msgctl(msq, cmd);
734 }
735 
736 int security_msg_queue_msgsnd(struct msg_queue *msq,
737 			       struct msg_msg *msg, int msqflg)
738 {
739 	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
740 }
741 
742 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
743 			       struct task_struct *target, long type, int mode)
744 {
745 	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
746 }
747 
748 int security_shm_alloc(struct shmid_kernel *shp)
749 {
750 	return security_ops->shm_alloc_security(shp);
751 }
752 
753 void security_shm_free(struct shmid_kernel *shp)
754 {
755 	security_ops->shm_free_security(shp);
756 }
757 
758 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
759 {
760 	return security_ops->shm_associate(shp, shmflg);
761 }
762 
763 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
764 {
765 	return security_ops->shm_shmctl(shp, cmd);
766 }
767 
768 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
769 {
770 	return security_ops->shm_shmat(shp, shmaddr, shmflg);
771 }
772 
773 int security_sem_alloc(struct sem_array *sma)
774 {
775 	return security_ops->sem_alloc_security(sma);
776 }
777 
778 void security_sem_free(struct sem_array *sma)
779 {
780 	security_ops->sem_free_security(sma);
781 }
782 
783 int security_sem_associate(struct sem_array *sma, int semflg)
784 {
785 	return security_ops->sem_associate(sma, semflg);
786 }
787 
788 int security_sem_semctl(struct sem_array *sma, int cmd)
789 {
790 	return security_ops->sem_semctl(sma, cmd);
791 }
792 
793 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
794 			unsigned nsops, int alter)
795 {
796 	return security_ops->sem_semop(sma, sops, nsops, alter);
797 }
798 
799 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
800 {
801 	if (unlikely(inode && IS_PRIVATE(inode)))
802 		return;
803 	security_ops->d_instantiate(dentry, inode);
804 }
805 EXPORT_SYMBOL(security_d_instantiate);
806 
807 int security_getprocattr(struct task_struct *p, char *name, char **value)
808 {
809 	return security_ops->getprocattr(p, name, value);
810 }
811 
812 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
813 {
814 	return security_ops->setprocattr(p, name, value, size);
815 }
816 
817 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
818 {
819 	return security_ops->netlink_send(sk, skb);
820 }
821 
822 int security_netlink_recv(struct sk_buff *skb, int cap)
823 {
824 	return security_ops->netlink_recv(skb, cap);
825 }
826 EXPORT_SYMBOL(security_netlink_recv);
827 
828 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
829 {
830 	return security_ops->secid_to_secctx(secid, secdata, seclen);
831 }
832 EXPORT_SYMBOL(security_secid_to_secctx);
833 
834 int security_secctx_to_secid(char *secdata, u32 seclen, u32 *secid)
835 {
836 	return security_ops->secctx_to_secid(secdata, seclen, secid);
837 }
838 EXPORT_SYMBOL(security_secctx_to_secid);
839 
840 void security_release_secctx(char *secdata, u32 seclen)
841 {
842 	return security_ops->release_secctx(secdata, seclen);
843 }
844 EXPORT_SYMBOL(security_release_secctx);
845 
846 #ifdef CONFIG_SECURITY_NETWORK
847 
848 int security_unix_stream_connect(struct socket *sock, struct socket *other,
849 				 struct sock *newsk)
850 {
851 	return security_ops->unix_stream_connect(sock, other, newsk);
852 }
853 EXPORT_SYMBOL(security_unix_stream_connect);
854 
855 int security_unix_may_send(struct socket *sock,  struct socket *other)
856 {
857 	return security_ops->unix_may_send(sock, other);
858 }
859 EXPORT_SYMBOL(security_unix_may_send);
860 
861 int security_socket_create(int family, int type, int protocol, int kern)
862 {
863 	return security_ops->socket_create(family, type, protocol, kern);
864 }
865 
866 int security_socket_post_create(struct socket *sock, int family,
867 				int type, int protocol, int kern)
868 {
869 	return security_ops->socket_post_create(sock, family, type,
870 						protocol, kern);
871 }
872 
873 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
874 {
875 	return security_ops->socket_bind(sock, address, addrlen);
876 }
877 
878 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
879 {
880 	return security_ops->socket_connect(sock, address, addrlen);
881 }
882 
883 int security_socket_listen(struct socket *sock, int backlog)
884 {
885 	return security_ops->socket_listen(sock, backlog);
886 }
887 
888 int security_socket_accept(struct socket *sock, struct socket *newsock)
889 {
890 	return security_ops->socket_accept(sock, newsock);
891 }
892 
893 void security_socket_post_accept(struct socket *sock, struct socket *newsock)
894 {
895 	security_ops->socket_post_accept(sock, newsock);
896 }
897 
898 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
899 {
900 	return security_ops->socket_sendmsg(sock, msg, size);
901 }
902 
903 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
904 			    int size, int flags)
905 {
906 	return security_ops->socket_recvmsg(sock, msg, size, flags);
907 }
908 
909 int security_socket_getsockname(struct socket *sock)
910 {
911 	return security_ops->socket_getsockname(sock);
912 }
913 
914 int security_socket_getpeername(struct socket *sock)
915 {
916 	return security_ops->socket_getpeername(sock);
917 }
918 
919 int security_socket_getsockopt(struct socket *sock, int level, int optname)
920 {
921 	return security_ops->socket_getsockopt(sock, level, optname);
922 }
923 
924 int security_socket_setsockopt(struct socket *sock, int level, int optname)
925 {
926 	return security_ops->socket_setsockopt(sock, level, optname);
927 }
928 
929 int security_socket_shutdown(struct socket *sock, int how)
930 {
931 	return security_ops->socket_shutdown(sock, how);
932 }
933 
934 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
935 {
936 	return security_ops->socket_sock_rcv_skb(sk, skb);
937 }
938 EXPORT_SYMBOL(security_sock_rcv_skb);
939 
940 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
941 				      int __user *optlen, unsigned len)
942 {
943 	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
944 }
945 
946 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
947 {
948 	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
949 }
950 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
951 
952 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
953 {
954 	return security_ops->sk_alloc_security(sk, family, priority);
955 }
956 
957 void security_sk_free(struct sock *sk)
958 {
959 	return security_ops->sk_free_security(sk);
960 }
961 
962 void security_sk_clone(const struct sock *sk, struct sock *newsk)
963 {
964 	return security_ops->sk_clone_security(sk, newsk);
965 }
966 
967 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
968 {
969 	security_ops->sk_getsecid(sk, &fl->secid);
970 }
971 EXPORT_SYMBOL(security_sk_classify_flow);
972 
973 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
974 {
975 	security_ops->req_classify_flow(req, fl);
976 }
977 EXPORT_SYMBOL(security_req_classify_flow);
978 
979 void security_sock_graft(struct sock *sk, struct socket *parent)
980 {
981 	security_ops->sock_graft(sk, parent);
982 }
983 EXPORT_SYMBOL(security_sock_graft);
984 
985 int security_inet_conn_request(struct sock *sk,
986 			struct sk_buff *skb, struct request_sock *req)
987 {
988 	return security_ops->inet_conn_request(sk, skb, req);
989 }
990 EXPORT_SYMBOL(security_inet_conn_request);
991 
992 void security_inet_csk_clone(struct sock *newsk,
993 			const struct request_sock *req)
994 {
995 	security_ops->inet_csk_clone(newsk, req);
996 }
997 
998 void security_inet_conn_established(struct sock *sk,
999 			struct sk_buff *skb)
1000 {
1001 	security_ops->inet_conn_established(sk, skb);
1002 }
1003 
1004 #endif	/* CONFIG_SECURITY_NETWORK */
1005 
1006 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1007 
1008 int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx)
1009 {
1010 	return security_ops->xfrm_policy_alloc_security(xp, sec_ctx);
1011 }
1012 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1013 
1014 int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new)
1015 {
1016 	return security_ops->xfrm_policy_clone_security(old, new);
1017 }
1018 
1019 void security_xfrm_policy_free(struct xfrm_policy *xp)
1020 {
1021 	security_ops->xfrm_policy_free_security(xp);
1022 }
1023 EXPORT_SYMBOL(security_xfrm_policy_free);
1024 
1025 int security_xfrm_policy_delete(struct xfrm_policy *xp)
1026 {
1027 	return security_ops->xfrm_policy_delete_security(xp);
1028 }
1029 
1030 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1031 {
1032 	return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1033 }
1034 EXPORT_SYMBOL(security_xfrm_state_alloc);
1035 
1036 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1037 				      struct xfrm_sec_ctx *polsec, u32 secid)
1038 {
1039 	if (!polsec)
1040 		return 0;
1041 	/*
1042 	 * We want the context to be taken from secid which is usually
1043 	 * from the sock.
1044 	 */
1045 	return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1046 }
1047 
1048 int security_xfrm_state_delete(struct xfrm_state *x)
1049 {
1050 	return security_ops->xfrm_state_delete_security(x);
1051 }
1052 EXPORT_SYMBOL(security_xfrm_state_delete);
1053 
1054 void security_xfrm_state_free(struct xfrm_state *x)
1055 {
1056 	security_ops->xfrm_state_free_security(x);
1057 }
1058 
1059 int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir)
1060 {
1061 	return security_ops->xfrm_policy_lookup(xp, fl_secid, dir);
1062 }
1063 
1064 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1065 				       struct xfrm_policy *xp, struct flowi *fl)
1066 {
1067 	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1068 }
1069 
1070 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1071 {
1072 	return security_ops->xfrm_decode_session(skb, secid, 1);
1073 }
1074 
1075 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1076 {
1077 	int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1078 
1079 	BUG_ON(rc);
1080 }
1081 EXPORT_SYMBOL(security_skb_classify_flow);
1082 
1083 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1084 
1085 #ifdef CONFIG_KEYS
1086 
1087 int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags)
1088 {
1089 	return security_ops->key_alloc(key, tsk, flags);
1090 }
1091 
1092 void security_key_free(struct key *key)
1093 {
1094 	security_ops->key_free(key);
1095 }
1096 
1097 int security_key_permission(key_ref_t key_ref,
1098 			    struct task_struct *context, key_perm_t perm)
1099 {
1100 	return security_ops->key_permission(key_ref, context, perm);
1101 }
1102 
1103 #endif	/* CONFIG_KEYS */
1104