xref: /openbmc/linux/security/security.c (revision 5edb7691)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8  * Copyright (C) 2016 Mellanox Technologies
9  */
10 
11 #define pr_fmt(fmt) "LSM: " fmt
12 
13 #include <linux/bpf.h>
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/lsm_hooks.h>
20 #include <linux/integrity.h>
21 #include <linux/ima.h>
22 #include <linux/evm.h>
23 #include <linux/fsnotify.h>
24 #include <linux/mman.h>
25 #include <linux/mount.h>
26 #include <linux/personality.h>
27 #include <linux/backing-dev.h>
28 #include <linux/string.h>
29 #include <linux/msg.h>
30 #include <net/flow.h>
31 
32 #define MAX_LSM_EVM_XATTR	2
33 
34 /* How many LSMs were built into the kernel? */
35 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
36 
37 /*
38  * These are descriptions of the reasons that can be passed to the
39  * security_locked_down() LSM hook. Placing this array here allows
40  * all security modules to use the same descriptions for auditing
41  * purposes.
42  */
43 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
44 	[LOCKDOWN_NONE] = "none",
45 	[LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
46 	[LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
47 	[LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
48 	[LOCKDOWN_KEXEC] = "kexec of unsigned images",
49 	[LOCKDOWN_HIBERNATION] = "hibernation",
50 	[LOCKDOWN_PCI_ACCESS] = "direct PCI access",
51 	[LOCKDOWN_IOPORT] = "raw io port access",
52 	[LOCKDOWN_MSR] = "raw MSR access",
53 	[LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
54 	[LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
55 	[LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
56 	[LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
57 	[LOCKDOWN_MMIOTRACE] = "unsafe mmio",
58 	[LOCKDOWN_DEBUGFS] = "debugfs access",
59 	[LOCKDOWN_XMON_WR] = "xmon write access",
60 	[LOCKDOWN_INTEGRITY_MAX] = "integrity",
61 	[LOCKDOWN_KCORE] = "/proc/kcore access",
62 	[LOCKDOWN_KPROBES] = "use of kprobes",
63 	[LOCKDOWN_BPF_READ] = "use of bpf to read kernel RAM",
64 	[LOCKDOWN_PERF] = "unsafe use of perf",
65 	[LOCKDOWN_TRACEFS] = "use of tracefs",
66 	[LOCKDOWN_XMON_RW] = "xmon read and write access",
67 	[LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
68 };
69 
70 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
71 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
72 
73 static struct kmem_cache *lsm_file_cache;
74 static struct kmem_cache *lsm_inode_cache;
75 
76 char *lsm_names;
77 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
78 
79 /* Boot-time LSM user choice */
80 static __initdata const char *chosen_lsm_order;
81 static __initdata const char *chosen_major_lsm;
82 
83 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
84 
85 /* Ordered list of LSMs to initialize. */
86 static __initdata struct lsm_info **ordered_lsms;
87 static __initdata struct lsm_info *exclusive;
88 
89 static __initdata bool debug;
90 #define init_debug(...)						\
91 	do {							\
92 		if (debug)					\
93 			pr_info(__VA_ARGS__);			\
94 	} while (0)
95 
96 static bool __init is_enabled(struct lsm_info *lsm)
97 {
98 	if (!lsm->enabled)
99 		return false;
100 
101 	return *lsm->enabled;
102 }
103 
104 /* Mark an LSM's enabled flag. */
105 static int lsm_enabled_true __initdata = 1;
106 static int lsm_enabled_false __initdata = 0;
107 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
108 {
109 	/*
110 	 * When an LSM hasn't configured an enable variable, we can use
111 	 * a hard-coded location for storing the default enabled state.
112 	 */
113 	if (!lsm->enabled) {
114 		if (enabled)
115 			lsm->enabled = &lsm_enabled_true;
116 		else
117 			lsm->enabled = &lsm_enabled_false;
118 	} else if (lsm->enabled == &lsm_enabled_true) {
119 		if (!enabled)
120 			lsm->enabled = &lsm_enabled_false;
121 	} else if (lsm->enabled == &lsm_enabled_false) {
122 		if (enabled)
123 			lsm->enabled = &lsm_enabled_true;
124 	} else {
125 		*lsm->enabled = enabled;
126 	}
127 }
128 
129 /* Is an LSM already listed in the ordered LSMs list? */
130 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
131 {
132 	struct lsm_info **check;
133 
134 	for (check = ordered_lsms; *check; check++)
135 		if (*check == lsm)
136 			return true;
137 
138 	return false;
139 }
140 
141 /* Append an LSM to the list of ordered LSMs to initialize. */
142 static int last_lsm __initdata;
143 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
144 {
145 	/* Ignore duplicate selections. */
146 	if (exists_ordered_lsm(lsm))
147 		return;
148 
149 	if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
150 		return;
151 
152 	/* Enable this LSM, if it is not already set. */
153 	if (!lsm->enabled)
154 		lsm->enabled = &lsm_enabled_true;
155 	ordered_lsms[last_lsm++] = lsm;
156 
157 	init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
158 		   is_enabled(lsm) ? "en" : "dis");
159 }
160 
161 /* Is an LSM allowed to be initialized? */
162 static bool __init lsm_allowed(struct lsm_info *lsm)
163 {
164 	/* Skip if the LSM is disabled. */
165 	if (!is_enabled(lsm))
166 		return false;
167 
168 	/* Not allowed if another exclusive LSM already initialized. */
169 	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
170 		init_debug("exclusive disabled: %s\n", lsm->name);
171 		return false;
172 	}
173 
174 	return true;
175 }
176 
177 static void __init lsm_set_blob_size(int *need, int *lbs)
178 {
179 	int offset;
180 
181 	if (*need > 0) {
182 		offset = *lbs;
183 		*lbs += *need;
184 		*need = offset;
185 	}
186 }
187 
188 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
189 {
190 	if (!needed)
191 		return;
192 
193 	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
194 	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
195 	/*
196 	 * The inode blob gets an rcu_head in addition to
197 	 * what the modules might need.
198 	 */
199 	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
200 		blob_sizes.lbs_inode = sizeof(struct rcu_head);
201 	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
202 	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
203 	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
204 	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
205 }
206 
207 /* Prepare LSM for initialization. */
208 static void __init prepare_lsm(struct lsm_info *lsm)
209 {
210 	int enabled = lsm_allowed(lsm);
211 
212 	/* Record enablement (to handle any following exclusive LSMs). */
213 	set_enabled(lsm, enabled);
214 
215 	/* If enabled, do pre-initialization work. */
216 	if (enabled) {
217 		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
218 			exclusive = lsm;
219 			init_debug("exclusive chosen: %s\n", lsm->name);
220 		}
221 
222 		lsm_set_blob_sizes(lsm->blobs);
223 	}
224 }
225 
226 /* Initialize a given LSM, if it is enabled. */
227 static void __init initialize_lsm(struct lsm_info *lsm)
228 {
229 	if (is_enabled(lsm)) {
230 		int ret;
231 
232 		init_debug("initializing %s\n", lsm->name);
233 		ret = lsm->init();
234 		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
235 	}
236 }
237 
238 /* Populate ordered LSMs list from comma-separated LSM name list. */
239 static void __init ordered_lsm_parse(const char *order, const char *origin)
240 {
241 	struct lsm_info *lsm;
242 	char *sep, *name, *next;
243 
244 	/* LSM_ORDER_FIRST is always first. */
245 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
246 		if (lsm->order == LSM_ORDER_FIRST)
247 			append_ordered_lsm(lsm, "first");
248 	}
249 
250 	/* Process "security=", if given. */
251 	if (chosen_major_lsm) {
252 		struct lsm_info *major;
253 
254 		/*
255 		 * To match the original "security=" behavior, this
256 		 * explicitly does NOT fallback to another Legacy Major
257 		 * if the selected one was separately disabled: disable
258 		 * all non-matching Legacy Major LSMs.
259 		 */
260 		for (major = __start_lsm_info; major < __end_lsm_info;
261 		     major++) {
262 			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
263 			    strcmp(major->name, chosen_major_lsm) != 0) {
264 				set_enabled(major, false);
265 				init_debug("security=%s disabled: %s\n",
266 					   chosen_major_lsm, major->name);
267 			}
268 		}
269 	}
270 
271 	sep = kstrdup(order, GFP_KERNEL);
272 	next = sep;
273 	/* Walk the list, looking for matching LSMs. */
274 	while ((name = strsep(&next, ",")) != NULL) {
275 		bool found = false;
276 
277 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
278 			if (lsm->order == LSM_ORDER_MUTABLE &&
279 			    strcmp(lsm->name, name) == 0) {
280 				append_ordered_lsm(lsm, origin);
281 				found = true;
282 			}
283 		}
284 
285 		if (!found)
286 			init_debug("%s ignored: %s\n", origin, name);
287 	}
288 
289 	/* Process "security=", if given. */
290 	if (chosen_major_lsm) {
291 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
292 			if (exists_ordered_lsm(lsm))
293 				continue;
294 			if (strcmp(lsm->name, chosen_major_lsm) == 0)
295 				append_ordered_lsm(lsm, "security=");
296 		}
297 	}
298 
299 	/* Disable all LSMs not in the ordered list. */
300 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
301 		if (exists_ordered_lsm(lsm))
302 			continue;
303 		set_enabled(lsm, false);
304 		init_debug("%s disabled: %s\n", origin, lsm->name);
305 	}
306 
307 	kfree(sep);
308 }
309 
310 static void __init lsm_early_cred(struct cred *cred);
311 static void __init lsm_early_task(struct task_struct *task);
312 
313 static int lsm_append(const char *new, char **result);
314 
315 static void __init ordered_lsm_init(void)
316 {
317 	struct lsm_info **lsm;
318 
319 	ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
320 				GFP_KERNEL);
321 
322 	if (chosen_lsm_order) {
323 		if (chosen_major_lsm) {
324 			pr_info("security= is ignored because it is superseded by lsm=\n");
325 			chosen_major_lsm = NULL;
326 		}
327 		ordered_lsm_parse(chosen_lsm_order, "cmdline");
328 	} else
329 		ordered_lsm_parse(builtin_lsm_order, "builtin");
330 
331 	for (lsm = ordered_lsms; *lsm; lsm++)
332 		prepare_lsm(*lsm);
333 
334 	init_debug("cred blob size     = %d\n", blob_sizes.lbs_cred);
335 	init_debug("file blob size     = %d\n", blob_sizes.lbs_file);
336 	init_debug("inode blob size    = %d\n", blob_sizes.lbs_inode);
337 	init_debug("ipc blob size      = %d\n", blob_sizes.lbs_ipc);
338 	init_debug("msg_msg blob size  = %d\n", blob_sizes.lbs_msg_msg);
339 	init_debug("task blob size     = %d\n", blob_sizes.lbs_task);
340 
341 	/*
342 	 * Create any kmem_caches needed for blobs
343 	 */
344 	if (blob_sizes.lbs_file)
345 		lsm_file_cache = kmem_cache_create("lsm_file_cache",
346 						   blob_sizes.lbs_file, 0,
347 						   SLAB_PANIC, NULL);
348 	if (blob_sizes.lbs_inode)
349 		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
350 						    blob_sizes.lbs_inode, 0,
351 						    SLAB_PANIC, NULL);
352 
353 	lsm_early_cred((struct cred *) current->cred);
354 	lsm_early_task(current);
355 	for (lsm = ordered_lsms; *lsm; lsm++)
356 		initialize_lsm(*lsm);
357 
358 	kfree(ordered_lsms);
359 }
360 
361 int __init early_security_init(void)
362 {
363 	int i;
364 	struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
365 	struct lsm_info *lsm;
366 
367 	for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
368 	     i++)
369 		INIT_HLIST_HEAD(&list[i]);
370 
371 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
372 		if (!lsm->enabled)
373 			lsm->enabled = &lsm_enabled_true;
374 		prepare_lsm(lsm);
375 		initialize_lsm(lsm);
376 	}
377 
378 	return 0;
379 }
380 
381 /**
382  * security_init - initializes the security framework
383  *
384  * This should be called early in the kernel initialization sequence.
385  */
386 int __init security_init(void)
387 {
388 	struct lsm_info *lsm;
389 
390 	pr_info("Security Framework initializing\n");
391 
392 	/*
393 	 * Append the names of the early LSM modules now that kmalloc() is
394 	 * available
395 	 */
396 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
397 		if (lsm->enabled)
398 			lsm_append(lsm->name, &lsm_names);
399 	}
400 
401 	/* Load LSMs in specified order. */
402 	ordered_lsm_init();
403 
404 	return 0;
405 }
406 
407 /* Save user chosen LSM */
408 static int __init choose_major_lsm(char *str)
409 {
410 	chosen_major_lsm = str;
411 	return 1;
412 }
413 __setup("security=", choose_major_lsm);
414 
415 /* Explicitly choose LSM initialization order. */
416 static int __init choose_lsm_order(char *str)
417 {
418 	chosen_lsm_order = str;
419 	return 1;
420 }
421 __setup("lsm=", choose_lsm_order);
422 
423 /* Enable LSM order debugging. */
424 static int __init enable_debug(char *str)
425 {
426 	debug = true;
427 	return 1;
428 }
429 __setup("lsm.debug", enable_debug);
430 
431 static bool match_last_lsm(const char *list, const char *lsm)
432 {
433 	const char *last;
434 
435 	if (WARN_ON(!list || !lsm))
436 		return false;
437 	last = strrchr(list, ',');
438 	if (last)
439 		/* Pass the comma, strcmp() will check for '\0' */
440 		last++;
441 	else
442 		last = list;
443 	return !strcmp(last, lsm);
444 }
445 
446 static int lsm_append(const char *new, char **result)
447 {
448 	char *cp;
449 
450 	if (*result == NULL) {
451 		*result = kstrdup(new, GFP_KERNEL);
452 		if (*result == NULL)
453 			return -ENOMEM;
454 	} else {
455 		/* Check if it is the last registered name */
456 		if (match_last_lsm(*result, new))
457 			return 0;
458 		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
459 		if (cp == NULL)
460 			return -ENOMEM;
461 		kfree(*result);
462 		*result = cp;
463 	}
464 	return 0;
465 }
466 
467 /**
468  * security_add_hooks - Add a modules hooks to the hook lists.
469  * @hooks: the hooks to add
470  * @count: the number of hooks to add
471  * @lsm: the name of the security module
472  *
473  * Each LSM has to register its hooks with the infrastructure.
474  */
475 void __init security_add_hooks(struct security_hook_list *hooks, int count,
476 				char *lsm)
477 {
478 	int i;
479 
480 	for (i = 0; i < count; i++) {
481 		hooks[i].lsm = lsm;
482 		hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
483 	}
484 
485 	/*
486 	 * Don't try to append during early_security_init(), we'll come back
487 	 * and fix this up afterwards.
488 	 */
489 	if (slab_is_available()) {
490 		if (lsm_append(lsm, &lsm_names) < 0)
491 			panic("%s - Cannot get early memory.\n", __func__);
492 	}
493 }
494 
495 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
496 {
497 	return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
498 					    event, data);
499 }
500 EXPORT_SYMBOL(call_blocking_lsm_notifier);
501 
502 int register_blocking_lsm_notifier(struct notifier_block *nb)
503 {
504 	return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
505 						nb);
506 }
507 EXPORT_SYMBOL(register_blocking_lsm_notifier);
508 
509 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
510 {
511 	return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
512 						  nb);
513 }
514 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
515 
516 /**
517  * lsm_cred_alloc - allocate a composite cred blob
518  * @cred: the cred that needs a blob
519  * @gfp: allocation type
520  *
521  * Allocate the cred blob for all the modules
522  *
523  * Returns 0, or -ENOMEM if memory can't be allocated.
524  */
525 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
526 {
527 	if (blob_sizes.lbs_cred == 0) {
528 		cred->security = NULL;
529 		return 0;
530 	}
531 
532 	cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
533 	if (cred->security == NULL)
534 		return -ENOMEM;
535 	return 0;
536 }
537 
538 /**
539  * lsm_early_cred - during initialization allocate a composite cred blob
540  * @cred: the cred that needs a blob
541  *
542  * Allocate the cred blob for all the modules
543  */
544 static void __init lsm_early_cred(struct cred *cred)
545 {
546 	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
547 
548 	if (rc)
549 		panic("%s: Early cred alloc failed.\n", __func__);
550 }
551 
552 /**
553  * lsm_file_alloc - allocate a composite file blob
554  * @file: the file that needs a blob
555  *
556  * Allocate the file blob for all the modules
557  *
558  * Returns 0, or -ENOMEM if memory can't be allocated.
559  */
560 static int lsm_file_alloc(struct file *file)
561 {
562 	if (!lsm_file_cache) {
563 		file->f_security = NULL;
564 		return 0;
565 	}
566 
567 	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
568 	if (file->f_security == NULL)
569 		return -ENOMEM;
570 	return 0;
571 }
572 
573 /**
574  * lsm_inode_alloc - allocate a composite inode blob
575  * @inode: the inode that needs a blob
576  *
577  * Allocate the inode blob for all the modules
578  *
579  * Returns 0, or -ENOMEM if memory can't be allocated.
580  */
581 int lsm_inode_alloc(struct inode *inode)
582 {
583 	if (!lsm_inode_cache) {
584 		inode->i_security = NULL;
585 		return 0;
586 	}
587 
588 	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
589 	if (inode->i_security == NULL)
590 		return -ENOMEM;
591 	return 0;
592 }
593 
594 /**
595  * lsm_task_alloc - allocate a composite task blob
596  * @task: the task that needs a blob
597  *
598  * Allocate the task blob for all the modules
599  *
600  * Returns 0, or -ENOMEM if memory can't be allocated.
601  */
602 static int lsm_task_alloc(struct task_struct *task)
603 {
604 	if (blob_sizes.lbs_task == 0) {
605 		task->security = NULL;
606 		return 0;
607 	}
608 
609 	task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
610 	if (task->security == NULL)
611 		return -ENOMEM;
612 	return 0;
613 }
614 
615 /**
616  * lsm_ipc_alloc - allocate a composite ipc blob
617  * @kip: the ipc that needs a blob
618  *
619  * Allocate the ipc blob for all the modules
620  *
621  * Returns 0, or -ENOMEM if memory can't be allocated.
622  */
623 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
624 {
625 	if (blob_sizes.lbs_ipc == 0) {
626 		kip->security = NULL;
627 		return 0;
628 	}
629 
630 	kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
631 	if (kip->security == NULL)
632 		return -ENOMEM;
633 	return 0;
634 }
635 
636 /**
637  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
638  * @mp: the msg_msg that needs a blob
639  *
640  * Allocate the ipc blob for all the modules
641  *
642  * Returns 0, or -ENOMEM if memory can't be allocated.
643  */
644 static int lsm_msg_msg_alloc(struct msg_msg *mp)
645 {
646 	if (blob_sizes.lbs_msg_msg == 0) {
647 		mp->security = NULL;
648 		return 0;
649 	}
650 
651 	mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
652 	if (mp->security == NULL)
653 		return -ENOMEM;
654 	return 0;
655 }
656 
657 /**
658  * lsm_early_task - during initialization allocate a composite task blob
659  * @task: the task that needs a blob
660  *
661  * Allocate the task blob for all the modules
662  */
663 static void __init lsm_early_task(struct task_struct *task)
664 {
665 	int rc = lsm_task_alloc(task);
666 
667 	if (rc)
668 		panic("%s: Early task alloc failed.\n", __func__);
669 }
670 
671 /*
672  * Hook list operation macros.
673  *
674  * call_void_hook:
675  *	This is a hook that does not return a value.
676  *
677  * call_int_hook:
678  *	This is a hook that returns a value.
679  */
680 
681 #define call_void_hook(FUNC, ...)				\
682 	do {							\
683 		struct security_hook_list *P;			\
684 								\
685 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
686 			P->hook.FUNC(__VA_ARGS__);		\
687 	} while (0)
688 
689 #define call_int_hook(FUNC, IRC, ...) ({			\
690 	int RC = IRC;						\
691 	do {							\
692 		struct security_hook_list *P;			\
693 								\
694 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
695 			RC = P->hook.FUNC(__VA_ARGS__);		\
696 			if (RC != 0)				\
697 				break;				\
698 		}						\
699 	} while (0);						\
700 	RC;							\
701 })
702 
703 /* Security operations */
704 
705 int security_binder_set_context_mgr(struct task_struct *mgr)
706 {
707 	return call_int_hook(binder_set_context_mgr, 0, mgr);
708 }
709 
710 int security_binder_transaction(struct task_struct *from,
711 				struct task_struct *to)
712 {
713 	return call_int_hook(binder_transaction, 0, from, to);
714 }
715 
716 int security_binder_transfer_binder(struct task_struct *from,
717 				    struct task_struct *to)
718 {
719 	return call_int_hook(binder_transfer_binder, 0, from, to);
720 }
721 
722 int security_binder_transfer_file(struct task_struct *from,
723 				  struct task_struct *to, struct file *file)
724 {
725 	return call_int_hook(binder_transfer_file, 0, from, to, file);
726 }
727 
728 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
729 {
730 	return call_int_hook(ptrace_access_check, 0, child, mode);
731 }
732 
733 int security_ptrace_traceme(struct task_struct *parent)
734 {
735 	return call_int_hook(ptrace_traceme, 0, parent);
736 }
737 
738 int security_capget(struct task_struct *target,
739 		     kernel_cap_t *effective,
740 		     kernel_cap_t *inheritable,
741 		     kernel_cap_t *permitted)
742 {
743 	return call_int_hook(capget, 0, target,
744 				effective, inheritable, permitted);
745 }
746 
747 int security_capset(struct cred *new, const struct cred *old,
748 		    const kernel_cap_t *effective,
749 		    const kernel_cap_t *inheritable,
750 		    const kernel_cap_t *permitted)
751 {
752 	return call_int_hook(capset, 0, new, old,
753 				effective, inheritable, permitted);
754 }
755 
756 int security_capable(const struct cred *cred,
757 		     struct user_namespace *ns,
758 		     int cap,
759 		     unsigned int opts)
760 {
761 	return call_int_hook(capable, 0, cred, ns, cap, opts);
762 }
763 
764 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
765 {
766 	return call_int_hook(quotactl, 0, cmds, type, id, sb);
767 }
768 
769 int security_quota_on(struct dentry *dentry)
770 {
771 	return call_int_hook(quota_on, 0, dentry);
772 }
773 
774 int security_syslog(int type)
775 {
776 	return call_int_hook(syslog, 0, type);
777 }
778 
779 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
780 {
781 	return call_int_hook(settime, 0, ts, tz);
782 }
783 
784 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
785 {
786 	struct security_hook_list *hp;
787 	int cap_sys_admin = 1;
788 	int rc;
789 
790 	/*
791 	 * The module will respond with a positive value if
792 	 * it thinks the __vm_enough_memory() call should be
793 	 * made with the cap_sys_admin set. If all of the modules
794 	 * agree that it should be set it will. If any module
795 	 * thinks it should not be set it won't.
796 	 */
797 	hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
798 		rc = hp->hook.vm_enough_memory(mm, pages);
799 		if (rc <= 0) {
800 			cap_sys_admin = 0;
801 			break;
802 		}
803 	}
804 	return __vm_enough_memory(mm, pages, cap_sys_admin);
805 }
806 
807 int security_bprm_set_creds(struct linux_binprm *bprm)
808 {
809 	return call_int_hook(bprm_set_creds, 0, bprm);
810 }
811 
812 int security_bprm_check(struct linux_binprm *bprm)
813 {
814 	int ret;
815 
816 	ret = call_int_hook(bprm_check_security, 0, bprm);
817 	if (ret)
818 		return ret;
819 	return ima_bprm_check(bprm);
820 }
821 
822 void security_bprm_committing_creds(struct linux_binprm *bprm)
823 {
824 	call_void_hook(bprm_committing_creds, bprm);
825 }
826 
827 void security_bprm_committed_creds(struct linux_binprm *bprm)
828 {
829 	call_void_hook(bprm_committed_creds, bprm);
830 }
831 
832 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
833 {
834 	return call_int_hook(fs_context_dup, 0, fc, src_fc);
835 }
836 
837 int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
838 {
839 	return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
840 }
841 
842 int security_sb_alloc(struct super_block *sb)
843 {
844 	return call_int_hook(sb_alloc_security, 0, sb);
845 }
846 
847 void security_sb_free(struct super_block *sb)
848 {
849 	call_void_hook(sb_free_security, sb);
850 }
851 
852 void security_free_mnt_opts(void **mnt_opts)
853 {
854 	if (!*mnt_opts)
855 		return;
856 	call_void_hook(sb_free_mnt_opts, *mnt_opts);
857 	*mnt_opts = NULL;
858 }
859 EXPORT_SYMBOL(security_free_mnt_opts);
860 
861 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
862 {
863 	return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
864 }
865 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
866 
867 int security_sb_remount(struct super_block *sb,
868 			void *mnt_opts)
869 {
870 	return call_int_hook(sb_remount, 0, sb, mnt_opts);
871 }
872 EXPORT_SYMBOL(security_sb_remount);
873 
874 int security_sb_kern_mount(struct super_block *sb)
875 {
876 	return call_int_hook(sb_kern_mount, 0, sb);
877 }
878 
879 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
880 {
881 	return call_int_hook(sb_show_options, 0, m, sb);
882 }
883 
884 int security_sb_statfs(struct dentry *dentry)
885 {
886 	return call_int_hook(sb_statfs, 0, dentry);
887 }
888 
889 int security_sb_mount(const char *dev_name, const struct path *path,
890                        const char *type, unsigned long flags, void *data)
891 {
892 	return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
893 }
894 
895 int security_sb_umount(struct vfsmount *mnt, int flags)
896 {
897 	return call_int_hook(sb_umount, 0, mnt, flags);
898 }
899 
900 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
901 {
902 	return call_int_hook(sb_pivotroot, 0, old_path, new_path);
903 }
904 
905 int security_sb_set_mnt_opts(struct super_block *sb,
906 				void *mnt_opts,
907 				unsigned long kern_flags,
908 				unsigned long *set_kern_flags)
909 {
910 	return call_int_hook(sb_set_mnt_opts,
911 				mnt_opts ? -EOPNOTSUPP : 0, sb,
912 				mnt_opts, kern_flags, set_kern_flags);
913 }
914 EXPORT_SYMBOL(security_sb_set_mnt_opts);
915 
916 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
917 				struct super_block *newsb,
918 				unsigned long kern_flags,
919 				unsigned long *set_kern_flags)
920 {
921 	return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
922 				kern_flags, set_kern_flags);
923 }
924 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
925 
926 int security_add_mnt_opt(const char *option, const char *val, int len,
927 			 void **mnt_opts)
928 {
929 	return call_int_hook(sb_add_mnt_opt, -EINVAL,
930 					option, val, len, mnt_opts);
931 }
932 EXPORT_SYMBOL(security_add_mnt_opt);
933 
934 int security_move_mount(const struct path *from_path, const struct path *to_path)
935 {
936 	return call_int_hook(move_mount, 0, from_path, to_path);
937 }
938 
939 int security_path_notify(const struct path *path, u64 mask,
940 				unsigned int obj_type)
941 {
942 	return call_int_hook(path_notify, 0, path, mask, obj_type);
943 }
944 
945 int security_inode_alloc(struct inode *inode)
946 {
947 	int rc = lsm_inode_alloc(inode);
948 
949 	if (unlikely(rc))
950 		return rc;
951 	rc = call_int_hook(inode_alloc_security, 0, inode);
952 	if (unlikely(rc))
953 		security_inode_free(inode);
954 	return rc;
955 }
956 
957 static void inode_free_by_rcu(struct rcu_head *head)
958 {
959 	/*
960 	 * The rcu head is at the start of the inode blob
961 	 */
962 	kmem_cache_free(lsm_inode_cache, head);
963 }
964 
965 void security_inode_free(struct inode *inode)
966 {
967 	integrity_inode_free(inode);
968 	call_void_hook(inode_free_security, inode);
969 	/*
970 	 * The inode may still be referenced in a path walk and
971 	 * a call to security_inode_permission() can be made
972 	 * after inode_free_security() is called. Ideally, the VFS
973 	 * wouldn't do this, but fixing that is a much harder
974 	 * job. For now, simply free the i_security via RCU, and
975 	 * leave the current inode->i_security pointer intact.
976 	 * The inode will be freed after the RCU grace period too.
977 	 */
978 	if (inode->i_security)
979 		call_rcu((struct rcu_head *)inode->i_security,
980 				inode_free_by_rcu);
981 }
982 
983 int security_dentry_init_security(struct dentry *dentry, int mode,
984 					const struct qstr *name, void **ctx,
985 					u32 *ctxlen)
986 {
987 	return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
988 				name, ctx, ctxlen);
989 }
990 EXPORT_SYMBOL(security_dentry_init_security);
991 
992 int security_dentry_create_files_as(struct dentry *dentry, int mode,
993 				    struct qstr *name,
994 				    const struct cred *old, struct cred *new)
995 {
996 	return call_int_hook(dentry_create_files_as, 0, dentry, mode,
997 				name, old, new);
998 }
999 EXPORT_SYMBOL(security_dentry_create_files_as);
1000 
1001 int security_inode_init_security(struct inode *inode, struct inode *dir,
1002 				 const struct qstr *qstr,
1003 				 const initxattrs initxattrs, void *fs_data)
1004 {
1005 	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1006 	struct xattr *lsm_xattr, *evm_xattr, *xattr;
1007 	int ret;
1008 
1009 	if (unlikely(IS_PRIVATE(inode)))
1010 		return 0;
1011 
1012 	if (!initxattrs)
1013 		return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1014 				     dir, qstr, NULL, NULL, NULL);
1015 	memset(new_xattrs, 0, sizeof(new_xattrs));
1016 	lsm_xattr = new_xattrs;
1017 	ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1018 						&lsm_xattr->name,
1019 						&lsm_xattr->value,
1020 						&lsm_xattr->value_len);
1021 	if (ret)
1022 		goto out;
1023 
1024 	evm_xattr = lsm_xattr + 1;
1025 	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1026 	if (ret)
1027 		goto out;
1028 	ret = initxattrs(inode, new_xattrs, fs_data);
1029 out:
1030 	for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1031 		kfree(xattr->value);
1032 	return (ret == -EOPNOTSUPP) ? 0 : ret;
1033 }
1034 EXPORT_SYMBOL(security_inode_init_security);
1035 
1036 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1037 				     const struct qstr *qstr, const char **name,
1038 				     void **value, size_t *len)
1039 {
1040 	if (unlikely(IS_PRIVATE(inode)))
1041 		return -EOPNOTSUPP;
1042 	return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1043 			     qstr, name, value, len);
1044 }
1045 EXPORT_SYMBOL(security_old_inode_init_security);
1046 
1047 #ifdef CONFIG_SECURITY_PATH
1048 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1049 			unsigned int dev)
1050 {
1051 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1052 		return 0;
1053 	return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1054 }
1055 EXPORT_SYMBOL(security_path_mknod);
1056 
1057 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1058 {
1059 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1060 		return 0;
1061 	return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1062 }
1063 EXPORT_SYMBOL(security_path_mkdir);
1064 
1065 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1066 {
1067 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1068 		return 0;
1069 	return call_int_hook(path_rmdir, 0, dir, dentry);
1070 }
1071 
1072 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1073 {
1074 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1075 		return 0;
1076 	return call_int_hook(path_unlink, 0, dir, dentry);
1077 }
1078 EXPORT_SYMBOL(security_path_unlink);
1079 
1080 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1081 			  const char *old_name)
1082 {
1083 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1084 		return 0;
1085 	return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1086 }
1087 
1088 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1089 		       struct dentry *new_dentry)
1090 {
1091 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1092 		return 0;
1093 	return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1094 }
1095 
1096 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1097 			 const struct path *new_dir, struct dentry *new_dentry,
1098 			 unsigned int flags)
1099 {
1100 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1101 		     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1102 		return 0;
1103 
1104 	if (flags & RENAME_EXCHANGE) {
1105 		int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1106 					old_dir, old_dentry);
1107 		if (err)
1108 			return err;
1109 	}
1110 
1111 	return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1112 				new_dentry);
1113 }
1114 EXPORT_SYMBOL(security_path_rename);
1115 
1116 int security_path_truncate(const struct path *path)
1117 {
1118 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1119 		return 0;
1120 	return call_int_hook(path_truncate, 0, path);
1121 }
1122 
1123 int security_path_chmod(const struct path *path, umode_t mode)
1124 {
1125 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1126 		return 0;
1127 	return call_int_hook(path_chmod, 0, path, mode);
1128 }
1129 
1130 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1131 {
1132 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1133 		return 0;
1134 	return call_int_hook(path_chown, 0, path, uid, gid);
1135 }
1136 
1137 int security_path_chroot(const struct path *path)
1138 {
1139 	return call_int_hook(path_chroot, 0, path);
1140 }
1141 #endif
1142 
1143 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1144 {
1145 	if (unlikely(IS_PRIVATE(dir)))
1146 		return 0;
1147 	return call_int_hook(inode_create, 0, dir, dentry, mode);
1148 }
1149 EXPORT_SYMBOL_GPL(security_inode_create);
1150 
1151 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1152 			 struct dentry *new_dentry)
1153 {
1154 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1155 		return 0;
1156 	return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1157 }
1158 
1159 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1160 {
1161 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1162 		return 0;
1163 	return call_int_hook(inode_unlink, 0, dir, dentry);
1164 }
1165 
1166 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1167 			    const char *old_name)
1168 {
1169 	if (unlikely(IS_PRIVATE(dir)))
1170 		return 0;
1171 	return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1172 }
1173 
1174 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1175 {
1176 	if (unlikely(IS_PRIVATE(dir)))
1177 		return 0;
1178 	return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1179 }
1180 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1181 
1182 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1183 {
1184 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1185 		return 0;
1186 	return call_int_hook(inode_rmdir, 0, dir, dentry);
1187 }
1188 
1189 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1190 {
1191 	if (unlikely(IS_PRIVATE(dir)))
1192 		return 0;
1193 	return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1194 }
1195 
1196 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1197 			   struct inode *new_dir, struct dentry *new_dentry,
1198 			   unsigned int flags)
1199 {
1200         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1201             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1202 		return 0;
1203 
1204 	if (flags & RENAME_EXCHANGE) {
1205 		int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1206 						     old_dir, old_dentry);
1207 		if (err)
1208 			return err;
1209 	}
1210 
1211 	return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1212 					   new_dir, new_dentry);
1213 }
1214 
1215 int security_inode_readlink(struct dentry *dentry)
1216 {
1217 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1218 		return 0;
1219 	return call_int_hook(inode_readlink, 0, dentry);
1220 }
1221 
1222 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1223 			       bool rcu)
1224 {
1225 	if (unlikely(IS_PRIVATE(inode)))
1226 		return 0;
1227 	return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1228 }
1229 
1230 int security_inode_permission(struct inode *inode, int mask)
1231 {
1232 	if (unlikely(IS_PRIVATE(inode)))
1233 		return 0;
1234 	return call_int_hook(inode_permission, 0, inode, mask);
1235 }
1236 
1237 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1238 {
1239 	int ret;
1240 
1241 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1242 		return 0;
1243 	ret = call_int_hook(inode_setattr, 0, dentry, attr);
1244 	if (ret)
1245 		return ret;
1246 	return evm_inode_setattr(dentry, attr);
1247 }
1248 EXPORT_SYMBOL_GPL(security_inode_setattr);
1249 
1250 int security_inode_getattr(const struct path *path)
1251 {
1252 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1253 		return 0;
1254 	return call_int_hook(inode_getattr, 0, path);
1255 }
1256 
1257 int security_inode_setxattr(struct dentry *dentry, const char *name,
1258 			    const void *value, size_t size, int flags)
1259 {
1260 	int ret;
1261 
1262 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1263 		return 0;
1264 	/*
1265 	 * SELinux and Smack integrate the cap call,
1266 	 * so assume that all LSMs supplying this call do so.
1267 	 */
1268 	ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
1269 				flags);
1270 
1271 	if (ret == 1)
1272 		ret = cap_inode_setxattr(dentry, name, value, size, flags);
1273 	if (ret)
1274 		return ret;
1275 	ret = ima_inode_setxattr(dentry, name, value, size);
1276 	if (ret)
1277 		return ret;
1278 	return evm_inode_setxattr(dentry, name, value, size);
1279 }
1280 
1281 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1282 				  const void *value, size_t size, int flags)
1283 {
1284 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1285 		return;
1286 	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1287 	evm_inode_post_setxattr(dentry, name, value, size);
1288 }
1289 
1290 int security_inode_getxattr(struct dentry *dentry, const char *name)
1291 {
1292 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1293 		return 0;
1294 	return call_int_hook(inode_getxattr, 0, dentry, name);
1295 }
1296 
1297 int security_inode_listxattr(struct dentry *dentry)
1298 {
1299 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1300 		return 0;
1301 	return call_int_hook(inode_listxattr, 0, dentry);
1302 }
1303 
1304 int security_inode_removexattr(struct dentry *dentry, const char *name)
1305 {
1306 	int ret;
1307 
1308 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1309 		return 0;
1310 	/*
1311 	 * SELinux and Smack integrate the cap call,
1312 	 * so assume that all LSMs supplying this call do so.
1313 	 */
1314 	ret = call_int_hook(inode_removexattr, 1, dentry, name);
1315 	if (ret == 1)
1316 		ret = cap_inode_removexattr(dentry, name);
1317 	if (ret)
1318 		return ret;
1319 	ret = ima_inode_removexattr(dentry, name);
1320 	if (ret)
1321 		return ret;
1322 	return evm_inode_removexattr(dentry, name);
1323 }
1324 
1325 int security_inode_need_killpriv(struct dentry *dentry)
1326 {
1327 	return call_int_hook(inode_need_killpriv, 0, dentry);
1328 }
1329 
1330 int security_inode_killpriv(struct dentry *dentry)
1331 {
1332 	return call_int_hook(inode_killpriv, 0, dentry);
1333 }
1334 
1335 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1336 {
1337 	struct security_hook_list *hp;
1338 	int rc;
1339 
1340 	if (unlikely(IS_PRIVATE(inode)))
1341 		return -EOPNOTSUPP;
1342 	/*
1343 	 * Only one module will provide an attribute with a given name.
1344 	 */
1345 	hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1346 		rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1347 		if (rc != -EOPNOTSUPP)
1348 			return rc;
1349 	}
1350 	return -EOPNOTSUPP;
1351 }
1352 
1353 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1354 {
1355 	struct security_hook_list *hp;
1356 	int rc;
1357 
1358 	if (unlikely(IS_PRIVATE(inode)))
1359 		return -EOPNOTSUPP;
1360 	/*
1361 	 * Only one module will provide an attribute with a given name.
1362 	 */
1363 	hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1364 		rc = hp->hook.inode_setsecurity(inode, name, value, size,
1365 								flags);
1366 		if (rc != -EOPNOTSUPP)
1367 			return rc;
1368 	}
1369 	return -EOPNOTSUPP;
1370 }
1371 
1372 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1373 {
1374 	if (unlikely(IS_PRIVATE(inode)))
1375 		return 0;
1376 	return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1377 }
1378 EXPORT_SYMBOL(security_inode_listsecurity);
1379 
1380 void security_inode_getsecid(struct inode *inode, u32 *secid)
1381 {
1382 	call_void_hook(inode_getsecid, inode, secid);
1383 }
1384 
1385 int security_inode_copy_up(struct dentry *src, struct cred **new)
1386 {
1387 	return call_int_hook(inode_copy_up, 0, src, new);
1388 }
1389 EXPORT_SYMBOL(security_inode_copy_up);
1390 
1391 int security_inode_copy_up_xattr(const char *name)
1392 {
1393 	return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
1394 }
1395 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1396 
1397 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1398 				  struct kernfs_node *kn)
1399 {
1400 	return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1401 }
1402 
1403 int security_file_permission(struct file *file, int mask)
1404 {
1405 	int ret;
1406 
1407 	ret = call_int_hook(file_permission, 0, file, mask);
1408 	if (ret)
1409 		return ret;
1410 
1411 	return fsnotify_perm(file, mask);
1412 }
1413 
1414 int security_file_alloc(struct file *file)
1415 {
1416 	int rc = lsm_file_alloc(file);
1417 
1418 	if (rc)
1419 		return rc;
1420 	rc = call_int_hook(file_alloc_security, 0, file);
1421 	if (unlikely(rc))
1422 		security_file_free(file);
1423 	return rc;
1424 }
1425 
1426 void security_file_free(struct file *file)
1427 {
1428 	void *blob;
1429 
1430 	call_void_hook(file_free_security, file);
1431 
1432 	blob = file->f_security;
1433 	if (blob) {
1434 		file->f_security = NULL;
1435 		kmem_cache_free(lsm_file_cache, blob);
1436 	}
1437 }
1438 
1439 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1440 {
1441 	return call_int_hook(file_ioctl, 0, file, cmd, arg);
1442 }
1443 
1444 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1445 {
1446 	/*
1447 	 * Does we have PROT_READ and does the application expect
1448 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
1449 	 */
1450 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1451 		return prot;
1452 	if (!(current->personality & READ_IMPLIES_EXEC))
1453 		return prot;
1454 	/*
1455 	 * if that's an anonymous mapping, let it.
1456 	 */
1457 	if (!file)
1458 		return prot | PROT_EXEC;
1459 	/*
1460 	 * ditto if it's not on noexec mount, except that on !MMU we need
1461 	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1462 	 */
1463 	if (!path_noexec(&file->f_path)) {
1464 #ifndef CONFIG_MMU
1465 		if (file->f_op->mmap_capabilities) {
1466 			unsigned caps = file->f_op->mmap_capabilities(file);
1467 			if (!(caps & NOMMU_MAP_EXEC))
1468 				return prot;
1469 		}
1470 #endif
1471 		return prot | PROT_EXEC;
1472 	}
1473 	/* anything on noexec mount won't get PROT_EXEC */
1474 	return prot;
1475 }
1476 
1477 int security_mmap_file(struct file *file, unsigned long prot,
1478 			unsigned long flags)
1479 {
1480 	int ret;
1481 	ret = call_int_hook(mmap_file, 0, file, prot,
1482 					mmap_prot(file, prot), flags);
1483 	if (ret)
1484 		return ret;
1485 	return ima_file_mmap(file, prot);
1486 }
1487 
1488 int security_mmap_addr(unsigned long addr)
1489 {
1490 	return call_int_hook(mmap_addr, 0, addr);
1491 }
1492 
1493 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1494 			    unsigned long prot)
1495 {
1496 	return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1497 }
1498 
1499 int security_file_lock(struct file *file, unsigned int cmd)
1500 {
1501 	return call_int_hook(file_lock, 0, file, cmd);
1502 }
1503 
1504 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1505 {
1506 	return call_int_hook(file_fcntl, 0, file, cmd, arg);
1507 }
1508 
1509 void security_file_set_fowner(struct file *file)
1510 {
1511 	call_void_hook(file_set_fowner, file);
1512 }
1513 
1514 int security_file_send_sigiotask(struct task_struct *tsk,
1515 				  struct fown_struct *fown, int sig)
1516 {
1517 	return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1518 }
1519 
1520 int security_file_receive(struct file *file)
1521 {
1522 	return call_int_hook(file_receive, 0, file);
1523 }
1524 
1525 int security_file_open(struct file *file)
1526 {
1527 	int ret;
1528 
1529 	ret = call_int_hook(file_open, 0, file);
1530 	if (ret)
1531 		return ret;
1532 
1533 	return fsnotify_perm(file, MAY_OPEN);
1534 }
1535 
1536 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1537 {
1538 	int rc = lsm_task_alloc(task);
1539 
1540 	if (rc)
1541 		return rc;
1542 	rc = call_int_hook(task_alloc, 0, task, clone_flags);
1543 	if (unlikely(rc))
1544 		security_task_free(task);
1545 	return rc;
1546 }
1547 
1548 void security_task_free(struct task_struct *task)
1549 {
1550 	call_void_hook(task_free, task);
1551 
1552 	kfree(task->security);
1553 	task->security = NULL;
1554 }
1555 
1556 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1557 {
1558 	int rc = lsm_cred_alloc(cred, gfp);
1559 
1560 	if (rc)
1561 		return rc;
1562 
1563 	rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1564 	if (unlikely(rc))
1565 		security_cred_free(cred);
1566 	return rc;
1567 }
1568 
1569 void security_cred_free(struct cred *cred)
1570 {
1571 	/*
1572 	 * There is a failure case in prepare_creds() that
1573 	 * may result in a call here with ->security being NULL.
1574 	 */
1575 	if (unlikely(cred->security == NULL))
1576 		return;
1577 
1578 	call_void_hook(cred_free, cred);
1579 
1580 	kfree(cred->security);
1581 	cred->security = NULL;
1582 }
1583 
1584 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1585 {
1586 	int rc = lsm_cred_alloc(new, gfp);
1587 
1588 	if (rc)
1589 		return rc;
1590 
1591 	rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1592 	if (unlikely(rc))
1593 		security_cred_free(new);
1594 	return rc;
1595 }
1596 
1597 void security_transfer_creds(struct cred *new, const struct cred *old)
1598 {
1599 	call_void_hook(cred_transfer, new, old);
1600 }
1601 
1602 void security_cred_getsecid(const struct cred *c, u32 *secid)
1603 {
1604 	*secid = 0;
1605 	call_void_hook(cred_getsecid, c, secid);
1606 }
1607 EXPORT_SYMBOL(security_cred_getsecid);
1608 
1609 int security_kernel_act_as(struct cred *new, u32 secid)
1610 {
1611 	return call_int_hook(kernel_act_as, 0, new, secid);
1612 }
1613 
1614 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1615 {
1616 	return call_int_hook(kernel_create_files_as, 0, new, inode);
1617 }
1618 
1619 int security_kernel_module_request(char *kmod_name)
1620 {
1621 	int ret;
1622 
1623 	ret = call_int_hook(kernel_module_request, 0, kmod_name);
1624 	if (ret)
1625 		return ret;
1626 	return integrity_kernel_module_request(kmod_name);
1627 }
1628 
1629 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1630 {
1631 	int ret;
1632 
1633 	ret = call_int_hook(kernel_read_file, 0, file, id);
1634 	if (ret)
1635 		return ret;
1636 	return ima_read_file(file, id);
1637 }
1638 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1639 
1640 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1641 				   enum kernel_read_file_id id)
1642 {
1643 	int ret;
1644 
1645 	ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1646 	if (ret)
1647 		return ret;
1648 	return ima_post_read_file(file, buf, size, id);
1649 }
1650 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1651 
1652 int security_kernel_load_data(enum kernel_load_data_id id)
1653 {
1654 	int ret;
1655 
1656 	ret = call_int_hook(kernel_load_data, 0, id);
1657 	if (ret)
1658 		return ret;
1659 	return ima_load_data(id);
1660 }
1661 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1662 
1663 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1664 			     int flags)
1665 {
1666 	return call_int_hook(task_fix_setuid, 0, new, old, flags);
1667 }
1668 
1669 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1670 {
1671 	return call_int_hook(task_setpgid, 0, p, pgid);
1672 }
1673 
1674 int security_task_getpgid(struct task_struct *p)
1675 {
1676 	return call_int_hook(task_getpgid, 0, p);
1677 }
1678 
1679 int security_task_getsid(struct task_struct *p)
1680 {
1681 	return call_int_hook(task_getsid, 0, p);
1682 }
1683 
1684 void security_task_getsecid(struct task_struct *p, u32 *secid)
1685 {
1686 	*secid = 0;
1687 	call_void_hook(task_getsecid, p, secid);
1688 }
1689 EXPORT_SYMBOL(security_task_getsecid);
1690 
1691 int security_task_setnice(struct task_struct *p, int nice)
1692 {
1693 	return call_int_hook(task_setnice, 0, p, nice);
1694 }
1695 
1696 int security_task_setioprio(struct task_struct *p, int ioprio)
1697 {
1698 	return call_int_hook(task_setioprio, 0, p, ioprio);
1699 }
1700 
1701 int security_task_getioprio(struct task_struct *p)
1702 {
1703 	return call_int_hook(task_getioprio, 0, p);
1704 }
1705 
1706 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1707 			  unsigned int flags)
1708 {
1709 	return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1710 }
1711 
1712 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1713 		struct rlimit *new_rlim)
1714 {
1715 	return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1716 }
1717 
1718 int security_task_setscheduler(struct task_struct *p)
1719 {
1720 	return call_int_hook(task_setscheduler, 0, p);
1721 }
1722 
1723 int security_task_getscheduler(struct task_struct *p)
1724 {
1725 	return call_int_hook(task_getscheduler, 0, p);
1726 }
1727 
1728 int security_task_movememory(struct task_struct *p)
1729 {
1730 	return call_int_hook(task_movememory, 0, p);
1731 }
1732 
1733 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1734 			int sig, const struct cred *cred)
1735 {
1736 	return call_int_hook(task_kill, 0, p, info, sig, cred);
1737 }
1738 
1739 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1740 			 unsigned long arg4, unsigned long arg5)
1741 {
1742 	int thisrc;
1743 	int rc = -ENOSYS;
1744 	struct security_hook_list *hp;
1745 
1746 	hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1747 		thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1748 		if (thisrc != -ENOSYS) {
1749 			rc = thisrc;
1750 			if (thisrc != 0)
1751 				break;
1752 		}
1753 	}
1754 	return rc;
1755 }
1756 
1757 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1758 {
1759 	call_void_hook(task_to_inode, p, inode);
1760 }
1761 
1762 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1763 {
1764 	return call_int_hook(ipc_permission, 0, ipcp, flag);
1765 }
1766 
1767 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1768 {
1769 	*secid = 0;
1770 	call_void_hook(ipc_getsecid, ipcp, secid);
1771 }
1772 
1773 int security_msg_msg_alloc(struct msg_msg *msg)
1774 {
1775 	int rc = lsm_msg_msg_alloc(msg);
1776 
1777 	if (unlikely(rc))
1778 		return rc;
1779 	rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1780 	if (unlikely(rc))
1781 		security_msg_msg_free(msg);
1782 	return rc;
1783 }
1784 
1785 void security_msg_msg_free(struct msg_msg *msg)
1786 {
1787 	call_void_hook(msg_msg_free_security, msg);
1788 	kfree(msg->security);
1789 	msg->security = NULL;
1790 }
1791 
1792 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1793 {
1794 	int rc = lsm_ipc_alloc(msq);
1795 
1796 	if (unlikely(rc))
1797 		return rc;
1798 	rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1799 	if (unlikely(rc))
1800 		security_msg_queue_free(msq);
1801 	return rc;
1802 }
1803 
1804 void security_msg_queue_free(struct kern_ipc_perm *msq)
1805 {
1806 	call_void_hook(msg_queue_free_security, msq);
1807 	kfree(msq->security);
1808 	msq->security = NULL;
1809 }
1810 
1811 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1812 {
1813 	return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1814 }
1815 
1816 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1817 {
1818 	return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1819 }
1820 
1821 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1822 			       struct msg_msg *msg, int msqflg)
1823 {
1824 	return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1825 }
1826 
1827 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1828 			       struct task_struct *target, long type, int mode)
1829 {
1830 	return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1831 }
1832 
1833 int security_shm_alloc(struct kern_ipc_perm *shp)
1834 {
1835 	int rc = lsm_ipc_alloc(shp);
1836 
1837 	if (unlikely(rc))
1838 		return rc;
1839 	rc = call_int_hook(shm_alloc_security, 0, shp);
1840 	if (unlikely(rc))
1841 		security_shm_free(shp);
1842 	return rc;
1843 }
1844 
1845 void security_shm_free(struct kern_ipc_perm *shp)
1846 {
1847 	call_void_hook(shm_free_security, shp);
1848 	kfree(shp->security);
1849 	shp->security = NULL;
1850 }
1851 
1852 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1853 {
1854 	return call_int_hook(shm_associate, 0, shp, shmflg);
1855 }
1856 
1857 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1858 {
1859 	return call_int_hook(shm_shmctl, 0, shp, cmd);
1860 }
1861 
1862 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1863 {
1864 	return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1865 }
1866 
1867 int security_sem_alloc(struct kern_ipc_perm *sma)
1868 {
1869 	int rc = lsm_ipc_alloc(sma);
1870 
1871 	if (unlikely(rc))
1872 		return rc;
1873 	rc = call_int_hook(sem_alloc_security, 0, sma);
1874 	if (unlikely(rc))
1875 		security_sem_free(sma);
1876 	return rc;
1877 }
1878 
1879 void security_sem_free(struct kern_ipc_perm *sma)
1880 {
1881 	call_void_hook(sem_free_security, sma);
1882 	kfree(sma->security);
1883 	sma->security = NULL;
1884 }
1885 
1886 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1887 {
1888 	return call_int_hook(sem_associate, 0, sma, semflg);
1889 }
1890 
1891 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1892 {
1893 	return call_int_hook(sem_semctl, 0, sma, cmd);
1894 }
1895 
1896 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1897 			unsigned nsops, int alter)
1898 {
1899 	return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1900 }
1901 
1902 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1903 {
1904 	if (unlikely(inode && IS_PRIVATE(inode)))
1905 		return;
1906 	call_void_hook(d_instantiate, dentry, inode);
1907 }
1908 EXPORT_SYMBOL(security_d_instantiate);
1909 
1910 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
1911 				char **value)
1912 {
1913 	struct security_hook_list *hp;
1914 
1915 	hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
1916 		if (lsm != NULL && strcmp(lsm, hp->lsm))
1917 			continue;
1918 		return hp->hook.getprocattr(p, name, value);
1919 	}
1920 	return -EINVAL;
1921 }
1922 
1923 int security_setprocattr(const char *lsm, const char *name, void *value,
1924 			 size_t size)
1925 {
1926 	struct security_hook_list *hp;
1927 
1928 	hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
1929 		if (lsm != NULL && strcmp(lsm, hp->lsm))
1930 			continue;
1931 		return hp->hook.setprocattr(name, value, size);
1932 	}
1933 	return -EINVAL;
1934 }
1935 
1936 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1937 {
1938 	return call_int_hook(netlink_send, 0, sk, skb);
1939 }
1940 
1941 int security_ismaclabel(const char *name)
1942 {
1943 	return call_int_hook(ismaclabel, 0, name);
1944 }
1945 EXPORT_SYMBOL(security_ismaclabel);
1946 
1947 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1948 {
1949 	return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1950 				seclen);
1951 }
1952 EXPORT_SYMBOL(security_secid_to_secctx);
1953 
1954 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1955 {
1956 	*secid = 0;
1957 	return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1958 }
1959 EXPORT_SYMBOL(security_secctx_to_secid);
1960 
1961 void security_release_secctx(char *secdata, u32 seclen)
1962 {
1963 	call_void_hook(release_secctx, secdata, seclen);
1964 }
1965 EXPORT_SYMBOL(security_release_secctx);
1966 
1967 void security_inode_invalidate_secctx(struct inode *inode)
1968 {
1969 	call_void_hook(inode_invalidate_secctx, inode);
1970 }
1971 EXPORT_SYMBOL(security_inode_invalidate_secctx);
1972 
1973 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1974 {
1975 	return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1976 }
1977 EXPORT_SYMBOL(security_inode_notifysecctx);
1978 
1979 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1980 {
1981 	return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
1982 }
1983 EXPORT_SYMBOL(security_inode_setsecctx);
1984 
1985 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1986 {
1987 	return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
1988 }
1989 EXPORT_SYMBOL(security_inode_getsecctx);
1990 
1991 #ifdef CONFIG_SECURITY_NETWORK
1992 
1993 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1994 {
1995 	return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
1996 }
1997 EXPORT_SYMBOL(security_unix_stream_connect);
1998 
1999 int security_unix_may_send(struct socket *sock,  struct socket *other)
2000 {
2001 	return call_int_hook(unix_may_send, 0, sock, other);
2002 }
2003 EXPORT_SYMBOL(security_unix_may_send);
2004 
2005 int security_socket_create(int family, int type, int protocol, int kern)
2006 {
2007 	return call_int_hook(socket_create, 0, family, type, protocol, kern);
2008 }
2009 
2010 int security_socket_post_create(struct socket *sock, int family,
2011 				int type, int protocol, int kern)
2012 {
2013 	return call_int_hook(socket_post_create, 0, sock, family, type,
2014 						protocol, kern);
2015 }
2016 
2017 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2018 {
2019 	return call_int_hook(socket_socketpair, 0, socka, sockb);
2020 }
2021 EXPORT_SYMBOL(security_socket_socketpair);
2022 
2023 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2024 {
2025 	return call_int_hook(socket_bind, 0, sock, address, addrlen);
2026 }
2027 
2028 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2029 {
2030 	return call_int_hook(socket_connect, 0, sock, address, addrlen);
2031 }
2032 
2033 int security_socket_listen(struct socket *sock, int backlog)
2034 {
2035 	return call_int_hook(socket_listen, 0, sock, backlog);
2036 }
2037 
2038 int security_socket_accept(struct socket *sock, struct socket *newsock)
2039 {
2040 	return call_int_hook(socket_accept, 0, sock, newsock);
2041 }
2042 
2043 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2044 {
2045 	return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2046 }
2047 
2048 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2049 			    int size, int flags)
2050 {
2051 	return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2052 }
2053 
2054 int security_socket_getsockname(struct socket *sock)
2055 {
2056 	return call_int_hook(socket_getsockname, 0, sock);
2057 }
2058 
2059 int security_socket_getpeername(struct socket *sock)
2060 {
2061 	return call_int_hook(socket_getpeername, 0, sock);
2062 }
2063 
2064 int security_socket_getsockopt(struct socket *sock, int level, int optname)
2065 {
2066 	return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2067 }
2068 
2069 int security_socket_setsockopt(struct socket *sock, int level, int optname)
2070 {
2071 	return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2072 }
2073 
2074 int security_socket_shutdown(struct socket *sock, int how)
2075 {
2076 	return call_int_hook(socket_shutdown, 0, sock, how);
2077 }
2078 
2079 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2080 {
2081 	return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2082 }
2083 EXPORT_SYMBOL(security_sock_rcv_skb);
2084 
2085 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2086 				      int __user *optlen, unsigned len)
2087 {
2088 	return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2089 				optval, optlen, len);
2090 }
2091 
2092 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2093 {
2094 	return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2095 			     skb, secid);
2096 }
2097 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2098 
2099 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2100 {
2101 	return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2102 }
2103 
2104 void security_sk_free(struct sock *sk)
2105 {
2106 	call_void_hook(sk_free_security, sk);
2107 }
2108 
2109 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2110 {
2111 	call_void_hook(sk_clone_security, sk, newsk);
2112 }
2113 EXPORT_SYMBOL(security_sk_clone);
2114 
2115 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2116 {
2117 	call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
2118 }
2119 EXPORT_SYMBOL(security_sk_classify_flow);
2120 
2121 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2122 {
2123 	call_void_hook(req_classify_flow, req, fl);
2124 }
2125 EXPORT_SYMBOL(security_req_classify_flow);
2126 
2127 void security_sock_graft(struct sock *sk, struct socket *parent)
2128 {
2129 	call_void_hook(sock_graft, sk, parent);
2130 }
2131 EXPORT_SYMBOL(security_sock_graft);
2132 
2133 int security_inet_conn_request(struct sock *sk,
2134 			struct sk_buff *skb, struct request_sock *req)
2135 {
2136 	return call_int_hook(inet_conn_request, 0, sk, skb, req);
2137 }
2138 EXPORT_SYMBOL(security_inet_conn_request);
2139 
2140 void security_inet_csk_clone(struct sock *newsk,
2141 			const struct request_sock *req)
2142 {
2143 	call_void_hook(inet_csk_clone, newsk, req);
2144 }
2145 
2146 void security_inet_conn_established(struct sock *sk,
2147 			struct sk_buff *skb)
2148 {
2149 	call_void_hook(inet_conn_established, sk, skb);
2150 }
2151 EXPORT_SYMBOL(security_inet_conn_established);
2152 
2153 int security_secmark_relabel_packet(u32 secid)
2154 {
2155 	return call_int_hook(secmark_relabel_packet, 0, secid);
2156 }
2157 EXPORT_SYMBOL(security_secmark_relabel_packet);
2158 
2159 void security_secmark_refcount_inc(void)
2160 {
2161 	call_void_hook(secmark_refcount_inc);
2162 }
2163 EXPORT_SYMBOL(security_secmark_refcount_inc);
2164 
2165 void security_secmark_refcount_dec(void)
2166 {
2167 	call_void_hook(secmark_refcount_dec);
2168 }
2169 EXPORT_SYMBOL(security_secmark_refcount_dec);
2170 
2171 int security_tun_dev_alloc_security(void **security)
2172 {
2173 	return call_int_hook(tun_dev_alloc_security, 0, security);
2174 }
2175 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2176 
2177 void security_tun_dev_free_security(void *security)
2178 {
2179 	call_void_hook(tun_dev_free_security, security);
2180 }
2181 EXPORT_SYMBOL(security_tun_dev_free_security);
2182 
2183 int security_tun_dev_create(void)
2184 {
2185 	return call_int_hook(tun_dev_create, 0);
2186 }
2187 EXPORT_SYMBOL(security_tun_dev_create);
2188 
2189 int security_tun_dev_attach_queue(void *security)
2190 {
2191 	return call_int_hook(tun_dev_attach_queue, 0, security);
2192 }
2193 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2194 
2195 int security_tun_dev_attach(struct sock *sk, void *security)
2196 {
2197 	return call_int_hook(tun_dev_attach, 0, sk, security);
2198 }
2199 EXPORT_SYMBOL(security_tun_dev_attach);
2200 
2201 int security_tun_dev_open(void *security)
2202 {
2203 	return call_int_hook(tun_dev_open, 0, security);
2204 }
2205 EXPORT_SYMBOL(security_tun_dev_open);
2206 
2207 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2208 {
2209 	return call_int_hook(sctp_assoc_request, 0, ep, skb);
2210 }
2211 EXPORT_SYMBOL(security_sctp_assoc_request);
2212 
2213 int security_sctp_bind_connect(struct sock *sk, int optname,
2214 			       struct sockaddr *address, int addrlen)
2215 {
2216 	return call_int_hook(sctp_bind_connect, 0, sk, optname,
2217 			     address, addrlen);
2218 }
2219 EXPORT_SYMBOL(security_sctp_bind_connect);
2220 
2221 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2222 			    struct sock *newsk)
2223 {
2224 	call_void_hook(sctp_sk_clone, ep, sk, newsk);
2225 }
2226 EXPORT_SYMBOL(security_sctp_sk_clone);
2227 
2228 #endif	/* CONFIG_SECURITY_NETWORK */
2229 
2230 #ifdef CONFIG_SECURITY_INFINIBAND
2231 
2232 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2233 {
2234 	return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2235 }
2236 EXPORT_SYMBOL(security_ib_pkey_access);
2237 
2238 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2239 {
2240 	return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2241 }
2242 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2243 
2244 int security_ib_alloc_security(void **sec)
2245 {
2246 	return call_int_hook(ib_alloc_security, 0, sec);
2247 }
2248 EXPORT_SYMBOL(security_ib_alloc_security);
2249 
2250 void security_ib_free_security(void *sec)
2251 {
2252 	call_void_hook(ib_free_security, sec);
2253 }
2254 EXPORT_SYMBOL(security_ib_free_security);
2255 #endif	/* CONFIG_SECURITY_INFINIBAND */
2256 
2257 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2258 
2259 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2260 			       struct xfrm_user_sec_ctx *sec_ctx,
2261 			       gfp_t gfp)
2262 {
2263 	return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2264 }
2265 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2266 
2267 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2268 			      struct xfrm_sec_ctx **new_ctxp)
2269 {
2270 	return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2271 }
2272 
2273 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2274 {
2275 	call_void_hook(xfrm_policy_free_security, ctx);
2276 }
2277 EXPORT_SYMBOL(security_xfrm_policy_free);
2278 
2279 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2280 {
2281 	return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2282 }
2283 
2284 int security_xfrm_state_alloc(struct xfrm_state *x,
2285 			      struct xfrm_user_sec_ctx *sec_ctx)
2286 {
2287 	return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2288 }
2289 EXPORT_SYMBOL(security_xfrm_state_alloc);
2290 
2291 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2292 				      struct xfrm_sec_ctx *polsec, u32 secid)
2293 {
2294 	return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2295 }
2296 
2297 int security_xfrm_state_delete(struct xfrm_state *x)
2298 {
2299 	return call_int_hook(xfrm_state_delete_security, 0, x);
2300 }
2301 EXPORT_SYMBOL(security_xfrm_state_delete);
2302 
2303 void security_xfrm_state_free(struct xfrm_state *x)
2304 {
2305 	call_void_hook(xfrm_state_free_security, x);
2306 }
2307 
2308 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2309 {
2310 	return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2311 }
2312 
2313 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2314 				       struct xfrm_policy *xp,
2315 				       const struct flowi *fl)
2316 {
2317 	struct security_hook_list *hp;
2318 	int rc = 1;
2319 
2320 	/*
2321 	 * Since this function is expected to return 0 or 1, the judgment
2322 	 * becomes difficult if multiple LSMs supply this call. Fortunately,
2323 	 * we can use the first LSM's judgment because currently only SELinux
2324 	 * supplies this call.
2325 	 *
2326 	 * For speed optimization, we explicitly break the loop rather than
2327 	 * using the macro
2328 	 */
2329 	hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2330 				list) {
2331 		rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
2332 		break;
2333 	}
2334 	return rc;
2335 }
2336 
2337 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2338 {
2339 	return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2340 }
2341 
2342 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
2343 {
2344 	int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
2345 				0);
2346 
2347 	BUG_ON(rc);
2348 }
2349 EXPORT_SYMBOL(security_skb_classify_flow);
2350 
2351 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
2352 
2353 #ifdef CONFIG_KEYS
2354 
2355 int security_key_alloc(struct key *key, const struct cred *cred,
2356 		       unsigned long flags)
2357 {
2358 	return call_int_hook(key_alloc, 0, key, cred, flags);
2359 }
2360 
2361 void security_key_free(struct key *key)
2362 {
2363 	call_void_hook(key_free, key);
2364 }
2365 
2366 int security_key_permission(key_ref_t key_ref,
2367 			    const struct cred *cred, unsigned perm)
2368 {
2369 	return call_int_hook(key_permission, 0, key_ref, cred, perm);
2370 }
2371 
2372 int security_key_getsecurity(struct key *key, char **_buffer)
2373 {
2374 	*_buffer = NULL;
2375 	return call_int_hook(key_getsecurity, 0, key, _buffer);
2376 }
2377 
2378 #endif	/* CONFIG_KEYS */
2379 
2380 #ifdef CONFIG_AUDIT
2381 
2382 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2383 {
2384 	return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2385 }
2386 
2387 int security_audit_rule_known(struct audit_krule *krule)
2388 {
2389 	return call_int_hook(audit_rule_known, 0, krule);
2390 }
2391 
2392 void security_audit_rule_free(void *lsmrule)
2393 {
2394 	call_void_hook(audit_rule_free, lsmrule);
2395 }
2396 
2397 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2398 {
2399 	return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2400 }
2401 #endif /* CONFIG_AUDIT */
2402 
2403 #ifdef CONFIG_BPF_SYSCALL
2404 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2405 {
2406 	return call_int_hook(bpf, 0, cmd, attr, size);
2407 }
2408 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2409 {
2410 	return call_int_hook(bpf_map, 0, map, fmode);
2411 }
2412 int security_bpf_prog(struct bpf_prog *prog)
2413 {
2414 	return call_int_hook(bpf_prog, 0, prog);
2415 }
2416 int security_bpf_map_alloc(struct bpf_map *map)
2417 {
2418 	return call_int_hook(bpf_map_alloc_security, 0, map);
2419 }
2420 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2421 {
2422 	return call_int_hook(bpf_prog_alloc_security, 0, aux);
2423 }
2424 void security_bpf_map_free(struct bpf_map *map)
2425 {
2426 	call_void_hook(bpf_map_free_security, map);
2427 }
2428 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2429 {
2430 	call_void_hook(bpf_prog_free_security, aux);
2431 }
2432 #endif /* CONFIG_BPF_SYSCALL */
2433 
2434 int security_locked_down(enum lockdown_reason what)
2435 {
2436 	return call_int_hook(locked_down, 0, what);
2437 }
2438 EXPORT_SYMBOL(security_locked_down);
2439 
2440 #ifdef CONFIG_PERF_EVENTS
2441 int security_perf_event_open(struct perf_event_attr *attr, int type)
2442 {
2443 	return call_int_hook(perf_event_open, 0, attr, type);
2444 }
2445 
2446 int security_perf_event_alloc(struct perf_event *event)
2447 {
2448 	return call_int_hook(perf_event_alloc, 0, event);
2449 }
2450 
2451 void security_perf_event_free(struct perf_event *event)
2452 {
2453 	call_void_hook(perf_event_free, event);
2454 }
2455 
2456 int security_perf_event_read(struct perf_event *event)
2457 {
2458 	return call_int_hook(perf_event_read, 0, event);
2459 }
2460 
2461 int security_perf_event_write(struct perf_event *event)
2462 {
2463 	return call_int_hook(perf_event_write, 0, event);
2464 }
2465 #endif /* CONFIG_PERF_EVENTS */
2466