1 /* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * Copyright (C) 2016 Mellanox Technologies 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 */ 14 15 #define pr_fmt(fmt) "LSM: " fmt 16 17 #include <linux/bpf.h> 18 #include <linux/capability.h> 19 #include <linux/dcache.h> 20 #include <linux/export.h> 21 #include <linux/init.h> 22 #include <linux/kernel.h> 23 #include <linux/lsm_hooks.h> 24 #include <linux/integrity.h> 25 #include <linux/ima.h> 26 #include <linux/evm.h> 27 #include <linux/fsnotify.h> 28 #include <linux/mman.h> 29 #include <linux/mount.h> 30 #include <linux/personality.h> 31 #include <linux/backing-dev.h> 32 #include <linux/string.h> 33 #include <net/flow.h> 34 35 #define MAX_LSM_EVM_XATTR 2 36 37 /* Maximum number of letters for an LSM name string */ 38 #define SECURITY_NAME_MAX 10 39 40 struct security_hook_heads security_hook_heads __lsm_ro_after_init; 41 static ATOMIC_NOTIFIER_HEAD(lsm_notifier_chain); 42 43 char *lsm_names; 44 /* Boot-time LSM user choice */ 45 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] = 46 CONFIG_DEFAULT_SECURITY; 47 48 static __initdata bool debug; 49 #define init_debug(...) \ 50 do { \ 51 if (debug) \ 52 pr_info(__VA_ARGS__); \ 53 } while (0) 54 55 static void __init major_lsm_init(void) 56 { 57 struct lsm_info *lsm; 58 int ret; 59 60 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 61 init_debug("initializing %s\n", lsm->name); 62 ret = lsm->init(); 63 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); 64 } 65 } 66 67 /** 68 * security_init - initializes the security framework 69 * 70 * This should be called early in the kernel initialization sequence. 71 */ 72 int __init security_init(void) 73 { 74 int i; 75 struct hlist_head *list = (struct hlist_head *) &security_hook_heads; 76 77 pr_info("Security Framework initializing\n"); 78 79 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head); 80 i++) 81 INIT_HLIST_HEAD(&list[i]); 82 83 /* 84 * Load minor LSMs, with the capability module always first. 85 */ 86 capability_add_hooks(); 87 yama_add_hooks(); 88 loadpin_add_hooks(); 89 90 /* 91 * Load all the remaining security modules. 92 */ 93 major_lsm_init(); 94 95 return 0; 96 } 97 98 /* Save user chosen LSM */ 99 static int __init choose_lsm(char *str) 100 { 101 strncpy(chosen_lsm, str, SECURITY_NAME_MAX); 102 return 1; 103 } 104 __setup("security=", choose_lsm); 105 106 /* Enable LSM order debugging. */ 107 static int __init enable_debug(char *str) 108 { 109 debug = true; 110 return 1; 111 } 112 __setup("lsm.debug", enable_debug); 113 114 static bool match_last_lsm(const char *list, const char *lsm) 115 { 116 const char *last; 117 118 if (WARN_ON(!list || !lsm)) 119 return false; 120 last = strrchr(list, ','); 121 if (last) 122 /* Pass the comma, strcmp() will check for '\0' */ 123 last++; 124 else 125 last = list; 126 return !strcmp(last, lsm); 127 } 128 129 static int lsm_append(char *new, char **result) 130 { 131 char *cp; 132 133 if (*result == NULL) { 134 *result = kstrdup(new, GFP_KERNEL); 135 if (*result == NULL) 136 return -ENOMEM; 137 } else { 138 /* Check if it is the last registered name */ 139 if (match_last_lsm(*result, new)) 140 return 0; 141 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 142 if (cp == NULL) 143 return -ENOMEM; 144 kfree(*result); 145 *result = cp; 146 } 147 return 0; 148 } 149 150 /** 151 * security_module_enable - Load given security module on boot ? 152 * @module: the name of the module 153 * 154 * Each LSM must pass this method before registering its own operations 155 * to avoid security registration races. This method may also be used 156 * to check if your LSM is currently loaded during kernel initialization. 157 * 158 * Returns: 159 * 160 * true if: 161 * 162 * - The passed LSM is the one chosen by user at boot time, 163 * - or the passed LSM is configured as the default and the user did not 164 * choose an alternate LSM at boot time. 165 * 166 * Otherwise, return false. 167 */ 168 int __init security_module_enable(const char *module) 169 { 170 return !strcmp(module, chosen_lsm); 171 } 172 173 /** 174 * security_add_hooks - Add a modules hooks to the hook lists. 175 * @hooks: the hooks to add 176 * @count: the number of hooks to add 177 * @lsm: the name of the security module 178 * 179 * Each LSM has to register its hooks with the infrastructure. 180 */ 181 void __init security_add_hooks(struct security_hook_list *hooks, int count, 182 char *lsm) 183 { 184 int i; 185 186 for (i = 0; i < count; i++) { 187 hooks[i].lsm = lsm; 188 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 189 } 190 if (lsm_append(lsm, &lsm_names) < 0) 191 panic("%s - Cannot get early memory.\n", __func__); 192 } 193 194 int call_lsm_notifier(enum lsm_event event, void *data) 195 { 196 return atomic_notifier_call_chain(&lsm_notifier_chain, event, data); 197 } 198 EXPORT_SYMBOL(call_lsm_notifier); 199 200 int register_lsm_notifier(struct notifier_block *nb) 201 { 202 return atomic_notifier_chain_register(&lsm_notifier_chain, nb); 203 } 204 EXPORT_SYMBOL(register_lsm_notifier); 205 206 int unregister_lsm_notifier(struct notifier_block *nb) 207 { 208 return atomic_notifier_chain_unregister(&lsm_notifier_chain, nb); 209 } 210 EXPORT_SYMBOL(unregister_lsm_notifier); 211 212 /* 213 * Hook list operation macros. 214 * 215 * call_void_hook: 216 * This is a hook that does not return a value. 217 * 218 * call_int_hook: 219 * This is a hook that returns a value. 220 */ 221 222 #define call_void_hook(FUNC, ...) \ 223 do { \ 224 struct security_hook_list *P; \ 225 \ 226 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 227 P->hook.FUNC(__VA_ARGS__); \ 228 } while (0) 229 230 #define call_int_hook(FUNC, IRC, ...) ({ \ 231 int RC = IRC; \ 232 do { \ 233 struct security_hook_list *P; \ 234 \ 235 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 236 RC = P->hook.FUNC(__VA_ARGS__); \ 237 if (RC != 0) \ 238 break; \ 239 } \ 240 } while (0); \ 241 RC; \ 242 }) 243 244 /* Security operations */ 245 246 int security_binder_set_context_mgr(struct task_struct *mgr) 247 { 248 return call_int_hook(binder_set_context_mgr, 0, mgr); 249 } 250 251 int security_binder_transaction(struct task_struct *from, 252 struct task_struct *to) 253 { 254 return call_int_hook(binder_transaction, 0, from, to); 255 } 256 257 int security_binder_transfer_binder(struct task_struct *from, 258 struct task_struct *to) 259 { 260 return call_int_hook(binder_transfer_binder, 0, from, to); 261 } 262 263 int security_binder_transfer_file(struct task_struct *from, 264 struct task_struct *to, struct file *file) 265 { 266 return call_int_hook(binder_transfer_file, 0, from, to, file); 267 } 268 269 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 270 { 271 return call_int_hook(ptrace_access_check, 0, child, mode); 272 } 273 274 int security_ptrace_traceme(struct task_struct *parent) 275 { 276 return call_int_hook(ptrace_traceme, 0, parent); 277 } 278 279 int security_capget(struct task_struct *target, 280 kernel_cap_t *effective, 281 kernel_cap_t *inheritable, 282 kernel_cap_t *permitted) 283 { 284 return call_int_hook(capget, 0, target, 285 effective, inheritable, permitted); 286 } 287 288 int security_capset(struct cred *new, const struct cred *old, 289 const kernel_cap_t *effective, 290 const kernel_cap_t *inheritable, 291 const kernel_cap_t *permitted) 292 { 293 return call_int_hook(capset, 0, new, old, 294 effective, inheritable, permitted); 295 } 296 297 int security_capable(const struct cred *cred, struct user_namespace *ns, 298 int cap) 299 { 300 return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_AUDIT); 301 } 302 303 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns, 304 int cap) 305 { 306 return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_NOAUDIT); 307 } 308 309 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 310 { 311 return call_int_hook(quotactl, 0, cmds, type, id, sb); 312 } 313 314 int security_quota_on(struct dentry *dentry) 315 { 316 return call_int_hook(quota_on, 0, dentry); 317 } 318 319 int security_syslog(int type) 320 { 321 return call_int_hook(syslog, 0, type); 322 } 323 324 int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 325 { 326 return call_int_hook(settime, 0, ts, tz); 327 } 328 329 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 330 { 331 struct security_hook_list *hp; 332 int cap_sys_admin = 1; 333 int rc; 334 335 /* 336 * The module will respond with a positive value if 337 * it thinks the __vm_enough_memory() call should be 338 * made with the cap_sys_admin set. If all of the modules 339 * agree that it should be set it will. If any module 340 * thinks it should not be set it won't. 341 */ 342 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 343 rc = hp->hook.vm_enough_memory(mm, pages); 344 if (rc <= 0) { 345 cap_sys_admin = 0; 346 break; 347 } 348 } 349 return __vm_enough_memory(mm, pages, cap_sys_admin); 350 } 351 352 int security_bprm_set_creds(struct linux_binprm *bprm) 353 { 354 return call_int_hook(bprm_set_creds, 0, bprm); 355 } 356 357 int security_bprm_check(struct linux_binprm *bprm) 358 { 359 int ret; 360 361 ret = call_int_hook(bprm_check_security, 0, bprm); 362 if (ret) 363 return ret; 364 return ima_bprm_check(bprm); 365 } 366 367 void security_bprm_committing_creds(struct linux_binprm *bprm) 368 { 369 call_void_hook(bprm_committing_creds, bprm); 370 } 371 372 void security_bprm_committed_creds(struct linux_binprm *bprm) 373 { 374 call_void_hook(bprm_committed_creds, bprm); 375 } 376 377 int security_sb_alloc(struct super_block *sb) 378 { 379 return call_int_hook(sb_alloc_security, 0, sb); 380 } 381 382 void security_sb_free(struct super_block *sb) 383 { 384 call_void_hook(sb_free_security, sb); 385 } 386 387 void security_free_mnt_opts(void **mnt_opts) 388 { 389 if (!*mnt_opts) 390 return; 391 call_void_hook(sb_free_mnt_opts, *mnt_opts); 392 *mnt_opts = NULL; 393 } 394 EXPORT_SYMBOL(security_free_mnt_opts); 395 396 int security_sb_eat_lsm_opts(char *options, void **mnt_opts) 397 { 398 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts); 399 } 400 EXPORT_SYMBOL(security_sb_eat_lsm_opts); 401 402 int security_sb_remount(struct super_block *sb, 403 void *mnt_opts) 404 { 405 return call_int_hook(sb_remount, 0, sb, mnt_opts); 406 } 407 EXPORT_SYMBOL(security_sb_remount); 408 409 int security_sb_kern_mount(struct super_block *sb) 410 { 411 return call_int_hook(sb_kern_mount, 0, sb); 412 } 413 414 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 415 { 416 return call_int_hook(sb_show_options, 0, m, sb); 417 } 418 419 int security_sb_statfs(struct dentry *dentry) 420 { 421 return call_int_hook(sb_statfs, 0, dentry); 422 } 423 424 int security_sb_mount(const char *dev_name, const struct path *path, 425 const char *type, unsigned long flags, void *data) 426 { 427 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data); 428 } 429 430 int security_sb_umount(struct vfsmount *mnt, int flags) 431 { 432 return call_int_hook(sb_umount, 0, mnt, flags); 433 } 434 435 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path) 436 { 437 return call_int_hook(sb_pivotroot, 0, old_path, new_path); 438 } 439 440 int security_sb_set_mnt_opts(struct super_block *sb, 441 void *mnt_opts, 442 unsigned long kern_flags, 443 unsigned long *set_kern_flags) 444 { 445 return call_int_hook(sb_set_mnt_opts, 446 mnt_opts ? -EOPNOTSUPP : 0, sb, 447 mnt_opts, kern_flags, set_kern_flags); 448 } 449 EXPORT_SYMBOL(security_sb_set_mnt_opts); 450 451 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 452 struct super_block *newsb, 453 unsigned long kern_flags, 454 unsigned long *set_kern_flags) 455 { 456 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb, 457 kern_flags, set_kern_flags); 458 } 459 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 460 461 int security_add_mnt_opt(const char *option, const char *val, int len, 462 void **mnt_opts) 463 { 464 return call_int_hook(sb_add_mnt_opt, -EINVAL, 465 option, val, len, mnt_opts); 466 } 467 EXPORT_SYMBOL(security_add_mnt_opt); 468 469 int security_inode_alloc(struct inode *inode) 470 { 471 inode->i_security = NULL; 472 return call_int_hook(inode_alloc_security, 0, inode); 473 } 474 475 void security_inode_free(struct inode *inode) 476 { 477 integrity_inode_free(inode); 478 call_void_hook(inode_free_security, inode); 479 } 480 481 int security_dentry_init_security(struct dentry *dentry, int mode, 482 const struct qstr *name, void **ctx, 483 u32 *ctxlen) 484 { 485 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode, 486 name, ctx, ctxlen); 487 } 488 EXPORT_SYMBOL(security_dentry_init_security); 489 490 int security_dentry_create_files_as(struct dentry *dentry, int mode, 491 struct qstr *name, 492 const struct cred *old, struct cred *new) 493 { 494 return call_int_hook(dentry_create_files_as, 0, dentry, mode, 495 name, old, new); 496 } 497 EXPORT_SYMBOL(security_dentry_create_files_as); 498 499 int security_inode_init_security(struct inode *inode, struct inode *dir, 500 const struct qstr *qstr, 501 const initxattrs initxattrs, void *fs_data) 502 { 503 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 504 struct xattr *lsm_xattr, *evm_xattr, *xattr; 505 int ret; 506 507 if (unlikely(IS_PRIVATE(inode))) 508 return 0; 509 510 if (!initxattrs) 511 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, 512 dir, qstr, NULL, NULL, NULL); 513 memset(new_xattrs, 0, sizeof(new_xattrs)); 514 lsm_xattr = new_xattrs; 515 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr, 516 &lsm_xattr->name, 517 &lsm_xattr->value, 518 &lsm_xattr->value_len); 519 if (ret) 520 goto out; 521 522 evm_xattr = lsm_xattr + 1; 523 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 524 if (ret) 525 goto out; 526 ret = initxattrs(inode, new_xattrs, fs_data); 527 out: 528 for (xattr = new_xattrs; xattr->value != NULL; xattr++) 529 kfree(xattr->value); 530 return (ret == -EOPNOTSUPP) ? 0 : ret; 531 } 532 EXPORT_SYMBOL(security_inode_init_security); 533 534 int security_old_inode_init_security(struct inode *inode, struct inode *dir, 535 const struct qstr *qstr, const char **name, 536 void **value, size_t *len) 537 { 538 if (unlikely(IS_PRIVATE(inode))) 539 return -EOPNOTSUPP; 540 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, 541 qstr, name, value, len); 542 } 543 EXPORT_SYMBOL(security_old_inode_init_security); 544 545 #ifdef CONFIG_SECURITY_PATH 546 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode, 547 unsigned int dev) 548 { 549 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 550 return 0; 551 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev); 552 } 553 EXPORT_SYMBOL(security_path_mknod); 554 555 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode) 556 { 557 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 558 return 0; 559 return call_int_hook(path_mkdir, 0, dir, dentry, mode); 560 } 561 EXPORT_SYMBOL(security_path_mkdir); 562 563 int security_path_rmdir(const struct path *dir, struct dentry *dentry) 564 { 565 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 566 return 0; 567 return call_int_hook(path_rmdir, 0, dir, dentry); 568 } 569 570 int security_path_unlink(const struct path *dir, struct dentry *dentry) 571 { 572 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 573 return 0; 574 return call_int_hook(path_unlink, 0, dir, dentry); 575 } 576 EXPORT_SYMBOL(security_path_unlink); 577 578 int security_path_symlink(const struct path *dir, struct dentry *dentry, 579 const char *old_name) 580 { 581 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 582 return 0; 583 return call_int_hook(path_symlink, 0, dir, dentry, old_name); 584 } 585 586 int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 587 struct dentry *new_dentry) 588 { 589 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 590 return 0; 591 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry); 592 } 593 594 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 595 const struct path *new_dir, struct dentry *new_dentry, 596 unsigned int flags) 597 { 598 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 599 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 600 return 0; 601 602 if (flags & RENAME_EXCHANGE) { 603 int err = call_int_hook(path_rename, 0, new_dir, new_dentry, 604 old_dir, old_dentry); 605 if (err) 606 return err; 607 } 608 609 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir, 610 new_dentry); 611 } 612 EXPORT_SYMBOL(security_path_rename); 613 614 int security_path_truncate(const struct path *path) 615 { 616 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 617 return 0; 618 return call_int_hook(path_truncate, 0, path); 619 } 620 621 int security_path_chmod(const struct path *path, umode_t mode) 622 { 623 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 624 return 0; 625 return call_int_hook(path_chmod, 0, path, mode); 626 } 627 628 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 629 { 630 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 631 return 0; 632 return call_int_hook(path_chown, 0, path, uid, gid); 633 } 634 635 int security_path_chroot(const struct path *path) 636 { 637 return call_int_hook(path_chroot, 0, path); 638 } 639 #endif 640 641 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 642 { 643 if (unlikely(IS_PRIVATE(dir))) 644 return 0; 645 return call_int_hook(inode_create, 0, dir, dentry, mode); 646 } 647 EXPORT_SYMBOL_GPL(security_inode_create); 648 649 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 650 struct dentry *new_dentry) 651 { 652 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 653 return 0; 654 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry); 655 } 656 657 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 658 { 659 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 660 return 0; 661 return call_int_hook(inode_unlink, 0, dir, dentry); 662 } 663 664 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 665 const char *old_name) 666 { 667 if (unlikely(IS_PRIVATE(dir))) 668 return 0; 669 return call_int_hook(inode_symlink, 0, dir, dentry, old_name); 670 } 671 672 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 673 { 674 if (unlikely(IS_PRIVATE(dir))) 675 return 0; 676 return call_int_hook(inode_mkdir, 0, dir, dentry, mode); 677 } 678 EXPORT_SYMBOL_GPL(security_inode_mkdir); 679 680 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 681 { 682 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 683 return 0; 684 return call_int_hook(inode_rmdir, 0, dir, dentry); 685 } 686 687 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 688 { 689 if (unlikely(IS_PRIVATE(dir))) 690 return 0; 691 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev); 692 } 693 694 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 695 struct inode *new_dir, struct dentry *new_dentry, 696 unsigned int flags) 697 { 698 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 699 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 700 return 0; 701 702 if (flags & RENAME_EXCHANGE) { 703 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry, 704 old_dir, old_dentry); 705 if (err) 706 return err; 707 } 708 709 return call_int_hook(inode_rename, 0, old_dir, old_dentry, 710 new_dir, new_dentry); 711 } 712 713 int security_inode_readlink(struct dentry *dentry) 714 { 715 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 716 return 0; 717 return call_int_hook(inode_readlink, 0, dentry); 718 } 719 720 int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 721 bool rcu) 722 { 723 if (unlikely(IS_PRIVATE(inode))) 724 return 0; 725 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu); 726 } 727 728 int security_inode_permission(struct inode *inode, int mask) 729 { 730 if (unlikely(IS_PRIVATE(inode))) 731 return 0; 732 return call_int_hook(inode_permission, 0, inode, mask); 733 } 734 735 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 736 { 737 int ret; 738 739 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 740 return 0; 741 ret = call_int_hook(inode_setattr, 0, dentry, attr); 742 if (ret) 743 return ret; 744 return evm_inode_setattr(dentry, attr); 745 } 746 EXPORT_SYMBOL_GPL(security_inode_setattr); 747 748 int security_inode_getattr(const struct path *path) 749 { 750 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 751 return 0; 752 return call_int_hook(inode_getattr, 0, path); 753 } 754 755 int security_inode_setxattr(struct dentry *dentry, const char *name, 756 const void *value, size_t size, int flags) 757 { 758 int ret; 759 760 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 761 return 0; 762 /* 763 * SELinux and Smack integrate the cap call, 764 * so assume that all LSMs supplying this call do so. 765 */ 766 ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size, 767 flags); 768 769 if (ret == 1) 770 ret = cap_inode_setxattr(dentry, name, value, size, flags); 771 if (ret) 772 return ret; 773 ret = ima_inode_setxattr(dentry, name, value, size); 774 if (ret) 775 return ret; 776 return evm_inode_setxattr(dentry, name, value, size); 777 } 778 779 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 780 const void *value, size_t size, int flags) 781 { 782 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 783 return; 784 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 785 evm_inode_post_setxattr(dentry, name, value, size); 786 } 787 788 int security_inode_getxattr(struct dentry *dentry, const char *name) 789 { 790 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 791 return 0; 792 return call_int_hook(inode_getxattr, 0, dentry, name); 793 } 794 795 int security_inode_listxattr(struct dentry *dentry) 796 { 797 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 798 return 0; 799 return call_int_hook(inode_listxattr, 0, dentry); 800 } 801 802 int security_inode_removexattr(struct dentry *dentry, const char *name) 803 { 804 int ret; 805 806 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 807 return 0; 808 /* 809 * SELinux and Smack integrate the cap call, 810 * so assume that all LSMs supplying this call do so. 811 */ 812 ret = call_int_hook(inode_removexattr, 1, dentry, name); 813 if (ret == 1) 814 ret = cap_inode_removexattr(dentry, name); 815 if (ret) 816 return ret; 817 ret = ima_inode_removexattr(dentry, name); 818 if (ret) 819 return ret; 820 return evm_inode_removexattr(dentry, name); 821 } 822 823 int security_inode_need_killpriv(struct dentry *dentry) 824 { 825 return call_int_hook(inode_need_killpriv, 0, dentry); 826 } 827 828 int security_inode_killpriv(struct dentry *dentry) 829 { 830 return call_int_hook(inode_killpriv, 0, dentry); 831 } 832 833 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc) 834 { 835 struct security_hook_list *hp; 836 int rc; 837 838 if (unlikely(IS_PRIVATE(inode))) 839 return -EOPNOTSUPP; 840 /* 841 * Only one module will provide an attribute with a given name. 842 */ 843 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) { 844 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc); 845 if (rc != -EOPNOTSUPP) 846 return rc; 847 } 848 return -EOPNOTSUPP; 849 } 850 851 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 852 { 853 struct security_hook_list *hp; 854 int rc; 855 856 if (unlikely(IS_PRIVATE(inode))) 857 return -EOPNOTSUPP; 858 /* 859 * Only one module will provide an attribute with a given name. 860 */ 861 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) { 862 rc = hp->hook.inode_setsecurity(inode, name, value, size, 863 flags); 864 if (rc != -EOPNOTSUPP) 865 return rc; 866 } 867 return -EOPNOTSUPP; 868 } 869 870 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 871 { 872 if (unlikely(IS_PRIVATE(inode))) 873 return 0; 874 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size); 875 } 876 EXPORT_SYMBOL(security_inode_listsecurity); 877 878 void security_inode_getsecid(struct inode *inode, u32 *secid) 879 { 880 call_void_hook(inode_getsecid, inode, secid); 881 } 882 883 int security_inode_copy_up(struct dentry *src, struct cred **new) 884 { 885 return call_int_hook(inode_copy_up, 0, src, new); 886 } 887 EXPORT_SYMBOL(security_inode_copy_up); 888 889 int security_inode_copy_up_xattr(const char *name) 890 { 891 return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name); 892 } 893 EXPORT_SYMBOL(security_inode_copy_up_xattr); 894 895 int security_file_permission(struct file *file, int mask) 896 { 897 int ret; 898 899 ret = call_int_hook(file_permission, 0, file, mask); 900 if (ret) 901 return ret; 902 903 return fsnotify_perm(file, mask); 904 } 905 906 int security_file_alloc(struct file *file) 907 { 908 return call_int_hook(file_alloc_security, 0, file); 909 } 910 911 void security_file_free(struct file *file) 912 { 913 call_void_hook(file_free_security, file); 914 } 915 916 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 917 { 918 return call_int_hook(file_ioctl, 0, file, cmd, arg); 919 } 920 921 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 922 { 923 /* 924 * Does we have PROT_READ and does the application expect 925 * it to imply PROT_EXEC? If not, nothing to talk about... 926 */ 927 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 928 return prot; 929 if (!(current->personality & READ_IMPLIES_EXEC)) 930 return prot; 931 /* 932 * if that's an anonymous mapping, let it. 933 */ 934 if (!file) 935 return prot | PROT_EXEC; 936 /* 937 * ditto if it's not on noexec mount, except that on !MMU we need 938 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 939 */ 940 if (!path_noexec(&file->f_path)) { 941 #ifndef CONFIG_MMU 942 if (file->f_op->mmap_capabilities) { 943 unsigned caps = file->f_op->mmap_capabilities(file); 944 if (!(caps & NOMMU_MAP_EXEC)) 945 return prot; 946 } 947 #endif 948 return prot | PROT_EXEC; 949 } 950 /* anything on noexec mount won't get PROT_EXEC */ 951 return prot; 952 } 953 954 int security_mmap_file(struct file *file, unsigned long prot, 955 unsigned long flags) 956 { 957 int ret; 958 ret = call_int_hook(mmap_file, 0, file, prot, 959 mmap_prot(file, prot), flags); 960 if (ret) 961 return ret; 962 return ima_file_mmap(file, prot); 963 } 964 965 int security_mmap_addr(unsigned long addr) 966 { 967 return call_int_hook(mmap_addr, 0, addr); 968 } 969 970 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 971 unsigned long prot) 972 { 973 return call_int_hook(file_mprotect, 0, vma, reqprot, prot); 974 } 975 976 int security_file_lock(struct file *file, unsigned int cmd) 977 { 978 return call_int_hook(file_lock, 0, file, cmd); 979 } 980 981 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 982 { 983 return call_int_hook(file_fcntl, 0, file, cmd, arg); 984 } 985 986 void security_file_set_fowner(struct file *file) 987 { 988 call_void_hook(file_set_fowner, file); 989 } 990 991 int security_file_send_sigiotask(struct task_struct *tsk, 992 struct fown_struct *fown, int sig) 993 { 994 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig); 995 } 996 997 int security_file_receive(struct file *file) 998 { 999 return call_int_hook(file_receive, 0, file); 1000 } 1001 1002 int security_file_open(struct file *file) 1003 { 1004 int ret; 1005 1006 ret = call_int_hook(file_open, 0, file); 1007 if (ret) 1008 return ret; 1009 1010 return fsnotify_perm(file, MAY_OPEN); 1011 } 1012 1013 int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 1014 { 1015 return call_int_hook(task_alloc, 0, task, clone_flags); 1016 } 1017 1018 void security_task_free(struct task_struct *task) 1019 { 1020 call_void_hook(task_free, task); 1021 } 1022 1023 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 1024 { 1025 return call_int_hook(cred_alloc_blank, 0, cred, gfp); 1026 } 1027 1028 void security_cred_free(struct cred *cred) 1029 { 1030 call_void_hook(cred_free, cred); 1031 } 1032 1033 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 1034 { 1035 return call_int_hook(cred_prepare, 0, new, old, gfp); 1036 } 1037 1038 void security_transfer_creds(struct cred *new, const struct cred *old) 1039 { 1040 call_void_hook(cred_transfer, new, old); 1041 } 1042 1043 void security_cred_getsecid(const struct cred *c, u32 *secid) 1044 { 1045 *secid = 0; 1046 call_void_hook(cred_getsecid, c, secid); 1047 } 1048 EXPORT_SYMBOL(security_cred_getsecid); 1049 1050 int security_kernel_act_as(struct cred *new, u32 secid) 1051 { 1052 return call_int_hook(kernel_act_as, 0, new, secid); 1053 } 1054 1055 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 1056 { 1057 return call_int_hook(kernel_create_files_as, 0, new, inode); 1058 } 1059 1060 int security_kernel_module_request(char *kmod_name) 1061 { 1062 int ret; 1063 1064 ret = call_int_hook(kernel_module_request, 0, kmod_name); 1065 if (ret) 1066 return ret; 1067 return integrity_kernel_module_request(kmod_name); 1068 } 1069 1070 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id) 1071 { 1072 int ret; 1073 1074 ret = call_int_hook(kernel_read_file, 0, file, id); 1075 if (ret) 1076 return ret; 1077 return ima_read_file(file, id); 1078 } 1079 EXPORT_SYMBOL_GPL(security_kernel_read_file); 1080 1081 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 1082 enum kernel_read_file_id id) 1083 { 1084 int ret; 1085 1086 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id); 1087 if (ret) 1088 return ret; 1089 return ima_post_read_file(file, buf, size, id); 1090 } 1091 EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 1092 1093 int security_kernel_load_data(enum kernel_load_data_id id) 1094 { 1095 int ret; 1096 1097 ret = call_int_hook(kernel_load_data, 0, id); 1098 if (ret) 1099 return ret; 1100 return ima_load_data(id); 1101 } 1102 EXPORT_SYMBOL_GPL(security_kernel_load_data); 1103 1104 int security_task_fix_setuid(struct cred *new, const struct cred *old, 1105 int flags) 1106 { 1107 return call_int_hook(task_fix_setuid, 0, new, old, flags); 1108 } 1109 1110 int security_task_setpgid(struct task_struct *p, pid_t pgid) 1111 { 1112 return call_int_hook(task_setpgid, 0, p, pgid); 1113 } 1114 1115 int security_task_getpgid(struct task_struct *p) 1116 { 1117 return call_int_hook(task_getpgid, 0, p); 1118 } 1119 1120 int security_task_getsid(struct task_struct *p) 1121 { 1122 return call_int_hook(task_getsid, 0, p); 1123 } 1124 1125 void security_task_getsecid(struct task_struct *p, u32 *secid) 1126 { 1127 *secid = 0; 1128 call_void_hook(task_getsecid, p, secid); 1129 } 1130 EXPORT_SYMBOL(security_task_getsecid); 1131 1132 int security_task_setnice(struct task_struct *p, int nice) 1133 { 1134 return call_int_hook(task_setnice, 0, p, nice); 1135 } 1136 1137 int security_task_setioprio(struct task_struct *p, int ioprio) 1138 { 1139 return call_int_hook(task_setioprio, 0, p, ioprio); 1140 } 1141 1142 int security_task_getioprio(struct task_struct *p) 1143 { 1144 return call_int_hook(task_getioprio, 0, p); 1145 } 1146 1147 int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 1148 unsigned int flags) 1149 { 1150 return call_int_hook(task_prlimit, 0, cred, tcred, flags); 1151 } 1152 1153 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 1154 struct rlimit *new_rlim) 1155 { 1156 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim); 1157 } 1158 1159 int security_task_setscheduler(struct task_struct *p) 1160 { 1161 return call_int_hook(task_setscheduler, 0, p); 1162 } 1163 1164 int security_task_getscheduler(struct task_struct *p) 1165 { 1166 return call_int_hook(task_getscheduler, 0, p); 1167 } 1168 1169 int security_task_movememory(struct task_struct *p) 1170 { 1171 return call_int_hook(task_movememory, 0, p); 1172 } 1173 1174 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, 1175 int sig, const struct cred *cred) 1176 { 1177 return call_int_hook(task_kill, 0, p, info, sig, cred); 1178 } 1179 1180 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 1181 unsigned long arg4, unsigned long arg5) 1182 { 1183 int thisrc; 1184 int rc = -ENOSYS; 1185 struct security_hook_list *hp; 1186 1187 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 1188 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 1189 if (thisrc != -ENOSYS) { 1190 rc = thisrc; 1191 if (thisrc != 0) 1192 break; 1193 } 1194 } 1195 return rc; 1196 } 1197 1198 void security_task_to_inode(struct task_struct *p, struct inode *inode) 1199 { 1200 call_void_hook(task_to_inode, p, inode); 1201 } 1202 1203 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 1204 { 1205 return call_int_hook(ipc_permission, 0, ipcp, flag); 1206 } 1207 1208 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 1209 { 1210 *secid = 0; 1211 call_void_hook(ipc_getsecid, ipcp, secid); 1212 } 1213 1214 int security_msg_msg_alloc(struct msg_msg *msg) 1215 { 1216 return call_int_hook(msg_msg_alloc_security, 0, msg); 1217 } 1218 1219 void security_msg_msg_free(struct msg_msg *msg) 1220 { 1221 call_void_hook(msg_msg_free_security, msg); 1222 } 1223 1224 int security_msg_queue_alloc(struct kern_ipc_perm *msq) 1225 { 1226 return call_int_hook(msg_queue_alloc_security, 0, msq); 1227 } 1228 1229 void security_msg_queue_free(struct kern_ipc_perm *msq) 1230 { 1231 call_void_hook(msg_queue_free_security, msq); 1232 } 1233 1234 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 1235 { 1236 return call_int_hook(msg_queue_associate, 0, msq, msqflg); 1237 } 1238 1239 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 1240 { 1241 return call_int_hook(msg_queue_msgctl, 0, msq, cmd); 1242 } 1243 1244 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 1245 struct msg_msg *msg, int msqflg) 1246 { 1247 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg); 1248 } 1249 1250 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 1251 struct task_struct *target, long type, int mode) 1252 { 1253 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode); 1254 } 1255 1256 int security_shm_alloc(struct kern_ipc_perm *shp) 1257 { 1258 return call_int_hook(shm_alloc_security, 0, shp); 1259 } 1260 1261 void security_shm_free(struct kern_ipc_perm *shp) 1262 { 1263 call_void_hook(shm_free_security, shp); 1264 } 1265 1266 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 1267 { 1268 return call_int_hook(shm_associate, 0, shp, shmflg); 1269 } 1270 1271 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 1272 { 1273 return call_int_hook(shm_shmctl, 0, shp, cmd); 1274 } 1275 1276 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg) 1277 { 1278 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg); 1279 } 1280 1281 int security_sem_alloc(struct kern_ipc_perm *sma) 1282 { 1283 return call_int_hook(sem_alloc_security, 0, sma); 1284 } 1285 1286 void security_sem_free(struct kern_ipc_perm *sma) 1287 { 1288 call_void_hook(sem_free_security, sma); 1289 } 1290 1291 int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 1292 { 1293 return call_int_hook(sem_associate, 0, sma, semflg); 1294 } 1295 1296 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 1297 { 1298 return call_int_hook(sem_semctl, 0, sma, cmd); 1299 } 1300 1301 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 1302 unsigned nsops, int alter) 1303 { 1304 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter); 1305 } 1306 1307 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 1308 { 1309 if (unlikely(inode && IS_PRIVATE(inode))) 1310 return; 1311 call_void_hook(d_instantiate, dentry, inode); 1312 } 1313 EXPORT_SYMBOL(security_d_instantiate); 1314 1315 int security_getprocattr(struct task_struct *p, char *name, char **value) 1316 { 1317 return call_int_hook(getprocattr, -EINVAL, p, name, value); 1318 } 1319 1320 int security_setprocattr(const char *name, void *value, size_t size) 1321 { 1322 return call_int_hook(setprocattr, -EINVAL, name, value, size); 1323 } 1324 1325 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 1326 { 1327 return call_int_hook(netlink_send, 0, sk, skb); 1328 } 1329 1330 int security_ismaclabel(const char *name) 1331 { 1332 return call_int_hook(ismaclabel, 0, name); 1333 } 1334 EXPORT_SYMBOL(security_ismaclabel); 1335 1336 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 1337 { 1338 return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata, 1339 seclen); 1340 } 1341 EXPORT_SYMBOL(security_secid_to_secctx); 1342 1343 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 1344 { 1345 *secid = 0; 1346 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid); 1347 } 1348 EXPORT_SYMBOL(security_secctx_to_secid); 1349 1350 void security_release_secctx(char *secdata, u32 seclen) 1351 { 1352 call_void_hook(release_secctx, secdata, seclen); 1353 } 1354 EXPORT_SYMBOL(security_release_secctx); 1355 1356 void security_inode_invalidate_secctx(struct inode *inode) 1357 { 1358 call_void_hook(inode_invalidate_secctx, inode); 1359 } 1360 EXPORT_SYMBOL(security_inode_invalidate_secctx); 1361 1362 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 1363 { 1364 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen); 1365 } 1366 EXPORT_SYMBOL(security_inode_notifysecctx); 1367 1368 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 1369 { 1370 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen); 1371 } 1372 EXPORT_SYMBOL(security_inode_setsecctx); 1373 1374 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 1375 { 1376 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen); 1377 } 1378 EXPORT_SYMBOL(security_inode_getsecctx); 1379 1380 #ifdef CONFIG_SECURITY_NETWORK 1381 1382 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 1383 { 1384 return call_int_hook(unix_stream_connect, 0, sock, other, newsk); 1385 } 1386 EXPORT_SYMBOL(security_unix_stream_connect); 1387 1388 int security_unix_may_send(struct socket *sock, struct socket *other) 1389 { 1390 return call_int_hook(unix_may_send, 0, sock, other); 1391 } 1392 EXPORT_SYMBOL(security_unix_may_send); 1393 1394 int security_socket_create(int family, int type, int protocol, int kern) 1395 { 1396 return call_int_hook(socket_create, 0, family, type, protocol, kern); 1397 } 1398 1399 int security_socket_post_create(struct socket *sock, int family, 1400 int type, int protocol, int kern) 1401 { 1402 return call_int_hook(socket_post_create, 0, sock, family, type, 1403 protocol, kern); 1404 } 1405 1406 int security_socket_socketpair(struct socket *socka, struct socket *sockb) 1407 { 1408 return call_int_hook(socket_socketpair, 0, socka, sockb); 1409 } 1410 EXPORT_SYMBOL(security_socket_socketpair); 1411 1412 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 1413 { 1414 return call_int_hook(socket_bind, 0, sock, address, addrlen); 1415 } 1416 1417 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 1418 { 1419 return call_int_hook(socket_connect, 0, sock, address, addrlen); 1420 } 1421 1422 int security_socket_listen(struct socket *sock, int backlog) 1423 { 1424 return call_int_hook(socket_listen, 0, sock, backlog); 1425 } 1426 1427 int security_socket_accept(struct socket *sock, struct socket *newsock) 1428 { 1429 return call_int_hook(socket_accept, 0, sock, newsock); 1430 } 1431 1432 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 1433 { 1434 return call_int_hook(socket_sendmsg, 0, sock, msg, size); 1435 } 1436 1437 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 1438 int size, int flags) 1439 { 1440 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags); 1441 } 1442 1443 int security_socket_getsockname(struct socket *sock) 1444 { 1445 return call_int_hook(socket_getsockname, 0, sock); 1446 } 1447 1448 int security_socket_getpeername(struct socket *sock) 1449 { 1450 return call_int_hook(socket_getpeername, 0, sock); 1451 } 1452 1453 int security_socket_getsockopt(struct socket *sock, int level, int optname) 1454 { 1455 return call_int_hook(socket_getsockopt, 0, sock, level, optname); 1456 } 1457 1458 int security_socket_setsockopt(struct socket *sock, int level, int optname) 1459 { 1460 return call_int_hook(socket_setsockopt, 0, sock, level, optname); 1461 } 1462 1463 int security_socket_shutdown(struct socket *sock, int how) 1464 { 1465 return call_int_hook(socket_shutdown, 0, sock, how); 1466 } 1467 1468 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 1469 { 1470 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb); 1471 } 1472 EXPORT_SYMBOL(security_sock_rcv_skb); 1473 1474 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 1475 int __user *optlen, unsigned len) 1476 { 1477 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock, 1478 optval, optlen, len); 1479 } 1480 1481 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 1482 { 1483 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock, 1484 skb, secid); 1485 } 1486 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 1487 1488 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 1489 { 1490 return call_int_hook(sk_alloc_security, 0, sk, family, priority); 1491 } 1492 1493 void security_sk_free(struct sock *sk) 1494 { 1495 call_void_hook(sk_free_security, sk); 1496 } 1497 1498 void security_sk_clone(const struct sock *sk, struct sock *newsk) 1499 { 1500 call_void_hook(sk_clone_security, sk, newsk); 1501 } 1502 EXPORT_SYMBOL(security_sk_clone); 1503 1504 void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 1505 { 1506 call_void_hook(sk_getsecid, sk, &fl->flowi_secid); 1507 } 1508 EXPORT_SYMBOL(security_sk_classify_flow); 1509 1510 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 1511 { 1512 call_void_hook(req_classify_flow, req, fl); 1513 } 1514 EXPORT_SYMBOL(security_req_classify_flow); 1515 1516 void security_sock_graft(struct sock *sk, struct socket *parent) 1517 { 1518 call_void_hook(sock_graft, sk, parent); 1519 } 1520 EXPORT_SYMBOL(security_sock_graft); 1521 1522 int security_inet_conn_request(struct sock *sk, 1523 struct sk_buff *skb, struct request_sock *req) 1524 { 1525 return call_int_hook(inet_conn_request, 0, sk, skb, req); 1526 } 1527 EXPORT_SYMBOL(security_inet_conn_request); 1528 1529 void security_inet_csk_clone(struct sock *newsk, 1530 const struct request_sock *req) 1531 { 1532 call_void_hook(inet_csk_clone, newsk, req); 1533 } 1534 1535 void security_inet_conn_established(struct sock *sk, 1536 struct sk_buff *skb) 1537 { 1538 call_void_hook(inet_conn_established, sk, skb); 1539 } 1540 EXPORT_SYMBOL(security_inet_conn_established); 1541 1542 int security_secmark_relabel_packet(u32 secid) 1543 { 1544 return call_int_hook(secmark_relabel_packet, 0, secid); 1545 } 1546 EXPORT_SYMBOL(security_secmark_relabel_packet); 1547 1548 void security_secmark_refcount_inc(void) 1549 { 1550 call_void_hook(secmark_refcount_inc); 1551 } 1552 EXPORT_SYMBOL(security_secmark_refcount_inc); 1553 1554 void security_secmark_refcount_dec(void) 1555 { 1556 call_void_hook(secmark_refcount_dec); 1557 } 1558 EXPORT_SYMBOL(security_secmark_refcount_dec); 1559 1560 int security_tun_dev_alloc_security(void **security) 1561 { 1562 return call_int_hook(tun_dev_alloc_security, 0, security); 1563 } 1564 EXPORT_SYMBOL(security_tun_dev_alloc_security); 1565 1566 void security_tun_dev_free_security(void *security) 1567 { 1568 call_void_hook(tun_dev_free_security, security); 1569 } 1570 EXPORT_SYMBOL(security_tun_dev_free_security); 1571 1572 int security_tun_dev_create(void) 1573 { 1574 return call_int_hook(tun_dev_create, 0); 1575 } 1576 EXPORT_SYMBOL(security_tun_dev_create); 1577 1578 int security_tun_dev_attach_queue(void *security) 1579 { 1580 return call_int_hook(tun_dev_attach_queue, 0, security); 1581 } 1582 EXPORT_SYMBOL(security_tun_dev_attach_queue); 1583 1584 int security_tun_dev_attach(struct sock *sk, void *security) 1585 { 1586 return call_int_hook(tun_dev_attach, 0, sk, security); 1587 } 1588 EXPORT_SYMBOL(security_tun_dev_attach); 1589 1590 int security_tun_dev_open(void *security) 1591 { 1592 return call_int_hook(tun_dev_open, 0, security); 1593 } 1594 EXPORT_SYMBOL(security_tun_dev_open); 1595 1596 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb) 1597 { 1598 return call_int_hook(sctp_assoc_request, 0, ep, skb); 1599 } 1600 EXPORT_SYMBOL(security_sctp_assoc_request); 1601 1602 int security_sctp_bind_connect(struct sock *sk, int optname, 1603 struct sockaddr *address, int addrlen) 1604 { 1605 return call_int_hook(sctp_bind_connect, 0, sk, optname, 1606 address, addrlen); 1607 } 1608 EXPORT_SYMBOL(security_sctp_bind_connect); 1609 1610 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk, 1611 struct sock *newsk) 1612 { 1613 call_void_hook(sctp_sk_clone, ep, sk, newsk); 1614 } 1615 EXPORT_SYMBOL(security_sctp_sk_clone); 1616 1617 #endif /* CONFIG_SECURITY_NETWORK */ 1618 1619 #ifdef CONFIG_SECURITY_INFINIBAND 1620 1621 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 1622 { 1623 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey); 1624 } 1625 EXPORT_SYMBOL(security_ib_pkey_access); 1626 1627 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num) 1628 { 1629 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num); 1630 } 1631 EXPORT_SYMBOL(security_ib_endport_manage_subnet); 1632 1633 int security_ib_alloc_security(void **sec) 1634 { 1635 return call_int_hook(ib_alloc_security, 0, sec); 1636 } 1637 EXPORT_SYMBOL(security_ib_alloc_security); 1638 1639 void security_ib_free_security(void *sec) 1640 { 1641 call_void_hook(ib_free_security, sec); 1642 } 1643 EXPORT_SYMBOL(security_ib_free_security); 1644 #endif /* CONFIG_SECURITY_INFINIBAND */ 1645 1646 #ifdef CONFIG_SECURITY_NETWORK_XFRM 1647 1648 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 1649 struct xfrm_user_sec_ctx *sec_ctx, 1650 gfp_t gfp) 1651 { 1652 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp); 1653 } 1654 EXPORT_SYMBOL(security_xfrm_policy_alloc); 1655 1656 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 1657 struct xfrm_sec_ctx **new_ctxp) 1658 { 1659 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp); 1660 } 1661 1662 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 1663 { 1664 call_void_hook(xfrm_policy_free_security, ctx); 1665 } 1666 EXPORT_SYMBOL(security_xfrm_policy_free); 1667 1668 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 1669 { 1670 return call_int_hook(xfrm_policy_delete_security, 0, ctx); 1671 } 1672 1673 int security_xfrm_state_alloc(struct xfrm_state *x, 1674 struct xfrm_user_sec_ctx *sec_ctx) 1675 { 1676 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx); 1677 } 1678 EXPORT_SYMBOL(security_xfrm_state_alloc); 1679 1680 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1681 struct xfrm_sec_ctx *polsec, u32 secid) 1682 { 1683 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid); 1684 } 1685 1686 int security_xfrm_state_delete(struct xfrm_state *x) 1687 { 1688 return call_int_hook(xfrm_state_delete_security, 0, x); 1689 } 1690 EXPORT_SYMBOL(security_xfrm_state_delete); 1691 1692 void security_xfrm_state_free(struct xfrm_state *x) 1693 { 1694 call_void_hook(xfrm_state_free_security, x); 1695 } 1696 1697 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 1698 { 1699 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir); 1700 } 1701 1702 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1703 struct xfrm_policy *xp, 1704 const struct flowi *fl) 1705 { 1706 struct security_hook_list *hp; 1707 int rc = 1; 1708 1709 /* 1710 * Since this function is expected to return 0 or 1, the judgment 1711 * becomes difficult if multiple LSMs supply this call. Fortunately, 1712 * we can use the first LSM's judgment because currently only SELinux 1713 * supplies this call. 1714 * 1715 * For speed optimization, we explicitly break the loop rather than 1716 * using the macro 1717 */ 1718 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 1719 list) { 1720 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl); 1721 break; 1722 } 1723 return rc; 1724 } 1725 1726 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1727 { 1728 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1); 1729 } 1730 1731 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1732 { 1733 int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid, 1734 0); 1735 1736 BUG_ON(rc); 1737 } 1738 EXPORT_SYMBOL(security_skb_classify_flow); 1739 1740 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1741 1742 #ifdef CONFIG_KEYS 1743 1744 int security_key_alloc(struct key *key, const struct cred *cred, 1745 unsigned long flags) 1746 { 1747 return call_int_hook(key_alloc, 0, key, cred, flags); 1748 } 1749 1750 void security_key_free(struct key *key) 1751 { 1752 call_void_hook(key_free, key); 1753 } 1754 1755 int security_key_permission(key_ref_t key_ref, 1756 const struct cred *cred, unsigned perm) 1757 { 1758 return call_int_hook(key_permission, 0, key_ref, cred, perm); 1759 } 1760 1761 int security_key_getsecurity(struct key *key, char **_buffer) 1762 { 1763 *_buffer = NULL; 1764 return call_int_hook(key_getsecurity, 0, key, _buffer); 1765 } 1766 1767 #endif /* CONFIG_KEYS */ 1768 1769 #ifdef CONFIG_AUDIT 1770 1771 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 1772 { 1773 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule); 1774 } 1775 1776 int security_audit_rule_known(struct audit_krule *krule) 1777 { 1778 return call_int_hook(audit_rule_known, 0, krule); 1779 } 1780 1781 void security_audit_rule_free(void *lsmrule) 1782 { 1783 call_void_hook(audit_rule_free, lsmrule); 1784 } 1785 1786 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 1787 struct audit_context *actx) 1788 { 1789 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule, 1790 actx); 1791 } 1792 #endif /* CONFIG_AUDIT */ 1793 1794 #ifdef CONFIG_BPF_SYSCALL 1795 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 1796 { 1797 return call_int_hook(bpf, 0, cmd, attr, size); 1798 } 1799 int security_bpf_map(struct bpf_map *map, fmode_t fmode) 1800 { 1801 return call_int_hook(bpf_map, 0, map, fmode); 1802 } 1803 int security_bpf_prog(struct bpf_prog *prog) 1804 { 1805 return call_int_hook(bpf_prog, 0, prog); 1806 } 1807 int security_bpf_map_alloc(struct bpf_map *map) 1808 { 1809 return call_int_hook(bpf_map_alloc_security, 0, map); 1810 } 1811 int security_bpf_prog_alloc(struct bpf_prog_aux *aux) 1812 { 1813 return call_int_hook(bpf_prog_alloc_security, 0, aux); 1814 } 1815 void security_bpf_map_free(struct bpf_map *map) 1816 { 1817 call_void_hook(bpf_map_free_security, map); 1818 } 1819 void security_bpf_prog_free(struct bpf_prog_aux *aux) 1820 { 1821 call_void_hook(bpf_prog_free_security, aux); 1822 } 1823 #endif /* CONFIG_BPF_SYSCALL */ 1824