1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Security plug functions 4 * 5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 8 * Copyright (C) 2016 Mellanox Technologies 9 */ 10 11 #define pr_fmt(fmt) "LSM: " fmt 12 13 #include <linux/bpf.h> 14 #include <linux/capability.h> 15 #include <linux/dcache.h> 16 #include <linux/export.h> 17 #include <linux/init.h> 18 #include <linux/kernel.h> 19 #include <linux/kernel_read_file.h> 20 #include <linux/lsm_hooks.h> 21 #include <linux/integrity.h> 22 #include <linux/ima.h> 23 #include <linux/evm.h> 24 #include <linux/fsnotify.h> 25 #include <linux/mman.h> 26 #include <linux/mount.h> 27 #include <linux/personality.h> 28 #include <linux/backing-dev.h> 29 #include <linux/string.h> 30 #include <linux/msg.h> 31 #include <net/flow.h> 32 33 #define MAX_LSM_EVM_XATTR 2 34 35 /* How many LSMs were built into the kernel? */ 36 #define LSM_COUNT (__end_lsm_info - __start_lsm_info) 37 38 /* 39 * These are descriptions of the reasons that can be passed to the 40 * security_locked_down() LSM hook. Placing this array here allows 41 * all security modules to use the same descriptions for auditing 42 * purposes. 43 */ 44 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = { 45 [LOCKDOWN_NONE] = "none", 46 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading", 47 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port", 48 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access", 49 [LOCKDOWN_KEXEC] = "kexec of unsigned images", 50 [LOCKDOWN_HIBERNATION] = "hibernation", 51 [LOCKDOWN_PCI_ACCESS] = "direct PCI access", 52 [LOCKDOWN_IOPORT] = "raw io port access", 53 [LOCKDOWN_MSR] = "raw MSR access", 54 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables", 55 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage", 56 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO", 57 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters", 58 [LOCKDOWN_MMIOTRACE] = "unsafe mmio", 59 [LOCKDOWN_DEBUGFS] = "debugfs access", 60 [LOCKDOWN_XMON_WR] = "xmon write access", 61 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM", 62 [LOCKDOWN_INTEGRITY_MAX] = "integrity", 63 [LOCKDOWN_KCORE] = "/proc/kcore access", 64 [LOCKDOWN_KPROBES] = "use of kprobes", 65 [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM", 66 [LOCKDOWN_PERF] = "unsafe use of perf", 67 [LOCKDOWN_TRACEFS] = "use of tracefs", 68 [LOCKDOWN_XMON_RW] = "xmon read and write access", 69 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret", 70 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality", 71 }; 72 73 struct security_hook_heads security_hook_heads __lsm_ro_after_init; 74 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain); 75 76 static struct kmem_cache *lsm_file_cache; 77 static struct kmem_cache *lsm_inode_cache; 78 79 char *lsm_names; 80 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init; 81 82 /* Boot-time LSM user choice */ 83 static __initdata const char *chosen_lsm_order; 84 static __initdata const char *chosen_major_lsm; 85 86 static __initconst const char * const builtin_lsm_order = CONFIG_LSM; 87 88 /* Ordered list of LSMs to initialize. */ 89 static __initdata struct lsm_info **ordered_lsms; 90 static __initdata struct lsm_info *exclusive; 91 92 static __initdata bool debug; 93 #define init_debug(...) \ 94 do { \ 95 if (debug) \ 96 pr_info(__VA_ARGS__); \ 97 } while (0) 98 99 static bool __init is_enabled(struct lsm_info *lsm) 100 { 101 if (!lsm->enabled) 102 return false; 103 104 return *lsm->enabled; 105 } 106 107 /* Mark an LSM's enabled flag. */ 108 static int lsm_enabled_true __initdata = 1; 109 static int lsm_enabled_false __initdata = 0; 110 static void __init set_enabled(struct lsm_info *lsm, bool enabled) 111 { 112 /* 113 * When an LSM hasn't configured an enable variable, we can use 114 * a hard-coded location for storing the default enabled state. 115 */ 116 if (!lsm->enabled) { 117 if (enabled) 118 lsm->enabled = &lsm_enabled_true; 119 else 120 lsm->enabled = &lsm_enabled_false; 121 } else if (lsm->enabled == &lsm_enabled_true) { 122 if (!enabled) 123 lsm->enabled = &lsm_enabled_false; 124 } else if (lsm->enabled == &lsm_enabled_false) { 125 if (enabled) 126 lsm->enabled = &lsm_enabled_true; 127 } else { 128 *lsm->enabled = enabled; 129 } 130 } 131 132 /* Is an LSM already listed in the ordered LSMs list? */ 133 static bool __init exists_ordered_lsm(struct lsm_info *lsm) 134 { 135 struct lsm_info **check; 136 137 for (check = ordered_lsms; *check; check++) 138 if (*check == lsm) 139 return true; 140 141 return false; 142 } 143 144 /* Append an LSM to the list of ordered LSMs to initialize. */ 145 static int last_lsm __initdata; 146 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from) 147 { 148 /* Ignore duplicate selections. */ 149 if (exists_ordered_lsm(lsm)) 150 return; 151 152 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from)) 153 return; 154 155 /* Enable this LSM, if it is not already set. */ 156 if (!lsm->enabled) 157 lsm->enabled = &lsm_enabled_true; 158 ordered_lsms[last_lsm++] = lsm; 159 160 init_debug("%s ordering: %s (%sabled)\n", from, lsm->name, 161 is_enabled(lsm) ? "en" : "dis"); 162 } 163 164 /* Is an LSM allowed to be initialized? */ 165 static bool __init lsm_allowed(struct lsm_info *lsm) 166 { 167 /* Skip if the LSM is disabled. */ 168 if (!is_enabled(lsm)) 169 return false; 170 171 /* Not allowed if another exclusive LSM already initialized. */ 172 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) { 173 init_debug("exclusive disabled: %s\n", lsm->name); 174 return false; 175 } 176 177 return true; 178 } 179 180 static void __init lsm_set_blob_size(int *need, int *lbs) 181 { 182 int offset; 183 184 if (*need > 0) { 185 offset = *lbs; 186 *lbs += *need; 187 *need = offset; 188 } 189 } 190 191 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed) 192 { 193 if (!needed) 194 return; 195 196 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred); 197 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file); 198 /* 199 * The inode blob gets an rcu_head in addition to 200 * what the modules might need. 201 */ 202 if (needed->lbs_inode && blob_sizes.lbs_inode == 0) 203 blob_sizes.lbs_inode = sizeof(struct rcu_head); 204 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode); 205 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc); 206 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg); 207 lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock); 208 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task); 209 } 210 211 /* Prepare LSM for initialization. */ 212 static void __init prepare_lsm(struct lsm_info *lsm) 213 { 214 int enabled = lsm_allowed(lsm); 215 216 /* Record enablement (to handle any following exclusive LSMs). */ 217 set_enabled(lsm, enabled); 218 219 /* If enabled, do pre-initialization work. */ 220 if (enabled) { 221 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) { 222 exclusive = lsm; 223 init_debug("exclusive chosen: %s\n", lsm->name); 224 } 225 226 lsm_set_blob_sizes(lsm->blobs); 227 } 228 } 229 230 /* Initialize a given LSM, if it is enabled. */ 231 static void __init initialize_lsm(struct lsm_info *lsm) 232 { 233 if (is_enabled(lsm)) { 234 int ret; 235 236 init_debug("initializing %s\n", lsm->name); 237 ret = lsm->init(); 238 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); 239 } 240 } 241 242 /* Populate ordered LSMs list from comma-separated LSM name list. */ 243 static void __init ordered_lsm_parse(const char *order, const char *origin) 244 { 245 struct lsm_info *lsm; 246 char *sep, *name, *next; 247 248 /* LSM_ORDER_FIRST is always first. */ 249 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 250 if (lsm->order == LSM_ORDER_FIRST) 251 append_ordered_lsm(lsm, "first"); 252 } 253 254 /* Process "security=", if given. */ 255 if (chosen_major_lsm) { 256 struct lsm_info *major; 257 258 /* 259 * To match the original "security=" behavior, this 260 * explicitly does NOT fallback to another Legacy Major 261 * if the selected one was separately disabled: disable 262 * all non-matching Legacy Major LSMs. 263 */ 264 for (major = __start_lsm_info; major < __end_lsm_info; 265 major++) { 266 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) && 267 strcmp(major->name, chosen_major_lsm) != 0) { 268 set_enabled(major, false); 269 init_debug("security=%s disabled: %s\n", 270 chosen_major_lsm, major->name); 271 } 272 } 273 } 274 275 sep = kstrdup(order, GFP_KERNEL); 276 next = sep; 277 /* Walk the list, looking for matching LSMs. */ 278 while ((name = strsep(&next, ",")) != NULL) { 279 bool found = false; 280 281 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 282 if (lsm->order == LSM_ORDER_MUTABLE && 283 strcmp(lsm->name, name) == 0) { 284 append_ordered_lsm(lsm, origin); 285 found = true; 286 } 287 } 288 289 if (!found) 290 init_debug("%s ignored: %s\n", origin, name); 291 } 292 293 /* Process "security=", if given. */ 294 if (chosen_major_lsm) { 295 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 296 if (exists_ordered_lsm(lsm)) 297 continue; 298 if (strcmp(lsm->name, chosen_major_lsm) == 0) 299 append_ordered_lsm(lsm, "security="); 300 } 301 } 302 303 /* Disable all LSMs not in the ordered list. */ 304 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 305 if (exists_ordered_lsm(lsm)) 306 continue; 307 set_enabled(lsm, false); 308 init_debug("%s disabled: %s\n", origin, lsm->name); 309 } 310 311 kfree(sep); 312 } 313 314 static void __init lsm_early_cred(struct cred *cred); 315 static void __init lsm_early_task(struct task_struct *task); 316 317 static int lsm_append(const char *new, char **result); 318 319 static void __init ordered_lsm_init(void) 320 { 321 struct lsm_info **lsm; 322 323 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms), 324 GFP_KERNEL); 325 326 if (chosen_lsm_order) { 327 if (chosen_major_lsm) { 328 pr_info("security= is ignored because it is superseded by lsm=\n"); 329 chosen_major_lsm = NULL; 330 } 331 ordered_lsm_parse(chosen_lsm_order, "cmdline"); 332 } else 333 ordered_lsm_parse(builtin_lsm_order, "builtin"); 334 335 for (lsm = ordered_lsms; *lsm; lsm++) 336 prepare_lsm(*lsm); 337 338 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred); 339 init_debug("file blob size = %d\n", blob_sizes.lbs_file); 340 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode); 341 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc); 342 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg); 343 init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock); 344 init_debug("task blob size = %d\n", blob_sizes.lbs_task); 345 346 /* 347 * Create any kmem_caches needed for blobs 348 */ 349 if (blob_sizes.lbs_file) 350 lsm_file_cache = kmem_cache_create("lsm_file_cache", 351 blob_sizes.lbs_file, 0, 352 SLAB_PANIC, NULL); 353 if (blob_sizes.lbs_inode) 354 lsm_inode_cache = kmem_cache_create("lsm_inode_cache", 355 blob_sizes.lbs_inode, 0, 356 SLAB_PANIC, NULL); 357 358 lsm_early_cred((struct cred *) current->cred); 359 lsm_early_task(current); 360 for (lsm = ordered_lsms; *lsm; lsm++) 361 initialize_lsm(*lsm); 362 363 kfree(ordered_lsms); 364 } 365 366 int __init early_security_init(void) 367 { 368 int i; 369 struct hlist_head *list = (struct hlist_head *) &security_hook_heads; 370 struct lsm_info *lsm; 371 372 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head); 373 i++) 374 INIT_HLIST_HEAD(&list[i]); 375 376 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 377 if (!lsm->enabled) 378 lsm->enabled = &lsm_enabled_true; 379 prepare_lsm(lsm); 380 initialize_lsm(lsm); 381 } 382 383 return 0; 384 } 385 386 /** 387 * security_init - initializes the security framework 388 * 389 * This should be called early in the kernel initialization sequence. 390 */ 391 int __init security_init(void) 392 { 393 struct lsm_info *lsm; 394 395 pr_info("Security Framework initializing\n"); 396 397 /* 398 * Append the names of the early LSM modules now that kmalloc() is 399 * available 400 */ 401 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 402 if (lsm->enabled) 403 lsm_append(lsm->name, &lsm_names); 404 } 405 406 /* Load LSMs in specified order. */ 407 ordered_lsm_init(); 408 409 return 0; 410 } 411 412 /* Save user chosen LSM */ 413 static int __init choose_major_lsm(char *str) 414 { 415 chosen_major_lsm = str; 416 return 1; 417 } 418 __setup("security=", choose_major_lsm); 419 420 /* Explicitly choose LSM initialization order. */ 421 static int __init choose_lsm_order(char *str) 422 { 423 chosen_lsm_order = str; 424 return 1; 425 } 426 __setup("lsm=", choose_lsm_order); 427 428 /* Enable LSM order debugging. */ 429 static int __init enable_debug(char *str) 430 { 431 debug = true; 432 return 1; 433 } 434 __setup("lsm.debug", enable_debug); 435 436 static bool match_last_lsm(const char *list, const char *lsm) 437 { 438 const char *last; 439 440 if (WARN_ON(!list || !lsm)) 441 return false; 442 last = strrchr(list, ','); 443 if (last) 444 /* Pass the comma, strcmp() will check for '\0' */ 445 last++; 446 else 447 last = list; 448 return !strcmp(last, lsm); 449 } 450 451 static int lsm_append(const char *new, char **result) 452 { 453 char *cp; 454 455 if (*result == NULL) { 456 *result = kstrdup(new, GFP_KERNEL); 457 if (*result == NULL) 458 return -ENOMEM; 459 } else { 460 /* Check if it is the last registered name */ 461 if (match_last_lsm(*result, new)) 462 return 0; 463 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 464 if (cp == NULL) 465 return -ENOMEM; 466 kfree(*result); 467 *result = cp; 468 } 469 return 0; 470 } 471 472 /** 473 * security_add_hooks - Add a modules hooks to the hook lists. 474 * @hooks: the hooks to add 475 * @count: the number of hooks to add 476 * @lsm: the name of the security module 477 * 478 * Each LSM has to register its hooks with the infrastructure. 479 */ 480 void __init security_add_hooks(struct security_hook_list *hooks, int count, 481 char *lsm) 482 { 483 int i; 484 485 for (i = 0; i < count; i++) { 486 hooks[i].lsm = lsm; 487 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 488 } 489 490 /* 491 * Don't try to append during early_security_init(), we'll come back 492 * and fix this up afterwards. 493 */ 494 if (slab_is_available()) { 495 if (lsm_append(lsm, &lsm_names) < 0) 496 panic("%s - Cannot get early memory.\n", __func__); 497 } 498 } 499 500 int call_blocking_lsm_notifier(enum lsm_event event, void *data) 501 { 502 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain, 503 event, data); 504 } 505 EXPORT_SYMBOL(call_blocking_lsm_notifier); 506 507 int register_blocking_lsm_notifier(struct notifier_block *nb) 508 { 509 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain, 510 nb); 511 } 512 EXPORT_SYMBOL(register_blocking_lsm_notifier); 513 514 int unregister_blocking_lsm_notifier(struct notifier_block *nb) 515 { 516 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain, 517 nb); 518 } 519 EXPORT_SYMBOL(unregister_blocking_lsm_notifier); 520 521 /** 522 * lsm_cred_alloc - allocate a composite cred blob 523 * @cred: the cred that needs a blob 524 * @gfp: allocation type 525 * 526 * Allocate the cred blob for all the modules 527 * 528 * Returns 0, or -ENOMEM if memory can't be allocated. 529 */ 530 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp) 531 { 532 if (blob_sizes.lbs_cred == 0) { 533 cred->security = NULL; 534 return 0; 535 } 536 537 cred->security = kzalloc(blob_sizes.lbs_cred, gfp); 538 if (cred->security == NULL) 539 return -ENOMEM; 540 return 0; 541 } 542 543 /** 544 * lsm_early_cred - during initialization allocate a composite cred blob 545 * @cred: the cred that needs a blob 546 * 547 * Allocate the cred blob for all the modules 548 */ 549 static void __init lsm_early_cred(struct cred *cred) 550 { 551 int rc = lsm_cred_alloc(cred, GFP_KERNEL); 552 553 if (rc) 554 panic("%s: Early cred alloc failed.\n", __func__); 555 } 556 557 /** 558 * lsm_file_alloc - allocate a composite file blob 559 * @file: the file that needs a blob 560 * 561 * Allocate the file blob for all the modules 562 * 563 * Returns 0, or -ENOMEM if memory can't be allocated. 564 */ 565 static int lsm_file_alloc(struct file *file) 566 { 567 if (!lsm_file_cache) { 568 file->f_security = NULL; 569 return 0; 570 } 571 572 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL); 573 if (file->f_security == NULL) 574 return -ENOMEM; 575 return 0; 576 } 577 578 /** 579 * lsm_inode_alloc - allocate a composite inode blob 580 * @inode: the inode that needs a blob 581 * 582 * Allocate the inode blob for all the modules 583 * 584 * Returns 0, or -ENOMEM if memory can't be allocated. 585 */ 586 int lsm_inode_alloc(struct inode *inode) 587 { 588 if (!lsm_inode_cache) { 589 inode->i_security = NULL; 590 return 0; 591 } 592 593 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS); 594 if (inode->i_security == NULL) 595 return -ENOMEM; 596 return 0; 597 } 598 599 /** 600 * lsm_task_alloc - allocate a composite task blob 601 * @task: the task that needs a blob 602 * 603 * Allocate the task blob for all the modules 604 * 605 * Returns 0, or -ENOMEM if memory can't be allocated. 606 */ 607 static int lsm_task_alloc(struct task_struct *task) 608 { 609 if (blob_sizes.lbs_task == 0) { 610 task->security = NULL; 611 return 0; 612 } 613 614 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL); 615 if (task->security == NULL) 616 return -ENOMEM; 617 return 0; 618 } 619 620 /** 621 * lsm_ipc_alloc - allocate a composite ipc blob 622 * @kip: the ipc that needs a blob 623 * 624 * Allocate the ipc blob for all the modules 625 * 626 * Returns 0, or -ENOMEM if memory can't be allocated. 627 */ 628 static int lsm_ipc_alloc(struct kern_ipc_perm *kip) 629 { 630 if (blob_sizes.lbs_ipc == 0) { 631 kip->security = NULL; 632 return 0; 633 } 634 635 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL); 636 if (kip->security == NULL) 637 return -ENOMEM; 638 return 0; 639 } 640 641 /** 642 * lsm_msg_msg_alloc - allocate a composite msg_msg blob 643 * @mp: the msg_msg that needs a blob 644 * 645 * Allocate the ipc blob for all the modules 646 * 647 * Returns 0, or -ENOMEM if memory can't be allocated. 648 */ 649 static int lsm_msg_msg_alloc(struct msg_msg *mp) 650 { 651 if (blob_sizes.lbs_msg_msg == 0) { 652 mp->security = NULL; 653 return 0; 654 } 655 656 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL); 657 if (mp->security == NULL) 658 return -ENOMEM; 659 return 0; 660 } 661 662 /** 663 * lsm_early_task - during initialization allocate a composite task blob 664 * @task: the task that needs a blob 665 * 666 * Allocate the task blob for all the modules 667 */ 668 static void __init lsm_early_task(struct task_struct *task) 669 { 670 int rc = lsm_task_alloc(task); 671 672 if (rc) 673 panic("%s: Early task alloc failed.\n", __func__); 674 } 675 676 /** 677 * lsm_superblock_alloc - allocate a composite superblock blob 678 * @sb: the superblock that needs a blob 679 * 680 * Allocate the superblock blob for all the modules 681 * 682 * Returns 0, or -ENOMEM if memory can't be allocated. 683 */ 684 static int lsm_superblock_alloc(struct super_block *sb) 685 { 686 if (blob_sizes.lbs_superblock == 0) { 687 sb->s_security = NULL; 688 return 0; 689 } 690 691 sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL); 692 if (sb->s_security == NULL) 693 return -ENOMEM; 694 return 0; 695 } 696 697 /* 698 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and 699 * can be accessed with: 700 * 701 * LSM_RET_DEFAULT(<hook_name>) 702 * 703 * The macros below define static constants for the default value of each 704 * LSM hook. 705 */ 706 #define LSM_RET_DEFAULT(NAME) (NAME##_default) 707 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME) 708 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \ 709 static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT); 710 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 711 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME) 712 713 #include <linux/lsm_hook_defs.h> 714 #undef LSM_HOOK 715 716 /* 717 * Hook list operation macros. 718 * 719 * call_void_hook: 720 * This is a hook that does not return a value. 721 * 722 * call_int_hook: 723 * This is a hook that returns a value. 724 */ 725 726 #define call_void_hook(FUNC, ...) \ 727 do { \ 728 struct security_hook_list *P; \ 729 \ 730 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 731 P->hook.FUNC(__VA_ARGS__); \ 732 } while (0) 733 734 #define call_int_hook(FUNC, IRC, ...) ({ \ 735 int RC = IRC; \ 736 do { \ 737 struct security_hook_list *P; \ 738 \ 739 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 740 RC = P->hook.FUNC(__VA_ARGS__); \ 741 if (RC != 0) \ 742 break; \ 743 } \ 744 } while (0); \ 745 RC; \ 746 }) 747 748 /* Security operations */ 749 750 int security_binder_set_context_mgr(const struct cred *mgr) 751 { 752 return call_int_hook(binder_set_context_mgr, 0, mgr); 753 } 754 755 int security_binder_transaction(const struct cred *from, 756 const struct cred *to) 757 { 758 return call_int_hook(binder_transaction, 0, from, to); 759 } 760 761 int security_binder_transfer_binder(const struct cred *from, 762 const struct cred *to) 763 { 764 return call_int_hook(binder_transfer_binder, 0, from, to); 765 } 766 767 int security_binder_transfer_file(const struct cred *from, 768 const struct cred *to, struct file *file) 769 { 770 return call_int_hook(binder_transfer_file, 0, from, to, file); 771 } 772 773 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 774 { 775 return call_int_hook(ptrace_access_check, 0, child, mode); 776 } 777 778 int security_ptrace_traceme(struct task_struct *parent) 779 { 780 return call_int_hook(ptrace_traceme, 0, parent); 781 } 782 783 int security_capget(struct task_struct *target, 784 kernel_cap_t *effective, 785 kernel_cap_t *inheritable, 786 kernel_cap_t *permitted) 787 { 788 return call_int_hook(capget, 0, target, 789 effective, inheritable, permitted); 790 } 791 792 int security_capset(struct cred *new, const struct cred *old, 793 const kernel_cap_t *effective, 794 const kernel_cap_t *inheritable, 795 const kernel_cap_t *permitted) 796 { 797 return call_int_hook(capset, 0, new, old, 798 effective, inheritable, permitted); 799 } 800 801 int security_capable(const struct cred *cred, 802 struct user_namespace *ns, 803 int cap, 804 unsigned int opts) 805 { 806 return call_int_hook(capable, 0, cred, ns, cap, opts); 807 } 808 809 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 810 { 811 return call_int_hook(quotactl, 0, cmds, type, id, sb); 812 } 813 814 int security_quota_on(struct dentry *dentry) 815 { 816 return call_int_hook(quota_on, 0, dentry); 817 } 818 819 int security_syslog(int type) 820 { 821 return call_int_hook(syslog, 0, type); 822 } 823 824 int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 825 { 826 return call_int_hook(settime, 0, ts, tz); 827 } 828 829 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 830 { 831 struct security_hook_list *hp; 832 int cap_sys_admin = 1; 833 int rc; 834 835 /* 836 * The module will respond with a positive value if 837 * it thinks the __vm_enough_memory() call should be 838 * made with the cap_sys_admin set. If all of the modules 839 * agree that it should be set it will. If any module 840 * thinks it should not be set it won't. 841 */ 842 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 843 rc = hp->hook.vm_enough_memory(mm, pages); 844 if (rc <= 0) { 845 cap_sys_admin = 0; 846 break; 847 } 848 } 849 return __vm_enough_memory(mm, pages, cap_sys_admin); 850 } 851 852 int security_bprm_creds_for_exec(struct linux_binprm *bprm) 853 { 854 return call_int_hook(bprm_creds_for_exec, 0, bprm); 855 } 856 857 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file) 858 { 859 return call_int_hook(bprm_creds_from_file, 0, bprm, file); 860 } 861 862 int security_bprm_check(struct linux_binprm *bprm) 863 { 864 int ret; 865 866 ret = call_int_hook(bprm_check_security, 0, bprm); 867 if (ret) 868 return ret; 869 return ima_bprm_check(bprm); 870 } 871 872 void security_bprm_committing_creds(struct linux_binprm *bprm) 873 { 874 call_void_hook(bprm_committing_creds, bprm); 875 } 876 877 void security_bprm_committed_creds(struct linux_binprm *bprm) 878 { 879 call_void_hook(bprm_committed_creds, bprm); 880 } 881 882 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) 883 { 884 return call_int_hook(fs_context_dup, 0, fc, src_fc); 885 } 886 887 int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param) 888 { 889 return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param); 890 } 891 892 int security_sb_alloc(struct super_block *sb) 893 { 894 int rc = lsm_superblock_alloc(sb); 895 896 if (unlikely(rc)) 897 return rc; 898 rc = call_int_hook(sb_alloc_security, 0, sb); 899 if (unlikely(rc)) 900 security_sb_free(sb); 901 return rc; 902 } 903 904 void security_sb_delete(struct super_block *sb) 905 { 906 call_void_hook(sb_delete, sb); 907 } 908 909 void security_sb_free(struct super_block *sb) 910 { 911 call_void_hook(sb_free_security, sb); 912 kfree(sb->s_security); 913 sb->s_security = NULL; 914 } 915 916 void security_free_mnt_opts(void **mnt_opts) 917 { 918 if (!*mnt_opts) 919 return; 920 call_void_hook(sb_free_mnt_opts, *mnt_opts); 921 *mnt_opts = NULL; 922 } 923 EXPORT_SYMBOL(security_free_mnt_opts); 924 925 int security_sb_eat_lsm_opts(char *options, void **mnt_opts) 926 { 927 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts); 928 } 929 EXPORT_SYMBOL(security_sb_eat_lsm_opts); 930 931 int security_sb_mnt_opts_compat(struct super_block *sb, 932 void *mnt_opts) 933 { 934 return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts); 935 } 936 EXPORT_SYMBOL(security_sb_mnt_opts_compat); 937 938 int security_sb_remount(struct super_block *sb, 939 void *mnt_opts) 940 { 941 return call_int_hook(sb_remount, 0, sb, mnt_opts); 942 } 943 EXPORT_SYMBOL(security_sb_remount); 944 945 int security_sb_kern_mount(struct super_block *sb) 946 { 947 return call_int_hook(sb_kern_mount, 0, sb); 948 } 949 950 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 951 { 952 return call_int_hook(sb_show_options, 0, m, sb); 953 } 954 955 int security_sb_statfs(struct dentry *dentry) 956 { 957 return call_int_hook(sb_statfs, 0, dentry); 958 } 959 960 int security_sb_mount(const char *dev_name, const struct path *path, 961 const char *type, unsigned long flags, void *data) 962 { 963 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data); 964 } 965 966 int security_sb_umount(struct vfsmount *mnt, int flags) 967 { 968 return call_int_hook(sb_umount, 0, mnt, flags); 969 } 970 971 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path) 972 { 973 return call_int_hook(sb_pivotroot, 0, old_path, new_path); 974 } 975 976 int security_sb_set_mnt_opts(struct super_block *sb, 977 void *mnt_opts, 978 unsigned long kern_flags, 979 unsigned long *set_kern_flags) 980 { 981 return call_int_hook(sb_set_mnt_opts, 982 mnt_opts ? -EOPNOTSUPP : 0, sb, 983 mnt_opts, kern_flags, set_kern_flags); 984 } 985 EXPORT_SYMBOL(security_sb_set_mnt_opts); 986 987 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 988 struct super_block *newsb, 989 unsigned long kern_flags, 990 unsigned long *set_kern_flags) 991 { 992 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb, 993 kern_flags, set_kern_flags); 994 } 995 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 996 997 int security_add_mnt_opt(const char *option, const char *val, int len, 998 void **mnt_opts) 999 { 1000 return call_int_hook(sb_add_mnt_opt, -EINVAL, 1001 option, val, len, mnt_opts); 1002 } 1003 EXPORT_SYMBOL(security_add_mnt_opt); 1004 1005 int security_move_mount(const struct path *from_path, const struct path *to_path) 1006 { 1007 return call_int_hook(move_mount, 0, from_path, to_path); 1008 } 1009 1010 int security_path_notify(const struct path *path, u64 mask, 1011 unsigned int obj_type) 1012 { 1013 return call_int_hook(path_notify, 0, path, mask, obj_type); 1014 } 1015 1016 int security_inode_alloc(struct inode *inode) 1017 { 1018 int rc = lsm_inode_alloc(inode); 1019 1020 if (unlikely(rc)) 1021 return rc; 1022 rc = call_int_hook(inode_alloc_security, 0, inode); 1023 if (unlikely(rc)) 1024 security_inode_free(inode); 1025 return rc; 1026 } 1027 1028 static void inode_free_by_rcu(struct rcu_head *head) 1029 { 1030 /* 1031 * The rcu head is at the start of the inode blob 1032 */ 1033 kmem_cache_free(lsm_inode_cache, head); 1034 } 1035 1036 void security_inode_free(struct inode *inode) 1037 { 1038 integrity_inode_free(inode); 1039 call_void_hook(inode_free_security, inode); 1040 /* 1041 * The inode may still be referenced in a path walk and 1042 * a call to security_inode_permission() can be made 1043 * after inode_free_security() is called. Ideally, the VFS 1044 * wouldn't do this, but fixing that is a much harder 1045 * job. For now, simply free the i_security via RCU, and 1046 * leave the current inode->i_security pointer intact. 1047 * The inode will be freed after the RCU grace period too. 1048 */ 1049 if (inode->i_security) 1050 call_rcu((struct rcu_head *)inode->i_security, 1051 inode_free_by_rcu); 1052 } 1053 1054 int security_dentry_init_security(struct dentry *dentry, int mode, 1055 const struct qstr *name, 1056 const char **xattr_name, void **ctx, 1057 u32 *ctxlen) 1058 { 1059 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode, 1060 name, xattr_name, ctx, ctxlen); 1061 } 1062 EXPORT_SYMBOL(security_dentry_init_security); 1063 1064 int security_dentry_create_files_as(struct dentry *dentry, int mode, 1065 struct qstr *name, 1066 const struct cred *old, struct cred *new) 1067 { 1068 return call_int_hook(dentry_create_files_as, 0, dentry, mode, 1069 name, old, new); 1070 } 1071 EXPORT_SYMBOL(security_dentry_create_files_as); 1072 1073 int security_inode_init_security(struct inode *inode, struct inode *dir, 1074 const struct qstr *qstr, 1075 const initxattrs initxattrs, void *fs_data) 1076 { 1077 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 1078 struct xattr *lsm_xattr, *evm_xattr, *xattr; 1079 int ret; 1080 1081 if (unlikely(IS_PRIVATE(inode))) 1082 return 0; 1083 1084 if (!initxattrs) 1085 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, 1086 dir, qstr, NULL, NULL, NULL); 1087 memset(new_xattrs, 0, sizeof(new_xattrs)); 1088 lsm_xattr = new_xattrs; 1089 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr, 1090 &lsm_xattr->name, 1091 &lsm_xattr->value, 1092 &lsm_xattr->value_len); 1093 if (ret) 1094 goto out; 1095 1096 evm_xattr = lsm_xattr + 1; 1097 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 1098 if (ret) 1099 goto out; 1100 ret = initxattrs(inode, new_xattrs, fs_data); 1101 out: 1102 for (xattr = new_xattrs; xattr->value != NULL; xattr++) 1103 kfree(xattr->value); 1104 return (ret == -EOPNOTSUPP) ? 0 : ret; 1105 } 1106 EXPORT_SYMBOL(security_inode_init_security); 1107 1108 int security_inode_init_security_anon(struct inode *inode, 1109 const struct qstr *name, 1110 const struct inode *context_inode) 1111 { 1112 return call_int_hook(inode_init_security_anon, 0, inode, name, 1113 context_inode); 1114 } 1115 1116 int security_old_inode_init_security(struct inode *inode, struct inode *dir, 1117 const struct qstr *qstr, const char **name, 1118 void **value, size_t *len) 1119 { 1120 if (unlikely(IS_PRIVATE(inode))) 1121 return -EOPNOTSUPP; 1122 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, 1123 qstr, name, value, len); 1124 } 1125 EXPORT_SYMBOL(security_old_inode_init_security); 1126 1127 #ifdef CONFIG_SECURITY_PATH 1128 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode, 1129 unsigned int dev) 1130 { 1131 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1132 return 0; 1133 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev); 1134 } 1135 EXPORT_SYMBOL(security_path_mknod); 1136 1137 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode) 1138 { 1139 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1140 return 0; 1141 return call_int_hook(path_mkdir, 0, dir, dentry, mode); 1142 } 1143 EXPORT_SYMBOL(security_path_mkdir); 1144 1145 int security_path_rmdir(const struct path *dir, struct dentry *dentry) 1146 { 1147 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1148 return 0; 1149 return call_int_hook(path_rmdir, 0, dir, dentry); 1150 } 1151 1152 int security_path_unlink(const struct path *dir, struct dentry *dentry) 1153 { 1154 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1155 return 0; 1156 return call_int_hook(path_unlink, 0, dir, dentry); 1157 } 1158 EXPORT_SYMBOL(security_path_unlink); 1159 1160 int security_path_symlink(const struct path *dir, struct dentry *dentry, 1161 const char *old_name) 1162 { 1163 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1164 return 0; 1165 return call_int_hook(path_symlink, 0, dir, dentry, old_name); 1166 } 1167 1168 int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 1169 struct dentry *new_dentry) 1170 { 1171 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1172 return 0; 1173 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry); 1174 } 1175 1176 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 1177 const struct path *new_dir, struct dentry *new_dentry, 1178 unsigned int flags) 1179 { 1180 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1181 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1182 return 0; 1183 1184 if (flags & RENAME_EXCHANGE) { 1185 int err = call_int_hook(path_rename, 0, new_dir, new_dentry, 1186 old_dir, old_dentry); 1187 if (err) 1188 return err; 1189 } 1190 1191 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir, 1192 new_dentry); 1193 } 1194 EXPORT_SYMBOL(security_path_rename); 1195 1196 int security_path_truncate(const struct path *path) 1197 { 1198 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1199 return 0; 1200 return call_int_hook(path_truncate, 0, path); 1201 } 1202 1203 int security_path_chmod(const struct path *path, umode_t mode) 1204 { 1205 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1206 return 0; 1207 return call_int_hook(path_chmod, 0, path, mode); 1208 } 1209 1210 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 1211 { 1212 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1213 return 0; 1214 return call_int_hook(path_chown, 0, path, uid, gid); 1215 } 1216 1217 int security_path_chroot(const struct path *path) 1218 { 1219 return call_int_hook(path_chroot, 0, path); 1220 } 1221 #endif 1222 1223 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 1224 { 1225 if (unlikely(IS_PRIVATE(dir))) 1226 return 0; 1227 return call_int_hook(inode_create, 0, dir, dentry, mode); 1228 } 1229 EXPORT_SYMBOL_GPL(security_inode_create); 1230 1231 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 1232 struct dentry *new_dentry) 1233 { 1234 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1235 return 0; 1236 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry); 1237 } 1238 1239 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 1240 { 1241 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1242 return 0; 1243 return call_int_hook(inode_unlink, 0, dir, dentry); 1244 } 1245 1246 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 1247 const char *old_name) 1248 { 1249 if (unlikely(IS_PRIVATE(dir))) 1250 return 0; 1251 return call_int_hook(inode_symlink, 0, dir, dentry, old_name); 1252 } 1253 1254 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1255 { 1256 if (unlikely(IS_PRIVATE(dir))) 1257 return 0; 1258 return call_int_hook(inode_mkdir, 0, dir, dentry, mode); 1259 } 1260 EXPORT_SYMBOL_GPL(security_inode_mkdir); 1261 1262 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 1263 { 1264 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1265 return 0; 1266 return call_int_hook(inode_rmdir, 0, dir, dentry); 1267 } 1268 1269 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 1270 { 1271 if (unlikely(IS_PRIVATE(dir))) 1272 return 0; 1273 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev); 1274 } 1275 1276 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 1277 struct inode *new_dir, struct dentry *new_dentry, 1278 unsigned int flags) 1279 { 1280 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1281 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1282 return 0; 1283 1284 if (flags & RENAME_EXCHANGE) { 1285 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry, 1286 old_dir, old_dentry); 1287 if (err) 1288 return err; 1289 } 1290 1291 return call_int_hook(inode_rename, 0, old_dir, old_dentry, 1292 new_dir, new_dentry); 1293 } 1294 1295 int security_inode_readlink(struct dentry *dentry) 1296 { 1297 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1298 return 0; 1299 return call_int_hook(inode_readlink, 0, dentry); 1300 } 1301 1302 int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 1303 bool rcu) 1304 { 1305 if (unlikely(IS_PRIVATE(inode))) 1306 return 0; 1307 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu); 1308 } 1309 1310 int security_inode_permission(struct inode *inode, int mask) 1311 { 1312 if (unlikely(IS_PRIVATE(inode))) 1313 return 0; 1314 return call_int_hook(inode_permission, 0, inode, mask); 1315 } 1316 1317 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 1318 { 1319 int ret; 1320 1321 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1322 return 0; 1323 ret = call_int_hook(inode_setattr, 0, dentry, attr); 1324 if (ret) 1325 return ret; 1326 return evm_inode_setattr(dentry, attr); 1327 } 1328 EXPORT_SYMBOL_GPL(security_inode_setattr); 1329 1330 int security_inode_getattr(const struct path *path) 1331 { 1332 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1333 return 0; 1334 return call_int_hook(inode_getattr, 0, path); 1335 } 1336 1337 int security_inode_setxattr(struct user_namespace *mnt_userns, 1338 struct dentry *dentry, const char *name, 1339 const void *value, size_t size, int flags) 1340 { 1341 int ret; 1342 1343 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1344 return 0; 1345 /* 1346 * SELinux and Smack integrate the cap call, 1347 * so assume that all LSMs supplying this call do so. 1348 */ 1349 ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value, 1350 size, flags); 1351 1352 if (ret == 1) 1353 ret = cap_inode_setxattr(dentry, name, value, size, flags); 1354 if (ret) 1355 return ret; 1356 ret = ima_inode_setxattr(dentry, name, value, size); 1357 if (ret) 1358 return ret; 1359 return evm_inode_setxattr(mnt_userns, dentry, name, value, size); 1360 } 1361 1362 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 1363 const void *value, size_t size, int flags) 1364 { 1365 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1366 return; 1367 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 1368 evm_inode_post_setxattr(dentry, name, value, size); 1369 } 1370 1371 int security_inode_getxattr(struct dentry *dentry, const char *name) 1372 { 1373 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1374 return 0; 1375 return call_int_hook(inode_getxattr, 0, dentry, name); 1376 } 1377 1378 int security_inode_listxattr(struct dentry *dentry) 1379 { 1380 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1381 return 0; 1382 return call_int_hook(inode_listxattr, 0, dentry); 1383 } 1384 1385 int security_inode_removexattr(struct user_namespace *mnt_userns, 1386 struct dentry *dentry, const char *name) 1387 { 1388 int ret; 1389 1390 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1391 return 0; 1392 /* 1393 * SELinux and Smack integrate the cap call, 1394 * so assume that all LSMs supplying this call do so. 1395 */ 1396 ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name); 1397 if (ret == 1) 1398 ret = cap_inode_removexattr(mnt_userns, dentry, name); 1399 if (ret) 1400 return ret; 1401 ret = ima_inode_removexattr(dentry, name); 1402 if (ret) 1403 return ret; 1404 return evm_inode_removexattr(mnt_userns, dentry, name); 1405 } 1406 1407 int security_inode_need_killpriv(struct dentry *dentry) 1408 { 1409 return call_int_hook(inode_need_killpriv, 0, dentry); 1410 } 1411 1412 int security_inode_killpriv(struct user_namespace *mnt_userns, 1413 struct dentry *dentry) 1414 { 1415 return call_int_hook(inode_killpriv, 0, mnt_userns, dentry); 1416 } 1417 1418 int security_inode_getsecurity(struct user_namespace *mnt_userns, 1419 struct inode *inode, const char *name, 1420 void **buffer, bool alloc) 1421 { 1422 struct security_hook_list *hp; 1423 int rc; 1424 1425 if (unlikely(IS_PRIVATE(inode))) 1426 return LSM_RET_DEFAULT(inode_getsecurity); 1427 /* 1428 * Only one module will provide an attribute with a given name. 1429 */ 1430 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) { 1431 rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc); 1432 if (rc != LSM_RET_DEFAULT(inode_getsecurity)) 1433 return rc; 1434 } 1435 return LSM_RET_DEFAULT(inode_getsecurity); 1436 } 1437 1438 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 1439 { 1440 struct security_hook_list *hp; 1441 int rc; 1442 1443 if (unlikely(IS_PRIVATE(inode))) 1444 return LSM_RET_DEFAULT(inode_setsecurity); 1445 /* 1446 * Only one module will provide an attribute with a given name. 1447 */ 1448 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) { 1449 rc = hp->hook.inode_setsecurity(inode, name, value, size, 1450 flags); 1451 if (rc != LSM_RET_DEFAULT(inode_setsecurity)) 1452 return rc; 1453 } 1454 return LSM_RET_DEFAULT(inode_setsecurity); 1455 } 1456 1457 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 1458 { 1459 if (unlikely(IS_PRIVATE(inode))) 1460 return 0; 1461 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size); 1462 } 1463 EXPORT_SYMBOL(security_inode_listsecurity); 1464 1465 void security_inode_getsecid(struct inode *inode, u32 *secid) 1466 { 1467 call_void_hook(inode_getsecid, inode, secid); 1468 } 1469 1470 int security_inode_copy_up(struct dentry *src, struct cred **new) 1471 { 1472 return call_int_hook(inode_copy_up, 0, src, new); 1473 } 1474 EXPORT_SYMBOL(security_inode_copy_up); 1475 1476 int security_inode_copy_up_xattr(const char *name) 1477 { 1478 struct security_hook_list *hp; 1479 int rc; 1480 1481 /* 1482 * The implementation can return 0 (accept the xattr), 1 (discard the 1483 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or 1484 * any other error code incase of an error. 1485 */ 1486 hlist_for_each_entry(hp, 1487 &security_hook_heads.inode_copy_up_xattr, list) { 1488 rc = hp->hook.inode_copy_up_xattr(name); 1489 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr)) 1490 return rc; 1491 } 1492 1493 return LSM_RET_DEFAULT(inode_copy_up_xattr); 1494 } 1495 EXPORT_SYMBOL(security_inode_copy_up_xattr); 1496 1497 int security_kernfs_init_security(struct kernfs_node *kn_dir, 1498 struct kernfs_node *kn) 1499 { 1500 return call_int_hook(kernfs_init_security, 0, kn_dir, kn); 1501 } 1502 1503 int security_file_permission(struct file *file, int mask) 1504 { 1505 int ret; 1506 1507 ret = call_int_hook(file_permission, 0, file, mask); 1508 if (ret) 1509 return ret; 1510 1511 return fsnotify_perm(file, mask); 1512 } 1513 1514 int security_file_alloc(struct file *file) 1515 { 1516 int rc = lsm_file_alloc(file); 1517 1518 if (rc) 1519 return rc; 1520 rc = call_int_hook(file_alloc_security, 0, file); 1521 if (unlikely(rc)) 1522 security_file_free(file); 1523 return rc; 1524 } 1525 1526 void security_file_free(struct file *file) 1527 { 1528 void *blob; 1529 1530 call_void_hook(file_free_security, file); 1531 1532 blob = file->f_security; 1533 if (blob) { 1534 file->f_security = NULL; 1535 kmem_cache_free(lsm_file_cache, blob); 1536 } 1537 } 1538 1539 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1540 { 1541 return call_int_hook(file_ioctl, 0, file, cmd, arg); 1542 } 1543 EXPORT_SYMBOL_GPL(security_file_ioctl); 1544 1545 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 1546 { 1547 /* 1548 * Does we have PROT_READ and does the application expect 1549 * it to imply PROT_EXEC? If not, nothing to talk about... 1550 */ 1551 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 1552 return prot; 1553 if (!(current->personality & READ_IMPLIES_EXEC)) 1554 return prot; 1555 /* 1556 * if that's an anonymous mapping, let it. 1557 */ 1558 if (!file) 1559 return prot | PROT_EXEC; 1560 /* 1561 * ditto if it's not on noexec mount, except that on !MMU we need 1562 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 1563 */ 1564 if (!path_noexec(&file->f_path)) { 1565 #ifndef CONFIG_MMU 1566 if (file->f_op->mmap_capabilities) { 1567 unsigned caps = file->f_op->mmap_capabilities(file); 1568 if (!(caps & NOMMU_MAP_EXEC)) 1569 return prot; 1570 } 1571 #endif 1572 return prot | PROT_EXEC; 1573 } 1574 /* anything on noexec mount won't get PROT_EXEC */ 1575 return prot; 1576 } 1577 1578 int security_mmap_file(struct file *file, unsigned long prot, 1579 unsigned long flags) 1580 { 1581 int ret; 1582 ret = call_int_hook(mmap_file, 0, file, prot, 1583 mmap_prot(file, prot), flags); 1584 if (ret) 1585 return ret; 1586 return ima_file_mmap(file, prot); 1587 } 1588 1589 int security_mmap_addr(unsigned long addr) 1590 { 1591 return call_int_hook(mmap_addr, 0, addr); 1592 } 1593 1594 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 1595 unsigned long prot) 1596 { 1597 int ret; 1598 1599 ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot); 1600 if (ret) 1601 return ret; 1602 return ima_file_mprotect(vma, prot); 1603 } 1604 1605 int security_file_lock(struct file *file, unsigned int cmd) 1606 { 1607 return call_int_hook(file_lock, 0, file, cmd); 1608 } 1609 1610 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 1611 { 1612 return call_int_hook(file_fcntl, 0, file, cmd, arg); 1613 } 1614 1615 void security_file_set_fowner(struct file *file) 1616 { 1617 call_void_hook(file_set_fowner, file); 1618 } 1619 1620 int security_file_send_sigiotask(struct task_struct *tsk, 1621 struct fown_struct *fown, int sig) 1622 { 1623 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig); 1624 } 1625 1626 int security_file_receive(struct file *file) 1627 { 1628 return call_int_hook(file_receive, 0, file); 1629 } 1630 1631 int security_file_open(struct file *file) 1632 { 1633 int ret; 1634 1635 ret = call_int_hook(file_open, 0, file); 1636 if (ret) 1637 return ret; 1638 1639 return fsnotify_perm(file, MAY_OPEN); 1640 } 1641 1642 int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 1643 { 1644 int rc = lsm_task_alloc(task); 1645 1646 if (rc) 1647 return rc; 1648 rc = call_int_hook(task_alloc, 0, task, clone_flags); 1649 if (unlikely(rc)) 1650 security_task_free(task); 1651 return rc; 1652 } 1653 1654 void security_task_free(struct task_struct *task) 1655 { 1656 call_void_hook(task_free, task); 1657 1658 kfree(task->security); 1659 task->security = NULL; 1660 } 1661 1662 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 1663 { 1664 int rc = lsm_cred_alloc(cred, gfp); 1665 1666 if (rc) 1667 return rc; 1668 1669 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp); 1670 if (unlikely(rc)) 1671 security_cred_free(cred); 1672 return rc; 1673 } 1674 1675 void security_cred_free(struct cred *cred) 1676 { 1677 /* 1678 * There is a failure case in prepare_creds() that 1679 * may result in a call here with ->security being NULL. 1680 */ 1681 if (unlikely(cred->security == NULL)) 1682 return; 1683 1684 call_void_hook(cred_free, cred); 1685 1686 kfree(cred->security); 1687 cred->security = NULL; 1688 } 1689 1690 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 1691 { 1692 int rc = lsm_cred_alloc(new, gfp); 1693 1694 if (rc) 1695 return rc; 1696 1697 rc = call_int_hook(cred_prepare, 0, new, old, gfp); 1698 if (unlikely(rc)) 1699 security_cred_free(new); 1700 return rc; 1701 } 1702 1703 void security_transfer_creds(struct cred *new, const struct cred *old) 1704 { 1705 call_void_hook(cred_transfer, new, old); 1706 } 1707 1708 void security_cred_getsecid(const struct cred *c, u32 *secid) 1709 { 1710 *secid = 0; 1711 call_void_hook(cred_getsecid, c, secid); 1712 } 1713 EXPORT_SYMBOL(security_cred_getsecid); 1714 1715 int security_kernel_act_as(struct cred *new, u32 secid) 1716 { 1717 return call_int_hook(kernel_act_as, 0, new, secid); 1718 } 1719 1720 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 1721 { 1722 return call_int_hook(kernel_create_files_as, 0, new, inode); 1723 } 1724 1725 int security_kernel_module_request(char *kmod_name) 1726 { 1727 int ret; 1728 1729 ret = call_int_hook(kernel_module_request, 0, kmod_name); 1730 if (ret) 1731 return ret; 1732 return integrity_kernel_module_request(kmod_name); 1733 } 1734 1735 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id, 1736 bool contents) 1737 { 1738 int ret; 1739 1740 ret = call_int_hook(kernel_read_file, 0, file, id, contents); 1741 if (ret) 1742 return ret; 1743 return ima_read_file(file, id, contents); 1744 } 1745 EXPORT_SYMBOL_GPL(security_kernel_read_file); 1746 1747 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 1748 enum kernel_read_file_id id) 1749 { 1750 int ret; 1751 1752 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id); 1753 if (ret) 1754 return ret; 1755 return ima_post_read_file(file, buf, size, id); 1756 } 1757 EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 1758 1759 int security_kernel_load_data(enum kernel_load_data_id id, bool contents) 1760 { 1761 int ret; 1762 1763 ret = call_int_hook(kernel_load_data, 0, id, contents); 1764 if (ret) 1765 return ret; 1766 return ima_load_data(id, contents); 1767 } 1768 EXPORT_SYMBOL_GPL(security_kernel_load_data); 1769 1770 int security_kernel_post_load_data(char *buf, loff_t size, 1771 enum kernel_load_data_id id, 1772 char *description) 1773 { 1774 int ret; 1775 1776 ret = call_int_hook(kernel_post_load_data, 0, buf, size, id, 1777 description); 1778 if (ret) 1779 return ret; 1780 return ima_post_load_data(buf, size, id, description); 1781 } 1782 EXPORT_SYMBOL_GPL(security_kernel_post_load_data); 1783 1784 int security_task_fix_setuid(struct cred *new, const struct cred *old, 1785 int flags) 1786 { 1787 return call_int_hook(task_fix_setuid, 0, new, old, flags); 1788 } 1789 1790 int security_task_fix_setgid(struct cred *new, const struct cred *old, 1791 int flags) 1792 { 1793 return call_int_hook(task_fix_setgid, 0, new, old, flags); 1794 } 1795 1796 int security_task_setpgid(struct task_struct *p, pid_t pgid) 1797 { 1798 return call_int_hook(task_setpgid, 0, p, pgid); 1799 } 1800 1801 int security_task_getpgid(struct task_struct *p) 1802 { 1803 return call_int_hook(task_getpgid, 0, p); 1804 } 1805 1806 int security_task_getsid(struct task_struct *p) 1807 { 1808 return call_int_hook(task_getsid, 0, p); 1809 } 1810 1811 void security_task_getsecid_subj(struct task_struct *p, u32 *secid) 1812 { 1813 *secid = 0; 1814 call_void_hook(task_getsecid_subj, p, secid); 1815 } 1816 EXPORT_SYMBOL(security_task_getsecid_subj); 1817 1818 void security_task_getsecid_obj(struct task_struct *p, u32 *secid) 1819 { 1820 *secid = 0; 1821 call_void_hook(task_getsecid_obj, p, secid); 1822 } 1823 EXPORT_SYMBOL(security_task_getsecid_obj); 1824 1825 int security_task_setnice(struct task_struct *p, int nice) 1826 { 1827 return call_int_hook(task_setnice, 0, p, nice); 1828 } 1829 1830 int security_task_setioprio(struct task_struct *p, int ioprio) 1831 { 1832 return call_int_hook(task_setioprio, 0, p, ioprio); 1833 } 1834 1835 int security_task_getioprio(struct task_struct *p) 1836 { 1837 return call_int_hook(task_getioprio, 0, p); 1838 } 1839 1840 int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 1841 unsigned int flags) 1842 { 1843 return call_int_hook(task_prlimit, 0, cred, tcred, flags); 1844 } 1845 1846 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 1847 struct rlimit *new_rlim) 1848 { 1849 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim); 1850 } 1851 1852 int security_task_setscheduler(struct task_struct *p) 1853 { 1854 return call_int_hook(task_setscheduler, 0, p); 1855 } 1856 1857 int security_task_getscheduler(struct task_struct *p) 1858 { 1859 return call_int_hook(task_getscheduler, 0, p); 1860 } 1861 1862 int security_task_movememory(struct task_struct *p) 1863 { 1864 return call_int_hook(task_movememory, 0, p); 1865 } 1866 1867 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, 1868 int sig, const struct cred *cred) 1869 { 1870 return call_int_hook(task_kill, 0, p, info, sig, cred); 1871 } 1872 1873 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 1874 unsigned long arg4, unsigned long arg5) 1875 { 1876 int thisrc; 1877 int rc = LSM_RET_DEFAULT(task_prctl); 1878 struct security_hook_list *hp; 1879 1880 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 1881 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 1882 if (thisrc != LSM_RET_DEFAULT(task_prctl)) { 1883 rc = thisrc; 1884 if (thisrc != 0) 1885 break; 1886 } 1887 } 1888 return rc; 1889 } 1890 1891 void security_task_to_inode(struct task_struct *p, struct inode *inode) 1892 { 1893 call_void_hook(task_to_inode, p, inode); 1894 } 1895 1896 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 1897 { 1898 return call_int_hook(ipc_permission, 0, ipcp, flag); 1899 } 1900 1901 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 1902 { 1903 *secid = 0; 1904 call_void_hook(ipc_getsecid, ipcp, secid); 1905 } 1906 1907 int security_msg_msg_alloc(struct msg_msg *msg) 1908 { 1909 int rc = lsm_msg_msg_alloc(msg); 1910 1911 if (unlikely(rc)) 1912 return rc; 1913 rc = call_int_hook(msg_msg_alloc_security, 0, msg); 1914 if (unlikely(rc)) 1915 security_msg_msg_free(msg); 1916 return rc; 1917 } 1918 1919 void security_msg_msg_free(struct msg_msg *msg) 1920 { 1921 call_void_hook(msg_msg_free_security, msg); 1922 kfree(msg->security); 1923 msg->security = NULL; 1924 } 1925 1926 int security_msg_queue_alloc(struct kern_ipc_perm *msq) 1927 { 1928 int rc = lsm_ipc_alloc(msq); 1929 1930 if (unlikely(rc)) 1931 return rc; 1932 rc = call_int_hook(msg_queue_alloc_security, 0, msq); 1933 if (unlikely(rc)) 1934 security_msg_queue_free(msq); 1935 return rc; 1936 } 1937 1938 void security_msg_queue_free(struct kern_ipc_perm *msq) 1939 { 1940 call_void_hook(msg_queue_free_security, msq); 1941 kfree(msq->security); 1942 msq->security = NULL; 1943 } 1944 1945 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 1946 { 1947 return call_int_hook(msg_queue_associate, 0, msq, msqflg); 1948 } 1949 1950 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 1951 { 1952 return call_int_hook(msg_queue_msgctl, 0, msq, cmd); 1953 } 1954 1955 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 1956 struct msg_msg *msg, int msqflg) 1957 { 1958 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg); 1959 } 1960 1961 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 1962 struct task_struct *target, long type, int mode) 1963 { 1964 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode); 1965 } 1966 1967 int security_shm_alloc(struct kern_ipc_perm *shp) 1968 { 1969 int rc = lsm_ipc_alloc(shp); 1970 1971 if (unlikely(rc)) 1972 return rc; 1973 rc = call_int_hook(shm_alloc_security, 0, shp); 1974 if (unlikely(rc)) 1975 security_shm_free(shp); 1976 return rc; 1977 } 1978 1979 void security_shm_free(struct kern_ipc_perm *shp) 1980 { 1981 call_void_hook(shm_free_security, shp); 1982 kfree(shp->security); 1983 shp->security = NULL; 1984 } 1985 1986 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 1987 { 1988 return call_int_hook(shm_associate, 0, shp, shmflg); 1989 } 1990 1991 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 1992 { 1993 return call_int_hook(shm_shmctl, 0, shp, cmd); 1994 } 1995 1996 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg) 1997 { 1998 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg); 1999 } 2000 2001 int security_sem_alloc(struct kern_ipc_perm *sma) 2002 { 2003 int rc = lsm_ipc_alloc(sma); 2004 2005 if (unlikely(rc)) 2006 return rc; 2007 rc = call_int_hook(sem_alloc_security, 0, sma); 2008 if (unlikely(rc)) 2009 security_sem_free(sma); 2010 return rc; 2011 } 2012 2013 void security_sem_free(struct kern_ipc_perm *sma) 2014 { 2015 call_void_hook(sem_free_security, sma); 2016 kfree(sma->security); 2017 sma->security = NULL; 2018 } 2019 2020 int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 2021 { 2022 return call_int_hook(sem_associate, 0, sma, semflg); 2023 } 2024 2025 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 2026 { 2027 return call_int_hook(sem_semctl, 0, sma, cmd); 2028 } 2029 2030 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 2031 unsigned nsops, int alter) 2032 { 2033 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter); 2034 } 2035 2036 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 2037 { 2038 if (unlikely(inode && IS_PRIVATE(inode))) 2039 return; 2040 call_void_hook(d_instantiate, dentry, inode); 2041 } 2042 EXPORT_SYMBOL(security_d_instantiate); 2043 2044 int security_getprocattr(struct task_struct *p, const char *lsm, char *name, 2045 char **value) 2046 { 2047 struct security_hook_list *hp; 2048 2049 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) { 2050 if (lsm != NULL && strcmp(lsm, hp->lsm)) 2051 continue; 2052 return hp->hook.getprocattr(p, name, value); 2053 } 2054 return LSM_RET_DEFAULT(getprocattr); 2055 } 2056 2057 int security_setprocattr(const char *lsm, const char *name, void *value, 2058 size_t size) 2059 { 2060 struct security_hook_list *hp; 2061 2062 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) { 2063 if (lsm != NULL && strcmp(lsm, hp->lsm)) 2064 continue; 2065 return hp->hook.setprocattr(name, value, size); 2066 } 2067 return LSM_RET_DEFAULT(setprocattr); 2068 } 2069 2070 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 2071 { 2072 return call_int_hook(netlink_send, 0, sk, skb); 2073 } 2074 2075 int security_ismaclabel(const char *name) 2076 { 2077 return call_int_hook(ismaclabel, 0, name); 2078 } 2079 EXPORT_SYMBOL(security_ismaclabel); 2080 2081 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 2082 { 2083 struct security_hook_list *hp; 2084 int rc; 2085 2086 /* 2087 * Currently, only one LSM can implement secid_to_secctx (i.e this 2088 * LSM hook is not "stackable"). 2089 */ 2090 hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) { 2091 rc = hp->hook.secid_to_secctx(secid, secdata, seclen); 2092 if (rc != LSM_RET_DEFAULT(secid_to_secctx)) 2093 return rc; 2094 } 2095 2096 return LSM_RET_DEFAULT(secid_to_secctx); 2097 } 2098 EXPORT_SYMBOL(security_secid_to_secctx); 2099 2100 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 2101 { 2102 *secid = 0; 2103 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid); 2104 } 2105 EXPORT_SYMBOL(security_secctx_to_secid); 2106 2107 void security_release_secctx(char *secdata, u32 seclen) 2108 { 2109 call_void_hook(release_secctx, secdata, seclen); 2110 } 2111 EXPORT_SYMBOL(security_release_secctx); 2112 2113 void security_inode_invalidate_secctx(struct inode *inode) 2114 { 2115 call_void_hook(inode_invalidate_secctx, inode); 2116 } 2117 EXPORT_SYMBOL(security_inode_invalidate_secctx); 2118 2119 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 2120 { 2121 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen); 2122 } 2123 EXPORT_SYMBOL(security_inode_notifysecctx); 2124 2125 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 2126 { 2127 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen); 2128 } 2129 EXPORT_SYMBOL(security_inode_setsecctx); 2130 2131 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 2132 { 2133 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen); 2134 } 2135 EXPORT_SYMBOL(security_inode_getsecctx); 2136 2137 #ifdef CONFIG_WATCH_QUEUE 2138 int security_post_notification(const struct cred *w_cred, 2139 const struct cred *cred, 2140 struct watch_notification *n) 2141 { 2142 return call_int_hook(post_notification, 0, w_cred, cred, n); 2143 } 2144 #endif /* CONFIG_WATCH_QUEUE */ 2145 2146 #ifdef CONFIG_KEY_NOTIFICATIONS 2147 int security_watch_key(struct key *key) 2148 { 2149 return call_int_hook(watch_key, 0, key); 2150 } 2151 #endif 2152 2153 #ifdef CONFIG_SECURITY_NETWORK 2154 2155 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 2156 { 2157 return call_int_hook(unix_stream_connect, 0, sock, other, newsk); 2158 } 2159 EXPORT_SYMBOL(security_unix_stream_connect); 2160 2161 int security_unix_may_send(struct socket *sock, struct socket *other) 2162 { 2163 return call_int_hook(unix_may_send, 0, sock, other); 2164 } 2165 EXPORT_SYMBOL(security_unix_may_send); 2166 2167 int security_socket_create(int family, int type, int protocol, int kern) 2168 { 2169 return call_int_hook(socket_create, 0, family, type, protocol, kern); 2170 } 2171 2172 int security_socket_post_create(struct socket *sock, int family, 2173 int type, int protocol, int kern) 2174 { 2175 return call_int_hook(socket_post_create, 0, sock, family, type, 2176 protocol, kern); 2177 } 2178 2179 int security_socket_socketpair(struct socket *socka, struct socket *sockb) 2180 { 2181 return call_int_hook(socket_socketpair, 0, socka, sockb); 2182 } 2183 EXPORT_SYMBOL(security_socket_socketpair); 2184 2185 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 2186 { 2187 return call_int_hook(socket_bind, 0, sock, address, addrlen); 2188 } 2189 2190 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 2191 { 2192 return call_int_hook(socket_connect, 0, sock, address, addrlen); 2193 } 2194 2195 int security_socket_listen(struct socket *sock, int backlog) 2196 { 2197 return call_int_hook(socket_listen, 0, sock, backlog); 2198 } 2199 2200 int security_socket_accept(struct socket *sock, struct socket *newsock) 2201 { 2202 return call_int_hook(socket_accept, 0, sock, newsock); 2203 } 2204 2205 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 2206 { 2207 return call_int_hook(socket_sendmsg, 0, sock, msg, size); 2208 } 2209 2210 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 2211 int size, int flags) 2212 { 2213 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags); 2214 } 2215 2216 int security_socket_getsockname(struct socket *sock) 2217 { 2218 return call_int_hook(socket_getsockname, 0, sock); 2219 } 2220 2221 int security_socket_getpeername(struct socket *sock) 2222 { 2223 return call_int_hook(socket_getpeername, 0, sock); 2224 } 2225 2226 int security_socket_getsockopt(struct socket *sock, int level, int optname) 2227 { 2228 return call_int_hook(socket_getsockopt, 0, sock, level, optname); 2229 } 2230 2231 int security_socket_setsockopt(struct socket *sock, int level, int optname) 2232 { 2233 return call_int_hook(socket_setsockopt, 0, sock, level, optname); 2234 } 2235 2236 int security_socket_shutdown(struct socket *sock, int how) 2237 { 2238 return call_int_hook(socket_shutdown, 0, sock, how); 2239 } 2240 2241 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 2242 { 2243 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb); 2244 } 2245 EXPORT_SYMBOL(security_sock_rcv_skb); 2246 2247 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 2248 int __user *optlen, unsigned len) 2249 { 2250 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock, 2251 optval, optlen, len); 2252 } 2253 2254 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 2255 { 2256 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock, 2257 skb, secid); 2258 } 2259 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 2260 2261 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 2262 { 2263 return call_int_hook(sk_alloc_security, 0, sk, family, priority); 2264 } 2265 2266 void security_sk_free(struct sock *sk) 2267 { 2268 call_void_hook(sk_free_security, sk); 2269 } 2270 2271 void security_sk_clone(const struct sock *sk, struct sock *newsk) 2272 { 2273 call_void_hook(sk_clone_security, sk, newsk); 2274 } 2275 EXPORT_SYMBOL(security_sk_clone); 2276 2277 void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic) 2278 { 2279 call_void_hook(sk_getsecid, sk, &flic->flowic_secid); 2280 } 2281 EXPORT_SYMBOL(security_sk_classify_flow); 2282 2283 void security_req_classify_flow(const struct request_sock *req, 2284 struct flowi_common *flic) 2285 { 2286 call_void_hook(req_classify_flow, req, flic); 2287 } 2288 EXPORT_SYMBOL(security_req_classify_flow); 2289 2290 void security_sock_graft(struct sock *sk, struct socket *parent) 2291 { 2292 call_void_hook(sock_graft, sk, parent); 2293 } 2294 EXPORT_SYMBOL(security_sock_graft); 2295 2296 int security_inet_conn_request(const struct sock *sk, 2297 struct sk_buff *skb, struct request_sock *req) 2298 { 2299 return call_int_hook(inet_conn_request, 0, sk, skb, req); 2300 } 2301 EXPORT_SYMBOL(security_inet_conn_request); 2302 2303 void security_inet_csk_clone(struct sock *newsk, 2304 const struct request_sock *req) 2305 { 2306 call_void_hook(inet_csk_clone, newsk, req); 2307 } 2308 2309 void security_inet_conn_established(struct sock *sk, 2310 struct sk_buff *skb) 2311 { 2312 call_void_hook(inet_conn_established, sk, skb); 2313 } 2314 EXPORT_SYMBOL(security_inet_conn_established); 2315 2316 int security_secmark_relabel_packet(u32 secid) 2317 { 2318 return call_int_hook(secmark_relabel_packet, 0, secid); 2319 } 2320 EXPORT_SYMBOL(security_secmark_relabel_packet); 2321 2322 void security_secmark_refcount_inc(void) 2323 { 2324 call_void_hook(secmark_refcount_inc); 2325 } 2326 EXPORT_SYMBOL(security_secmark_refcount_inc); 2327 2328 void security_secmark_refcount_dec(void) 2329 { 2330 call_void_hook(secmark_refcount_dec); 2331 } 2332 EXPORT_SYMBOL(security_secmark_refcount_dec); 2333 2334 int security_tun_dev_alloc_security(void **security) 2335 { 2336 return call_int_hook(tun_dev_alloc_security, 0, security); 2337 } 2338 EXPORT_SYMBOL(security_tun_dev_alloc_security); 2339 2340 void security_tun_dev_free_security(void *security) 2341 { 2342 call_void_hook(tun_dev_free_security, security); 2343 } 2344 EXPORT_SYMBOL(security_tun_dev_free_security); 2345 2346 int security_tun_dev_create(void) 2347 { 2348 return call_int_hook(tun_dev_create, 0); 2349 } 2350 EXPORT_SYMBOL(security_tun_dev_create); 2351 2352 int security_tun_dev_attach_queue(void *security) 2353 { 2354 return call_int_hook(tun_dev_attach_queue, 0, security); 2355 } 2356 EXPORT_SYMBOL(security_tun_dev_attach_queue); 2357 2358 int security_tun_dev_attach(struct sock *sk, void *security) 2359 { 2360 return call_int_hook(tun_dev_attach, 0, sk, security); 2361 } 2362 EXPORT_SYMBOL(security_tun_dev_attach); 2363 2364 int security_tun_dev_open(void *security) 2365 { 2366 return call_int_hook(tun_dev_open, 0, security); 2367 } 2368 EXPORT_SYMBOL(security_tun_dev_open); 2369 2370 int security_sctp_assoc_request(struct sctp_association *asoc, struct sk_buff *skb) 2371 { 2372 return call_int_hook(sctp_assoc_request, 0, asoc, skb); 2373 } 2374 EXPORT_SYMBOL(security_sctp_assoc_request); 2375 2376 int security_sctp_bind_connect(struct sock *sk, int optname, 2377 struct sockaddr *address, int addrlen) 2378 { 2379 return call_int_hook(sctp_bind_connect, 0, sk, optname, 2380 address, addrlen); 2381 } 2382 EXPORT_SYMBOL(security_sctp_bind_connect); 2383 2384 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk, 2385 struct sock *newsk) 2386 { 2387 call_void_hook(sctp_sk_clone, asoc, sk, newsk); 2388 } 2389 EXPORT_SYMBOL(security_sctp_sk_clone); 2390 2391 #endif /* CONFIG_SECURITY_NETWORK */ 2392 2393 #ifdef CONFIG_SECURITY_INFINIBAND 2394 2395 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 2396 { 2397 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey); 2398 } 2399 EXPORT_SYMBOL(security_ib_pkey_access); 2400 2401 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num) 2402 { 2403 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num); 2404 } 2405 EXPORT_SYMBOL(security_ib_endport_manage_subnet); 2406 2407 int security_ib_alloc_security(void **sec) 2408 { 2409 return call_int_hook(ib_alloc_security, 0, sec); 2410 } 2411 EXPORT_SYMBOL(security_ib_alloc_security); 2412 2413 void security_ib_free_security(void *sec) 2414 { 2415 call_void_hook(ib_free_security, sec); 2416 } 2417 EXPORT_SYMBOL(security_ib_free_security); 2418 #endif /* CONFIG_SECURITY_INFINIBAND */ 2419 2420 #ifdef CONFIG_SECURITY_NETWORK_XFRM 2421 2422 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 2423 struct xfrm_user_sec_ctx *sec_ctx, 2424 gfp_t gfp) 2425 { 2426 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp); 2427 } 2428 EXPORT_SYMBOL(security_xfrm_policy_alloc); 2429 2430 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 2431 struct xfrm_sec_ctx **new_ctxp) 2432 { 2433 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp); 2434 } 2435 2436 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 2437 { 2438 call_void_hook(xfrm_policy_free_security, ctx); 2439 } 2440 EXPORT_SYMBOL(security_xfrm_policy_free); 2441 2442 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 2443 { 2444 return call_int_hook(xfrm_policy_delete_security, 0, ctx); 2445 } 2446 2447 int security_xfrm_state_alloc(struct xfrm_state *x, 2448 struct xfrm_user_sec_ctx *sec_ctx) 2449 { 2450 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx); 2451 } 2452 EXPORT_SYMBOL(security_xfrm_state_alloc); 2453 2454 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 2455 struct xfrm_sec_ctx *polsec, u32 secid) 2456 { 2457 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid); 2458 } 2459 2460 int security_xfrm_state_delete(struct xfrm_state *x) 2461 { 2462 return call_int_hook(xfrm_state_delete_security, 0, x); 2463 } 2464 EXPORT_SYMBOL(security_xfrm_state_delete); 2465 2466 void security_xfrm_state_free(struct xfrm_state *x) 2467 { 2468 call_void_hook(xfrm_state_free_security, x); 2469 } 2470 2471 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid) 2472 { 2473 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid); 2474 } 2475 2476 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 2477 struct xfrm_policy *xp, 2478 const struct flowi_common *flic) 2479 { 2480 struct security_hook_list *hp; 2481 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match); 2482 2483 /* 2484 * Since this function is expected to return 0 or 1, the judgment 2485 * becomes difficult if multiple LSMs supply this call. Fortunately, 2486 * we can use the first LSM's judgment because currently only SELinux 2487 * supplies this call. 2488 * 2489 * For speed optimization, we explicitly break the loop rather than 2490 * using the macro 2491 */ 2492 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 2493 list) { 2494 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic); 2495 break; 2496 } 2497 return rc; 2498 } 2499 2500 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 2501 { 2502 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1); 2503 } 2504 2505 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic) 2506 { 2507 int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid, 2508 0); 2509 2510 BUG_ON(rc); 2511 } 2512 EXPORT_SYMBOL(security_skb_classify_flow); 2513 2514 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 2515 2516 #ifdef CONFIG_KEYS 2517 2518 int security_key_alloc(struct key *key, const struct cred *cred, 2519 unsigned long flags) 2520 { 2521 return call_int_hook(key_alloc, 0, key, cred, flags); 2522 } 2523 2524 void security_key_free(struct key *key) 2525 { 2526 call_void_hook(key_free, key); 2527 } 2528 2529 int security_key_permission(key_ref_t key_ref, const struct cred *cred, 2530 enum key_need_perm need_perm) 2531 { 2532 return call_int_hook(key_permission, 0, key_ref, cred, need_perm); 2533 } 2534 2535 int security_key_getsecurity(struct key *key, char **_buffer) 2536 { 2537 *_buffer = NULL; 2538 return call_int_hook(key_getsecurity, 0, key, _buffer); 2539 } 2540 2541 #endif /* CONFIG_KEYS */ 2542 2543 #ifdef CONFIG_AUDIT 2544 2545 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 2546 { 2547 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule); 2548 } 2549 2550 int security_audit_rule_known(struct audit_krule *krule) 2551 { 2552 return call_int_hook(audit_rule_known, 0, krule); 2553 } 2554 2555 void security_audit_rule_free(void *lsmrule) 2556 { 2557 call_void_hook(audit_rule_free, lsmrule); 2558 } 2559 2560 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule) 2561 { 2562 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule); 2563 } 2564 #endif /* CONFIG_AUDIT */ 2565 2566 #ifdef CONFIG_BPF_SYSCALL 2567 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 2568 { 2569 return call_int_hook(bpf, 0, cmd, attr, size); 2570 } 2571 int security_bpf_map(struct bpf_map *map, fmode_t fmode) 2572 { 2573 return call_int_hook(bpf_map, 0, map, fmode); 2574 } 2575 int security_bpf_prog(struct bpf_prog *prog) 2576 { 2577 return call_int_hook(bpf_prog, 0, prog); 2578 } 2579 int security_bpf_map_alloc(struct bpf_map *map) 2580 { 2581 return call_int_hook(bpf_map_alloc_security, 0, map); 2582 } 2583 int security_bpf_prog_alloc(struct bpf_prog_aux *aux) 2584 { 2585 return call_int_hook(bpf_prog_alloc_security, 0, aux); 2586 } 2587 void security_bpf_map_free(struct bpf_map *map) 2588 { 2589 call_void_hook(bpf_map_free_security, map); 2590 } 2591 void security_bpf_prog_free(struct bpf_prog_aux *aux) 2592 { 2593 call_void_hook(bpf_prog_free_security, aux); 2594 } 2595 #endif /* CONFIG_BPF_SYSCALL */ 2596 2597 int security_locked_down(enum lockdown_reason what) 2598 { 2599 return call_int_hook(locked_down, 0, what); 2600 } 2601 EXPORT_SYMBOL(security_locked_down); 2602 2603 #ifdef CONFIG_PERF_EVENTS 2604 int security_perf_event_open(struct perf_event_attr *attr, int type) 2605 { 2606 return call_int_hook(perf_event_open, 0, attr, type); 2607 } 2608 2609 int security_perf_event_alloc(struct perf_event *event) 2610 { 2611 return call_int_hook(perf_event_alloc, 0, event); 2612 } 2613 2614 void security_perf_event_free(struct perf_event *event) 2615 { 2616 call_void_hook(perf_event_free, event); 2617 } 2618 2619 int security_perf_event_read(struct perf_event *event) 2620 { 2621 return call_int_hook(perf_event_read, 0, event); 2622 } 2623 2624 int security_perf_event_write(struct perf_event *event) 2625 { 2626 return call_int_hook(perf_event_write, 0, event); 2627 } 2628 #endif /* CONFIG_PERF_EVENTS */ 2629 2630 #ifdef CONFIG_IO_URING 2631 int security_uring_override_creds(const struct cred *new) 2632 { 2633 return call_int_hook(uring_override_creds, 0, new); 2634 } 2635 2636 int security_uring_sqpoll(void) 2637 { 2638 return call_int_hook(uring_sqpoll, 0); 2639 } 2640 #endif /* CONFIG_IO_URING */ 2641