xref: /openbmc/linux/security/security.c (revision 60772e48)
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  * Copyright (C) 2016 Mellanox Technologies
8  *
9  *	This program is free software; you can redistribute it and/or modify
10  *	it under the terms of the GNU General Public License as published by
11  *	the Free Software Foundation; either version 2 of the License, or
12  *	(at your option) any later version.
13  */
14 
15 #include <linux/bpf.h>
16 #include <linux/capability.h>
17 #include <linux/dcache.h>
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/lsm_hooks.h>
22 #include <linux/integrity.h>
23 #include <linux/ima.h>
24 #include <linux/evm.h>
25 #include <linux/fsnotify.h>
26 #include <linux/mman.h>
27 #include <linux/mount.h>
28 #include <linux/personality.h>
29 #include <linux/backing-dev.h>
30 #include <linux/string.h>
31 #include <net/flow.h>
32 
33 #define MAX_LSM_EVM_XATTR	2
34 
35 /* Maximum number of letters for an LSM name string */
36 #define SECURITY_NAME_MAX	10
37 
38 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
39 static ATOMIC_NOTIFIER_HEAD(lsm_notifier_chain);
40 
41 char *lsm_names;
42 /* Boot-time LSM user choice */
43 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
44 	CONFIG_DEFAULT_SECURITY;
45 
46 static void __init do_security_initcalls(void)
47 {
48 	initcall_t *call;
49 	call = __security_initcall_start;
50 	while (call < __security_initcall_end) {
51 		(*call) ();
52 		call++;
53 	}
54 }
55 
56 /**
57  * security_init - initializes the security framework
58  *
59  * This should be called early in the kernel initialization sequence.
60  */
61 int __init security_init(void)
62 {
63 	int i;
64 	struct list_head *list = (struct list_head *) &security_hook_heads;
65 
66 	for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct list_head);
67 	     i++)
68 		INIT_LIST_HEAD(&list[i]);
69 	pr_info("Security Framework initialized\n");
70 
71 	/*
72 	 * Load minor LSMs, with the capability module always first.
73 	 */
74 	capability_add_hooks();
75 	yama_add_hooks();
76 	loadpin_add_hooks();
77 
78 	/*
79 	 * Load all the remaining security modules.
80 	 */
81 	do_security_initcalls();
82 
83 	return 0;
84 }
85 
86 /* Save user chosen LSM */
87 static int __init choose_lsm(char *str)
88 {
89 	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
90 	return 1;
91 }
92 __setup("security=", choose_lsm);
93 
94 static bool match_last_lsm(const char *list, const char *lsm)
95 {
96 	const char *last;
97 
98 	if (WARN_ON(!list || !lsm))
99 		return false;
100 	last = strrchr(list, ',');
101 	if (last)
102 		/* Pass the comma, strcmp() will check for '\0' */
103 		last++;
104 	else
105 		last = list;
106 	return !strcmp(last, lsm);
107 }
108 
109 static int lsm_append(char *new, char **result)
110 {
111 	char *cp;
112 
113 	if (*result == NULL) {
114 		*result = kstrdup(new, GFP_KERNEL);
115 	} else {
116 		/* Check if it is the last registered name */
117 		if (match_last_lsm(*result, new))
118 			return 0;
119 		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
120 		if (cp == NULL)
121 			return -ENOMEM;
122 		kfree(*result);
123 		*result = cp;
124 	}
125 	return 0;
126 }
127 
128 /**
129  * security_module_enable - Load given security module on boot ?
130  * @module: the name of the module
131  *
132  * Each LSM must pass this method before registering its own operations
133  * to avoid security registration races. This method may also be used
134  * to check if your LSM is currently loaded during kernel initialization.
135  *
136  * Returns:
137  *
138  * true if:
139  *
140  * - The passed LSM is the one chosen by user at boot time,
141  * - or the passed LSM is configured as the default and the user did not
142  *   choose an alternate LSM at boot time.
143  *
144  * Otherwise, return false.
145  */
146 int __init security_module_enable(const char *module)
147 {
148 	return !strcmp(module, chosen_lsm);
149 }
150 
151 /**
152  * security_add_hooks - Add a modules hooks to the hook lists.
153  * @hooks: the hooks to add
154  * @count: the number of hooks to add
155  * @lsm: the name of the security module
156  *
157  * Each LSM has to register its hooks with the infrastructure.
158  */
159 void __init security_add_hooks(struct security_hook_list *hooks, int count,
160 				char *lsm)
161 {
162 	int i;
163 
164 	for (i = 0; i < count; i++) {
165 		hooks[i].lsm = lsm;
166 		list_add_tail_rcu(&hooks[i].list, hooks[i].head);
167 	}
168 	if (lsm_append(lsm, &lsm_names) < 0)
169 		panic("%s - Cannot get early memory.\n", __func__);
170 }
171 
172 int call_lsm_notifier(enum lsm_event event, void *data)
173 {
174 	return atomic_notifier_call_chain(&lsm_notifier_chain, event, data);
175 }
176 EXPORT_SYMBOL(call_lsm_notifier);
177 
178 int register_lsm_notifier(struct notifier_block *nb)
179 {
180 	return atomic_notifier_chain_register(&lsm_notifier_chain, nb);
181 }
182 EXPORT_SYMBOL(register_lsm_notifier);
183 
184 int unregister_lsm_notifier(struct notifier_block *nb)
185 {
186 	return atomic_notifier_chain_unregister(&lsm_notifier_chain, nb);
187 }
188 EXPORT_SYMBOL(unregister_lsm_notifier);
189 
190 /*
191  * Hook list operation macros.
192  *
193  * call_void_hook:
194  *	This is a hook that does not return a value.
195  *
196  * call_int_hook:
197  *	This is a hook that returns a value.
198  */
199 
200 #define call_void_hook(FUNC, ...)				\
201 	do {							\
202 		struct security_hook_list *P;			\
203 								\
204 		list_for_each_entry(P, &security_hook_heads.FUNC, list)	\
205 			P->hook.FUNC(__VA_ARGS__);		\
206 	} while (0)
207 
208 #define call_int_hook(FUNC, IRC, ...) ({			\
209 	int RC = IRC;						\
210 	do {							\
211 		struct security_hook_list *P;			\
212 								\
213 		list_for_each_entry(P, &security_hook_heads.FUNC, list) { \
214 			RC = P->hook.FUNC(__VA_ARGS__);		\
215 			if (RC != 0)				\
216 				break;				\
217 		}						\
218 	} while (0);						\
219 	RC;							\
220 })
221 
222 /* Security operations */
223 
224 int security_binder_set_context_mgr(struct task_struct *mgr)
225 {
226 	return call_int_hook(binder_set_context_mgr, 0, mgr);
227 }
228 
229 int security_binder_transaction(struct task_struct *from,
230 				struct task_struct *to)
231 {
232 	return call_int_hook(binder_transaction, 0, from, to);
233 }
234 
235 int security_binder_transfer_binder(struct task_struct *from,
236 				    struct task_struct *to)
237 {
238 	return call_int_hook(binder_transfer_binder, 0, from, to);
239 }
240 
241 int security_binder_transfer_file(struct task_struct *from,
242 				  struct task_struct *to, struct file *file)
243 {
244 	return call_int_hook(binder_transfer_file, 0, from, to, file);
245 }
246 
247 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
248 {
249 	return call_int_hook(ptrace_access_check, 0, child, mode);
250 }
251 
252 int security_ptrace_traceme(struct task_struct *parent)
253 {
254 	return call_int_hook(ptrace_traceme, 0, parent);
255 }
256 
257 int security_capget(struct task_struct *target,
258 		     kernel_cap_t *effective,
259 		     kernel_cap_t *inheritable,
260 		     kernel_cap_t *permitted)
261 {
262 	return call_int_hook(capget, 0, target,
263 				effective, inheritable, permitted);
264 }
265 
266 int security_capset(struct cred *new, const struct cred *old,
267 		    const kernel_cap_t *effective,
268 		    const kernel_cap_t *inheritable,
269 		    const kernel_cap_t *permitted)
270 {
271 	return call_int_hook(capset, 0, new, old,
272 				effective, inheritable, permitted);
273 }
274 
275 int security_capable(const struct cred *cred, struct user_namespace *ns,
276 		     int cap)
277 {
278 	return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_AUDIT);
279 }
280 
281 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
282 			     int cap)
283 {
284 	return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_NOAUDIT);
285 }
286 
287 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
288 {
289 	return call_int_hook(quotactl, 0, cmds, type, id, sb);
290 }
291 
292 int security_quota_on(struct dentry *dentry)
293 {
294 	return call_int_hook(quota_on, 0, dentry);
295 }
296 
297 int security_syslog(int type)
298 {
299 	return call_int_hook(syslog, 0, type);
300 }
301 
302 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
303 {
304 	return call_int_hook(settime, 0, ts, tz);
305 }
306 
307 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
308 {
309 	struct security_hook_list *hp;
310 	int cap_sys_admin = 1;
311 	int rc;
312 
313 	/*
314 	 * The module will respond with a positive value if
315 	 * it thinks the __vm_enough_memory() call should be
316 	 * made with the cap_sys_admin set. If all of the modules
317 	 * agree that it should be set it will. If any module
318 	 * thinks it should not be set it won't.
319 	 */
320 	list_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
321 		rc = hp->hook.vm_enough_memory(mm, pages);
322 		if (rc <= 0) {
323 			cap_sys_admin = 0;
324 			break;
325 		}
326 	}
327 	return __vm_enough_memory(mm, pages, cap_sys_admin);
328 }
329 
330 int security_bprm_set_creds(struct linux_binprm *bprm)
331 {
332 	return call_int_hook(bprm_set_creds, 0, bprm);
333 }
334 
335 int security_bprm_check(struct linux_binprm *bprm)
336 {
337 	int ret;
338 
339 	ret = call_int_hook(bprm_check_security, 0, bprm);
340 	if (ret)
341 		return ret;
342 	return ima_bprm_check(bprm);
343 }
344 
345 void security_bprm_committing_creds(struct linux_binprm *bprm)
346 {
347 	call_void_hook(bprm_committing_creds, bprm);
348 }
349 
350 void security_bprm_committed_creds(struct linux_binprm *bprm)
351 {
352 	call_void_hook(bprm_committed_creds, bprm);
353 }
354 
355 int security_sb_alloc(struct super_block *sb)
356 {
357 	return call_int_hook(sb_alloc_security, 0, sb);
358 }
359 
360 void security_sb_free(struct super_block *sb)
361 {
362 	call_void_hook(sb_free_security, sb);
363 }
364 
365 int security_sb_copy_data(char *orig, char *copy)
366 {
367 	return call_int_hook(sb_copy_data, 0, orig, copy);
368 }
369 EXPORT_SYMBOL(security_sb_copy_data);
370 
371 int security_sb_remount(struct super_block *sb, void *data)
372 {
373 	return call_int_hook(sb_remount, 0, sb, data);
374 }
375 
376 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
377 {
378 	return call_int_hook(sb_kern_mount, 0, sb, flags, data);
379 }
380 
381 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
382 {
383 	return call_int_hook(sb_show_options, 0, m, sb);
384 }
385 
386 int security_sb_statfs(struct dentry *dentry)
387 {
388 	return call_int_hook(sb_statfs, 0, dentry);
389 }
390 
391 int security_sb_mount(const char *dev_name, const struct path *path,
392                        const char *type, unsigned long flags, void *data)
393 {
394 	return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
395 }
396 
397 int security_sb_umount(struct vfsmount *mnt, int flags)
398 {
399 	return call_int_hook(sb_umount, 0, mnt, flags);
400 }
401 
402 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
403 {
404 	return call_int_hook(sb_pivotroot, 0, old_path, new_path);
405 }
406 
407 int security_sb_set_mnt_opts(struct super_block *sb,
408 				struct security_mnt_opts *opts,
409 				unsigned long kern_flags,
410 				unsigned long *set_kern_flags)
411 {
412 	return call_int_hook(sb_set_mnt_opts,
413 				opts->num_mnt_opts ? -EOPNOTSUPP : 0, sb,
414 				opts, kern_flags, set_kern_flags);
415 }
416 EXPORT_SYMBOL(security_sb_set_mnt_opts);
417 
418 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
419 				struct super_block *newsb,
420 				unsigned long kern_flags,
421 				unsigned long *set_kern_flags)
422 {
423 	return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
424 				kern_flags, set_kern_flags);
425 }
426 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
427 
428 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
429 {
430 	return call_int_hook(sb_parse_opts_str, 0, options, opts);
431 }
432 EXPORT_SYMBOL(security_sb_parse_opts_str);
433 
434 int security_inode_alloc(struct inode *inode)
435 {
436 	inode->i_security = NULL;
437 	return call_int_hook(inode_alloc_security, 0, inode);
438 }
439 
440 void security_inode_free(struct inode *inode)
441 {
442 	integrity_inode_free(inode);
443 	call_void_hook(inode_free_security, inode);
444 }
445 
446 int security_dentry_init_security(struct dentry *dentry, int mode,
447 					const struct qstr *name, void **ctx,
448 					u32 *ctxlen)
449 {
450 	return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
451 				name, ctx, ctxlen);
452 }
453 EXPORT_SYMBOL(security_dentry_init_security);
454 
455 int security_dentry_create_files_as(struct dentry *dentry, int mode,
456 				    struct qstr *name,
457 				    const struct cred *old, struct cred *new)
458 {
459 	return call_int_hook(dentry_create_files_as, 0, dentry, mode,
460 				name, old, new);
461 }
462 EXPORT_SYMBOL(security_dentry_create_files_as);
463 
464 int security_inode_init_security(struct inode *inode, struct inode *dir,
465 				 const struct qstr *qstr,
466 				 const initxattrs initxattrs, void *fs_data)
467 {
468 	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
469 	struct xattr *lsm_xattr, *evm_xattr, *xattr;
470 	int ret;
471 
472 	if (unlikely(IS_PRIVATE(inode)))
473 		return 0;
474 
475 	if (!initxattrs)
476 		return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
477 				     dir, qstr, NULL, NULL, NULL);
478 	memset(new_xattrs, 0, sizeof(new_xattrs));
479 	lsm_xattr = new_xattrs;
480 	ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
481 						&lsm_xattr->name,
482 						&lsm_xattr->value,
483 						&lsm_xattr->value_len);
484 	if (ret)
485 		goto out;
486 
487 	evm_xattr = lsm_xattr + 1;
488 	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
489 	if (ret)
490 		goto out;
491 	ret = initxattrs(inode, new_xattrs, fs_data);
492 out:
493 	for (xattr = new_xattrs; xattr->value != NULL; xattr++)
494 		kfree(xattr->value);
495 	return (ret == -EOPNOTSUPP) ? 0 : ret;
496 }
497 EXPORT_SYMBOL(security_inode_init_security);
498 
499 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
500 				     const struct qstr *qstr, const char **name,
501 				     void **value, size_t *len)
502 {
503 	if (unlikely(IS_PRIVATE(inode)))
504 		return -EOPNOTSUPP;
505 	return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
506 			     qstr, name, value, len);
507 }
508 EXPORT_SYMBOL(security_old_inode_init_security);
509 
510 #ifdef CONFIG_SECURITY_PATH
511 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
512 			unsigned int dev)
513 {
514 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
515 		return 0;
516 	return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
517 }
518 EXPORT_SYMBOL(security_path_mknod);
519 
520 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
521 {
522 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
523 		return 0;
524 	return call_int_hook(path_mkdir, 0, dir, dentry, mode);
525 }
526 EXPORT_SYMBOL(security_path_mkdir);
527 
528 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
529 {
530 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
531 		return 0;
532 	return call_int_hook(path_rmdir, 0, dir, dentry);
533 }
534 
535 int security_path_unlink(const struct path *dir, struct dentry *dentry)
536 {
537 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
538 		return 0;
539 	return call_int_hook(path_unlink, 0, dir, dentry);
540 }
541 EXPORT_SYMBOL(security_path_unlink);
542 
543 int security_path_symlink(const struct path *dir, struct dentry *dentry,
544 			  const char *old_name)
545 {
546 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
547 		return 0;
548 	return call_int_hook(path_symlink, 0, dir, dentry, old_name);
549 }
550 
551 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
552 		       struct dentry *new_dentry)
553 {
554 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
555 		return 0;
556 	return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
557 }
558 
559 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
560 			 const struct path *new_dir, struct dentry *new_dentry,
561 			 unsigned int flags)
562 {
563 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
564 		     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
565 		return 0;
566 
567 	if (flags & RENAME_EXCHANGE) {
568 		int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
569 					old_dir, old_dentry);
570 		if (err)
571 			return err;
572 	}
573 
574 	return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
575 				new_dentry);
576 }
577 EXPORT_SYMBOL(security_path_rename);
578 
579 int security_path_truncate(const struct path *path)
580 {
581 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
582 		return 0;
583 	return call_int_hook(path_truncate, 0, path);
584 }
585 
586 int security_path_chmod(const struct path *path, umode_t mode)
587 {
588 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
589 		return 0;
590 	return call_int_hook(path_chmod, 0, path, mode);
591 }
592 
593 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
594 {
595 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
596 		return 0;
597 	return call_int_hook(path_chown, 0, path, uid, gid);
598 }
599 
600 int security_path_chroot(const struct path *path)
601 {
602 	return call_int_hook(path_chroot, 0, path);
603 }
604 #endif
605 
606 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
607 {
608 	if (unlikely(IS_PRIVATE(dir)))
609 		return 0;
610 	return call_int_hook(inode_create, 0, dir, dentry, mode);
611 }
612 EXPORT_SYMBOL_GPL(security_inode_create);
613 
614 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
615 			 struct dentry *new_dentry)
616 {
617 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
618 		return 0;
619 	return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
620 }
621 
622 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
623 {
624 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
625 		return 0;
626 	return call_int_hook(inode_unlink, 0, dir, dentry);
627 }
628 
629 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
630 			    const char *old_name)
631 {
632 	if (unlikely(IS_PRIVATE(dir)))
633 		return 0;
634 	return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
635 }
636 
637 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
638 {
639 	if (unlikely(IS_PRIVATE(dir)))
640 		return 0;
641 	return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
642 }
643 EXPORT_SYMBOL_GPL(security_inode_mkdir);
644 
645 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
646 {
647 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
648 		return 0;
649 	return call_int_hook(inode_rmdir, 0, dir, dentry);
650 }
651 
652 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
653 {
654 	if (unlikely(IS_PRIVATE(dir)))
655 		return 0;
656 	return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
657 }
658 
659 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
660 			   struct inode *new_dir, struct dentry *new_dentry,
661 			   unsigned int flags)
662 {
663         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
664             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
665 		return 0;
666 
667 	if (flags & RENAME_EXCHANGE) {
668 		int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
669 						     old_dir, old_dentry);
670 		if (err)
671 			return err;
672 	}
673 
674 	return call_int_hook(inode_rename, 0, old_dir, old_dentry,
675 					   new_dir, new_dentry);
676 }
677 
678 int security_inode_readlink(struct dentry *dentry)
679 {
680 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
681 		return 0;
682 	return call_int_hook(inode_readlink, 0, dentry);
683 }
684 
685 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
686 			       bool rcu)
687 {
688 	if (unlikely(IS_PRIVATE(inode)))
689 		return 0;
690 	return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
691 }
692 
693 int security_inode_permission(struct inode *inode, int mask)
694 {
695 	if (unlikely(IS_PRIVATE(inode)))
696 		return 0;
697 	return call_int_hook(inode_permission, 0, inode, mask);
698 }
699 
700 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
701 {
702 	int ret;
703 
704 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
705 		return 0;
706 	ret = call_int_hook(inode_setattr, 0, dentry, attr);
707 	if (ret)
708 		return ret;
709 	return evm_inode_setattr(dentry, attr);
710 }
711 EXPORT_SYMBOL_GPL(security_inode_setattr);
712 
713 int security_inode_getattr(const struct path *path)
714 {
715 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
716 		return 0;
717 	return call_int_hook(inode_getattr, 0, path);
718 }
719 
720 int security_inode_setxattr(struct dentry *dentry, const char *name,
721 			    const void *value, size_t size, int flags)
722 {
723 	int ret;
724 
725 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
726 		return 0;
727 	/*
728 	 * SELinux and Smack integrate the cap call,
729 	 * so assume that all LSMs supplying this call do so.
730 	 */
731 	ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
732 				flags);
733 
734 	if (ret == 1)
735 		ret = cap_inode_setxattr(dentry, name, value, size, flags);
736 	if (ret)
737 		return ret;
738 	ret = ima_inode_setxattr(dentry, name, value, size);
739 	if (ret)
740 		return ret;
741 	return evm_inode_setxattr(dentry, name, value, size);
742 }
743 
744 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
745 				  const void *value, size_t size, int flags)
746 {
747 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
748 		return;
749 	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
750 	evm_inode_post_setxattr(dentry, name, value, size);
751 }
752 
753 int security_inode_getxattr(struct dentry *dentry, const char *name)
754 {
755 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
756 		return 0;
757 	return call_int_hook(inode_getxattr, 0, dentry, name);
758 }
759 
760 int security_inode_listxattr(struct dentry *dentry)
761 {
762 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
763 		return 0;
764 	return call_int_hook(inode_listxattr, 0, dentry);
765 }
766 
767 int security_inode_removexattr(struct dentry *dentry, const char *name)
768 {
769 	int ret;
770 
771 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
772 		return 0;
773 	/*
774 	 * SELinux and Smack integrate the cap call,
775 	 * so assume that all LSMs supplying this call do so.
776 	 */
777 	ret = call_int_hook(inode_removexattr, 1, dentry, name);
778 	if (ret == 1)
779 		ret = cap_inode_removexattr(dentry, name);
780 	if (ret)
781 		return ret;
782 	ret = ima_inode_removexattr(dentry, name);
783 	if (ret)
784 		return ret;
785 	return evm_inode_removexattr(dentry, name);
786 }
787 
788 int security_inode_need_killpriv(struct dentry *dentry)
789 {
790 	return call_int_hook(inode_need_killpriv, 0, dentry);
791 }
792 
793 int security_inode_killpriv(struct dentry *dentry)
794 {
795 	return call_int_hook(inode_killpriv, 0, dentry);
796 }
797 
798 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
799 {
800 	struct security_hook_list *hp;
801 	int rc;
802 
803 	if (unlikely(IS_PRIVATE(inode)))
804 		return -EOPNOTSUPP;
805 	/*
806 	 * Only one module will provide an attribute with a given name.
807 	 */
808 	list_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
809 		rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
810 		if (rc != -EOPNOTSUPP)
811 			return rc;
812 	}
813 	return -EOPNOTSUPP;
814 }
815 
816 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
817 {
818 	struct security_hook_list *hp;
819 	int rc;
820 
821 	if (unlikely(IS_PRIVATE(inode)))
822 		return -EOPNOTSUPP;
823 	/*
824 	 * Only one module will provide an attribute with a given name.
825 	 */
826 	list_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
827 		rc = hp->hook.inode_setsecurity(inode, name, value, size,
828 								flags);
829 		if (rc != -EOPNOTSUPP)
830 			return rc;
831 	}
832 	return -EOPNOTSUPP;
833 }
834 
835 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
836 {
837 	if (unlikely(IS_PRIVATE(inode)))
838 		return 0;
839 	return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
840 }
841 EXPORT_SYMBOL(security_inode_listsecurity);
842 
843 void security_inode_getsecid(struct inode *inode, u32 *secid)
844 {
845 	call_void_hook(inode_getsecid, inode, secid);
846 }
847 
848 int security_inode_copy_up(struct dentry *src, struct cred **new)
849 {
850 	return call_int_hook(inode_copy_up, 0, src, new);
851 }
852 EXPORT_SYMBOL(security_inode_copy_up);
853 
854 int security_inode_copy_up_xattr(const char *name)
855 {
856 	return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
857 }
858 EXPORT_SYMBOL(security_inode_copy_up_xattr);
859 
860 int security_file_permission(struct file *file, int mask)
861 {
862 	int ret;
863 
864 	ret = call_int_hook(file_permission, 0, file, mask);
865 	if (ret)
866 		return ret;
867 
868 	return fsnotify_perm(file, mask);
869 }
870 
871 int security_file_alloc(struct file *file)
872 {
873 	return call_int_hook(file_alloc_security, 0, file);
874 }
875 
876 void security_file_free(struct file *file)
877 {
878 	call_void_hook(file_free_security, file);
879 }
880 
881 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
882 {
883 	return call_int_hook(file_ioctl, 0, file, cmd, arg);
884 }
885 
886 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
887 {
888 	/*
889 	 * Does we have PROT_READ and does the application expect
890 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
891 	 */
892 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
893 		return prot;
894 	if (!(current->personality & READ_IMPLIES_EXEC))
895 		return prot;
896 	/*
897 	 * if that's an anonymous mapping, let it.
898 	 */
899 	if (!file)
900 		return prot | PROT_EXEC;
901 	/*
902 	 * ditto if it's not on noexec mount, except that on !MMU we need
903 	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
904 	 */
905 	if (!path_noexec(&file->f_path)) {
906 #ifndef CONFIG_MMU
907 		if (file->f_op->mmap_capabilities) {
908 			unsigned caps = file->f_op->mmap_capabilities(file);
909 			if (!(caps & NOMMU_MAP_EXEC))
910 				return prot;
911 		}
912 #endif
913 		return prot | PROT_EXEC;
914 	}
915 	/* anything on noexec mount won't get PROT_EXEC */
916 	return prot;
917 }
918 
919 int security_mmap_file(struct file *file, unsigned long prot,
920 			unsigned long flags)
921 {
922 	int ret;
923 	ret = call_int_hook(mmap_file, 0, file, prot,
924 					mmap_prot(file, prot), flags);
925 	if (ret)
926 		return ret;
927 	return ima_file_mmap(file, prot);
928 }
929 
930 int security_mmap_addr(unsigned long addr)
931 {
932 	return call_int_hook(mmap_addr, 0, addr);
933 }
934 
935 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
936 			    unsigned long prot)
937 {
938 	return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
939 }
940 
941 int security_file_lock(struct file *file, unsigned int cmd)
942 {
943 	return call_int_hook(file_lock, 0, file, cmd);
944 }
945 
946 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
947 {
948 	return call_int_hook(file_fcntl, 0, file, cmd, arg);
949 }
950 
951 void security_file_set_fowner(struct file *file)
952 {
953 	call_void_hook(file_set_fowner, file);
954 }
955 
956 int security_file_send_sigiotask(struct task_struct *tsk,
957 				  struct fown_struct *fown, int sig)
958 {
959 	return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
960 }
961 
962 int security_file_receive(struct file *file)
963 {
964 	return call_int_hook(file_receive, 0, file);
965 }
966 
967 int security_file_open(struct file *file, const struct cred *cred)
968 {
969 	int ret;
970 
971 	ret = call_int_hook(file_open, 0, file, cred);
972 	if (ret)
973 		return ret;
974 
975 	return fsnotify_perm(file, MAY_OPEN);
976 }
977 
978 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
979 {
980 	return call_int_hook(task_alloc, 0, task, clone_flags);
981 }
982 
983 void security_task_free(struct task_struct *task)
984 {
985 	call_void_hook(task_free, task);
986 }
987 
988 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
989 {
990 	return call_int_hook(cred_alloc_blank, 0, cred, gfp);
991 }
992 
993 void security_cred_free(struct cred *cred)
994 {
995 	call_void_hook(cred_free, cred);
996 }
997 
998 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
999 {
1000 	return call_int_hook(cred_prepare, 0, new, old, gfp);
1001 }
1002 
1003 void security_transfer_creds(struct cred *new, const struct cred *old)
1004 {
1005 	call_void_hook(cred_transfer, new, old);
1006 }
1007 
1008 int security_kernel_act_as(struct cred *new, u32 secid)
1009 {
1010 	return call_int_hook(kernel_act_as, 0, new, secid);
1011 }
1012 
1013 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1014 {
1015 	return call_int_hook(kernel_create_files_as, 0, new, inode);
1016 }
1017 
1018 int security_kernel_module_request(char *kmod_name)
1019 {
1020 	return call_int_hook(kernel_module_request, 0, kmod_name);
1021 }
1022 
1023 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1024 {
1025 	int ret;
1026 
1027 	ret = call_int_hook(kernel_read_file, 0, file, id);
1028 	if (ret)
1029 		return ret;
1030 	return ima_read_file(file, id);
1031 }
1032 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1033 
1034 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1035 				   enum kernel_read_file_id id)
1036 {
1037 	int ret;
1038 
1039 	ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1040 	if (ret)
1041 		return ret;
1042 	return ima_post_read_file(file, buf, size, id);
1043 }
1044 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1045 
1046 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1047 			     int flags)
1048 {
1049 	return call_int_hook(task_fix_setuid, 0, new, old, flags);
1050 }
1051 
1052 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1053 {
1054 	return call_int_hook(task_setpgid, 0, p, pgid);
1055 }
1056 
1057 int security_task_getpgid(struct task_struct *p)
1058 {
1059 	return call_int_hook(task_getpgid, 0, p);
1060 }
1061 
1062 int security_task_getsid(struct task_struct *p)
1063 {
1064 	return call_int_hook(task_getsid, 0, p);
1065 }
1066 
1067 void security_task_getsecid(struct task_struct *p, u32 *secid)
1068 {
1069 	*secid = 0;
1070 	call_void_hook(task_getsecid, p, secid);
1071 }
1072 EXPORT_SYMBOL(security_task_getsecid);
1073 
1074 int security_task_setnice(struct task_struct *p, int nice)
1075 {
1076 	return call_int_hook(task_setnice, 0, p, nice);
1077 }
1078 
1079 int security_task_setioprio(struct task_struct *p, int ioprio)
1080 {
1081 	return call_int_hook(task_setioprio, 0, p, ioprio);
1082 }
1083 
1084 int security_task_getioprio(struct task_struct *p)
1085 {
1086 	return call_int_hook(task_getioprio, 0, p);
1087 }
1088 
1089 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1090 			  unsigned int flags)
1091 {
1092 	return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1093 }
1094 
1095 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1096 		struct rlimit *new_rlim)
1097 {
1098 	return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1099 }
1100 
1101 int security_task_setscheduler(struct task_struct *p)
1102 {
1103 	return call_int_hook(task_setscheduler, 0, p);
1104 }
1105 
1106 int security_task_getscheduler(struct task_struct *p)
1107 {
1108 	return call_int_hook(task_getscheduler, 0, p);
1109 }
1110 
1111 int security_task_movememory(struct task_struct *p)
1112 {
1113 	return call_int_hook(task_movememory, 0, p);
1114 }
1115 
1116 int security_task_kill(struct task_struct *p, struct siginfo *info,
1117 			int sig, u32 secid)
1118 {
1119 	return call_int_hook(task_kill, 0, p, info, sig, secid);
1120 }
1121 
1122 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1123 			 unsigned long arg4, unsigned long arg5)
1124 {
1125 	int thisrc;
1126 	int rc = -ENOSYS;
1127 	struct security_hook_list *hp;
1128 
1129 	list_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1130 		thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1131 		if (thisrc != -ENOSYS) {
1132 			rc = thisrc;
1133 			if (thisrc != 0)
1134 				break;
1135 		}
1136 	}
1137 	return rc;
1138 }
1139 
1140 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1141 {
1142 	call_void_hook(task_to_inode, p, inode);
1143 }
1144 
1145 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1146 {
1147 	return call_int_hook(ipc_permission, 0, ipcp, flag);
1148 }
1149 
1150 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1151 {
1152 	*secid = 0;
1153 	call_void_hook(ipc_getsecid, ipcp, secid);
1154 }
1155 
1156 int security_msg_msg_alloc(struct msg_msg *msg)
1157 {
1158 	return call_int_hook(msg_msg_alloc_security, 0, msg);
1159 }
1160 
1161 void security_msg_msg_free(struct msg_msg *msg)
1162 {
1163 	call_void_hook(msg_msg_free_security, msg);
1164 }
1165 
1166 int security_msg_queue_alloc(struct msg_queue *msq)
1167 {
1168 	return call_int_hook(msg_queue_alloc_security, 0, msq);
1169 }
1170 
1171 void security_msg_queue_free(struct msg_queue *msq)
1172 {
1173 	call_void_hook(msg_queue_free_security, msq);
1174 }
1175 
1176 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
1177 {
1178 	return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1179 }
1180 
1181 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
1182 {
1183 	return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1184 }
1185 
1186 int security_msg_queue_msgsnd(struct msg_queue *msq,
1187 			       struct msg_msg *msg, int msqflg)
1188 {
1189 	return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1190 }
1191 
1192 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
1193 			       struct task_struct *target, long type, int mode)
1194 {
1195 	return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1196 }
1197 
1198 int security_shm_alloc(struct shmid_kernel *shp)
1199 {
1200 	return call_int_hook(shm_alloc_security, 0, shp);
1201 }
1202 
1203 void security_shm_free(struct shmid_kernel *shp)
1204 {
1205 	call_void_hook(shm_free_security, shp);
1206 }
1207 
1208 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
1209 {
1210 	return call_int_hook(shm_associate, 0, shp, shmflg);
1211 }
1212 
1213 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
1214 {
1215 	return call_int_hook(shm_shmctl, 0, shp, cmd);
1216 }
1217 
1218 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
1219 {
1220 	return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1221 }
1222 
1223 int security_sem_alloc(struct sem_array *sma)
1224 {
1225 	return call_int_hook(sem_alloc_security, 0, sma);
1226 }
1227 
1228 void security_sem_free(struct sem_array *sma)
1229 {
1230 	call_void_hook(sem_free_security, sma);
1231 }
1232 
1233 int security_sem_associate(struct sem_array *sma, int semflg)
1234 {
1235 	return call_int_hook(sem_associate, 0, sma, semflg);
1236 }
1237 
1238 int security_sem_semctl(struct sem_array *sma, int cmd)
1239 {
1240 	return call_int_hook(sem_semctl, 0, sma, cmd);
1241 }
1242 
1243 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
1244 			unsigned nsops, int alter)
1245 {
1246 	return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1247 }
1248 
1249 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1250 {
1251 	if (unlikely(inode && IS_PRIVATE(inode)))
1252 		return;
1253 	call_void_hook(d_instantiate, dentry, inode);
1254 }
1255 EXPORT_SYMBOL(security_d_instantiate);
1256 
1257 int security_getprocattr(struct task_struct *p, char *name, char **value)
1258 {
1259 	return call_int_hook(getprocattr, -EINVAL, p, name, value);
1260 }
1261 
1262 int security_setprocattr(const char *name, void *value, size_t size)
1263 {
1264 	return call_int_hook(setprocattr, -EINVAL, name, value, size);
1265 }
1266 
1267 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1268 {
1269 	return call_int_hook(netlink_send, 0, sk, skb);
1270 }
1271 
1272 int security_ismaclabel(const char *name)
1273 {
1274 	return call_int_hook(ismaclabel, 0, name);
1275 }
1276 EXPORT_SYMBOL(security_ismaclabel);
1277 
1278 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1279 {
1280 	return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1281 				seclen);
1282 }
1283 EXPORT_SYMBOL(security_secid_to_secctx);
1284 
1285 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1286 {
1287 	*secid = 0;
1288 	return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1289 }
1290 EXPORT_SYMBOL(security_secctx_to_secid);
1291 
1292 void security_release_secctx(char *secdata, u32 seclen)
1293 {
1294 	call_void_hook(release_secctx, secdata, seclen);
1295 }
1296 EXPORT_SYMBOL(security_release_secctx);
1297 
1298 void security_inode_invalidate_secctx(struct inode *inode)
1299 {
1300 	call_void_hook(inode_invalidate_secctx, inode);
1301 }
1302 EXPORT_SYMBOL(security_inode_invalidate_secctx);
1303 
1304 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1305 {
1306 	return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1307 }
1308 EXPORT_SYMBOL(security_inode_notifysecctx);
1309 
1310 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1311 {
1312 	return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
1313 }
1314 EXPORT_SYMBOL(security_inode_setsecctx);
1315 
1316 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1317 {
1318 	return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
1319 }
1320 EXPORT_SYMBOL(security_inode_getsecctx);
1321 
1322 #ifdef CONFIG_SECURITY_NETWORK
1323 
1324 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1325 {
1326 	return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
1327 }
1328 EXPORT_SYMBOL(security_unix_stream_connect);
1329 
1330 int security_unix_may_send(struct socket *sock,  struct socket *other)
1331 {
1332 	return call_int_hook(unix_may_send, 0, sock, other);
1333 }
1334 EXPORT_SYMBOL(security_unix_may_send);
1335 
1336 int security_socket_create(int family, int type, int protocol, int kern)
1337 {
1338 	return call_int_hook(socket_create, 0, family, type, protocol, kern);
1339 }
1340 
1341 int security_socket_post_create(struct socket *sock, int family,
1342 				int type, int protocol, int kern)
1343 {
1344 	return call_int_hook(socket_post_create, 0, sock, family, type,
1345 						protocol, kern);
1346 }
1347 
1348 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1349 {
1350 	return call_int_hook(socket_bind, 0, sock, address, addrlen);
1351 }
1352 
1353 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1354 {
1355 	return call_int_hook(socket_connect, 0, sock, address, addrlen);
1356 }
1357 
1358 int security_socket_listen(struct socket *sock, int backlog)
1359 {
1360 	return call_int_hook(socket_listen, 0, sock, backlog);
1361 }
1362 
1363 int security_socket_accept(struct socket *sock, struct socket *newsock)
1364 {
1365 	return call_int_hook(socket_accept, 0, sock, newsock);
1366 }
1367 
1368 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1369 {
1370 	return call_int_hook(socket_sendmsg, 0, sock, msg, size);
1371 }
1372 
1373 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1374 			    int size, int flags)
1375 {
1376 	return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
1377 }
1378 
1379 int security_socket_getsockname(struct socket *sock)
1380 {
1381 	return call_int_hook(socket_getsockname, 0, sock);
1382 }
1383 
1384 int security_socket_getpeername(struct socket *sock)
1385 {
1386 	return call_int_hook(socket_getpeername, 0, sock);
1387 }
1388 
1389 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1390 {
1391 	return call_int_hook(socket_getsockopt, 0, sock, level, optname);
1392 }
1393 
1394 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1395 {
1396 	return call_int_hook(socket_setsockopt, 0, sock, level, optname);
1397 }
1398 
1399 int security_socket_shutdown(struct socket *sock, int how)
1400 {
1401 	return call_int_hook(socket_shutdown, 0, sock, how);
1402 }
1403 
1404 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1405 {
1406 	return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
1407 }
1408 EXPORT_SYMBOL(security_sock_rcv_skb);
1409 
1410 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1411 				      int __user *optlen, unsigned len)
1412 {
1413 	return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
1414 				optval, optlen, len);
1415 }
1416 
1417 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1418 {
1419 	return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
1420 			     skb, secid);
1421 }
1422 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1423 
1424 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1425 {
1426 	return call_int_hook(sk_alloc_security, 0, sk, family, priority);
1427 }
1428 
1429 void security_sk_free(struct sock *sk)
1430 {
1431 	call_void_hook(sk_free_security, sk);
1432 }
1433 
1434 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1435 {
1436 	call_void_hook(sk_clone_security, sk, newsk);
1437 }
1438 EXPORT_SYMBOL(security_sk_clone);
1439 
1440 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1441 {
1442 	call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
1443 }
1444 EXPORT_SYMBOL(security_sk_classify_flow);
1445 
1446 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1447 {
1448 	call_void_hook(req_classify_flow, req, fl);
1449 }
1450 EXPORT_SYMBOL(security_req_classify_flow);
1451 
1452 void security_sock_graft(struct sock *sk, struct socket *parent)
1453 {
1454 	call_void_hook(sock_graft, sk, parent);
1455 }
1456 EXPORT_SYMBOL(security_sock_graft);
1457 
1458 int security_inet_conn_request(struct sock *sk,
1459 			struct sk_buff *skb, struct request_sock *req)
1460 {
1461 	return call_int_hook(inet_conn_request, 0, sk, skb, req);
1462 }
1463 EXPORT_SYMBOL(security_inet_conn_request);
1464 
1465 void security_inet_csk_clone(struct sock *newsk,
1466 			const struct request_sock *req)
1467 {
1468 	call_void_hook(inet_csk_clone, newsk, req);
1469 }
1470 
1471 void security_inet_conn_established(struct sock *sk,
1472 			struct sk_buff *skb)
1473 {
1474 	call_void_hook(inet_conn_established, sk, skb);
1475 }
1476 
1477 int security_secmark_relabel_packet(u32 secid)
1478 {
1479 	return call_int_hook(secmark_relabel_packet, 0, secid);
1480 }
1481 EXPORT_SYMBOL(security_secmark_relabel_packet);
1482 
1483 void security_secmark_refcount_inc(void)
1484 {
1485 	call_void_hook(secmark_refcount_inc);
1486 }
1487 EXPORT_SYMBOL(security_secmark_refcount_inc);
1488 
1489 void security_secmark_refcount_dec(void)
1490 {
1491 	call_void_hook(secmark_refcount_dec);
1492 }
1493 EXPORT_SYMBOL(security_secmark_refcount_dec);
1494 
1495 int security_tun_dev_alloc_security(void **security)
1496 {
1497 	return call_int_hook(tun_dev_alloc_security, 0, security);
1498 }
1499 EXPORT_SYMBOL(security_tun_dev_alloc_security);
1500 
1501 void security_tun_dev_free_security(void *security)
1502 {
1503 	call_void_hook(tun_dev_free_security, security);
1504 }
1505 EXPORT_SYMBOL(security_tun_dev_free_security);
1506 
1507 int security_tun_dev_create(void)
1508 {
1509 	return call_int_hook(tun_dev_create, 0);
1510 }
1511 EXPORT_SYMBOL(security_tun_dev_create);
1512 
1513 int security_tun_dev_attach_queue(void *security)
1514 {
1515 	return call_int_hook(tun_dev_attach_queue, 0, security);
1516 }
1517 EXPORT_SYMBOL(security_tun_dev_attach_queue);
1518 
1519 int security_tun_dev_attach(struct sock *sk, void *security)
1520 {
1521 	return call_int_hook(tun_dev_attach, 0, sk, security);
1522 }
1523 EXPORT_SYMBOL(security_tun_dev_attach);
1524 
1525 int security_tun_dev_open(void *security)
1526 {
1527 	return call_int_hook(tun_dev_open, 0, security);
1528 }
1529 EXPORT_SYMBOL(security_tun_dev_open);
1530 
1531 #endif	/* CONFIG_SECURITY_NETWORK */
1532 
1533 #ifdef CONFIG_SECURITY_INFINIBAND
1534 
1535 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
1536 {
1537 	return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
1538 }
1539 EXPORT_SYMBOL(security_ib_pkey_access);
1540 
1541 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
1542 {
1543 	return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
1544 }
1545 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
1546 
1547 int security_ib_alloc_security(void **sec)
1548 {
1549 	return call_int_hook(ib_alloc_security, 0, sec);
1550 }
1551 EXPORT_SYMBOL(security_ib_alloc_security);
1552 
1553 void security_ib_free_security(void *sec)
1554 {
1555 	call_void_hook(ib_free_security, sec);
1556 }
1557 EXPORT_SYMBOL(security_ib_free_security);
1558 #endif	/* CONFIG_SECURITY_INFINIBAND */
1559 
1560 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1561 
1562 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
1563 			       struct xfrm_user_sec_ctx *sec_ctx,
1564 			       gfp_t gfp)
1565 {
1566 	return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
1567 }
1568 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1569 
1570 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1571 			      struct xfrm_sec_ctx **new_ctxp)
1572 {
1573 	return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
1574 }
1575 
1576 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1577 {
1578 	call_void_hook(xfrm_policy_free_security, ctx);
1579 }
1580 EXPORT_SYMBOL(security_xfrm_policy_free);
1581 
1582 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1583 {
1584 	return call_int_hook(xfrm_policy_delete_security, 0, ctx);
1585 }
1586 
1587 int security_xfrm_state_alloc(struct xfrm_state *x,
1588 			      struct xfrm_user_sec_ctx *sec_ctx)
1589 {
1590 	return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
1591 }
1592 EXPORT_SYMBOL(security_xfrm_state_alloc);
1593 
1594 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1595 				      struct xfrm_sec_ctx *polsec, u32 secid)
1596 {
1597 	return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
1598 }
1599 
1600 int security_xfrm_state_delete(struct xfrm_state *x)
1601 {
1602 	return call_int_hook(xfrm_state_delete_security, 0, x);
1603 }
1604 EXPORT_SYMBOL(security_xfrm_state_delete);
1605 
1606 void security_xfrm_state_free(struct xfrm_state *x)
1607 {
1608 	call_void_hook(xfrm_state_free_security, x);
1609 }
1610 
1611 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1612 {
1613 	return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
1614 }
1615 
1616 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1617 				       struct xfrm_policy *xp,
1618 				       const struct flowi *fl)
1619 {
1620 	struct security_hook_list *hp;
1621 	int rc = 1;
1622 
1623 	/*
1624 	 * Since this function is expected to return 0 or 1, the judgment
1625 	 * becomes difficult if multiple LSMs supply this call. Fortunately,
1626 	 * we can use the first LSM's judgment because currently only SELinux
1627 	 * supplies this call.
1628 	 *
1629 	 * For speed optimization, we explicitly break the loop rather than
1630 	 * using the macro
1631 	 */
1632 	list_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
1633 				list) {
1634 		rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
1635 		break;
1636 	}
1637 	return rc;
1638 }
1639 
1640 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1641 {
1642 	return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
1643 }
1644 
1645 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1646 {
1647 	int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
1648 				0);
1649 
1650 	BUG_ON(rc);
1651 }
1652 EXPORT_SYMBOL(security_skb_classify_flow);
1653 
1654 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1655 
1656 #ifdef CONFIG_KEYS
1657 
1658 int security_key_alloc(struct key *key, const struct cred *cred,
1659 		       unsigned long flags)
1660 {
1661 	return call_int_hook(key_alloc, 0, key, cred, flags);
1662 }
1663 
1664 void security_key_free(struct key *key)
1665 {
1666 	call_void_hook(key_free, key);
1667 }
1668 
1669 int security_key_permission(key_ref_t key_ref,
1670 			    const struct cred *cred, unsigned perm)
1671 {
1672 	return call_int_hook(key_permission, 0, key_ref, cred, perm);
1673 }
1674 
1675 int security_key_getsecurity(struct key *key, char **_buffer)
1676 {
1677 	*_buffer = NULL;
1678 	return call_int_hook(key_getsecurity, 0, key, _buffer);
1679 }
1680 
1681 #endif	/* CONFIG_KEYS */
1682 
1683 #ifdef CONFIG_AUDIT
1684 
1685 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1686 {
1687 	return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
1688 }
1689 
1690 int security_audit_rule_known(struct audit_krule *krule)
1691 {
1692 	return call_int_hook(audit_rule_known, 0, krule);
1693 }
1694 
1695 void security_audit_rule_free(void *lsmrule)
1696 {
1697 	call_void_hook(audit_rule_free, lsmrule);
1698 }
1699 
1700 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1701 			      struct audit_context *actx)
1702 {
1703 	return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule,
1704 				actx);
1705 }
1706 #endif /* CONFIG_AUDIT */
1707 
1708 #ifdef CONFIG_BPF_SYSCALL
1709 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
1710 {
1711 	return call_int_hook(bpf, 0, cmd, attr, size);
1712 }
1713 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
1714 {
1715 	return call_int_hook(bpf_map, 0, map, fmode);
1716 }
1717 int security_bpf_prog(struct bpf_prog *prog)
1718 {
1719 	return call_int_hook(bpf_prog, 0, prog);
1720 }
1721 int security_bpf_map_alloc(struct bpf_map *map)
1722 {
1723 	return call_int_hook(bpf_map_alloc_security, 0, map);
1724 }
1725 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
1726 {
1727 	return call_int_hook(bpf_prog_alloc_security, 0, aux);
1728 }
1729 void security_bpf_map_free(struct bpf_map *map)
1730 {
1731 	call_void_hook(bpf_map_free_security, map);
1732 }
1733 void security_bpf_prog_free(struct bpf_prog_aux *aux)
1734 {
1735 	call_void_hook(bpf_prog_free_security, aux);
1736 }
1737 #endif /* CONFIG_BPF_SYSCALL */
1738