xref: /openbmc/linux/security/security.c (revision 5d4a2e29)
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *	This program is free software; you can redistribute it and/or modify
9  *	it under the terms of the GNU General Public License as published by
10  *	the Free Software Foundation; either version 2 of the License, or
11  *	(at your option) any later version.
12  */
13 
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/ima.h>
20 
21 /* Boot-time LSM user choice */
22 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
23 	CONFIG_DEFAULT_SECURITY;
24 
25 /* things that live in capability.c */
26 extern void __init security_fixup_ops(struct security_operations *ops);
27 
28 static struct security_operations *security_ops;
29 static struct security_operations default_security_ops = {
30 	.name	= "default",
31 };
32 
33 static inline int __init verify(struct security_operations *ops)
34 {
35 	/* verify the security_operations structure exists */
36 	if (!ops)
37 		return -EINVAL;
38 	security_fixup_ops(ops);
39 	return 0;
40 }
41 
42 static void __init do_security_initcalls(void)
43 {
44 	initcall_t *call;
45 	call = __security_initcall_start;
46 	while (call < __security_initcall_end) {
47 		(*call) ();
48 		call++;
49 	}
50 }
51 
52 /**
53  * security_init - initializes the security framework
54  *
55  * This should be called early in the kernel initialization sequence.
56  */
57 int __init security_init(void)
58 {
59 	printk(KERN_INFO "Security Framework initialized\n");
60 
61 	security_fixup_ops(&default_security_ops);
62 	security_ops = &default_security_ops;
63 	do_security_initcalls();
64 
65 	return 0;
66 }
67 
68 void reset_security_ops(void)
69 {
70 	security_ops = &default_security_ops;
71 }
72 
73 /* Save user chosen LSM */
74 static int __init choose_lsm(char *str)
75 {
76 	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
77 	return 1;
78 }
79 __setup("security=", choose_lsm);
80 
81 /**
82  * security_module_enable - Load given security module on boot ?
83  * @ops: a pointer to the struct security_operations that is to be checked.
84  *
85  * Each LSM must pass this method before registering its own operations
86  * to avoid security registration races. This method may also be used
87  * to check if your LSM is currently loaded during kernel initialization.
88  *
89  * Return true if:
90  *	-The passed LSM is the one chosen by user at boot time,
91  *	-or the passed LSM is configured as the default and the user did not
92  *	 choose an alternate LSM at boot time,
93  *	-or there is no default LSM set and the user didn't specify a
94  *	 specific LSM and we're the first to ask for registration permission,
95  *	-or the passed LSM is currently loaded.
96  * Otherwise, return false.
97  */
98 int __init security_module_enable(struct security_operations *ops)
99 {
100 	if (!*chosen_lsm)
101 		strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
102 	else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
103 		return 0;
104 
105 	return 1;
106 }
107 
108 /**
109  * register_security - registers a security framework with the kernel
110  * @ops: a pointer to the struct security_options that is to be registered
111  *
112  * This function allows a security module to register itself with the
113  * kernel security subsystem.  Some rudimentary checking is done on the @ops
114  * value passed to this function. You'll need to check first if your LSM
115  * is allowed to register its @ops by calling security_module_enable(@ops).
116  *
117  * If there is already a security module registered with the kernel,
118  * an error will be returned.  Otherwise %0 is returned on success.
119  */
120 int __init register_security(struct security_operations *ops)
121 {
122 	if (verify(ops)) {
123 		printk(KERN_DEBUG "%s could not verify "
124 		       "security_operations structure.\n", __func__);
125 		return -EINVAL;
126 	}
127 
128 	if (security_ops != &default_security_ops)
129 		return -EAGAIN;
130 
131 	security_ops = ops;
132 
133 	return 0;
134 }
135 
136 /* Security operations */
137 
138 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
139 {
140 	return security_ops->ptrace_access_check(child, mode);
141 }
142 
143 int security_ptrace_traceme(struct task_struct *parent)
144 {
145 	return security_ops->ptrace_traceme(parent);
146 }
147 
148 int security_capget(struct task_struct *target,
149 		     kernel_cap_t *effective,
150 		     kernel_cap_t *inheritable,
151 		     kernel_cap_t *permitted)
152 {
153 	return security_ops->capget(target, effective, inheritable, permitted);
154 }
155 
156 int security_capset(struct cred *new, const struct cred *old,
157 		    const kernel_cap_t *effective,
158 		    const kernel_cap_t *inheritable,
159 		    const kernel_cap_t *permitted)
160 {
161 	return security_ops->capset(new, old,
162 				    effective, inheritable, permitted);
163 }
164 
165 int security_capable(int cap)
166 {
167 	return security_ops->capable(current, current_cred(), cap,
168 				     SECURITY_CAP_AUDIT);
169 }
170 
171 int security_real_capable(struct task_struct *tsk, int cap)
172 {
173 	const struct cred *cred;
174 	int ret;
175 
176 	cred = get_task_cred(tsk);
177 	ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT);
178 	put_cred(cred);
179 	return ret;
180 }
181 
182 int security_real_capable_noaudit(struct task_struct *tsk, int cap)
183 {
184 	const struct cred *cred;
185 	int ret;
186 
187 	cred = get_task_cred(tsk);
188 	ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT);
189 	put_cred(cred);
190 	return ret;
191 }
192 
193 int security_sysctl(struct ctl_table *table, int op)
194 {
195 	return security_ops->sysctl(table, op);
196 }
197 
198 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
199 {
200 	return security_ops->quotactl(cmds, type, id, sb);
201 }
202 
203 int security_quota_on(struct dentry *dentry)
204 {
205 	return security_ops->quota_on(dentry);
206 }
207 
208 int security_syslog(int type, bool from_file)
209 {
210 	return security_ops->syslog(type, from_file);
211 }
212 
213 int security_settime(struct timespec *ts, struct timezone *tz)
214 {
215 	return security_ops->settime(ts, tz);
216 }
217 
218 int security_vm_enough_memory(long pages)
219 {
220 	WARN_ON(current->mm == NULL);
221 	return security_ops->vm_enough_memory(current->mm, pages);
222 }
223 
224 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
225 {
226 	WARN_ON(mm == NULL);
227 	return security_ops->vm_enough_memory(mm, pages);
228 }
229 
230 int security_vm_enough_memory_kern(long pages)
231 {
232 	/* If current->mm is a kernel thread then we will pass NULL,
233 	   for this specific case that is fine */
234 	return security_ops->vm_enough_memory(current->mm, pages);
235 }
236 
237 int security_bprm_set_creds(struct linux_binprm *bprm)
238 {
239 	return security_ops->bprm_set_creds(bprm);
240 }
241 
242 int security_bprm_check(struct linux_binprm *bprm)
243 {
244 	int ret;
245 
246 	ret = security_ops->bprm_check_security(bprm);
247 	if (ret)
248 		return ret;
249 	return ima_bprm_check(bprm);
250 }
251 
252 void security_bprm_committing_creds(struct linux_binprm *bprm)
253 {
254 	security_ops->bprm_committing_creds(bprm);
255 }
256 
257 void security_bprm_committed_creds(struct linux_binprm *bprm)
258 {
259 	security_ops->bprm_committed_creds(bprm);
260 }
261 
262 int security_bprm_secureexec(struct linux_binprm *bprm)
263 {
264 	return security_ops->bprm_secureexec(bprm);
265 }
266 
267 int security_sb_alloc(struct super_block *sb)
268 {
269 	return security_ops->sb_alloc_security(sb);
270 }
271 
272 void security_sb_free(struct super_block *sb)
273 {
274 	security_ops->sb_free_security(sb);
275 }
276 
277 int security_sb_copy_data(char *orig, char *copy)
278 {
279 	return security_ops->sb_copy_data(orig, copy);
280 }
281 EXPORT_SYMBOL(security_sb_copy_data);
282 
283 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
284 {
285 	return security_ops->sb_kern_mount(sb, flags, data);
286 }
287 
288 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
289 {
290 	return security_ops->sb_show_options(m, sb);
291 }
292 
293 int security_sb_statfs(struct dentry *dentry)
294 {
295 	return security_ops->sb_statfs(dentry);
296 }
297 
298 int security_sb_mount(char *dev_name, struct path *path,
299                        char *type, unsigned long flags, void *data)
300 {
301 	return security_ops->sb_mount(dev_name, path, type, flags, data);
302 }
303 
304 int security_sb_umount(struct vfsmount *mnt, int flags)
305 {
306 	return security_ops->sb_umount(mnt, flags);
307 }
308 
309 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
310 {
311 	return security_ops->sb_pivotroot(old_path, new_path);
312 }
313 
314 int security_sb_set_mnt_opts(struct super_block *sb,
315 				struct security_mnt_opts *opts)
316 {
317 	return security_ops->sb_set_mnt_opts(sb, opts);
318 }
319 EXPORT_SYMBOL(security_sb_set_mnt_opts);
320 
321 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
322 				struct super_block *newsb)
323 {
324 	security_ops->sb_clone_mnt_opts(oldsb, newsb);
325 }
326 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
327 
328 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
329 {
330 	return security_ops->sb_parse_opts_str(options, opts);
331 }
332 EXPORT_SYMBOL(security_sb_parse_opts_str);
333 
334 int security_inode_alloc(struct inode *inode)
335 {
336 	int ret;
337 
338 	inode->i_security = NULL;
339 	ret =  security_ops->inode_alloc_security(inode);
340 	if (ret)
341 		return ret;
342 	ret = ima_inode_alloc(inode);
343 	if (ret)
344 		security_inode_free(inode);
345 	return ret;
346 }
347 
348 void security_inode_free(struct inode *inode)
349 {
350 	ima_inode_free(inode);
351 	security_ops->inode_free_security(inode);
352 }
353 
354 int security_inode_init_security(struct inode *inode, struct inode *dir,
355 				  char **name, void **value, size_t *len)
356 {
357 	if (unlikely(IS_PRIVATE(inode)))
358 		return -EOPNOTSUPP;
359 	return security_ops->inode_init_security(inode, dir, name, value, len);
360 }
361 EXPORT_SYMBOL(security_inode_init_security);
362 
363 #ifdef CONFIG_SECURITY_PATH
364 int security_path_mknod(struct path *dir, struct dentry *dentry, int mode,
365 			unsigned int dev)
366 {
367 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
368 		return 0;
369 	return security_ops->path_mknod(dir, dentry, mode, dev);
370 }
371 EXPORT_SYMBOL(security_path_mknod);
372 
373 int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode)
374 {
375 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
376 		return 0;
377 	return security_ops->path_mkdir(dir, dentry, mode);
378 }
379 
380 int security_path_rmdir(struct path *dir, struct dentry *dentry)
381 {
382 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
383 		return 0;
384 	return security_ops->path_rmdir(dir, dentry);
385 }
386 
387 int security_path_unlink(struct path *dir, struct dentry *dentry)
388 {
389 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
390 		return 0;
391 	return security_ops->path_unlink(dir, dentry);
392 }
393 
394 int security_path_symlink(struct path *dir, struct dentry *dentry,
395 			  const char *old_name)
396 {
397 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
398 		return 0;
399 	return security_ops->path_symlink(dir, dentry, old_name);
400 }
401 
402 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
403 		       struct dentry *new_dentry)
404 {
405 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
406 		return 0;
407 	return security_ops->path_link(old_dentry, new_dir, new_dentry);
408 }
409 
410 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
411 			 struct path *new_dir, struct dentry *new_dentry)
412 {
413 	if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
414 		     (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
415 		return 0;
416 	return security_ops->path_rename(old_dir, old_dentry, new_dir,
417 					 new_dentry);
418 }
419 
420 int security_path_truncate(struct path *path, loff_t length,
421 			   unsigned int time_attrs)
422 {
423 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
424 		return 0;
425 	return security_ops->path_truncate(path, length, time_attrs);
426 }
427 
428 int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt,
429 			mode_t mode)
430 {
431 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
432 		return 0;
433 	return security_ops->path_chmod(dentry, mnt, mode);
434 }
435 
436 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
437 {
438 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
439 		return 0;
440 	return security_ops->path_chown(path, uid, gid);
441 }
442 
443 int security_path_chroot(struct path *path)
444 {
445 	return security_ops->path_chroot(path);
446 }
447 #endif
448 
449 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
450 {
451 	if (unlikely(IS_PRIVATE(dir)))
452 		return 0;
453 	return security_ops->inode_create(dir, dentry, mode);
454 }
455 EXPORT_SYMBOL_GPL(security_inode_create);
456 
457 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
458 			 struct dentry *new_dentry)
459 {
460 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
461 		return 0;
462 	return security_ops->inode_link(old_dentry, dir, new_dentry);
463 }
464 
465 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
466 {
467 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
468 		return 0;
469 	return security_ops->inode_unlink(dir, dentry);
470 }
471 
472 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
473 			    const char *old_name)
474 {
475 	if (unlikely(IS_PRIVATE(dir)))
476 		return 0;
477 	return security_ops->inode_symlink(dir, dentry, old_name);
478 }
479 
480 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
481 {
482 	if (unlikely(IS_PRIVATE(dir)))
483 		return 0;
484 	return security_ops->inode_mkdir(dir, dentry, mode);
485 }
486 EXPORT_SYMBOL_GPL(security_inode_mkdir);
487 
488 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
489 {
490 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
491 		return 0;
492 	return security_ops->inode_rmdir(dir, dentry);
493 }
494 
495 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
496 {
497 	if (unlikely(IS_PRIVATE(dir)))
498 		return 0;
499 	return security_ops->inode_mknod(dir, dentry, mode, dev);
500 }
501 
502 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
503 			   struct inode *new_dir, struct dentry *new_dentry)
504 {
505         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
506             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
507 		return 0;
508 	return security_ops->inode_rename(old_dir, old_dentry,
509 					   new_dir, new_dentry);
510 }
511 
512 int security_inode_readlink(struct dentry *dentry)
513 {
514 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
515 		return 0;
516 	return security_ops->inode_readlink(dentry);
517 }
518 
519 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
520 {
521 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
522 		return 0;
523 	return security_ops->inode_follow_link(dentry, nd);
524 }
525 
526 int security_inode_permission(struct inode *inode, int mask)
527 {
528 	if (unlikely(IS_PRIVATE(inode)))
529 		return 0;
530 	return security_ops->inode_permission(inode, mask);
531 }
532 
533 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
534 {
535 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
536 		return 0;
537 	return security_ops->inode_setattr(dentry, attr);
538 }
539 EXPORT_SYMBOL_GPL(security_inode_setattr);
540 
541 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
542 {
543 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
544 		return 0;
545 	return security_ops->inode_getattr(mnt, dentry);
546 }
547 
548 int security_inode_setxattr(struct dentry *dentry, const char *name,
549 			    const void *value, size_t size, int flags)
550 {
551 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
552 		return 0;
553 	return security_ops->inode_setxattr(dentry, name, value, size, flags);
554 }
555 
556 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
557 				  const void *value, size_t size, int flags)
558 {
559 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
560 		return;
561 	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
562 }
563 
564 int security_inode_getxattr(struct dentry *dentry, const char *name)
565 {
566 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
567 		return 0;
568 	return security_ops->inode_getxattr(dentry, name);
569 }
570 
571 int security_inode_listxattr(struct dentry *dentry)
572 {
573 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
574 		return 0;
575 	return security_ops->inode_listxattr(dentry);
576 }
577 
578 int security_inode_removexattr(struct dentry *dentry, const char *name)
579 {
580 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
581 		return 0;
582 	return security_ops->inode_removexattr(dentry, name);
583 }
584 
585 int security_inode_need_killpriv(struct dentry *dentry)
586 {
587 	return security_ops->inode_need_killpriv(dentry);
588 }
589 
590 int security_inode_killpriv(struct dentry *dentry)
591 {
592 	return security_ops->inode_killpriv(dentry);
593 }
594 
595 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
596 {
597 	if (unlikely(IS_PRIVATE(inode)))
598 		return -EOPNOTSUPP;
599 	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
600 }
601 
602 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
603 {
604 	if (unlikely(IS_PRIVATE(inode)))
605 		return -EOPNOTSUPP;
606 	return security_ops->inode_setsecurity(inode, name, value, size, flags);
607 }
608 
609 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
610 {
611 	if (unlikely(IS_PRIVATE(inode)))
612 		return 0;
613 	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
614 }
615 
616 void security_inode_getsecid(const struct inode *inode, u32 *secid)
617 {
618 	security_ops->inode_getsecid(inode, secid);
619 }
620 
621 int security_file_permission(struct file *file, int mask)
622 {
623 	return security_ops->file_permission(file, mask);
624 }
625 
626 int security_file_alloc(struct file *file)
627 {
628 	return security_ops->file_alloc_security(file);
629 }
630 
631 void security_file_free(struct file *file)
632 {
633 	security_ops->file_free_security(file);
634 }
635 
636 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
637 {
638 	return security_ops->file_ioctl(file, cmd, arg);
639 }
640 
641 int security_file_mmap(struct file *file, unsigned long reqprot,
642 			unsigned long prot, unsigned long flags,
643 			unsigned long addr, unsigned long addr_only)
644 {
645 	int ret;
646 
647 	ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
648 	if (ret)
649 		return ret;
650 	return ima_file_mmap(file, prot);
651 }
652 
653 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
654 			    unsigned long prot)
655 {
656 	return security_ops->file_mprotect(vma, reqprot, prot);
657 }
658 
659 int security_file_lock(struct file *file, unsigned int cmd)
660 {
661 	return security_ops->file_lock(file, cmd);
662 }
663 
664 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
665 {
666 	return security_ops->file_fcntl(file, cmd, arg);
667 }
668 
669 int security_file_set_fowner(struct file *file)
670 {
671 	return security_ops->file_set_fowner(file);
672 }
673 
674 int security_file_send_sigiotask(struct task_struct *tsk,
675 				  struct fown_struct *fown, int sig)
676 {
677 	return security_ops->file_send_sigiotask(tsk, fown, sig);
678 }
679 
680 int security_file_receive(struct file *file)
681 {
682 	return security_ops->file_receive(file);
683 }
684 
685 int security_dentry_open(struct file *file, const struct cred *cred)
686 {
687 	return security_ops->dentry_open(file, cred);
688 }
689 
690 int security_task_create(unsigned long clone_flags)
691 {
692 	return security_ops->task_create(clone_flags);
693 }
694 
695 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
696 {
697 	return security_ops->cred_alloc_blank(cred, gfp);
698 }
699 
700 void security_cred_free(struct cred *cred)
701 {
702 	security_ops->cred_free(cred);
703 }
704 
705 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
706 {
707 	return security_ops->cred_prepare(new, old, gfp);
708 }
709 
710 void security_transfer_creds(struct cred *new, const struct cred *old)
711 {
712 	security_ops->cred_transfer(new, old);
713 }
714 
715 int security_kernel_act_as(struct cred *new, u32 secid)
716 {
717 	return security_ops->kernel_act_as(new, secid);
718 }
719 
720 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
721 {
722 	return security_ops->kernel_create_files_as(new, inode);
723 }
724 
725 int security_kernel_module_request(char *kmod_name)
726 {
727 	return security_ops->kernel_module_request(kmod_name);
728 }
729 
730 int security_task_fix_setuid(struct cred *new, const struct cred *old,
731 			     int flags)
732 {
733 	return security_ops->task_fix_setuid(new, old, flags);
734 }
735 
736 int security_task_setpgid(struct task_struct *p, pid_t pgid)
737 {
738 	return security_ops->task_setpgid(p, pgid);
739 }
740 
741 int security_task_getpgid(struct task_struct *p)
742 {
743 	return security_ops->task_getpgid(p);
744 }
745 
746 int security_task_getsid(struct task_struct *p)
747 {
748 	return security_ops->task_getsid(p);
749 }
750 
751 void security_task_getsecid(struct task_struct *p, u32 *secid)
752 {
753 	security_ops->task_getsecid(p, secid);
754 }
755 EXPORT_SYMBOL(security_task_getsecid);
756 
757 int security_task_setnice(struct task_struct *p, int nice)
758 {
759 	return security_ops->task_setnice(p, nice);
760 }
761 
762 int security_task_setioprio(struct task_struct *p, int ioprio)
763 {
764 	return security_ops->task_setioprio(p, ioprio);
765 }
766 
767 int security_task_getioprio(struct task_struct *p)
768 {
769 	return security_ops->task_getioprio(p);
770 }
771 
772 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
773 {
774 	return security_ops->task_setrlimit(resource, new_rlim);
775 }
776 
777 int security_task_setscheduler(struct task_struct *p,
778 				int policy, struct sched_param *lp)
779 {
780 	return security_ops->task_setscheduler(p, policy, lp);
781 }
782 
783 int security_task_getscheduler(struct task_struct *p)
784 {
785 	return security_ops->task_getscheduler(p);
786 }
787 
788 int security_task_movememory(struct task_struct *p)
789 {
790 	return security_ops->task_movememory(p);
791 }
792 
793 int security_task_kill(struct task_struct *p, struct siginfo *info,
794 			int sig, u32 secid)
795 {
796 	return security_ops->task_kill(p, info, sig, secid);
797 }
798 
799 int security_task_wait(struct task_struct *p)
800 {
801 	return security_ops->task_wait(p);
802 }
803 
804 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
805 			 unsigned long arg4, unsigned long arg5)
806 {
807 	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
808 }
809 
810 void security_task_to_inode(struct task_struct *p, struct inode *inode)
811 {
812 	security_ops->task_to_inode(p, inode);
813 }
814 
815 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
816 {
817 	return security_ops->ipc_permission(ipcp, flag);
818 }
819 
820 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
821 {
822 	security_ops->ipc_getsecid(ipcp, secid);
823 }
824 
825 int security_msg_msg_alloc(struct msg_msg *msg)
826 {
827 	return security_ops->msg_msg_alloc_security(msg);
828 }
829 
830 void security_msg_msg_free(struct msg_msg *msg)
831 {
832 	security_ops->msg_msg_free_security(msg);
833 }
834 
835 int security_msg_queue_alloc(struct msg_queue *msq)
836 {
837 	return security_ops->msg_queue_alloc_security(msq);
838 }
839 
840 void security_msg_queue_free(struct msg_queue *msq)
841 {
842 	security_ops->msg_queue_free_security(msq);
843 }
844 
845 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
846 {
847 	return security_ops->msg_queue_associate(msq, msqflg);
848 }
849 
850 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
851 {
852 	return security_ops->msg_queue_msgctl(msq, cmd);
853 }
854 
855 int security_msg_queue_msgsnd(struct msg_queue *msq,
856 			       struct msg_msg *msg, int msqflg)
857 {
858 	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
859 }
860 
861 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
862 			       struct task_struct *target, long type, int mode)
863 {
864 	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
865 }
866 
867 int security_shm_alloc(struct shmid_kernel *shp)
868 {
869 	return security_ops->shm_alloc_security(shp);
870 }
871 
872 void security_shm_free(struct shmid_kernel *shp)
873 {
874 	security_ops->shm_free_security(shp);
875 }
876 
877 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
878 {
879 	return security_ops->shm_associate(shp, shmflg);
880 }
881 
882 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
883 {
884 	return security_ops->shm_shmctl(shp, cmd);
885 }
886 
887 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
888 {
889 	return security_ops->shm_shmat(shp, shmaddr, shmflg);
890 }
891 
892 int security_sem_alloc(struct sem_array *sma)
893 {
894 	return security_ops->sem_alloc_security(sma);
895 }
896 
897 void security_sem_free(struct sem_array *sma)
898 {
899 	security_ops->sem_free_security(sma);
900 }
901 
902 int security_sem_associate(struct sem_array *sma, int semflg)
903 {
904 	return security_ops->sem_associate(sma, semflg);
905 }
906 
907 int security_sem_semctl(struct sem_array *sma, int cmd)
908 {
909 	return security_ops->sem_semctl(sma, cmd);
910 }
911 
912 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
913 			unsigned nsops, int alter)
914 {
915 	return security_ops->sem_semop(sma, sops, nsops, alter);
916 }
917 
918 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
919 {
920 	if (unlikely(inode && IS_PRIVATE(inode)))
921 		return;
922 	security_ops->d_instantiate(dentry, inode);
923 }
924 EXPORT_SYMBOL(security_d_instantiate);
925 
926 int security_getprocattr(struct task_struct *p, char *name, char **value)
927 {
928 	return security_ops->getprocattr(p, name, value);
929 }
930 
931 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
932 {
933 	return security_ops->setprocattr(p, name, value, size);
934 }
935 
936 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
937 {
938 	return security_ops->netlink_send(sk, skb);
939 }
940 
941 int security_netlink_recv(struct sk_buff *skb, int cap)
942 {
943 	return security_ops->netlink_recv(skb, cap);
944 }
945 EXPORT_SYMBOL(security_netlink_recv);
946 
947 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
948 {
949 	return security_ops->secid_to_secctx(secid, secdata, seclen);
950 }
951 EXPORT_SYMBOL(security_secid_to_secctx);
952 
953 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
954 {
955 	return security_ops->secctx_to_secid(secdata, seclen, secid);
956 }
957 EXPORT_SYMBOL(security_secctx_to_secid);
958 
959 void security_release_secctx(char *secdata, u32 seclen)
960 {
961 	security_ops->release_secctx(secdata, seclen);
962 }
963 EXPORT_SYMBOL(security_release_secctx);
964 
965 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
966 {
967 	return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
968 }
969 EXPORT_SYMBOL(security_inode_notifysecctx);
970 
971 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
972 {
973 	return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
974 }
975 EXPORT_SYMBOL(security_inode_setsecctx);
976 
977 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
978 {
979 	return security_ops->inode_getsecctx(inode, ctx, ctxlen);
980 }
981 EXPORT_SYMBOL(security_inode_getsecctx);
982 
983 #ifdef CONFIG_SECURITY_NETWORK
984 
985 int security_unix_stream_connect(struct socket *sock, struct socket *other,
986 				 struct sock *newsk)
987 {
988 	return security_ops->unix_stream_connect(sock, other, newsk);
989 }
990 EXPORT_SYMBOL(security_unix_stream_connect);
991 
992 int security_unix_may_send(struct socket *sock,  struct socket *other)
993 {
994 	return security_ops->unix_may_send(sock, other);
995 }
996 EXPORT_SYMBOL(security_unix_may_send);
997 
998 int security_socket_create(int family, int type, int protocol, int kern)
999 {
1000 	return security_ops->socket_create(family, type, protocol, kern);
1001 }
1002 
1003 int security_socket_post_create(struct socket *sock, int family,
1004 				int type, int protocol, int kern)
1005 {
1006 	return security_ops->socket_post_create(sock, family, type,
1007 						protocol, kern);
1008 }
1009 
1010 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1011 {
1012 	return security_ops->socket_bind(sock, address, addrlen);
1013 }
1014 
1015 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1016 {
1017 	return security_ops->socket_connect(sock, address, addrlen);
1018 }
1019 
1020 int security_socket_listen(struct socket *sock, int backlog)
1021 {
1022 	return security_ops->socket_listen(sock, backlog);
1023 }
1024 
1025 int security_socket_accept(struct socket *sock, struct socket *newsock)
1026 {
1027 	return security_ops->socket_accept(sock, newsock);
1028 }
1029 
1030 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1031 {
1032 	return security_ops->socket_sendmsg(sock, msg, size);
1033 }
1034 
1035 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1036 			    int size, int flags)
1037 {
1038 	return security_ops->socket_recvmsg(sock, msg, size, flags);
1039 }
1040 
1041 int security_socket_getsockname(struct socket *sock)
1042 {
1043 	return security_ops->socket_getsockname(sock);
1044 }
1045 
1046 int security_socket_getpeername(struct socket *sock)
1047 {
1048 	return security_ops->socket_getpeername(sock);
1049 }
1050 
1051 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1052 {
1053 	return security_ops->socket_getsockopt(sock, level, optname);
1054 }
1055 
1056 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1057 {
1058 	return security_ops->socket_setsockopt(sock, level, optname);
1059 }
1060 
1061 int security_socket_shutdown(struct socket *sock, int how)
1062 {
1063 	return security_ops->socket_shutdown(sock, how);
1064 }
1065 
1066 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1067 {
1068 	return security_ops->socket_sock_rcv_skb(sk, skb);
1069 }
1070 EXPORT_SYMBOL(security_sock_rcv_skb);
1071 
1072 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1073 				      int __user *optlen, unsigned len)
1074 {
1075 	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1076 }
1077 
1078 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1079 {
1080 	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1081 }
1082 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1083 
1084 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1085 {
1086 	return security_ops->sk_alloc_security(sk, family, priority);
1087 }
1088 
1089 void security_sk_free(struct sock *sk)
1090 {
1091 	security_ops->sk_free_security(sk);
1092 }
1093 
1094 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1095 {
1096 	security_ops->sk_clone_security(sk, newsk);
1097 }
1098 
1099 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1100 {
1101 	security_ops->sk_getsecid(sk, &fl->secid);
1102 }
1103 EXPORT_SYMBOL(security_sk_classify_flow);
1104 
1105 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1106 {
1107 	security_ops->req_classify_flow(req, fl);
1108 }
1109 EXPORT_SYMBOL(security_req_classify_flow);
1110 
1111 void security_sock_graft(struct sock *sk, struct socket *parent)
1112 {
1113 	security_ops->sock_graft(sk, parent);
1114 }
1115 EXPORT_SYMBOL(security_sock_graft);
1116 
1117 int security_inet_conn_request(struct sock *sk,
1118 			struct sk_buff *skb, struct request_sock *req)
1119 {
1120 	return security_ops->inet_conn_request(sk, skb, req);
1121 }
1122 EXPORT_SYMBOL(security_inet_conn_request);
1123 
1124 void security_inet_csk_clone(struct sock *newsk,
1125 			const struct request_sock *req)
1126 {
1127 	security_ops->inet_csk_clone(newsk, req);
1128 }
1129 
1130 void security_inet_conn_established(struct sock *sk,
1131 			struct sk_buff *skb)
1132 {
1133 	security_ops->inet_conn_established(sk, skb);
1134 }
1135 
1136 int security_tun_dev_create(void)
1137 {
1138 	return security_ops->tun_dev_create();
1139 }
1140 EXPORT_SYMBOL(security_tun_dev_create);
1141 
1142 void security_tun_dev_post_create(struct sock *sk)
1143 {
1144 	return security_ops->tun_dev_post_create(sk);
1145 }
1146 EXPORT_SYMBOL(security_tun_dev_post_create);
1147 
1148 int security_tun_dev_attach(struct sock *sk)
1149 {
1150 	return security_ops->tun_dev_attach(sk);
1151 }
1152 EXPORT_SYMBOL(security_tun_dev_attach);
1153 
1154 #endif	/* CONFIG_SECURITY_NETWORK */
1155 
1156 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1157 
1158 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1159 {
1160 	return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1161 }
1162 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1163 
1164 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1165 			      struct xfrm_sec_ctx **new_ctxp)
1166 {
1167 	return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1168 }
1169 
1170 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1171 {
1172 	security_ops->xfrm_policy_free_security(ctx);
1173 }
1174 EXPORT_SYMBOL(security_xfrm_policy_free);
1175 
1176 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1177 {
1178 	return security_ops->xfrm_policy_delete_security(ctx);
1179 }
1180 
1181 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1182 {
1183 	return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1184 }
1185 EXPORT_SYMBOL(security_xfrm_state_alloc);
1186 
1187 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1188 				      struct xfrm_sec_ctx *polsec, u32 secid)
1189 {
1190 	if (!polsec)
1191 		return 0;
1192 	/*
1193 	 * We want the context to be taken from secid which is usually
1194 	 * from the sock.
1195 	 */
1196 	return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1197 }
1198 
1199 int security_xfrm_state_delete(struct xfrm_state *x)
1200 {
1201 	return security_ops->xfrm_state_delete_security(x);
1202 }
1203 EXPORT_SYMBOL(security_xfrm_state_delete);
1204 
1205 void security_xfrm_state_free(struct xfrm_state *x)
1206 {
1207 	security_ops->xfrm_state_free_security(x);
1208 }
1209 
1210 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1211 {
1212 	return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1213 }
1214 
1215 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1216 				       struct xfrm_policy *xp, struct flowi *fl)
1217 {
1218 	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1219 }
1220 
1221 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1222 {
1223 	return security_ops->xfrm_decode_session(skb, secid, 1);
1224 }
1225 
1226 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1227 {
1228 	int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1229 
1230 	BUG_ON(rc);
1231 }
1232 EXPORT_SYMBOL(security_skb_classify_flow);
1233 
1234 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1235 
1236 #ifdef CONFIG_KEYS
1237 
1238 int security_key_alloc(struct key *key, const struct cred *cred,
1239 		       unsigned long flags)
1240 {
1241 	return security_ops->key_alloc(key, cred, flags);
1242 }
1243 
1244 void security_key_free(struct key *key)
1245 {
1246 	security_ops->key_free(key);
1247 }
1248 
1249 int security_key_permission(key_ref_t key_ref,
1250 			    const struct cred *cred, key_perm_t perm)
1251 {
1252 	return security_ops->key_permission(key_ref, cred, perm);
1253 }
1254 
1255 int security_key_getsecurity(struct key *key, char **_buffer)
1256 {
1257 	return security_ops->key_getsecurity(key, _buffer);
1258 }
1259 
1260 #endif	/* CONFIG_KEYS */
1261 
1262 #ifdef CONFIG_AUDIT
1263 
1264 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1265 {
1266 	return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1267 }
1268 
1269 int security_audit_rule_known(struct audit_krule *krule)
1270 {
1271 	return security_ops->audit_rule_known(krule);
1272 }
1273 
1274 void security_audit_rule_free(void *lsmrule)
1275 {
1276 	security_ops->audit_rule_free(lsmrule);
1277 }
1278 
1279 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1280 			      struct audit_context *actx)
1281 {
1282 	return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1283 }
1284 
1285 #endif /* CONFIG_AUDIT */
1286