1 /* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/capability.h> 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/kernel.h> 18 #include <linux/security.h> 19 20 21 /* things that live in dummy.c */ 22 extern struct security_operations dummy_security_ops; 23 extern void security_fixup_ops(struct security_operations *ops); 24 25 struct security_operations *security_ops; /* Initialized to NULL */ 26 unsigned long mmap_min_addr; /* 0 means no protection */ 27 28 static inline int verify(struct security_operations *ops) 29 { 30 /* verify the security_operations structure exists */ 31 if (!ops) 32 return -EINVAL; 33 security_fixup_ops(ops); 34 return 0; 35 } 36 37 static void __init do_security_initcalls(void) 38 { 39 initcall_t *call; 40 call = __security_initcall_start; 41 while (call < __security_initcall_end) { 42 (*call) (); 43 call++; 44 } 45 } 46 47 /** 48 * security_init - initializes the security framework 49 * 50 * This should be called early in the kernel initialization sequence. 51 */ 52 int __init security_init(void) 53 { 54 printk(KERN_INFO "Security Framework initialized\n"); 55 56 if (verify(&dummy_security_ops)) { 57 printk(KERN_ERR "%s could not verify " 58 "dummy_security_ops structure.\n", __FUNCTION__); 59 return -EIO; 60 } 61 62 security_ops = &dummy_security_ops; 63 do_security_initcalls(); 64 65 return 0; 66 } 67 68 /** 69 * register_security - registers a security framework with the kernel 70 * @ops: a pointer to the struct security_options that is to be registered 71 * 72 * This function is to allow a security module to register itself with the 73 * kernel security subsystem. Some rudimentary checking is done on the @ops 74 * value passed to this function. 75 * 76 * If there is already a security module registered with the kernel, 77 * an error will be returned. Otherwise 0 is returned on success. 78 */ 79 int register_security(struct security_operations *ops) 80 { 81 if (verify(ops)) { 82 printk(KERN_DEBUG "%s could not verify " 83 "security_operations structure.\n", __FUNCTION__); 84 return -EINVAL; 85 } 86 87 if (security_ops != &dummy_security_ops) 88 return -EAGAIN; 89 90 security_ops = ops; 91 92 return 0; 93 } 94 95 /** 96 * mod_reg_security - allows security modules to be "stacked" 97 * @name: a pointer to a string with the name of the security_options to be registered 98 * @ops: a pointer to the struct security_options that is to be registered 99 * 100 * This function allows security modules to be stacked if the currently loaded 101 * security module allows this to happen. It passes the @name and @ops to the 102 * register_security function of the currently loaded security module. 103 * 104 * The return value depends on the currently loaded security module, with 0 as 105 * success. 106 */ 107 int mod_reg_security(const char *name, struct security_operations *ops) 108 { 109 if (verify(ops)) { 110 printk(KERN_INFO "%s could not verify " 111 "security operations.\n", __FUNCTION__); 112 return -EINVAL; 113 } 114 115 if (ops == security_ops) { 116 printk(KERN_INFO "%s security operations " 117 "already registered.\n", __FUNCTION__); 118 return -EINVAL; 119 } 120 121 return security_ops->register_security(name, ops); 122 } 123 124 /* Security operations */ 125 126 int security_ptrace(struct task_struct *parent, struct task_struct *child) 127 { 128 return security_ops->ptrace(parent, child); 129 } 130 131 int security_capget(struct task_struct *target, 132 kernel_cap_t *effective, 133 kernel_cap_t *inheritable, 134 kernel_cap_t *permitted) 135 { 136 return security_ops->capget(target, effective, inheritable, permitted); 137 } 138 139 int security_capset_check(struct task_struct *target, 140 kernel_cap_t *effective, 141 kernel_cap_t *inheritable, 142 kernel_cap_t *permitted) 143 { 144 return security_ops->capset_check(target, effective, inheritable, permitted); 145 } 146 147 void security_capset_set(struct task_struct *target, 148 kernel_cap_t *effective, 149 kernel_cap_t *inheritable, 150 kernel_cap_t *permitted) 151 { 152 security_ops->capset_set(target, effective, inheritable, permitted); 153 } 154 155 int security_capable(struct task_struct *tsk, int cap) 156 { 157 return security_ops->capable(tsk, cap); 158 } 159 160 int security_acct(struct file *file) 161 { 162 return security_ops->acct(file); 163 } 164 165 int security_sysctl(struct ctl_table *table, int op) 166 { 167 return security_ops->sysctl(table, op); 168 } 169 170 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 171 { 172 return security_ops->quotactl(cmds, type, id, sb); 173 } 174 175 int security_quota_on(struct dentry *dentry) 176 { 177 return security_ops->quota_on(dentry); 178 } 179 180 int security_syslog(int type) 181 { 182 return security_ops->syslog(type); 183 } 184 185 int security_settime(struct timespec *ts, struct timezone *tz) 186 { 187 return security_ops->settime(ts, tz); 188 } 189 190 int security_vm_enough_memory(long pages) 191 { 192 return security_ops->vm_enough_memory(current->mm, pages); 193 } 194 195 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 196 { 197 return security_ops->vm_enough_memory(mm, pages); 198 } 199 200 int security_bprm_alloc(struct linux_binprm *bprm) 201 { 202 return security_ops->bprm_alloc_security(bprm); 203 } 204 205 void security_bprm_free(struct linux_binprm *bprm) 206 { 207 security_ops->bprm_free_security(bprm); 208 } 209 210 void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe) 211 { 212 security_ops->bprm_apply_creds(bprm, unsafe); 213 } 214 215 void security_bprm_post_apply_creds(struct linux_binprm *bprm) 216 { 217 security_ops->bprm_post_apply_creds(bprm); 218 } 219 220 int security_bprm_set(struct linux_binprm *bprm) 221 { 222 return security_ops->bprm_set_security(bprm); 223 } 224 225 int security_bprm_check(struct linux_binprm *bprm) 226 { 227 return security_ops->bprm_check_security(bprm); 228 } 229 230 int security_bprm_secureexec(struct linux_binprm *bprm) 231 { 232 return security_ops->bprm_secureexec(bprm); 233 } 234 235 int security_sb_alloc(struct super_block *sb) 236 { 237 return security_ops->sb_alloc_security(sb); 238 } 239 240 void security_sb_free(struct super_block *sb) 241 { 242 security_ops->sb_free_security(sb); 243 } 244 245 int security_sb_copy_data(struct file_system_type *type, void *orig, void *copy) 246 { 247 return security_ops->sb_copy_data(type, orig, copy); 248 } 249 250 int security_sb_kern_mount(struct super_block *sb, void *data) 251 { 252 return security_ops->sb_kern_mount(sb, data); 253 } 254 255 int security_sb_statfs(struct dentry *dentry) 256 { 257 return security_ops->sb_statfs(dentry); 258 } 259 260 int security_sb_mount(char *dev_name, struct nameidata *nd, 261 char *type, unsigned long flags, void *data) 262 { 263 return security_ops->sb_mount(dev_name, nd, type, flags, data); 264 } 265 266 int security_sb_check_sb(struct vfsmount *mnt, struct nameidata *nd) 267 { 268 return security_ops->sb_check_sb(mnt, nd); 269 } 270 271 int security_sb_umount(struct vfsmount *mnt, int flags) 272 { 273 return security_ops->sb_umount(mnt, flags); 274 } 275 276 void security_sb_umount_close(struct vfsmount *mnt) 277 { 278 security_ops->sb_umount_close(mnt); 279 } 280 281 void security_sb_umount_busy(struct vfsmount *mnt) 282 { 283 security_ops->sb_umount_busy(mnt); 284 } 285 286 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data) 287 { 288 security_ops->sb_post_remount(mnt, flags, data); 289 } 290 291 void security_sb_post_addmount(struct vfsmount *mnt, struct nameidata *mountpoint_nd) 292 { 293 security_ops->sb_post_addmount(mnt, mountpoint_nd); 294 } 295 296 int security_sb_pivotroot(struct nameidata *old_nd, struct nameidata *new_nd) 297 { 298 return security_ops->sb_pivotroot(old_nd, new_nd); 299 } 300 301 void security_sb_post_pivotroot(struct nameidata *old_nd, struct nameidata *new_nd) 302 { 303 security_ops->sb_post_pivotroot(old_nd, new_nd); 304 } 305 306 int security_sb_get_mnt_opts(const struct super_block *sb, 307 char ***mount_options, 308 int **flags, int *num_opts) 309 { 310 return security_ops->sb_get_mnt_opts(sb, mount_options, flags, num_opts); 311 } 312 313 int security_sb_set_mnt_opts(struct super_block *sb, 314 char **mount_options, 315 int *flags, int num_opts) 316 { 317 return security_ops->sb_set_mnt_opts(sb, mount_options, flags, num_opts); 318 } 319 320 void security_sb_clone_mnt_opts(const struct super_block *oldsb, 321 struct super_block *newsb) 322 { 323 security_ops->sb_clone_mnt_opts(oldsb, newsb); 324 } 325 326 int security_inode_alloc(struct inode *inode) 327 { 328 inode->i_security = NULL; 329 return security_ops->inode_alloc_security(inode); 330 } 331 332 void security_inode_free(struct inode *inode) 333 { 334 security_ops->inode_free_security(inode); 335 } 336 337 int security_inode_init_security(struct inode *inode, struct inode *dir, 338 char **name, void **value, size_t *len) 339 { 340 if (unlikely(IS_PRIVATE(inode))) 341 return -EOPNOTSUPP; 342 return security_ops->inode_init_security(inode, dir, name, value, len); 343 } 344 EXPORT_SYMBOL(security_inode_init_security); 345 346 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode) 347 { 348 if (unlikely(IS_PRIVATE(dir))) 349 return 0; 350 return security_ops->inode_create(dir, dentry, mode); 351 } 352 353 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 354 struct dentry *new_dentry) 355 { 356 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 357 return 0; 358 return security_ops->inode_link(old_dentry, dir, new_dentry); 359 } 360 361 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 362 { 363 if (unlikely(IS_PRIVATE(dentry->d_inode))) 364 return 0; 365 return security_ops->inode_unlink(dir, dentry); 366 } 367 368 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 369 const char *old_name) 370 { 371 if (unlikely(IS_PRIVATE(dir))) 372 return 0; 373 return security_ops->inode_symlink(dir, dentry, old_name); 374 } 375 376 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode) 377 { 378 if (unlikely(IS_PRIVATE(dir))) 379 return 0; 380 return security_ops->inode_mkdir(dir, dentry, mode); 381 } 382 383 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 384 { 385 if (unlikely(IS_PRIVATE(dentry->d_inode))) 386 return 0; 387 return security_ops->inode_rmdir(dir, dentry); 388 } 389 390 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 391 { 392 if (unlikely(IS_PRIVATE(dir))) 393 return 0; 394 return security_ops->inode_mknod(dir, dentry, mode, dev); 395 } 396 397 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 398 struct inode *new_dir, struct dentry *new_dentry) 399 { 400 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 401 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 402 return 0; 403 return security_ops->inode_rename(old_dir, old_dentry, 404 new_dir, new_dentry); 405 } 406 407 int security_inode_readlink(struct dentry *dentry) 408 { 409 if (unlikely(IS_PRIVATE(dentry->d_inode))) 410 return 0; 411 return security_ops->inode_readlink(dentry); 412 } 413 414 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd) 415 { 416 if (unlikely(IS_PRIVATE(dentry->d_inode))) 417 return 0; 418 return security_ops->inode_follow_link(dentry, nd); 419 } 420 421 int security_inode_permission(struct inode *inode, int mask, struct nameidata *nd) 422 { 423 if (unlikely(IS_PRIVATE(inode))) 424 return 0; 425 return security_ops->inode_permission(inode, mask, nd); 426 } 427 428 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 429 { 430 if (unlikely(IS_PRIVATE(dentry->d_inode))) 431 return 0; 432 return security_ops->inode_setattr(dentry, attr); 433 } 434 435 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 436 { 437 if (unlikely(IS_PRIVATE(dentry->d_inode))) 438 return 0; 439 return security_ops->inode_getattr(mnt, dentry); 440 } 441 442 void security_inode_delete(struct inode *inode) 443 { 444 if (unlikely(IS_PRIVATE(inode))) 445 return; 446 security_ops->inode_delete(inode); 447 } 448 449 int security_inode_setxattr(struct dentry *dentry, char *name, 450 void *value, size_t size, int flags) 451 { 452 if (unlikely(IS_PRIVATE(dentry->d_inode))) 453 return 0; 454 return security_ops->inode_setxattr(dentry, name, value, size, flags); 455 } 456 457 void security_inode_post_setxattr(struct dentry *dentry, char *name, 458 void *value, size_t size, int flags) 459 { 460 if (unlikely(IS_PRIVATE(dentry->d_inode))) 461 return; 462 security_ops->inode_post_setxattr(dentry, name, value, size, flags); 463 } 464 465 int security_inode_getxattr(struct dentry *dentry, char *name) 466 { 467 if (unlikely(IS_PRIVATE(dentry->d_inode))) 468 return 0; 469 return security_ops->inode_getxattr(dentry, name); 470 } 471 472 int security_inode_listxattr(struct dentry *dentry) 473 { 474 if (unlikely(IS_PRIVATE(dentry->d_inode))) 475 return 0; 476 return security_ops->inode_listxattr(dentry); 477 } 478 479 int security_inode_removexattr(struct dentry *dentry, char *name) 480 { 481 if (unlikely(IS_PRIVATE(dentry->d_inode))) 482 return 0; 483 return security_ops->inode_removexattr(dentry, name); 484 } 485 486 int security_inode_need_killpriv(struct dentry *dentry) 487 { 488 return security_ops->inode_need_killpriv(dentry); 489 } 490 491 int security_inode_killpriv(struct dentry *dentry) 492 { 493 return security_ops->inode_killpriv(dentry); 494 } 495 496 int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err) 497 { 498 if (unlikely(IS_PRIVATE(inode))) 499 return 0; 500 return security_ops->inode_getsecurity(inode, name, buffer, size, err); 501 } 502 503 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 504 { 505 if (unlikely(IS_PRIVATE(inode))) 506 return 0; 507 return security_ops->inode_setsecurity(inode, name, value, size, flags); 508 } 509 510 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 511 { 512 if (unlikely(IS_PRIVATE(inode))) 513 return 0; 514 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 515 } 516 517 int security_file_permission(struct file *file, int mask) 518 { 519 return security_ops->file_permission(file, mask); 520 } 521 522 int security_file_alloc(struct file *file) 523 { 524 return security_ops->file_alloc_security(file); 525 } 526 527 void security_file_free(struct file *file) 528 { 529 security_ops->file_free_security(file); 530 } 531 532 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 533 { 534 return security_ops->file_ioctl(file, cmd, arg); 535 } 536 537 int security_file_mmap(struct file *file, unsigned long reqprot, 538 unsigned long prot, unsigned long flags, 539 unsigned long addr, unsigned long addr_only) 540 { 541 return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only); 542 } 543 544 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 545 unsigned long prot) 546 { 547 return security_ops->file_mprotect(vma, reqprot, prot); 548 } 549 550 int security_file_lock(struct file *file, unsigned int cmd) 551 { 552 return security_ops->file_lock(file, cmd); 553 } 554 555 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 556 { 557 return security_ops->file_fcntl(file, cmd, arg); 558 } 559 560 int security_file_set_fowner(struct file *file) 561 { 562 return security_ops->file_set_fowner(file); 563 } 564 565 int security_file_send_sigiotask(struct task_struct *tsk, 566 struct fown_struct *fown, int sig) 567 { 568 return security_ops->file_send_sigiotask(tsk, fown, sig); 569 } 570 571 int security_file_receive(struct file *file) 572 { 573 return security_ops->file_receive(file); 574 } 575 576 int security_dentry_open(struct file *file) 577 { 578 return security_ops->dentry_open(file); 579 } 580 581 int security_task_create(unsigned long clone_flags) 582 { 583 return security_ops->task_create(clone_flags); 584 } 585 586 int security_task_alloc(struct task_struct *p) 587 { 588 return security_ops->task_alloc_security(p); 589 } 590 591 void security_task_free(struct task_struct *p) 592 { 593 security_ops->task_free_security(p); 594 } 595 596 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags) 597 { 598 return security_ops->task_setuid(id0, id1, id2, flags); 599 } 600 601 int security_task_post_setuid(uid_t old_ruid, uid_t old_euid, 602 uid_t old_suid, int flags) 603 { 604 return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags); 605 } 606 607 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags) 608 { 609 return security_ops->task_setgid(id0, id1, id2, flags); 610 } 611 612 int security_task_setpgid(struct task_struct *p, pid_t pgid) 613 { 614 return security_ops->task_setpgid(p, pgid); 615 } 616 617 int security_task_getpgid(struct task_struct *p) 618 { 619 return security_ops->task_getpgid(p); 620 } 621 622 int security_task_getsid(struct task_struct *p) 623 { 624 return security_ops->task_getsid(p); 625 } 626 627 void security_task_getsecid(struct task_struct *p, u32 *secid) 628 { 629 security_ops->task_getsecid(p, secid); 630 } 631 EXPORT_SYMBOL(security_task_getsecid); 632 633 int security_task_setgroups(struct group_info *group_info) 634 { 635 return security_ops->task_setgroups(group_info); 636 } 637 638 int security_task_setnice(struct task_struct *p, int nice) 639 { 640 return security_ops->task_setnice(p, nice); 641 } 642 643 int security_task_setioprio(struct task_struct *p, int ioprio) 644 { 645 return security_ops->task_setioprio(p, ioprio); 646 } 647 648 int security_task_getioprio(struct task_struct *p) 649 { 650 return security_ops->task_getioprio(p); 651 } 652 653 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim) 654 { 655 return security_ops->task_setrlimit(resource, new_rlim); 656 } 657 658 int security_task_setscheduler(struct task_struct *p, 659 int policy, struct sched_param *lp) 660 { 661 return security_ops->task_setscheduler(p, policy, lp); 662 } 663 664 int security_task_getscheduler(struct task_struct *p) 665 { 666 return security_ops->task_getscheduler(p); 667 } 668 669 int security_task_movememory(struct task_struct *p) 670 { 671 return security_ops->task_movememory(p); 672 } 673 674 int security_task_kill(struct task_struct *p, struct siginfo *info, 675 int sig, u32 secid) 676 { 677 return security_ops->task_kill(p, info, sig, secid); 678 } 679 680 int security_task_wait(struct task_struct *p) 681 { 682 return security_ops->task_wait(p); 683 } 684 685 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 686 unsigned long arg4, unsigned long arg5) 687 { 688 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5); 689 } 690 691 void security_task_reparent_to_init(struct task_struct *p) 692 { 693 security_ops->task_reparent_to_init(p); 694 } 695 696 void security_task_to_inode(struct task_struct *p, struct inode *inode) 697 { 698 security_ops->task_to_inode(p, inode); 699 } 700 701 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 702 { 703 return security_ops->ipc_permission(ipcp, flag); 704 } 705 706 int security_msg_msg_alloc(struct msg_msg *msg) 707 { 708 return security_ops->msg_msg_alloc_security(msg); 709 } 710 711 void security_msg_msg_free(struct msg_msg *msg) 712 { 713 security_ops->msg_msg_free_security(msg); 714 } 715 716 int security_msg_queue_alloc(struct msg_queue *msq) 717 { 718 return security_ops->msg_queue_alloc_security(msq); 719 } 720 721 void security_msg_queue_free(struct msg_queue *msq) 722 { 723 security_ops->msg_queue_free_security(msq); 724 } 725 726 int security_msg_queue_associate(struct msg_queue *msq, int msqflg) 727 { 728 return security_ops->msg_queue_associate(msq, msqflg); 729 } 730 731 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) 732 { 733 return security_ops->msg_queue_msgctl(msq, cmd); 734 } 735 736 int security_msg_queue_msgsnd(struct msg_queue *msq, 737 struct msg_msg *msg, int msqflg) 738 { 739 return security_ops->msg_queue_msgsnd(msq, msg, msqflg); 740 } 741 742 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 743 struct task_struct *target, long type, int mode) 744 { 745 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode); 746 } 747 748 int security_shm_alloc(struct shmid_kernel *shp) 749 { 750 return security_ops->shm_alloc_security(shp); 751 } 752 753 void security_shm_free(struct shmid_kernel *shp) 754 { 755 security_ops->shm_free_security(shp); 756 } 757 758 int security_shm_associate(struct shmid_kernel *shp, int shmflg) 759 { 760 return security_ops->shm_associate(shp, shmflg); 761 } 762 763 int security_shm_shmctl(struct shmid_kernel *shp, int cmd) 764 { 765 return security_ops->shm_shmctl(shp, cmd); 766 } 767 768 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg) 769 { 770 return security_ops->shm_shmat(shp, shmaddr, shmflg); 771 } 772 773 int security_sem_alloc(struct sem_array *sma) 774 { 775 return security_ops->sem_alloc_security(sma); 776 } 777 778 void security_sem_free(struct sem_array *sma) 779 { 780 security_ops->sem_free_security(sma); 781 } 782 783 int security_sem_associate(struct sem_array *sma, int semflg) 784 { 785 return security_ops->sem_associate(sma, semflg); 786 } 787 788 int security_sem_semctl(struct sem_array *sma, int cmd) 789 { 790 return security_ops->sem_semctl(sma, cmd); 791 } 792 793 int security_sem_semop(struct sem_array *sma, struct sembuf *sops, 794 unsigned nsops, int alter) 795 { 796 return security_ops->sem_semop(sma, sops, nsops, alter); 797 } 798 799 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 800 { 801 if (unlikely(inode && IS_PRIVATE(inode))) 802 return; 803 security_ops->d_instantiate(dentry, inode); 804 } 805 EXPORT_SYMBOL(security_d_instantiate); 806 807 int security_getprocattr(struct task_struct *p, char *name, char **value) 808 { 809 return security_ops->getprocattr(p, name, value); 810 } 811 812 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 813 { 814 return security_ops->setprocattr(p, name, value, size); 815 } 816 817 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 818 { 819 return security_ops->netlink_send(sk, skb); 820 } 821 822 int security_netlink_recv(struct sk_buff *skb, int cap) 823 { 824 return security_ops->netlink_recv(skb, cap); 825 } 826 EXPORT_SYMBOL(security_netlink_recv); 827 828 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 829 { 830 return security_ops->secid_to_secctx(secid, secdata, seclen); 831 } 832 EXPORT_SYMBOL(security_secid_to_secctx); 833 834 int security_secctx_to_secid(char *secdata, u32 seclen, u32 *secid) 835 { 836 return security_ops->secctx_to_secid(secdata, seclen, secid); 837 } 838 EXPORT_SYMBOL(security_secctx_to_secid); 839 840 void security_release_secctx(char *secdata, u32 seclen) 841 { 842 return security_ops->release_secctx(secdata, seclen); 843 } 844 EXPORT_SYMBOL(security_release_secctx); 845 846 #ifdef CONFIG_SECURITY_NETWORK 847 848 int security_unix_stream_connect(struct socket *sock, struct socket *other, 849 struct sock *newsk) 850 { 851 return security_ops->unix_stream_connect(sock, other, newsk); 852 } 853 EXPORT_SYMBOL(security_unix_stream_connect); 854 855 int security_unix_may_send(struct socket *sock, struct socket *other) 856 { 857 return security_ops->unix_may_send(sock, other); 858 } 859 EXPORT_SYMBOL(security_unix_may_send); 860 861 int security_socket_create(int family, int type, int protocol, int kern) 862 { 863 return security_ops->socket_create(family, type, protocol, kern); 864 } 865 866 int security_socket_post_create(struct socket *sock, int family, 867 int type, int protocol, int kern) 868 { 869 return security_ops->socket_post_create(sock, family, type, 870 protocol, kern); 871 } 872 873 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 874 { 875 return security_ops->socket_bind(sock, address, addrlen); 876 } 877 878 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 879 { 880 return security_ops->socket_connect(sock, address, addrlen); 881 } 882 883 int security_socket_listen(struct socket *sock, int backlog) 884 { 885 return security_ops->socket_listen(sock, backlog); 886 } 887 888 int security_socket_accept(struct socket *sock, struct socket *newsock) 889 { 890 return security_ops->socket_accept(sock, newsock); 891 } 892 893 void security_socket_post_accept(struct socket *sock, struct socket *newsock) 894 { 895 security_ops->socket_post_accept(sock, newsock); 896 } 897 898 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 899 { 900 return security_ops->socket_sendmsg(sock, msg, size); 901 } 902 903 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 904 int size, int flags) 905 { 906 return security_ops->socket_recvmsg(sock, msg, size, flags); 907 } 908 909 int security_socket_getsockname(struct socket *sock) 910 { 911 return security_ops->socket_getsockname(sock); 912 } 913 914 int security_socket_getpeername(struct socket *sock) 915 { 916 return security_ops->socket_getpeername(sock); 917 } 918 919 int security_socket_getsockopt(struct socket *sock, int level, int optname) 920 { 921 return security_ops->socket_getsockopt(sock, level, optname); 922 } 923 924 int security_socket_setsockopt(struct socket *sock, int level, int optname) 925 { 926 return security_ops->socket_setsockopt(sock, level, optname); 927 } 928 929 int security_socket_shutdown(struct socket *sock, int how) 930 { 931 return security_ops->socket_shutdown(sock, how); 932 } 933 934 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 935 { 936 return security_ops->socket_sock_rcv_skb(sk, skb); 937 } 938 EXPORT_SYMBOL(security_sock_rcv_skb); 939 940 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 941 int __user *optlen, unsigned len) 942 { 943 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 944 } 945 946 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 947 { 948 return security_ops->socket_getpeersec_dgram(sock, skb, secid); 949 } 950 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 951 952 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 953 { 954 return security_ops->sk_alloc_security(sk, family, priority); 955 } 956 957 void security_sk_free(struct sock *sk) 958 { 959 return security_ops->sk_free_security(sk); 960 } 961 962 void security_sk_clone(const struct sock *sk, struct sock *newsk) 963 { 964 return security_ops->sk_clone_security(sk, newsk); 965 } 966 967 void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 968 { 969 security_ops->sk_getsecid(sk, &fl->secid); 970 } 971 EXPORT_SYMBOL(security_sk_classify_flow); 972 973 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 974 { 975 security_ops->req_classify_flow(req, fl); 976 } 977 EXPORT_SYMBOL(security_req_classify_flow); 978 979 void security_sock_graft(struct sock *sk, struct socket *parent) 980 { 981 security_ops->sock_graft(sk, parent); 982 } 983 EXPORT_SYMBOL(security_sock_graft); 984 985 int security_inet_conn_request(struct sock *sk, 986 struct sk_buff *skb, struct request_sock *req) 987 { 988 return security_ops->inet_conn_request(sk, skb, req); 989 } 990 EXPORT_SYMBOL(security_inet_conn_request); 991 992 void security_inet_csk_clone(struct sock *newsk, 993 const struct request_sock *req) 994 { 995 security_ops->inet_csk_clone(newsk, req); 996 } 997 998 void security_inet_conn_established(struct sock *sk, 999 struct sk_buff *skb) 1000 { 1001 security_ops->inet_conn_established(sk, skb); 1002 } 1003 1004 #endif /* CONFIG_SECURITY_NETWORK */ 1005 1006 #ifdef CONFIG_SECURITY_NETWORK_XFRM 1007 1008 int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx) 1009 { 1010 return security_ops->xfrm_policy_alloc_security(xp, sec_ctx); 1011 } 1012 EXPORT_SYMBOL(security_xfrm_policy_alloc); 1013 1014 int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new) 1015 { 1016 return security_ops->xfrm_policy_clone_security(old, new); 1017 } 1018 1019 void security_xfrm_policy_free(struct xfrm_policy *xp) 1020 { 1021 security_ops->xfrm_policy_free_security(xp); 1022 } 1023 EXPORT_SYMBOL(security_xfrm_policy_free); 1024 1025 int security_xfrm_policy_delete(struct xfrm_policy *xp) 1026 { 1027 return security_ops->xfrm_policy_delete_security(xp); 1028 } 1029 1030 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 1031 { 1032 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0); 1033 } 1034 EXPORT_SYMBOL(security_xfrm_state_alloc); 1035 1036 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1037 struct xfrm_sec_ctx *polsec, u32 secid) 1038 { 1039 if (!polsec) 1040 return 0; 1041 /* 1042 * We want the context to be taken from secid which is usually 1043 * from the sock. 1044 */ 1045 return security_ops->xfrm_state_alloc_security(x, NULL, secid); 1046 } 1047 1048 int security_xfrm_state_delete(struct xfrm_state *x) 1049 { 1050 return security_ops->xfrm_state_delete_security(x); 1051 } 1052 EXPORT_SYMBOL(security_xfrm_state_delete); 1053 1054 void security_xfrm_state_free(struct xfrm_state *x) 1055 { 1056 security_ops->xfrm_state_free_security(x); 1057 } 1058 1059 int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir) 1060 { 1061 return security_ops->xfrm_policy_lookup(xp, fl_secid, dir); 1062 } 1063 1064 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1065 struct xfrm_policy *xp, struct flowi *fl) 1066 { 1067 return security_ops->xfrm_state_pol_flow_match(x, xp, fl); 1068 } 1069 1070 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1071 { 1072 return security_ops->xfrm_decode_session(skb, secid, 1); 1073 } 1074 1075 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1076 { 1077 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0); 1078 1079 BUG_ON(rc); 1080 } 1081 EXPORT_SYMBOL(security_skb_classify_flow); 1082 1083 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1084 1085 #ifdef CONFIG_KEYS 1086 1087 int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags) 1088 { 1089 return security_ops->key_alloc(key, tsk, flags); 1090 } 1091 1092 void security_key_free(struct key *key) 1093 { 1094 security_ops->key_free(key); 1095 } 1096 1097 int security_key_permission(key_ref_t key_ref, 1098 struct task_struct *context, key_perm_t perm) 1099 { 1100 return security_ops->key_permission(key_ref, context, perm); 1101 } 1102 1103 #endif /* CONFIG_KEYS */ 1104