1 /* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * Copyright (C) 2016 Mellanox Technologies 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 */ 14 15 #define pr_fmt(fmt) "LSM: " fmt 16 17 #include <linux/bpf.h> 18 #include <linux/capability.h> 19 #include <linux/dcache.h> 20 #include <linux/export.h> 21 #include <linux/init.h> 22 #include <linux/kernel.h> 23 #include <linux/lsm_hooks.h> 24 #include <linux/integrity.h> 25 #include <linux/ima.h> 26 #include <linux/evm.h> 27 #include <linux/fsnotify.h> 28 #include <linux/mman.h> 29 #include <linux/mount.h> 30 #include <linux/personality.h> 31 #include <linux/backing-dev.h> 32 #include <linux/string.h> 33 #include <net/flow.h> 34 35 #define MAX_LSM_EVM_XATTR 2 36 37 /* Maximum number of letters for an LSM name string */ 38 #define SECURITY_NAME_MAX 10 39 40 struct security_hook_heads security_hook_heads __lsm_ro_after_init; 41 static ATOMIC_NOTIFIER_HEAD(lsm_notifier_chain); 42 43 char *lsm_names; 44 /* Boot-time LSM user choice */ 45 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] = 46 CONFIG_DEFAULT_SECURITY; 47 48 static __initdata bool debug; 49 #define init_debug(...) \ 50 do { \ 51 if (debug) \ 52 pr_info(__VA_ARGS__); \ 53 } while (0) 54 55 static void __init major_lsm_init(void) 56 { 57 struct lsm_info *lsm; 58 int ret; 59 60 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 61 init_debug("initializing %s\n", lsm->name); 62 ret = lsm->init(); 63 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); 64 } 65 } 66 67 /** 68 * security_init - initializes the security framework 69 * 70 * This should be called early in the kernel initialization sequence. 71 */ 72 int __init security_init(void) 73 { 74 int i; 75 struct hlist_head *list = (struct hlist_head *) &security_hook_heads; 76 77 pr_info("Security Framework initializing\n"); 78 79 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head); 80 i++) 81 INIT_HLIST_HEAD(&list[i]); 82 83 /* 84 * Load minor LSMs, with the capability module always first. 85 */ 86 capability_add_hooks(); 87 yama_add_hooks(); 88 loadpin_add_hooks(); 89 90 /* 91 * Load all the remaining security modules. 92 */ 93 major_lsm_init(); 94 95 return 0; 96 } 97 98 /* Save user chosen LSM */ 99 static int __init choose_lsm(char *str) 100 { 101 strncpy(chosen_lsm, str, SECURITY_NAME_MAX); 102 return 1; 103 } 104 __setup("security=", choose_lsm); 105 106 /* Enable LSM order debugging. */ 107 static int __init enable_debug(char *str) 108 { 109 debug = true; 110 return 1; 111 } 112 __setup("lsm.debug", enable_debug); 113 114 static bool match_last_lsm(const char *list, const char *lsm) 115 { 116 const char *last; 117 118 if (WARN_ON(!list || !lsm)) 119 return false; 120 last = strrchr(list, ','); 121 if (last) 122 /* Pass the comma, strcmp() will check for '\0' */ 123 last++; 124 else 125 last = list; 126 return !strcmp(last, lsm); 127 } 128 129 static int lsm_append(char *new, char **result) 130 { 131 char *cp; 132 133 if (*result == NULL) { 134 *result = kstrdup(new, GFP_KERNEL); 135 if (*result == NULL) 136 return -ENOMEM; 137 } else { 138 /* Check if it is the last registered name */ 139 if (match_last_lsm(*result, new)) 140 return 0; 141 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 142 if (cp == NULL) 143 return -ENOMEM; 144 kfree(*result); 145 *result = cp; 146 } 147 return 0; 148 } 149 150 /** 151 * security_module_enable - Load given security module on boot ? 152 * @module: the name of the module 153 * 154 * Each LSM must pass this method before registering its own operations 155 * to avoid security registration races. This method may also be used 156 * to check if your LSM is currently loaded during kernel initialization. 157 * 158 * Returns: 159 * 160 * true if: 161 * 162 * - The passed LSM is the one chosen by user at boot time, 163 * - or the passed LSM is configured as the default and the user did not 164 * choose an alternate LSM at boot time. 165 * 166 * Otherwise, return false. 167 */ 168 int __init security_module_enable(const char *module) 169 { 170 return !strcmp(module, chosen_lsm); 171 } 172 173 /** 174 * security_add_hooks - Add a modules hooks to the hook lists. 175 * @hooks: the hooks to add 176 * @count: the number of hooks to add 177 * @lsm: the name of the security module 178 * 179 * Each LSM has to register its hooks with the infrastructure. 180 */ 181 void __init security_add_hooks(struct security_hook_list *hooks, int count, 182 char *lsm) 183 { 184 int i; 185 186 for (i = 0; i < count; i++) { 187 hooks[i].lsm = lsm; 188 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 189 } 190 if (lsm_append(lsm, &lsm_names) < 0) 191 panic("%s - Cannot get early memory.\n", __func__); 192 } 193 194 int call_lsm_notifier(enum lsm_event event, void *data) 195 { 196 return atomic_notifier_call_chain(&lsm_notifier_chain, event, data); 197 } 198 EXPORT_SYMBOL(call_lsm_notifier); 199 200 int register_lsm_notifier(struct notifier_block *nb) 201 { 202 return atomic_notifier_chain_register(&lsm_notifier_chain, nb); 203 } 204 EXPORT_SYMBOL(register_lsm_notifier); 205 206 int unregister_lsm_notifier(struct notifier_block *nb) 207 { 208 return atomic_notifier_chain_unregister(&lsm_notifier_chain, nb); 209 } 210 EXPORT_SYMBOL(unregister_lsm_notifier); 211 212 /* 213 * Hook list operation macros. 214 * 215 * call_void_hook: 216 * This is a hook that does not return a value. 217 * 218 * call_int_hook: 219 * This is a hook that returns a value. 220 */ 221 222 #define call_void_hook(FUNC, ...) \ 223 do { \ 224 struct security_hook_list *P; \ 225 \ 226 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 227 P->hook.FUNC(__VA_ARGS__); \ 228 } while (0) 229 230 #define call_int_hook(FUNC, IRC, ...) ({ \ 231 int RC = IRC; \ 232 do { \ 233 struct security_hook_list *P; \ 234 \ 235 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 236 RC = P->hook.FUNC(__VA_ARGS__); \ 237 if (RC != 0) \ 238 break; \ 239 } \ 240 } while (0); \ 241 RC; \ 242 }) 243 244 /* Security operations */ 245 246 int security_binder_set_context_mgr(struct task_struct *mgr) 247 { 248 return call_int_hook(binder_set_context_mgr, 0, mgr); 249 } 250 251 int security_binder_transaction(struct task_struct *from, 252 struct task_struct *to) 253 { 254 return call_int_hook(binder_transaction, 0, from, to); 255 } 256 257 int security_binder_transfer_binder(struct task_struct *from, 258 struct task_struct *to) 259 { 260 return call_int_hook(binder_transfer_binder, 0, from, to); 261 } 262 263 int security_binder_transfer_file(struct task_struct *from, 264 struct task_struct *to, struct file *file) 265 { 266 return call_int_hook(binder_transfer_file, 0, from, to, file); 267 } 268 269 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 270 { 271 return call_int_hook(ptrace_access_check, 0, child, mode); 272 } 273 274 int security_ptrace_traceme(struct task_struct *parent) 275 { 276 return call_int_hook(ptrace_traceme, 0, parent); 277 } 278 279 int security_capget(struct task_struct *target, 280 kernel_cap_t *effective, 281 kernel_cap_t *inheritable, 282 kernel_cap_t *permitted) 283 { 284 return call_int_hook(capget, 0, target, 285 effective, inheritable, permitted); 286 } 287 288 int security_capset(struct cred *new, const struct cred *old, 289 const kernel_cap_t *effective, 290 const kernel_cap_t *inheritable, 291 const kernel_cap_t *permitted) 292 { 293 return call_int_hook(capset, 0, new, old, 294 effective, inheritable, permitted); 295 } 296 297 int security_capable(const struct cred *cred, struct user_namespace *ns, 298 int cap) 299 { 300 return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_AUDIT); 301 } 302 303 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns, 304 int cap) 305 { 306 return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_NOAUDIT); 307 } 308 309 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 310 { 311 return call_int_hook(quotactl, 0, cmds, type, id, sb); 312 } 313 314 int security_quota_on(struct dentry *dentry) 315 { 316 return call_int_hook(quota_on, 0, dentry); 317 } 318 319 int security_syslog(int type) 320 { 321 return call_int_hook(syslog, 0, type); 322 } 323 324 int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 325 { 326 return call_int_hook(settime, 0, ts, tz); 327 } 328 329 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 330 { 331 struct security_hook_list *hp; 332 int cap_sys_admin = 1; 333 int rc; 334 335 /* 336 * The module will respond with a positive value if 337 * it thinks the __vm_enough_memory() call should be 338 * made with the cap_sys_admin set. If all of the modules 339 * agree that it should be set it will. If any module 340 * thinks it should not be set it won't. 341 */ 342 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 343 rc = hp->hook.vm_enough_memory(mm, pages); 344 if (rc <= 0) { 345 cap_sys_admin = 0; 346 break; 347 } 348 } 349 return __vm_enough_memory(mm, pages, cap_sys_admin); 350 } 351 352 int security_bprm_set_creds(struct linux_binprm *bprm) 353 { 354 return call_int_hook(bprm_set_creds, 0, bprm); 355 } 356 357 int security_bprm_check(struct linux_binprm *bprm) 358 { 359 int ret; 360 361 ret = call_int_hook(bprm_check_security, 0, bprm); 362 if (ret) 363 return ret; 364 return ima_bprm_check(bprm); 365 } 366 367 void security_bprm_committing_creds(struct linux_binprm *bprm) 368 { 369 call_void_hook(bprm_committing_creds, bprm); 370 } 371 372 void security_bprm_committed_creds(struct linux_binprm *bprm) 373 { 374 call_void_hook(bprm_committed_creds, bprm); 375 } 376 377 int security_sb_alloc(struct super_block *sb) 378 { 379 return call_int_hook(sb_alloc_security, 0, sb); 380 } 381 382 void security_sb_free(struct super_block *sb) 383 { 384 call_void_hook(sb_free_security, sb); 385 } 386 387 int security_sb_copy_data(char *orig, char *copy) 388 { 389 return call_int_hook(sb_copy_data, 0, orig, copy); 390 } 391 EXPORT_SYMBOL(security_sb_copy_data); 392 393 int security_sb_remount(struct super_block *sb, void *data) 394 { 395 return call_int_hook(sb_remount, 0, sb, data); 396 } 397 398 int security_sb_kern_mount(struct super_block *sb, int flags, void *data) 399 { 400 return call_int_hook(sb_kern_mount, 0, sb, flags, data); 401 } 402 403 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 404 { 405 return call_int_hook(sb_show_options, 0, m, sb); 406 } 407 408 int security_sb_statfs(struct dentry *dentry) 409 { 410 return call_int_hook(sb_statfs, 0, dentry); 411 } 412 413 int security_sb_mount(const char *dev_name, const struct path *path, 414 const char *type, unsigned long flags, void *data) 415 { 416 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data); 417 } 418 419 int security_sb_umount(struct vfsmount *mnt, int flags) 420 { 421 return call_int_hook(sb_umount, 0, mnt, flags); 422 } 423 424 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path) 425 { 426 return call_int_hook(sb_pivotroot, 0, old_path, new_path); 427 } 428 429 int security_sb_set_mnt_opts(struct super_block *sb, 430 struct security_mnt_opts *opts, 431 unsigned long kern_flags, 432 unsigned long *set_kern_flags) 433 { 434 return call_int_hook(sb_set_mnt_opts, 435 opts->num_mnt_opts ? -EOPNOTSUPP : 0, sb, 436 opts, kern_flags, set_kern_flags); 437 } 438 EXPORT_SYMBOL(security_sb_set_mnt_opts); 439 440 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 441 struct super_block *newsb, 442 unsigned long kern_flags, 443 unsigned long *set_kern_flags) 444 { 445 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb, 446 kern_flags, set_kern_flags); 447 } 448 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 449 450 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) 451 { 452 return call_int_hook(sb_parse_opts_str, 0, options, opts); 453 } 454 EXPORT_SYMBOL(security_sb_parse_opts_str); 455 456 int security_inode_alloc(struct inode *inode) 457 { 458 inode->i_security = NULL; 459 return call_int_hook(inode_alloc_security, 0, inode); 460 } 461 462 void security_inode_free(struct inode *inode) 463 { 464 integrity_inode_free(inode); 465 call_void_hook(inode_free_security, inode); 466 } 467 468 int security_dentry_init_security(struct dentry *dentry, int mode, 469 const struct qstr *name, void **ctx, 470 u32 *ctxlen) 471 { 472 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode, 473 name, ctx, ctxlen); 474 } 475 EXPORT_SYMBOL(security_dentry_init_security); 476 477 int security_dentry_create_files_as(struct dentry *dentry, int mode, 478 struct qstr *name, 479 const struct cred *old, struct cred *new) 480 { 481 return call_int_hook(dentry_create_files_as, 0, dentry, mode, 482 name, old, new); 483 } 484 EXPORT_SYMBOL(security_dentry_create_files_as); 485 486 int security_inode_init_security(struct inode *inode, struct inode *dir, 487 const struct qstr *qstr, 488 const initxattrs initxattrs, void *fs_data) 489 { 490 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 491 struct xattr *lsm_xattr, *evm_xattr, *xattr; 492 int ret; 493 494 if (unlikely(IS_PRIVATE(inode))) 495 return 0; 496 497 if (!initxattrs) 498 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, 499 dir, qstr, NULL, NULL, NULL); 500 memset(new_xattrs, 0, sizeof(new_xattrs)); 501 lsm_xattr = new_xattrs; 502 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr, 503 &lsm_xattr->name, 504 &lsm_xattr->value, 505 &lsm_xattr->value_len); 506 if (ret) 507 goto out; 508 509 evm_xattr = lsm_xattr + 1; 510 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 511 if (ret) 512 goto out; 513 ret = initxattrs(inode, new_xattrs, fs_data); 514 out: 515 for (xattr = new_xattrs; xattr->value != NULL; xattr++) 516 kfree(xattr->value); 517 return (ret == -EOPNOTSUPP) ? 0 : ret; 518 } 519 EXPORT_SYMBOL(security_inode_init_security); 520 521 int security_old_inode_init_security(struct inode *inode, struct inode *dir, 522 const struct qstr *qstr, const char **name, 523 void **value, size_t *len) 524 { 525 if (unlikely(IS_PRIVATE(inode))) 526 return -EOPNOTSUPP; 527 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, 528 qstr, name, value, len); 529 } 530 EXPORT_SYMBOL(security_old_inode_init_security); 531 532 #ifdef CONFIG_SECURITY_PATH 533 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode, 534 unsigned int dev) 535 { 536 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 537 return 0; 538 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev); 539 } 540 EXPORT_SYMBOL(security_path_mknod); 541 542 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode) 543 { 544 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 545 return 0; 546 return call_int_hook(path_mkdir, 0, dir, dentry, mode); 547 } 548 EXPORT_SYMBOL(security_path_mkdir); 549 550 int security_path_rmdir(const struct path *dir, struct dentry *dentry) 551 { 552 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 553 return 0; 554 return call_int_hook(path_rmdir, 0, dir, dentry); 555 } 556 557 int security_path_unlink(const struct path *dir, struct dentry *dentry) 558 { 559 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 560 return 0; 561 return call_int_hook(path_unlink, 0, dir, dentry); 562 } 563 EXPORT_SYMBOL(security_path_unlink); 564 565 int security_path_symlink(const struct path *dir, struct dentry *dentry, 566 const char *old_name) 567 { 568 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 569 return 0; 570 return call_int_hook(path_symlink, 0, dir, dentry, old_name); 571 } 572 573 int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 574 struct dentry *new_dentry) 575 { 576 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 577 return 0; 578 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry); 579 } 580 581 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 582 const struct path *new_dir, struct dentry *new_dentry, 583 unsigned int flags) 584 { 585 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 586 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 587 return 0; 588 589 if (flags & RENAME_EXCHANGE) { 590 int err = call_int_hook(path_rename, 0, new_dir, new_dentry, 591 old_dir, old_dentry); 592 if (err) 593 return err; 594 } 595 596 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir, 597 new_dentry); 598 } 599 EXPORT_SYMBOL(security_path_rename); 600 601 int security_path_truncate(const struct path *path) 602 { 603 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 604 return 0; 605 return call_int_hook(path_truncate, 0, path); 606 } 607 608 int security_path_chmod(const struct path *path, umode_t mode) 609 { 610 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 611 return 0; 612 return call_int_hook(path_chmod, 0, path, mode); 613 } 614 615 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 616 { 617 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 618 return 0; 619 return call_int_hook(path_chown, 0, path, uid, gid); 620 } 621 622 int security_path_chroot(const struct path *path) 623 { 624 return call_int_hook(path_chroot, 0, path); 625 } 626 #endif 627 628 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 629 { 630 if (unlikely(IS_PRIVATE(dir))) 631 return 0; 632 return call_int_hook(inode_create, 0, dir, dentry, mode); 633 } 634 EXPORT_SYMBOL_GPL(security_inode_create); 635 636 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 637 struct dentry *new_dentry) 638 { 639 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 640 return 0; 641 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry); 642 } 643 644 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 645 { 646 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 647 return 0; 648 return call_int_hook(inode_unlink, 0, dir, dentry); 649 } 650 651 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 652 const char *old_name) 653 { 654 if (unlikely(IS_PRIVATE(dir))) 655 return 0; 656 return call_int_hook(inode_symlink, 0, dir, dentry, old_name); 657 } 658 659 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 660 { 661 if (unlikely(IS_PRIVATE(dir))) 662 return 0; 663 return call_int_hook(inode_mkdir, 0, dir, dentry, mode); 664 } 665 EXPORT_SYMBOL_GPL(security_inode_mkdir); 666 667 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 668 { 669 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 670 return 0; 671 return call_int_hook(inode_rmdir, 0, dir, dentry); 672 } 673 674 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 675 { 676 if (unlikely(IS_PRIVATE(dir))) 677 return 0; 678 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev); 679 } 680 681 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 682 struct inode *new_dir, struct dentry *new_dentry, 683 unsigned int flags) 684 { 685 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 686 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 687 return 0; 688 689 if (flags & RENAME_EXCHANGE) { 690 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry, 691 old_dir, old_dentry); 692 if (err) 693 return err; 694 } 695 696 return call_int_hook(inode_rename, 0, old_dir, old_dentry, 697 new_dir, new_dentry); 698 } 699 700 int security_inode_readlink(struct dentry *dentry) 701 { 702 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 703 return 0; 704 return call_int_hook(inode_readlink, 0, dentry); 705 } 706 707 int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 708 bool rcu) 709 { 710 if (unlikely(IS_PRIVATE(inode))) 711 return 0; 712 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu); 713 } 714 715 int security_inode_permission(struct inode *inode, int mask) 716 { 717 if (unlikely(IS_PRIVATE(inode))) 718 return 0; 719 return call_int_hook(inode_permission, 0, inode, mask); 720 } 721 722 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 723 { 724 int ret; 725 726 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 727 return 0; 728 ret = call_int_hook(inode_setattr, 0, dentry, attr); 729 if (ret) 730 return ret; 731 return evm_inode_setattr(dentry, attr); 732 } 733 EXPORT_SYMBOL_GPL(security_inode_setattr); 734 735 int security_inode_getattr(const struct path *path) 736 { 737 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 738 return 0; 739 return call_int_hook(inode_getattr, 0, path); 740 } 741 742 int security_inode_setxattr(struct dentry *dentry, const char *name, 743 const void *value, size_t size, int flags) 744 { 745 int ret; 746 747 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 748 return 0; 749 /* 750 * SELinux and Smack integrate the cap call, 751 * so assume that all LSMs supplying this call do so. 752 */ 753 ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size, 754 flags); 755 756 if (ret == 1) 757 ret = cap_inode_setxattr(dentry, name, value, size, flags); 758 if (ret) 759 return ret; 760 ret = ima_inode_setxattr(dentry, name, value, size); 761 if (ret) 762 return ret; 763 return evm_inode_setxattr(dentry, name, value, size); 764 } 765 766 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 767 const void *value, size_t size, int flags) 768 { 769 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 770 return; 771 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 772 evm_inode_post_setxattr(dentry, name, value, size); 773 } 774 775 int security_inode_getxattr(struct dentry *dentry, const char *name) 776 { 777 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 778 return 0; 779 return call_int_hook(inode_getxattr, 0, dentry, name); 780 } 781 782 int security_inode_listxattr(struct dentry *dentry) 783 { 784 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 785 return 0; 786 return call_int_hook(inode_listxattr, 0, dentry); 787 } 788 789 int security_inode_removexattr(struct dentry *dentry, const char *name) 790 { 791 int ret; 792 793 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 794 return 0; 795 /* 796 * SELinux and Smack integrate the cap call, 797 * so assume that all LSMs supplying this call do so. 798 */ 799 ret = call_int_hook(inode_removexattr, 1, dentry, name); 800 if (ret == 1) 801 ret = cap_inode_removexattr(dentry, name); 802 if (ret) 803 return ret; 804 ret = ima_inode_removexattr(dentry, name); 805 if (ret) 806 return ret; 807 return evm_inode_removexattr(dentry, name); 808 } 809 810 int security_inode_need_killpriv(struct dentry *dentry) 811 { 812 return call_int_hook(inode_need_killpriv, 0, dentry); 813 } 814 815 int security_inode_killpriv(struct dentry *dentry) 816 { 817 return call_int_hook(inode_killpriv, 0, dentry); 818 } 819 820 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc) 821 { 822 struct security_hook_list *hp; 823 int rc; 824 825 if (unlikely(IS_PRIVATE(inode))) 826 return -EOPNOTSUPP; 827 /* 828 * Only one module will provide an attribute with a given name. 829 */ 830 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) { 831 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc); 832 if (rc != -EOPNOTSUPP) 833 return rc; 834 } 835 return -EOPNOTSUPP; 836 } 837 838 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 839 { 840 struct security_hook_list *hp; 841 int rc; 842 843 if (unlikely(IS_PRIVATE(inode))) 844 return -EOPNOTSUPP; 845 /* 846 * Only one module will provide an attribute with a given name. 847 */ 848 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) { 849 rc = hp->hook.inode_setsecurity(inode, name, value, size, 850 flags); 851 if (rc != -EOPNOTSUPP) 852 return rc; 853 } 854 return -EOPNOTSUPP; 855 } 856 857 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 858 { 859 if (unlikely(IS_PRIVATE(inode))) 860 return 0; 861 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size); 862 } 863 EXPORT_SYMBOL(security_inode_listsecurity); 864 865 void security_inode_getsecid(struct inode *inode, u32 *secid) 866 { 867 call_void_hook(inode_getsecid, inode, secid); 868 } 869 870 int security_inode_copy_up(struct dentry *src, struct cred **new) 871 { 872 return call_int_hook(inode_copy_up, 0, src, new); 873 } 874 EXPORT_SYMBOL(security_inode_copy_up); 875 876 int security_inode_copy_up_xattr(const char *name) 877 { 878 return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name); 879 } 880 EXPORT_SYMBOL(security_inode_copy_up_xattr); 881 882 int security_file_permission(struct file *file, int mask) 883 { 884 int ret; 885 886 ret = call_int_hook(file_permission, 0, file, mask); 887 if (ret) 888 return ret; 889 890 return fsnotify_perm(file, mask); 891 } 892 893 int security_file_alloc(struct file *file) 894 { 895 return call_int_hook(file_alloc_security, 0, file); 896 } 897 898 void security_file_free(struct file *file) 899 { 900 call_void_hook(file_free_security, file); 901 } 902 903 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 904 { 905 return call_int_hook(file_ioctl, 0, file, cmd, arg); 906 } 907 908 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 909 { 910 /* 911 * Does we have PROT_READ and does the application expect 912 * it to imply PROT_EXEC? If not, nothing to talk about... 913 */ 914 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 915 return prot; 916 if (!(current->personality & READ_IMPLIES_EXEC)) 917 return prot; 918 /* 919 * if that's an anonymous mapping, let it. 920 */ 921 if (!file) 922 return prot | PROT_EXEC; 923 /* 924 * ditto if it's not on noexec mount, except that on !MMU we need 925 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 926 */ 927 if (!path_noexec(&file->f_path)) { 928 #ifndef CONFIG_MMU 929 if (file->f_op->mmap_capabilities) { 930 unsigned caps = file->f_op->mmap_capabilities(file); 931 if (!(caps & NOMMU_MAP_EXEC)) 932 return prot; 933 } 934 #endif 935 return prot | PROT_EXEC; 936 } 937 /* anything on noexec mount won't get PROT_EXEC */ 938 return prot; 939 } 940 941 int security_mmap_file(struct file *file, unsigned long prot, 942 unsigned long flags) 943 { 944 int ret; 945 ret = call_int_hook(mmap_file, 0, file, prot, 946 mmap_prot(file, prot), flags); 947 if (ret) 948 return ret; 949 return ima_file_mmap(file, prot); 950 } 951 952 int security_mmap_addr(unsigned long addr) 953 { 954 return call_int_hook(mmap_addr, 0, addr); 955 } 956 957 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 958 unsigned long prot) 959 { 960 return call_int_hook(file_mprotect, 0, vma, reqprot, prot); 961 } 962 963 int security_file_lock(struct file *file, unsigned int cmd) 964 { 965 return call_int_hook(file_lock, 0, file, cmd); 966 } 967 968 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 969 { 970 return call_int_hook(file_fcntl, 0, file, cmd, arg); 971 } 972 973 void security_file_set_fowner(struct file *file) 974 { 975 call_void_hook(file_set_fowner, file); 976 } 977 978 int security_file_send_sigiotask(struct task_struct *tsk, 979 struct fown_struct *fown, int sig) 980 { 981 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig); 982 } 983 984 int security_file_receive(struct file *file) 985 { 986 return call_int_hook(file_receive, 0, file); 987 } 988 989 int security_file_open(struct file *file) 990 { 991 int ret; 992 993 ret = call_int_hook(file_open, 0, file); 994 if (ret) 995 return ret; 996 997 return fsnotify_perm(file, MAY_OPEN); 998 } 999 1000 int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 1001 { 1002 return call_int_hook(task_alloc, 0, task, clone_flags); 1003 } 1004 1005 void security_task_free(struct task_struct *task) 1006 { 1007 call_void_hook(task_free, task); 1008 } 1009 1010 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 1011 { 1012 return call_int_hook(cred_alloc_blank, 0, cred, gfp); 1013 } 1014 1015 void security_cred_free(struct cred *cred) 1016 { 1017 call_void_hook(cred_free, cred); 1018 } 1019 1020 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 1021 { 1022 return call_int_hook(cred_prepare, 0, new, old, gfp); 1023 } 1024 1025 void security_transfer_creds(struct cred *new, const struct cred *old) 1026 { 1027 call_void_hook(cred_transfer, new, old); 1028 } 1029 1030 void security_cred_getsecid(const struct cred *c, u32 *secid) 1031 { 1032 *secid = 0; 1033 call_void_hook(cred_getsecid, c, secid); 1034 } 1035 EXPORT_SYMBOL(security_cred_getsecid); 1036 1037 int security_kernel_act_as(struct cred *new, u32 secid) 1038 { 1039 return call_int_hook(kernel_act_as, 0, new, secid); 1040 } 1041 1042 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 1043 { 1044 return call_int_hook(kernel_create_files_as, 0, new, inode); 1045 } 1046 1047 int security_kernel_module_request(char *kmod_name) 1048 { 1049 int ret; 1050 1051 ret = call_int_hook(kernel_module_request, 0, kmod_name); 1052 if (ret) 1053 return ret; 1054 return integrity_kernel_module_request(kmod_name); 1055 } 1056 1057 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id) 1058 { 1059 int ret; 1060 1061 ret = call_int_hook(kernel_read_file, 0, file, id); 1062 if (ret) 1063 return ret; 1064 return ima_read_file(file, id); 1065 } 1066 EXPORT_SYMBOL_GPL(security_kernel_read_file); 1067 1068 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 1069 enum kernel_read_file_id id) 1070 { 1071 int ret; 1072 1073 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id); 1074 if (ret) 1075 return ret; 1076 return ima_post_read_file(file, buf, size, id); 1077 } 1078 EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 1079 1080 int security_kernel_load_data(enum kernel_load_data_id id) 1081 { 1082 int ret; 1083 1084 ret = call_int_hook(kernel_load_data, 0, id); 1085 if (ret) 1086 return ret; 1087 return ima_load_data(id); 1088 } 1089 EXPORT_SYMBOL_GPL(security_kernel_load_data); 1090 1091 int security_task_fix_setuid(struct cred *new, const struct cred *old, 1092 int flags) 1093 { 1094 return call_int_hook(task_fix_setuid, 0, new, old, flags); 1095 } 1096 1097 int security_task_setpgid(struct task_struct *p, pid_t pgid) 1098 { 1099 return call_int_hook(task_setpgid, 0, p, pgid); 1100 } 1101 1102 int security_task_getpgid(struct task_struct *p) 1103 { 1104 return call_int_hook(task_getpgid, 0, p); 1105 } 1106 1107 int security_task_getsid(struct task_struct *p) 1108 { 1109 return call_int_hook(task_getsid, 0, p); 1110 } 1111 1112 void security_task_getsecid(struct task_struct *p, u32 *secid) 1113 { 1114 *secid = 0; 1115 call_void_hook(task_getsecid, p, secid); 1116 } 1117 EXPORT_SYMBOL(security_task_getsecid); 1118 1119 int security_task_setnice(struct task_struct *p, int nice) 1120 { 1121 return call_int_hook(task_setnice, 0, p, nice); 1122 } 1123 1124 int security_task_setioprio(struct task_struct *p, int ioprio) 1125 { 1126 return call_int_hook(task_setioprio, 0, p, ioprio); 1127 } 1128 1129 int security_task_getioprio(struct task_struct *p) 1130 { 1131 return call_int_hook(task_getioprio, 0, p); 1132 } 1133 1134 int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 1135 unsigned int flags) 1136 { 1137 return call_int_hook(task_prlimit, 0, cred, tcred, flags); 1138 } 1139 1140 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 1141 struct rlimit *new_rlim) 1142 { 1143 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim); 1144 } 1145 1146 int security_task_setscheduler(struct task_struct *p) 1147 { 1148 return call_int_hook(task_setscheduler, 0, p); 1149 } 1150 1151 int security_task_getscheduler(struct task_struct *p) 1152 { 1153 return call_int_hook(task_getscheduler, 0, p); 1154 } 1155 1156 int security_task_movememory(struct task_struct *p) 1157 { 1158 return call_int_hook(task_movememory, 0, p); 1159 } 1160 1161 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, 1162 int sig, const struct cred *cred) 1163 { 1164 return call_int_hook(task_kill, 0, p, info, sig, cred); 1165 } 1166 1167 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 1168 unsigned long arg4, unsigned long arg5) 1169 { 1170 int thisrc; 1171 int rc = -ENOSYS; 1172 struct security_hook_list *hp; 1173 1174 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 1175 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 1176 if (thisrc != -ENOSYS) { 1177 rc = thisrc; 1178 if (thisrc != 0) 1179 break; 1180 } 1181 } 1182 return rc; 1183 } 1184 1185 void security_task_to_inode(struct task_struct *p, struct inode *inode) 1186 { 1187 call_void_hook(task_to_inode, p, inode); 1188 } 1189 1190 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 1191 { 1192 return call_int_hook(ipc_permission, 0, ipcp, flag); 1193 } 1194 1195 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 1196 { 1197 *secid = 0; 1198 call_void_hook(ipc_getsecid, ipcp, secid); 1199 } 1200 1201 int security_msg_msg_alloc(struct msg_msg *msg) 1202 { 1203 return call_int_hook(msg_msg_alloc_security, 0, msg); 1204 } 1205 1206 void security_msg_msg_free(struct msg_msg *msg) 1207 { 1208 call_void_hook(msg_msg_free_security, msg); 1209 } 1210 1211 int security_msg_queue_alloc(struct kern_ipc_perm *msq) 1212 { 1213 return call_int_hook(msg_queue_alloc_security, 0, msq); 1214 } 1215 1216 void security_msg_queue_free(struct kern_ipc_perm *msq) 1217 { 1218 call_void_hook(msg_queue_free_security, msq); 1219 } 1220 1221 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 1222 { 1223 return call_int_hook(msg_queue_associate, 0, msq, msqflg); 1224 } 1225 1226 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 1227 { 1228 return call_int_hook(msg_queue_msgctl, 0, msq, cmd); 1229 } 1230 1231 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 1232 struct msg_msg *msg, int msqflg) 1233 { 1234 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg); 1235 } 1236 1237 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 1238 struct task_struct *target, long type, int mode) 1239 { 1240 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode); 1241 } 1242 1243 int security_shm_alloc(struct kern_ipc_perm *shp) 1244 { 1245 return call_int_hook(shm_alloc_security, 0, shp); 1246 } 1247 1248 void security_shm_free(struct kern_ipc_perm *shp) 1249 { 1250 call_void_hook(shm_free_security, shp); 1251 } 1252 1253 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 1254 { 1255 return call_int_hook(shm_associate, 0, shp, shmflg); 1256 } 1257 1258 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 1259 { 1260 return call_int_hook(shm_shmctl, 0, shp, cmd); 1261 } 1262 1263 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg) 1264 { 1265 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg); 1266 } 1267 1268 int security_sem_alloc(struct kern_ipc_perm *sma) 1269 { 1270 return call_int_hook(sem_alloc_security, 0, sma); 1271 } 1272 1273 void security_sem_free(struct kern_ipc_perm *sma) 1274 { 1275 call_void_hook(sem_free_security, sma); 1276 } 1277 1278 int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 1279 { 1280 return call_int_hook(sem_associate, 0, sma, semflg); 1281 } 1282 1283 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 1284 { 1285 return call_int_hook(sem_semctl, 0, sma, cmd); 1286 } 1287 1288 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 1289 unsigned nsops, int alter) 1290 { 1291 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter); 1292 } 1293 1294 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 1295 { 1296 if (unlikely(inode && IS_PRIVATE(inode))) 1297 return; 1298 call_void_hook(d_instantiate, dentry, inode); 1299 } 1300 EXPORT_SYMBOL(security_d_instantiate); 1301 1302 int security_getprocattr(struct task_struct *p, char *name, char **value) 1303 { 1304 return call_int_hook(getprocattr, -EINVAL, p, name, value); 1305 } 1306 1307 int security_setprocattr(const char *name, void *value, size_t size) 1308 { 1309 return call_int_hook(setprocattr, -EINVAL, name, value, size); 1310 } 1311 1312 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 1313 { 1314 return call_int_hook(netlink_send, 0, sk, skb); 1315 } 1316 1317 int security_ismaclabel(const char *name) 1318 { 1319 return call_int_hook(ismaclabel, 0, name); 1320 } 1321 EXPORT_SYMBOL(security_ismaclabel); 1322 1323 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 1324 { 1325 return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata, 1326 seclen); 1327 } 1328 EXPORT_SYMBOL(security_secid_to_secctx); 1329 1330 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 1331 { 1332 *secid = 0; 1333 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid); 1334 } 1335 EXPORT_SYMBOL(security_secctx_to_secid); 1336 1337 void security_release_secctx(char *secdata, u32 seclen) 1338 { 1339 call_void_hook(release_secctx, secdata, seclen); 1340 } 1341 EXPORT_SYMBOL(security_release_secctx); 1342 1343 void security_inode_invalidate_secctx(struct inode *inode) 1344 { 1345 call_void_hook(inode_invalidate_secctx, inode); 1346 } 1347 EXPORT_SYMBOL(security_inode_invalidate_secctx); 1348 1349 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 1350 { 1351 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen); 1352 } 1353 EXPORT_SYMBOL(security_inode_notifysecctx); 1354 1355 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 1356 { 1357 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen); 1358 } 1359 EXPORT_SYMBOL(security_inode_setsecctx); 1360 1361 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 1362 { 1363 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen); 1364 } 1365 EXPORT_SYMBOL(security_inode_getsecctx); 1366 1367 #ifdef CONFIG_SECURITY_NETWORK 1368 1369 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 1370 { 1371 return call_int_hook(unix_stream_connect, 0, sock, other, newsk); 1372 } 1373 EXPORT_SYMBOL(security_unix_stream_connect); 1374 1375 int security_unix_may_send(struct socket *sock, struct socket *other) 1376 { 1377 return call_int_hook(unix_may_send, 0, sock, other); 1378 } 1379 EXPORT_SYMBOL(security_unix_may_send); 1380 1381 int security_socket_create(int family, int type, int protocol, int kern) 1382 { 1383 return call_int_hook(socket_create, 0, family, type, protocol, kern); 1384 } 1385 1386 int security_socket_post_create(struct socket *sock, int family, 1387 int type, int protocol, int kern) 1388 { 1389 return call_int_hook(socket_post_create, 0, sock, family, type, 1390 protocol, kern); 1391 } 1392 1393 int security_socket_socketpair(struct socket *socka, struct socket *sockb) 1394 { 1395 return call_int_hook(socket_socketpair, 0, socka, sockb); 1396 } 1397 EXPORT_SYMBOL(security_socket_socketpair); 1398 1399 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 1400 { 1401 return call_int_hook(socket_bind, 0, sock, address, addrlen); 1402 } 1403 1404 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 1405 { 1406 return call_int_hook(socket_connect, 0, sock, address, addrlen); 1407 } 1408 1409 int security_socket_listen(struct socket *sock, int backlog) 1410 { 1411 return call_int_hook(socket_listen, 0, sock, backlog); 1412 } 1413 1414 int security_socket_accept(struct socket *sock, struct socket *newsock) 1415 { 1416 return call_int_hook(socket_accept, 0, sock, newsock); 1417 } 1418 1419 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 1420 { 1421 return call_int_hook(socket_sendmsg, 0, sock, msg, size); 1422 } 1423 1424 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 1425 int size, int flags) 1426 { 1427 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags); 1428 } 1429 1430 int security_socket_getsockname(struct socket *sock) 1431 { 1432 return call_int_hook(socket_getsockname, 0, sock); 1433 } 1434 1435 int security_socket_getpeername(struct socket *sock) 1436 { 1437 return call_int_hook(socket_getpeername, 0, sock); 1438 } 1439 1440 int security_socket_getsockopt(struct socket *sock, int level, int optname) 1441 { 1442 return call_int_hook(socket_getsockopt, 0, sock, level, optname); 1443 } 1444 1445 int security_socket_setsockopt(struct socket *sock, int level, int optname) 1446 { 1447 return call_int_hook(socket_setsockopt, 0, sock, level, optname); 1448 } 1449 1450 int security_socket_shutdown(struct socket *sock, int how) 1451 { 1452 return call_int_hook(socket_shutdown, 0, sock, how); 1453 } 1454 1455 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 1456 { 1457 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb); 1458 } 1459 EXPORT_SYMBOL(security_sock_rcv_skb); 1460 1461 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 1462 int __user *optlen, unsigned len) 1463 { 1464 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock, 1465 optval, optlen, len); 1466 } 1467 1468 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 1469 { 1470 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock, 1471 skb, secid); 1472 } 1473 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 1474 1475 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 1476 { 1477 return call_int_hook(sk_alloc_security, 0, sk, family, priority); 1478 } 1479 1480 void security_sk_free(struct sock *sk) 1481 { 1482 call_void_hook(sk_free_security, sk); 1483 } 1484 1485 void security_sk_clone(const struct sock *sk, struct sock *newsk) 1486 { 1487 call_void_hook(sk_clone_security, sk, newsk); 1488 } 1489 EXPORT_SYMBOL(security_sk_clone); 1490 1491 void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 1492 { 1493 call_void_hook(sk_getsecid, sk, &fl->flowi_secid); 1494 } 1495 EXPORT_SYMBOL(security_sk_classify_flow); 1496 1497 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 1498 { 1499 call_void_hook(req_classify_flow, req, fl); 1500 } 1501 EXPORT_SYMBOL(security_req_classify_flow); 1502 1503 void security_sock_graft(struct sock *sk, struct socket *parent) 1504 { 1505 call_void_hook(sock_graft, sk, parent); 1506 } 1507 EXPORT_SYMBOL(security_sock_graft); 1508 1509 int security_inet_conn_request(struct sock *sk, 1510 struct sk_buff *skb, struct request_sock *req) 1511 { 1512 return call_int_hook(inet_conn_request, 0, sk, skb, req); 1513 } 1514 EXPORT_SYMBOL(security_inet_conn_request); 1515 1516 void security_inet_csk_clone(struct sock *newsk, 1517 const struct request_sock *req) 1518 { 1519 call_void_hook(inet_csk_clone, newsk, req); 1520 } 1521 1522 void security_inet_conn_established(struct sock *sk, 1523 struct sk_buff *skb) 1524 { 1525 call_void_hook(inet_conn_established, sk, skb); 1526 } 1527 EXPORT_SYMBOL(security_inet_conn_established); 1528 1529 int security_secmark_relabel_packet(u32 secid) 1530 { 1531 return call_int_hook(secmark_relabel_packet, 0, secid); 1532 } 1533 EXPORT_SYMBOL(security_secmark_relabel_packet); 1534 1535 void security_secmark_refcount_inc(void) 1536 { 1537 call_void_hook(secmark_refcount_inc); 1538 } 1539 EXPORT_SYMBOL(security_secmark_refcount_inc); 1540 1541 void security_secmark_refcount_dec(void) 1542 { 1543 call_void_hook(secmark_refcount_dec); 1544 } 1545 EXPORT_SYMBOL(security_secmark_refcount_dec); 1546 1547 int security_tun_dev_alloc_security(void **security) 1548 { 1549 return call_int_hook(tun_dev_alloc_security, 0, security); 1550 } 1551 EXPORT_SYMBOL(security_tun_dev_alloc_security); 1552 1553 void security_tun_dev_free_security(void *security) 1554 { 1555 call_void_hook(tun_dev_free_security, security); 1556 } 1557 EXPORT_SYMBOL(security_tun_dev_free_security); 1558 1559 int security_tun_dev_create(void) 1560 { 1561 return call_int_hook(tun_dev_create, 0); 1562 } 1563 EXPORT_SYMBOL(security_tun_dev_create); 1564 1565 int security_tun_dev_attach_queue(void *security) 1566 { 1567 return call_int_hook(tun_dev_attach_queue, 0, security); 1568 } 1569 EXPORT_SYMBOL(security_tun_dev_attach_queue); 1570 1571 int security_tun_dev_attach(struct sock *sk, void *security) 1572 { 1573 return call_int_hook(tun_dev_attach, 0, sk, security); 1574 } 1575 EXPORT_SYMBOL(security_tun_dev_attach); 1576 1577 int security_tun_dev_open(void *security) 1578 { 1579 return call_int_hook(tun_dev_open, 0, security); 1580 } 1581 EXPORT_SYMBOL(security_tun_dev_open); 1582 1583 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb) 1584 { 1585 return call_int_hook(sctp_assoc_request, 0, ep, skb); 1586 } 1587 EXPORT_SYMBOL(security_sctp_assoc_request); 1588 1589 int security_sctp_bind_connect(struct sock *sk, int optname, 1590 struct sockaddr *address, int addrlen) 1591 { 1592 return call_int_hook(sctp_bind_connect, 0, sk, optname, 1593 address, addrlen); 1594 } 1595 EXPORT_SYMBOL(security_sctp_bind_connect); 1596 1597 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk, 1598 struct sock *newsk) 1599 { 1600 call_void_hook(sctp_sk_clone, ep, sk, newsk); 1601 } 1602 EXPORT_SYMBOL(security_sctp_sk_clone); 1603 1604 #endif /* CONFIG_SECURITY_NETWORK */ 1605 1606 #ifdef CONFIG_SECURITY_INFINIBAND 1607 1608 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 1609 { 1610 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey); 1611 } 1612 EXPORT_SYMBOL(security_ib_pkey_access); 1613 1614 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num) 1615 { 1616 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num); 1617 } 1618 EXPORT_SYMBOL(security_ib_endport_manage_subnet); 1619 1620 int security_ib_alloc_security(void **sec) 1621 { 1622 return call_int_hook(ib_alloc_security, 0, sec); 1623 } 1624 EXPORT_SYMBOL(security_ib_alloc_security); 1625 1626 void security_ib_free_security(void *sec) 1627 { 1628 call_void_hook(ib_free_security, sec); 1629 } 1630 EXPORT_SYMBOL(security_ib_free_security); 1631 #endif /* CONFIG_SECURITY_INFINIBAND */ 1632 1633 #ifdef CONFIG_SECURITY_NETWORK_XFRM 1634 1635 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 1636 struct xfrm_user_sec_ctx *sec_ctx, 1637 gfp_t gfp) 1638 { 1639 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp); 1640 } 1641 EXPORT_SYMBOL(security_xfrm_policy_alloc); 1642 1643 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 1644 struct xfrm_sec_ctx **new_ctxp) 1645 { 1646 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp); 1647 } 1648 1649 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 1650 { 1651 call_void_hook(xfrm_policy_free_security, ctx); 1652 } 1653 EXPORT_SYMBOL(security_xfrm_policy_free); 1654 1655 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 1656 { 1657 return call_int_hook(xfrm_policy_delete_security, 0, ctx); 1658 } 1659 1660 int security_xfrm_state_alloc(struct xfrm_state *x, 1661 struct xfrm_user_sec_ctx *sec_ctx) 1662 { 1663 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx); 1664 } 1665 EXPORT_SYMBOL(security_xfrm_state_alloc); 1666 1667 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1668 struct xfrm_sec_ctx *polsec, u32 secid) 1669 { 1670 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid); 1671 } 1672 1673 int security_xfrm_state_delete(struct xfrm_state *x) 1674 { 1675 return call_int_hook(xfrm_state_delete_security, 0, x); 1676 } 1677 EXPORT_SYMBOL(security_xfrm_state_delete); 1678 1679 void security_xfrm_state_free(struct xfrm_state *x) 1680 { 1681 call_void_hook(xfrm_state_free_security, x); 1682 } 1683 1684 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 1685 { 1686 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir); 1687 } 1688 1689 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1690 struct xfrm_policy *xp, 1691 const struct flowi *fl) 1692 { 1693 struct security_hook_list *hp; 1694 int rc = 1; 1695 1696 /* 1697 * Since this function is expected to return 0 or 1, the judgment 1698 * becomes difficult if multiple LSMs supply this call. Fortunately, 1699 * we can use the first LSM's judgment because currently only SELinux 1700 * supplies this call. 1701 * 1702 * For speed optimization, we explicitly break the loop rather than 1703 * using the macro 1704 */ 1705 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 1706 list) { 1707 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl); 1708 break; 1709 } 1710 return rc; 1711 } 1712 1713 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1714 { 1715 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1); 1716 } 1717 1718 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1719 { 1720 int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid, 1721 0); 1722 1723 BUG_ON(rc); 1724 } 1725 EXPORT_SYMBOL(security_skb_classify_flow); 1726 1727 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1728 1729 #ifdef CONFIG_KEYS 1730 1731 int security_key_alloc(struct key *key, const struct cred *cred, 1732 unsigned long flags) 1733 { 1734 return call_int_hook(key_alloc, 0, key, cred, flags); 1735 } 1736 1737 void security_key_free(struct key *key) 1738 { 1739 call_void_hook(key_free, key); 1740 } 1741 1742 int security_key_permission(key_ref_t key_ref, 1743 const struct cred *cred, unsigned perm) 1744 { 1745 return call_int_hook(key_permission, 0, key_ref, cred, perm); 1746 } 1747 1748 int security_key_getsecurity(struct key *key, char **_buffer) 1749 { 1750 *_buffer = NULL; 1751 return call_int_hook(key_getsecurity, 0, key, _buffer); 1752 } 1753 1754 #endif /* CONFIG_KEYS */ 1755 1756 #ifdef CONFIG_AUDIT 1757 1758 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 1759 { 1760 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule); 1761 } 1762 1763 int security_audit_rule_known(struct audit_krule *krule) 1764 { 1765 return call_int_hook(audit_rule_known, 0, krule); 1766 } 1767 1768 void security_audit_rule_free(void *lsmrule) 1769 { 1770 call_void_hook(audit_rule_free, lsmrule); 1771 } 1772 1773 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 1774 struct audit_context *actx) 1775 { 1776 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule, 1777 actx); 1778 } 1779 #endif /* CONFIG_AUDIT */ 1780 1781 #ifdef CONFIG_BPF_SYSCALL 1782 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 1783 { 1784 return call_int_hook(bpf, 0, cmd, attr, size); 1785 } 1786 int security_bpf_map(struct bpf_map *map, fmode_t fmode) 1787 { 1788 return call_int_hook(bpf_map, 0, map, fmode); 1789 } 1790 int security_bpf_prog(struct bpf_prog *prog) 1791 { 1792 return call_int_hook(bpf_prog, 0, prog); 1793 } 1794 int security_bpf_map_alloc(struct bpf_map *map) 1795 { 1796 return call_int_hook(bpf_map_alloc_security, 0, map); 1797 } 1798 int security_bpf_prog_alloc(struct bpf_prog_aux *aux) 1799 { 1800 return call_int_hook(bpf_prog_alloc_security, 0, aux); 1801 } 1802 void security_bpf_map_free(struct bpf_map *map) 1803 { 1804 call_void_hook(bpf_map_free_security, map); 1805 } 1806 void security_bpf_prog_free(struct bpf_prog_aux *aux) 1807 { 1808 call_void_hook(bpf_prog_free_security, aux); 1809 } 1810 #endif /* CONFIG_BPF_SYSCALL */ 1811