xref: /openbmc/linux/security/security.c (revision 58eacfff)
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  * Copyright (C) 2016 Mellanox Technologies
8  *
9  *	This program is free software; you can redistribute it and/or modify
10  *	it under the terms of the GNU General Public License as published by
11  *	the Free Software Foundation; either version 2 of the License, or
12  *	(at your option) any later version.
13  */
14 
15 #include <linux/bpf.h>
16 #include <linux/capability.h>
17 #include <linux/dcache.h>
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/lsm_hooks.h>
22 #include <linux/integrity.h>
23 #include <linux/ima.h>
24 #include <linux/evm.h>
25 #include <linux/fsnotify.h>
26 #include <linux/mman.h>
27 #include <linux/mount.h>
28 #include <linux/personality.h>
29 #include <linux/backing-dev.h>
30 #include <linux/string.h>
31 #include <net/flow.h>
32 
33 #include <trace/events/initcall.h>
34 
35 #define MAX_LSM_EVM_XATTR	2
36 
37 /* Maximum number of letters for an LSM name string */
38 #define SECURITY_NAME_MAX	10
39 
40 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
41 static ATOMIC_NOTIFIER_HEAD(lsm_notifier_chain);
42 
43 char *lsm_names;
44 /* Boot-time LSM user choice */
45 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
46 	CONFIG_DEFAULT_SECURITY;
47 
48 static void __init do_security_initcalls(void)
49 {
50 	int ret;
51 	initcall_t *call;
52 	call = __security_initcall_start;
53 	trace_initcall_level("security");
54 	while (call < __security_initcall_end) {
55 		trace_initcall_start((*call));
56 		ret = (*call) ();
57 		trace_initcall_finish((*call), ret);
58 		call++;
59 	}
60 }
61 
62 /**
63  * security_init - initializes the security framework
64  *
65  * This should be called early in the kernel initialization sequence.
66  */
67 int __init security_init(void)
68 {
69 	int i;
70 	struct list_head *list = (struct list_head *) &security_hook_heads;
71 
72 	for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct list_head);
73 	     i++)
74 		INIT_LIST_HEAD(&list[i]);
75 	pr_info("Security Framework initialized\n");
76 
77 	/*
78 	 * Load minor LSMs, with the capability module always first.
79 	 */
80 	capability_add_hooks();
81 	yama_add_hooks();
82 	loadpin_add_hooks();
83 
84 	/*
85 	 * Load all the remaining security modules.
86 	 */
87 	do_security_initcalls();
88 
89 	return 0;
90 }
91 
92 /* Save user chosen LSM */
93 static int __init choose_lsm(char *str)
94 {
95 	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
96 	return 1;
97 }
98 __setup("security=", choose_lsm);
99 
100 static bool match_last_lsm(const char *list, const char *lsm)
101 {
102 	const char *last;
103 
104 	if (WARN_ON(!list || !lsm))
105 		return false;
106 	last = strrchr(list, ',');
107 	if (last)
108 		/* Pass the comma, strcmp() will check for '\0' */
109 		last++;
110 	else
111 		last = list;
112 	return !strcmp(last, lsm);
113 }
114 
115 static int lsm_append(char *new, char **result)
116 {
117 	char *cp;
118 
119 	if (*result == NULL) {
120 		*result = kstrdup(new, GFP_KERNEL);
121 	} else {
122 		/* Check if it is the last registered name */
123 		if (match_last_lsm(*result, new))
124 			return 0;
125 		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
126 		if (cp == NULL)
127 			return -ENOMEM;
128 		kfree(*result);
129 		*result = cp;
130 	}
131 	return 0;
132 }
133 
134 /**
135  * security_module_enable - Load given security module on boot ?
136  * @module: the name of the module
137  *
138  * Each LSM must pass this method before registering its own operations
139  * to avoid security registration races. This method may also be used
140  * to check if your LSM is currently loaded during kernel initialization.
141  *
142  * Returns:
143  *
144  * true if:
145  *
146  * - The passed LSM is the one chosen by user at boot time,
147  * - or the passed LSM is configured as the default and the user did not
148  *   choose an alternate LSM at boot time.
149  *
150  * Otherwise, return false.
151  */
152 int __init security_module_enable(const char *module)
153 {
154 	return !strcmp(module, chosen_lsm);
155 }
156 
157 /**
158  * security_add_hooks - Add a modules hooks to the hook lists.
159  * @hooks: the hooks to add
160  * @count: the number of hooks to add
161  * @lsm: the name of the security module
162  *
163  * Each LSM has to register its hooks with the infrastructure.
164  */
165 void __init security_add_hooks(struct security_hook_list *hooks, int count,
166 				char *lsm)
167 {
168 	int i;
169 
170 	for (i = 0; i < count; i++) {
171 		hooks[i].lsm = lsm;
172 		list_add_tail_rcu(&hooks[i].list, hooks[i].head);
173 	}
174 	if (lsm_append(lsm, &lsm_names) < 0)
175 		panic("%s - Cannot get early memory.\n", __func__);
176 }
177 
178 int call_lsm_notifier(enum lsm_event event, void *data)
179 {
180 	return atomic_notifier_call_chain(&lsm_notifier_chain, event, data);
181 }
182 EXPORT_SYMBOL(call_lsm_notifier);
183 
184 int register_lsm_notifier(struct notifier_block *nb)
185 {
186 	return atomic_notifier_chain_register(&lsm_notifier_chain, nb);
187 }
188 EXPORT_SYMBOL(register_lsm_notifier);
189 
190 int unregister_lsm_notifier(struct notifier_block *nb)
191 {
192 	return atomic_notifier_chain_unregister(&lsm_notifier_chain, nb);
193 }
194 EXPORT_SYMBOL(unregister_lsm_notifier);
195 
196 /*
197  * Hook list operation macros.
198  *
199  * call_void_hook:
200  *	This is a hook that does not return a value.
201  *
202  * call_int_hook:
203  *	This is a hook that returns a value.
204  */
205 
206 #define call_void_hook(FUNC, ...)				\
207 	do {							\
208 		struct security_hook_list *P;			\
209 								\
210 		list_for_each_entry(P, &security_hook_heads.FUNC, list)	\
211 			P->hook.FUNC(__VA_ARGS__);		\
212 	} while (0)
213 
214 #define call_int_hook(FUNC, IRC, ...) ({			\
215 	int RC = IRC;						\
216 	do {							\
217 		struct security_hook_list *P;			\
218 								\
219 		list_for_each_entry(P, &security_hook_heads.FUNC, list) { \
220 			RC = P->hook.FUNC(__VA_ARGS__);		\
221 			if (RC != 0)				\
222 				break;				\
223 		}						\
224 	} while (0);						\
225 	RC;							\
226 })
227 
228 /* Security operations */
229 
230 int security_binder_set_context_mgr(struct task_struct *mgr)
231 {
232 	return call_int_hook(binder_set_context_mgr, 0, mgr);
233 }
234 
235 int security_binder_transaction(struct task_struct *from,
236 				struct task_struct *to)
237 {
238 	return call_int_hook(binder_transaction, 0, from, to);
239 }
240 
241 int security_binder_transfer_binder(struct task_struct *from,
242 				    struct task_struct *to)
243 {
244 	return call_int_hook(binder_transfer_binder, 0, from, to);
245 }
246 
247 int security_binder_transfer_file(struct task_struct *from,
248 				  struct task_struct *to, struct file *file)
249 {
250 	return call_int_hook(binder_transfer_file, 0, from, to, file);
251 }
252 
253 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
254 {
255 	return call_int_hook(ptrace_access_check, 0, child, mode);
256 }
257 
258 int security_ptrace_traceme(struct task_struct *parent)
259 {
260 	return call_int_hook(ptrace_traceme, 0, parent);
261 }
262 
263 int security_capget(struct task_struct *target,
264 		     kernel_cap_t *effective,
265 		     kernel_cap_t *inheritable,
266 		     kernel_cap_t *permitted)
267 {
268 	return call_int_hook(capget, 0, target,
269 				effective, inheritable, permitted);
270 }
271 
272 int security_capset(struct cred *new, const struct cred *old,
273 		    const kernel_cap_t *effective,
274 		    const kernel_cap_t *inheritable,
275 		    const kernel_cap_t *permitted)
276 {
277 	return call_int_hook(capset, 0, new, old,
278 				effective, inheritable, permitted);
279 }
280 
281 int security_capable(const struct cred *cred, struct user_namespace *ns,
282 		     int cap)
283 {
284 	return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_AUDIT);
285 }
286 
287 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
288 			     int cap)
289 {
290 	return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_NOAUDIT);
291 }
292 
293 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
294 {
295 	return call_int_hook(quotactl, 0, cmds, type, id, sb);
296 }
297 
298 int security_quota_on(struct dentry *dentry)
299 {
300 	return call_int_hook(quota_on, 0, dentry);
301 }
302 
303 int security_syslog(int type)
304 {
305 	return call_int_hook(syslog, 0, type);
306 }
307 
308 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
309 {
310 	return call_int_hook(settime, 0, ts, tz);
311 }
312 
313 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
314 {
315 	struct security_hook_list *hp;
316 	int cap_sys_admin = 1;
317 	int rc;
318 
319 	/*
320 	 * The module will respond with a positive value if
321 	 * it thinks the __vm_enough_memory() call should be
322 	 * made with the cap_sys_admin set. If all of the modules
323 	 * agree that it should be set it will. If any module
324 	 * thinks it should not be set it won't.
325 	 */
326 	list_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
327 		rc = hp->hook.vm_enough_memory(mm, pages);
328 		if (rc <= 0) {
329 			cap_sys_admin = 0;
330 			break;
331 		}
332 	}
333 	return __vm_enough_memory(mm, pages, cap_sys_admin);
334 }
335 
336 int security_bprm_set_creds(struct linux_binprm *bprm)
337 {
338 	return call_int_hook(bprm_set_creds, 0, bprm);
339 }
340 
341 int security_bprm_check(struct linux_binprm *bprm)
342 {
343 	int ret;
344 
345 	ret = call_int_hook(bprm_check_security, 0, bprm);
346 	if (ret)
347 		return ret;
348 	return ima_bprm_check(bprm);
349 }
350 
351 void security_bprm_committing_creds(struct linux_binprm *bprm)
352 {
353 	call_void_hook(bprm_committing_creds, bprm);
354 }
355 
356 void security_bprm_committed_creds(struct linux_binprm *bprm)
357 {
358 	call_void_hook(bprm_committed_creds, bprm);
359 }
360 
361 int security_sb_alloc(struct super_block *sb)
362 {
363 	return call_int_hook(sb_alloc_security, 0, sb);
364 }
365 
366 void security_sb_free(struct super_block *sb)
367 {
368 	call_void_hook(sb_free_security, sb);
369 }
370 
371 int security_sb_copy_data(char *orig, char *copy)
372 {
373 	return call_int_hook(sb_copy_data, 0, orig, copy);
374 }
375 EXPORT_SYMBOL(security_sb_copy_data);
376 
377 int security_sb_remount(struct super_block *sb, void *data)
378 {
379 	return call_int_hook(sb_remount, 0, sb, data);
380 }
381 
382 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
383 {
384 	return call_int_hook(sb_kern_mount, 0, sb, flags, data);
385 }
386 
387 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
388 {
389 	return call_int_hook(sb_show_options, 0, m, sb);
390 }
391 
392 int security_sb_statfs(struct dentry *dentry)
393 {
394 	return call_int_hook(sb_statfs, 0, dentry);
395 }
396 
397 int security_sb_mount(const char *dev_name, const struct path *path,
398                        const char *type, unsigned long flags, void *data)
399 {
400 	return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
401 }
402 
403 int security_sb_umount(struct vfsmount *mnt, int flags)
404 {
405 	return call_int_hook(sb_umount, 0, mnt, flags);
406 }
407 
408 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
409 {
410 	return call_int_hook(sb_pivotroot, 0, old_path, new_path);
411 }
412 
413 int security_sb_set_mnt_opts(struct super_block *sb,
414 				struct security_mnt_opts *opts,
415 				unsigned long kern_flags,
416 				unsigned long *set_kern_flags)
417 {
418 	return call_int_hook(sb_set_mnt_opts,
419 				opts->num_mnt_opts ? -EOPNOTSUPP : 0, sb,
420 				opts, kern_flags, set_kern_flags);
421 }
422 EXPORT_SYMBOL(security_sb_set_mnt_opts);
423 
424 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
425 				struct super_block *newsb,
426 				unsigned long kern_flags,
427 				unsigned long *set_kern_flags)
428 {
429 	return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
430 				kern_flags, set_kern_flags);
431 }
432 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
433 
434 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
435 {
436 	return call_int_hook(sb_parse_opts_str, 0, options, opts);
437 }
438 EXPORT_SYMBOL(security_sb_parse_opts_str);
439 
440 int security_inode_alloc(struct inode *inode)
441 {
442 	inode->i_security = NULL;
443 	return call_int_hook(inode_alloc_security, 0, inode);
444 }
445 
446 void security_inode_free(struct inode *inode)
447 {
448 	integrity_inode_free(inode);
449 	call_void_hook(inode_free_security, inode);
450 }
451 
452 int security_dentry_init_security(struct dentry *dentry, int mode,
453 					const struct qstr *name, void **ctx,
454 					u32 *ctxlen)
455 {
456 	return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
457 				name, ctx, ctxlen);
458 }
459 EXPORT_SYMBOL(security_dentry_init_security);
460 
461 int security_dentry_create_files_as(struct dentry *dentry, int mode,
462 				    struct qstr *name,
463 				    const struct cred *old, struct cred *new)
464 {
465 	return call_int_hook(dentry_create_files_as, 0, dentry, mode,
466 				name, old, new);
467 }
468 EXPORT_SYMBOL(security_dentry_create_files_as);
469 
470 int security_inode_init_security(struct inode *inode, struct inode *dir,
471 				 const struct qstr *qstr,
472 				 const initxattrs initxattrs, void *fs_data)
473 {
474 	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
475 	struct xattr *lsm_xattr, *evm_xattr, *xattr;
476 	int ret;
477 
478 	if (unlikely(IS_PRIVATE(inode)))
479 		return 0;
480 
481 	if (!initxattrs)
482 		return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
483 				     dir, qstr, NULL, NULL, NULL);
484 	memset(new_xattrs, 0, sizeof(new_xattrs));
485 	lsm_xattr = new_xattrs;
486 	ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
487 						&lsm_xattr->name,
488 						&lsm_xattr->value,
489 						&lsm_xattr->value_len);
490 	if (ret)
491 		goto out;
492 
493 	evm_xattr = lsm_xattr + 1;
494 	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
495 	if (ret)
496 		goto out;
497 	ret = initxattrs(inode, new_xattrs, fs_data);
498 out:
499 	for (xattr = new_xattrs; xattr->value != NULL; xattr++)
500 		kfree(xattr->value);
501 	return (ret == -EOPNOTSUPP) ? 0 : ret;
502 }
503 EXPORT_SYMBOL(security_inode_init_security);
504 
505 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
506 				     const struct qstr *qstr, const char **name,
507 				     void **value, size_t *len)
508 {
509 	if (unlikely(IS_PRIVATE(inode)))
510 		return -EOPNOTSUPP;
511 	return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
512 			     qstr, name, value, len);
513 }
514 EXPORT_SYMBOL(security_old_inode_init_security);
515 
516 #ifdef CONFIG_SECURITY_PATH
517 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
518 			unsigned int dev)
519 {
520 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
521 		return 0;
522 	return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
523 }
524 EXPORT_SYMBOL(security_path_mknod);
525 
526 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
527 {
528 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
529 		return 0;
530 	return call_int_hook(path_mkdir, 0, dir, dentry, mode);
531 }
532 EXPORT_SYMBOL(security_path_mkdir);
533 
534 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
535 {
536 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
537 		return 0;
538 	return call_int_hook(path_rmdir, 0, dir, dentry);
539 }
540 
541 int security_path_unlink(const struct path *dir, struct dentry *dentry)
542 {
543 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
544 		return 0;
545 	return call_int_hook(path_unlink, 0, dir, dentry);
546 }
547 EXPORT_SYMBOL(security_path_unlink);
548 
549 int security_path_symlink(const struct path *dir, struct dentry *dentry,
550 			  const char *old_name)
551 {
552 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
553 		return 0;
554 	return call_int_hook(path_symlink, 0, dir, dentry, old_name);
555 }
556 
557 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
558 		       struct dentry *new_dentry)
559 {
560 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
561 		return 0;
562 	return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
563 }
564 
565 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
566 			 const struct path *new_dir, struct dentry *new_dentry,
567 			 unsigned int flags)
568 {
569 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
570 		     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
571 		return 0;
572 
573 	if (flags & RENAME_EXCHANGE) {
574 		int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
575 					old_dir, old_dentry);
576 		if (err)
577 			return err;
578 	}
579 
580 	return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
581 				new_dentry);
582 }
583 EXPORT_SYMBOL(security_path_rename);
584 
585 int security_path_truncate(const struct path *path)
586 {
587 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
588 		return 0;
589 	return call_int_hook(path_truncate, 0, path);
590 }
591 
592 int security_path_chmod(const struct path *path, umode_t mode)
593 {
594 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
595 		return 0;
596 	return call_int_hook(path_chmod, 0, path, mode);
597 }
598 
599 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
600 {
601 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
602 		return 0;
603 	return call_int_hook(path_chown, 0, path, uid, gid);
604 }
605 
606 int security_path_chroot(const struct path *path)
607 {
608 	return call_int_hook(path_chroot, 0, path);
609 }
610 #endif
611 
612 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
613 {
614 	if (unlikely(IS_PRIVATE(dir)))
615 		return 0;
616 	return call_int_hook(inode_create, 0, dir, dentry, mode);
617 }
618 EXPORT_SYMBOL_GPL(security_inode_create);
619 
620 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
621 			 struct dentry *new_dentry)
622 {
623 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
624 		return 0;
625 	return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
626 }
627 
628 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
629 {
630 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
631 		return 0;
632 	return call_int_hook(inode_unlink, 0, dir, dentry);
633 }
634 
635 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
636 			    const char *old_name)
637 {
638 	if (unlikely(IS_PRIVATE(dir)))
639 		return 0;
640 	return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
641 }
642 
643 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
644 {
645 	if (unlikely(IS_PRIVATE(dir)))
646 		return 0;
647 	return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
648 }
649 EXPORT_SYMBOL_GPL(security_inode_mkdir);
650 
651 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
652 {
653 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
654 		return 0;
655 	return call_int_hook(inode_rmdir, 0, dir, dentry);
656 }
657 
658 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
659 {
660 	if (unlikely(IS_PRIVATE(dir)))
661 		return 0;
662 	return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
663 }
664 
665 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
666 			   struct inode *new_dir, struct dentry *new_dentry,
667 			   unsigned int flags)
668 {
669         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
670             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
671 		return 0;
672 
673 	if (flags & RENAME_EXCHANGE) {
674 		int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
675 						     old_dir, old_dentry);
676 		if (err)
677 			return err;
678 	}
679 
680 	return call_int_hook(inode_rename, 0, old_dir, old_dentry,
681 					   new_dir, new_dentry);
682 }
683 
684 int security_inode_readlink(struct dentry *dentry)
685 {
686 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
687 		return 0;
688 	return call_int_hook(inode_readlink, 0, dentry);
689 }
690 
691 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
692 			       bool rcu)
693 {
694 	if (unlikely(IS_PRIVATE(inode)))
695 		return 0;
696 	return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
697 }
698 
699 int security_inode_permission(struct inode *inode, int mask)
700 {
701 	if (unlikely(IS_PRIVATE(inode)))
702 		return 0;
703 	return call_int_hook(inode_permission, 0, inode, mask);
704 }
705 
706 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
707 {
708 	int ret;
709 
710 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
711 		return 0;
712 	ret = call_int_hook(inode_setattr, 0, dentry, attr);
713 	if (ret)
714 		return ret;
715 	return evm_inode_setattr(dentry, attr);
716 }
717 EXPORT_SYMBOL_GPL(security_inode_setattr);
718 
719 int security_inode_getattr(const struct path *path)
720 {
721 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
722 		return 0;
723 	return call_int_hook(inode_getattr, 0, path);
724 }
725 
726 int security_inode_setxattr(struct dentry *dentry, const char *name,
727 			    const void *value, size_t size, int flags)
728 {
729 	int ret;
730 
731 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
732 		return 0;
733 	/*
734 	 * SELinux and Smack integrate the cap call,
735 	 * so assume that all LSMs supplying this call do so.
736 	 */
737 	ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
738 				flags);
739 
740 	if (ret == 1)
741 		ret = cap_inode_setxattr(dentry, name, value, size, flags);
742 	if (ret)
743 		return ret;
744 	ret = ima_inode_setxattr(dentry, name, value, size);
745 	if (ret)
746 		return ret;
747 	return evm_inode_setxattr(dentry, name, value, size);
748 }
749 
750 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
751 				  const void *value, size_t size, int flags)
752 {
753 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
754 		return;
755 	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
756 	evm_inode_post_setxattr(dentry, name, value, size);
757 }
758 
759 int security_inode_getxattr(struct dentry *dentry, const char *name)
760 {
761 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
762 		return 0;
763 	return call_int_hook(inode_getxattr, 0, dentry, name);
764 }
765 
766 int security_inode_listxattr(struct dentry *dentry)
767 {
768 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
769 		return 0;
770 	return call_int_hook(inode_listxattr, 0, dentry);
771 }
772 
773 int security_inode_removexattr(struct dentry *dentry, const char *name)
774 {
775 	int ret;
776 
777 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
778 		return 0;
779 	/*
780 	 * SELinux and Smack integrate the cap call,
781 	 * so assume that all LSMs supplying this call do so.
782 	 */
783 	ret = call_int_hook(inode_removexattr, 1, dentry, name);
784 	if (ret == 1)
785 		ret = cap_inode_removexattr(dentry, name);
786 	if (ret)
787 		return ret;
788 	ret = ima_inode_removexattr(dentry, name);
789 	if (ret)
790 		return ret;
791 	return evm_inode_removexattr(dentry, name);
792 }
793 
794 int security_inode_need_killpriv(struct dentry *dentry)
795 {
796 	return call_int_hook(inode_need_killpriv, 0, dentry);
797 }
798 
799 int security_inode_killpriv(struct dentry *dentry)
800 {
801 	return call_int_hook(inode_killpriv, 0, dentry);
802 }
803 
804 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
805 {
806 	struct security_hook_list *hp;
807 	int rc;
808 
809 	if (unlikely(IS_PRIVATE(inode)))
810 		return -EOPNOTSUPP;
811 	/*
812 	 * Only one module will provide an attribute with a given name.
813 	 */
814 	list_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
815 		rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
816 		if (rc != -EOPNOTSUPP)
817 			return rc;
818 	}
819 	return -EOPNOTSUPP;
820 }
821 
822 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
823 {
824 	struct security_hook_list *hp;
825 	int rc;
826 
827 	if (unlikely(IS_PRIVATE(inode)))
828 		return -EOPNOTSUPP;
829 	/*
830 	 * Only one module will provide an attribute with a given name.
831 	 */
832 	list_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
833 		rc = hp->hook.inode_setsecurity(inode, name, value, size,
834 								flags);
835 		if (rc != -EOPNOTSUPP)
836 			return rc;
837 	}
838 	return -EOPNOTSUPP;
839 }
840 
841 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
842 {
843 	if (unlikely(IS_PRIVATE(inode)))
844 		return 0;
845 	return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
846 }
847 EXPORT_SYMBOL(security_inode_listsecurity);
848 
849 void security_inode_getsecid(struct inode *inode, u32 *secid)
850 {
851 	call_void_hook(inode_getsecid, inode, secid);
852 }
853 
854 int security_inode_copy_up(struct dentry *src, struct cred **new)
855 {
856 	return call_int_hook(inode_copy_up, 0, src, new);
857 }
858 EXPORT_SYMBOL(security_inode_copy_up);
859 
860 int security_inode_copy_up_xattr(const char *name)
861 {
862 	return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
863 }
864 EXPORT_SYMBOL(security_inode_copy_up_xattr);
865 
866 int security_file_permission(struct file *file, int mask)
867 {
868 	int ret;
869 
870 	ret = call_int_hook(file_permission, 0, file, mask);
871 	if (ret)
872 		return ret;
873 
874 	return fsnotify_perm(file, mask);
875 }
876 
877 int security_file_alloc(struct file *file)
878 {
879 	return call_int_hook(file_alloc_security, 0, file);
880 }
881 
882 void security_file_free(struct file *file)
883 {
884 	call_void_hook(file_free_security, file);
885 }
886 
887 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
888 {
889 	return call_int_hook(file_ioctl, 0, file, cmd, arg);
890 }
891 
892 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
893 {
894 	/*
895 	 * Does we have PROT_READ and does the application expect
896 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
897 	 */
898 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
899 		return prot;
900 	if (!(current->personality & READ_IMPLIES_EXEC))
901 		return prot;
902 	/*
903 	 * if that's an anonymous mapping, let it.
904 	 */
905 	if (!file)
906 		return prot | PROT_EXEC;
907 	/*
908 	 * ditto if it's not on noexec mount, except that on !MMU we need
909 	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
910 	 */
911 	if (!path_noexec(&file->f_path)) {
912 #ifndef CONFIG_MMU
913 		if (file->f_op->mmap_capabilities) {
914 			unsigned caps = file->f_op->mmap_capabilities(file);
915 			if (!(caps & NOMMU_MAP_EXEC))
916 				return prot;
917 		}
918 #endif
919 		return prot | PROT_EXEC;
920 	}
921 	/* anything on noexec mount won't get PROT_EXEC */
922 	return prot;
923 }
924 
925 int security_mmap_file(struct file *file, unsigned long prot,
926 			unsigned long flags)
927 {
928 	int ret;
929 	ret = call_int_hook(mmap_file, 0, file, prot,
930 					mmap_prot(file, prot), flags);
931 	if (ret)
932 		return ret;
933 	return ima_file_mmap(file, prot);
934 }
935 
936 int security_mmap_addr(unsigned long addr)
937 {
938 	return call_int_hook(mmap_addr, 0, addr);
939 }
940 
941 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
942 			    unsigned long prot)
943 {
944 	return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
945 }
946 
947 int security_file_lock(struct file *file, unsigned int cmd)
948 {
949 	return call_int_hook(file_lock, 0, file, cmd);
950 }
951 
952 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
953 {
954 	return call_int_hook(file_fcntl, 0, file, cmd, arg);
955 }
956 
957 void security_file_set_fowner(struct file *file)
958 {
959 	call_void_hook(file_set_fowner, file);
960 }
961 
962 int security_file_send_sigiotask(struct task_struct *tsk,
963 				  struct fown_struct *fown, int sig)
964 {
965 	return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
966 }
967 
968 int security_file_receive(struct file *file)
969 {
970 	return call_int_hook(file_receive, 0, file);
971 }
972 
973 int security_file_open(struct file *file, const struct cred *cred)
974 {
975 	int ret;
976 
977 	ret = call_int_hook(file_open, 0, file, cred);
978 	if (ret)
979 		return ret;
980 
981 	return fsnotify_perm(file, MAY_OPEN);
982 }
983 
984 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
985 {
986 	return call_int_hook(task_alloc, 0, task, clone_flags);
987 }
988 
989 void security_task_free(struct task_struct *task)
990 {
991 	call_void_hook(task_free, task);
992 }
993 
994 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
995 {
996 	return call_int_hook(cred_alloc_blank, 0, cred, gfp);
997 }
998 
999 void security_cred_free(struct cred *cred)
1000 {
1001 	call_void_hook(cred_free, cred);
1002 }
1003 
1004 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1005 {
1006 	return call_int_hook(cred_prepare, 0, new, old, gfp);
1007 }
1008 
1009 void security_transfer_creds(struct cred *new, const struct cred *old)
1010 {
1011 	call_void_hook(cred_transfer, new, old);
1012 }
1013 
1014 int security_kernel_act_as(struct cred *new, u32 secid)
1015 {
1016 	return call_int_hook(kernel_act_as, 0, new, secid);
1017 }
1018 
1019 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1020 {
1021 	return call_int_hook(kernel_create_files_as, 0, new, inode);
1022 }
1023 
1024 int security_kernel_module_request(char *kmod_name)
1025 {
1026 	return call_int_hook(kernel_module_request, 0, kmod_name);
1027 }
1028 
1029 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1030 {
1031 	int ret;
1032 
1033 	ret = call_int_hook(kernel_read_file, 0, file, id);
1034 	if (ret)
1035 		return ret;
1036 	return ima_read_file(file, id);
1037 }
1038 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1039 
1040 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1041 				   enum kernel_read_file_id id)
1042 {
1043 	int ret;
1044 
1045 	ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1046 	if (ret)
1047 		return ret;
1048 	return ima_post_read_file(file, buf, size, id);
1049 }
1050 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1051 
1052 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1053 			     int flags)
1054 {
1055 	return call_int_hook(task_fix_setuid, 0, new, old, flags);
1056 }
1057 
1058 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1059 {
1060 	return call_int_hook(task_setpgid, 0, p, pgid);
1061 }
1062 
1063 int security_task_getpgid(struct task_struct *p)
1064 {
1065 	return call_int_hook(task_getpgid, 0, p);
1066 }
1067 
1068 int security_task_getsid(struct task_struct *p)
1069 {
1070 	return call_int_hook(task_getsid, 0, p);
1071 }
1072 
1073 void security_task_getsecid(struct task_struct *p, u32 *secid)
1074 {
1075 	*secid = 0;
1076 	call_void_hook(task_getsecid, p, secid);
1077 }
1078 EXPORT_SYMBOL(security_task_getsecid);
1079 
1080 int security_task_setnice(struct task_struct *p, int nice)
1081 {
1082 	return call_int_hook(task_setnice, 0, p, nice);
1083 }
1084 
1085 int security_task_setioprio(struct task_struct *p, int ioprio)
1086 {
1087 	return call_int_hook(task_setioprio, 0, p, ioprio);
1088 }
1089 
1090 int security_task_getioprio(struct task_struct *p)
1091 {
1092 	return call_int_hook(task_getioprio, 0, p);
1093 }
1094 
1095 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1096 			  unsigned int flags)
1097 {
1098 	return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1099 }
1100 
1101 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1102 		struct rlimit *new_rlim)
1103 {
1104 	return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1105 }
1106 
1107 int security_task_setscheduler(struct task_struct *p)
1108 {
1109 	return call_int_hook(task_setscheduler, 0, p);
1110 }
1111 
1112 int security_task_getscheduler(struct task_struct *p)
1113 {
1114 	return call_int_hook(task_getscheduler, 0, p);
1115 }
1116 
1117 int security_task_movememory(struct task_struct *p)
1118 {
1119 	return call_int_hook(task_movememory, 0, p);
1120 }
1121 
1122 int security_task_kill(struct task_struct *p, struct siginfo *info,
1123 			int sig, u32 secid)
1124 {
1125 	return call_int_hook(task_kill, 0, p, info, sig, secid);
1126 }
1127 
1128 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1129 			 unsigned long arg4, unsigned long arg5)
1130 {
1131 	int thisrc;
1132 	int rc = -ENOSYS;
1133 	struct security_hook_list *hp;
1134 
1135 	list_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1136 		thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1137 		if (thisrc != -ENOSYS) {
1138 			rc = thisrc;
1139 			if (thisrc != 0)
1140 				break;
1141 		}
1142 	}
1143 	return rc;
1144 }
1145 
1146 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1147 {
1148 	call_void_hook(task_to_inode, p, inode);
1149 }
1150 
1151 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1152 {
1153 	return call_int_hook(ipc_permission, 0, ipcp, flag);
1154 }
1155 
1156 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1157 {
1158 	*secid = 0;
1159 	call_void_hook(ipc_getsecid, ipcp, secid);
1160 }
1161 
1162 int security_msg_msg_alloc(struct msg_msg *msg)
1163 {
1164 	return call_int_hook(msg_msg_alloc_security, 0, msg);
1165 }
1166 
1167 void security_msg_msg_free(struct msg_msg *msg)
1168 {
1169 	call_void_hook(msg_msg_free_security, msg);
1170 }
1171 
1172 int security_msg_queue_alloc(struct msg_queue *msq)
1173 {
1174 	return call_int_hook(msg_queue_alloc_security, 0, msq);
1175 }
1176 
1177 void security_msg_queue_free(struct msg_queue *msq)
1178 {
1179 	call_void_hook(msg_queue_free_security, msq);
1180 }
1181 
1182 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
1183 {
1184 	return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1185 }
1186 
1187 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
1188 {
1189 	return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1190 }
1191 
1192 int security_msg_queue_msgsnd(struct msg_queue *msq,
1193 			       struct msg_msg *msg, int msqflg)
1194 {
1195 	return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1196 }
1197 
1198 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
1199 			       struct task_struct *target, long type, int mode)
1200 {
1201 	return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1202 }
1203 
1204 int security_shm_alloc(struct shmid_kernel *shp)
1205 {
1206 	return call_int_hook(shm_alloc_security, 0, shp);
1207 }
1208 
1209 void security_shm_free(struct shmid_kernel *shp)
1210 {
1211 	call_void_hook(shm_free_security, shp);
1212 }
1213 
1214 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
1215 {
1216 	return call_int_hook(shm_associate, 0, shp, shmflg);
1217 }
1218 
1219 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
1220 {
1221 	return call_int_hook(shm_shmctl, 0, shp, cmd);
1222 }
1223 
1224 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
1225 {
1226 	return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1227 }
1228 
1229 int security_sem_alloc(struct sem_array *sma)
1230 {
1231 	return call_int_hook(sem_alloc_security, 0, sma);
1232 }
1233 
1234 void security_sem_free(struct sem_array *sma)
1235 {
1236 	call_void_hook(sem_free_security, sma);
1237 }
1238 
1239 int security_sem_associate(struct sem_array *sma, int semflg)
1240 {
1241 	return call_int_hook(sem_associate, 0, sma, semflg);
1242 }
1243 
1244 int security_sem_semctl(struct sem_array *sma, int cmd)
1245 {
1246 	return call_int_hook(sem_semctl, 0, sma, cmd);
1247 }
1248 
1249 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
1250 			unsigned nsops, int alter)
1251 {
1252 	return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1253 }
1254 
1255 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1256 {
1257 	if (unlikely(inode && IS_PRIVATE(inode)))
1258 		return;
1259 	call_void_hook(d_instantiate, dentry, inode);
1260 }
1261 EXPORT_SYMBOL(security_d_instantiate);
1262 
1263 int security_getprocattr(struct task_struct *p, char *name, char **value)
1264 {
1265 	return call_int_hook(getprocattr, -EINVAL, p, name, value);
1266 }
1267 
1268 int security_setprocattr(const char *name, void *value, size_t size)
1269 {
1270 	return call_int_hook(setprocattr, -EINVAL, name, value, size);
1271 }
1272 
1273 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1274 {
1275 	return call_int_hook(netlink_send, 0, sk, skb);
1276 }
1277 
1278 int security_ismaclabel(const char *name)
1279 {
1280 	return call_int_hook(ismaclabel, 0, name);
1281 }
1282 EXPORT_SYMBOL(security_ismaclabel);
1283 
1284 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1285 {
1286 	return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1287 				seclen);
1288 }
1289 EXPORT_SYMBOL(security_secid_to_secctx);
1290 
1291 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1292 {
1293 	*secid = 0;
1294 	return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1295 }
1296 EXPORT_SYMBOL(security_secctx_to_secid);
1297 
1298 void security_release_secctx(char *secdata, u32 seclen)
1299 {
1300 	call_void_hook(release_secctx, secdata, seclen);
1301 }
1302 EXPORT_SYMBOL(security_release_secctx);
1303 
1304 void security_inode_invalidate_secctx(struct inode *inode)
1305 {
1306 	call_void_hook(inode_invalidate_secctx, inode);
1307 }
1308 EXPORT_SYMBOL(security_inode_invalidate_secctx);
1309 
1310 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1311 {
1312 	return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1313 }
1314 EXPORT_SYMBOL(security_inode_notifysecctx);
1315 
1316 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1317 {
1318 	return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
1319 }
1320 EXPORT_SYMBOL(security_inode_setsecctx);
1321 
1322 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1323 {
1324 	return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
1325 }
1326 EXPORT_SYMBOL(security_inode_getsecctx);
1327 
1328 #ifdef CONFIG_SECURITY_NETWORK
1329 
1330 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1331 {
1332 	return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
1333 }
1334 EXPORT_SYMBOL(security_unix_stream_connect);
1335 
1336 int security_unix_may_send(struct socket *sock,  struct socket *other)
1337 {
1338 	return call_int_hook(unix_may_send, 0, sock, other);
1339 }
1340 EXPORT_SYMBOL(security_unix_may_send);
1341 
1342 int security_socket_create(int family, int type, int protocol, int kern)
1343 {
1344 	return call_int_hook(socket_create, 0, family, type, protocol, kern);
1345 }
1346 
1347 int security_socket_post_create(struct socket *sock, int family,
1348 				int type, int protocol, int kern)
1349 {
1350 	return call_int_hook(socket_post_create, 0, sock, family, type,
1351 						protocol, kern);
1352 }
1353 
1354 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1355 {
1356 	return call_int_hook(socket_bind, 0, sock, address, addrlen);
1357 }
1358 
1359 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1360 {
1361 	return call_int_hook(socket_connect, 0, sock, address, addrlen);
1362 }
1363 
1364 int security_socket_listen(struct socket *sock, int backlog)
1365 {
1366 	return call_int_hook(socket_listen, 0, sock, backlog);
1367 }
1368 
1369 int security_socket_accept(struct socket *sock, struct socket *newsock)
1370 {
1371 	return call_int_hook(socket_accept, 0, sock, newsock);
1372 }
1373 
1374 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1375 {
1376 	return call_int_hook(socket_sendmsg, 0, sock, msg, size);
1377 }
1378 
1379 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1380 			    int size, int flags)
1381 {
1382 	return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
1383 }
1384 
1385 int security_socket_getsockname(struct socket *sock)
1386 {
1387 	return call_int_hook(socket_getsockname, 0, sock);
1388 }
1389 
1390 int security_socket_getpeername(struct socket *sock)
1391 {
1392 	return call_int_hook(socket_getpeername, 0, sock);
1393 }
1394 
1395 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1396 {
1397 	return call_int_hook(socket_getsockopt, 0, sock, level, optname);
1398 }
1399 
1400 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1401 {
1402 	return call_int_hook(socket_setsockopt, 0, sock, level, optname);
1403 }
1404 
1405 int security_socket_shutdown(struct socket *sock, int how)
1406 {
1407 	return call_int_hook(socket_shutdown, 0, sock, how);
1408 }
1409 
1410 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1411 {
1412 	return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
1413 }
1414 EXPORT_SYMBOL(security_sock_rcv_skb);
1415 
1416 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1417 				      int __user *optlen, unsigned len)
1418 {
1419 	return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
1420 				optval, optlen, len);
1421 }
1422 
1423 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1424 {
1425 	return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
1426 			     skb, secid);
1427 }
1428 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1429 
1430 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1431 {
1432 	return call_int_hook(sk_alloc_security, 0, sk, family, priority);
1433 }
1434 
1435 void security_sk_free(struct sock *sk)
1436 {
1437 	call_void_hook(sk_free_security, sk);
1438 }
1439 
1440 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1441 {
1442 	call_void_hook(sk_clone_security, sk, newsk);
1443 }
1444 EXPORT_SYMBOL(security_sk_clone);
1445 
1446 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1447 {
1448 	call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
1449 }
1450 EXPORT_SYMBOL(security_sk_classify_flow);
1451 
1452 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1453 {
1454 	call_void_hook(req_classify_flow, req, fl);
1455 }
1456 EXPORT_SYMBOL(security_req_classify_flow);
1457 
1458 void security_sock_graft(struct sock *sk, struct socket *parent)
1459 {
1460 	call_void_hook(sock_graft, sk, parent);
1461 }
1462 EXPORT_SYMBOL(security_sock_graft);
1463 
1464 int security_inet_conn_request(struct sock *sk,
1465 			struct sk_buff *skb, struct request_sock *req)
1466 {
1467 	return call_int_hook(inet_conn_request, 0, sk, skb, req);
1468 }
1469 EXPORT_SYMBOL(security_inet_conn_request);
1470 
1471 void security_inet_csk_clone(struct sock *newsk,
1472 			const struct request_sock *req)
1473 {
1474 	call_void_hook(inet_csk_clone, newsk, req);
1475 }
1476 
1477 void security_inet_conn_established(struct sock *sk,
1478 			struct sk_buff *skb)
1479 {
1480 	call_void_hook(inet_conn_established, sk, skb);
1481 }
1482 
1483 int security_secmark_relabel_packet(u32 secid)
1484 {
1485 	return call_int_hook(secmark_relabel_packet, 0, secid);
1486 }
1487 EXPORT_SYMBOL(security_secmark_relabel_packet);
1488 
1489 void security_secmark_refcount_inc(void)
1490 {
1491 	call_void_hook(secmark_refcount_inc);
1492 }
1493 EXPORT_SYMBOL(security_secmark_refcount_inc);
1494 
1495 void security_secmark_refcount_dec(void)
1496 {
1497 	call_void_hook(secmark_refcount_dec);
1498 }
1499 EXPORT_SYMBOL(security_secmark_refcount_dec);
1500 
1501 int security_tun_dev_alloc_security(void **security)
1502 {
1503 	return call_int_hook(tun_dev_alloc_security, 0, security);
1504 }
1505 EXPORT_SYMBOL(security_tun_dev_alloc_security);
1506 
1507 void security_tun_dev_free_security(void *security)
1508 {
1509 	call_void_hook(tun_dev_free_security, security);
1510 }
1511 EXPORT_SYMBOL(security_tun_dev_free_security);
1512 
1513 int security_tun_dev_create(void)
1514 {
1515 	return call_int_hook(tun_dev_create, 0);
1516 }
1517 EXPORT_SYMBOL(security_tun_dev_create);
1518 
1519 int security_tun_dev_attach_queue(void *security)
1520 {
1521 	return call_int_hook(tun_dev_attach_queue, 0, security);
1522 }
1523 EXPORT_SYMBOL(security_tun_dev_attach_queue);
1524 
1525 int security_tun_dev_attach(struct sock *sk, void *security)
1526 {
1527 	return call_int_hook(tun_dev_attach, 0, sk, security);
1528 }
1529 EXPORT_SYMBOL(security_tun_dev_attach);
1530 
1531 int security_tun_dev_open(void *security)
1532 {
1533 	return call_int_hook(tun_dev_open, 0, security);
1534 }
1535 EXPORT_SYMBOL(security_tun_dev_open);
1536 
1537 #endif	/* CONFIG_SECURITY_NETWORK */
1538 
1539 #ifdef CONFIG_SECURITY_INFINIBAND
1540 
1541 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
1542 {
1543 	return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
1544 }
1545 EXPORT_SYMBOL(security_ib_pkey_access);
1546 
1547 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
1548 {
1549 	return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
1550 }
1551 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
1552 
1553 int security_ib_alloc_security(void **sec)
1554 {
1555 	return call_int_hook(ib_alloc_security, 0, sec);
1556 }
1557 EXPORT_SYMBOL(security_ib_alloc_security);
1558 
1559 void security_ib_free_security(void *sec)
1560 {
1561 	call_void_hook(ib_free_security, sec);
1562 }
1563 EXPORT_SYMBOL(security_ib_free_security);
1564 #endif	/* CONFIG_SECURITY_INFINIBAND */
1565 
1566 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1567 
1568 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
1569 			       struct xfrm_user_sec_ctx *sec_ctx,
1570 			       gfp_t gfp)
1571 {
1572 	return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
1573 }
1574 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1575 
1576 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1577 			      struct xfrm_sec_ctx **new_ctxp)
1578 {
1579 	return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
1580 }
1581 
1582 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1583 {
1584 	call_void_hook(xfrm_policy_free_security, ctx);
1585 }
1586 EXPORT_SYMBOL(security_xfrm_policy_free);
1587 
1588 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1589 {
1590 	return call_int_hook(xfrm_policy_delete_security, 0, ctx);
1591 }
1592 
1593 int security_xfrm_state_alloc(struct xfrm_state *x,
1594 			      struct xfrm_user_sec_ctx *sec_ctx)
1595 {
1596 	return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
1597 }
1598 EXPORT_SYMBOL(security_xfrm_state_alloc);
1599 
1600 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1601 				      struct xfrm_sec_ctx *polsec, u32 secid)
1602 {
1603 	return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
1604 }
1605 
1606 int security_xfrm_state_delete(struct xfrm_state *x)
1607 {
1608 	return call_int_hook(xfrm_state_delete_security, 0, x);
1609 }
1610 EXPORT_SYMBOL(security_xfrm_state_delete);
1611 
1612 void security_xfrm_state_free(struct xfrm_state *x)
1613 {
1614 	call_void_hook(xfrm_state_free_security, x);
1615 }
1616 
1617 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1618 {
1619 	return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
1620 }
1621 
1622 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1623 				       struct xfrm_policy *xp,
1624 				       const struct flowi *fl)
1625 {
1626 	struct security_hook_list *hp;
1627 	int rc = 1;
1628 
1629 	/*
1630 	 * Since this function is expected to return 0 or 1, the judgment
1631 	 * becomes difficult if multiple LSMs supply this call. Fortunately,
1632 	 * we can use the first LSM's judgment because currently only SELinux
1633 	 * supplies this call.
1634 	 *
1635 	 * For speed optimization, we explicitly break the loop rather than
1636 	 * using the macro
1637 	 */
1638 	list_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
1639 				list) {
1640 		rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
1641 		break;
1642 	}
1643 	return rc;
1644 }
1645 
1646 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1647 {
1648 	return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
1649 }
1650 
1651 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1652 {
1653 	int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
1654 				0);
1655 
1656 	BUG_ON(rc);
1657 }
1658 EXPORT_SYMBOL(security_skb_classify_flow);
1659 
1660 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1661 
1662 #ifdef CONFIG_KEYS
1663 
1664 int security_key_alloc(struct key *key, const struct cred *cred,
1665 		       unsigned long flags)
1666 {
1667 	return call_int_hook(key_alloc, 0, key, cred, flags);
1668 }
1669 
1670 void security_key_free(struct key *key)
1671 {
1672 	call_void_hook(key_free, key);
1673 }
1674 
1675 int security_key_permission(key_ref_t key_ref,
1676 			    const struct cred *cred, unsigned perm)
1677 {
1678 	return call_int_hook(key_permission, 0, key_ref, cred, perm);
1679 }
1680 
1681 int security_key_getsecurity(struct key *key, char **_buffer)
1682 {
1683 	*_buffer = NULL;
1684 	return call_int_hook(key_getsecurity, 0, key, _buffer);
1685 }
1686 
1687 #endif	/* CONFIG_KEYS */
1688 
1689 #ifdef CONFIG_AUDIT
1690 
1691 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1692 {
1693 	return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
1694 }
1695 
1696 int security_audit_rule_known(struct audit_krule *krule)
1697 {
1698 	return call_int_hook(audit_rule_known, 0, krule);
1699 }
1700 
1701 void security_audit_rule_free(void *lsmrule)
1702 {
1703 	call_void_hook(audit_rule_free, lsmrule);
1704 }
1705 
1706 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1707 			      struct audit_context *actx)
1708 {
1709 	return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule,
1710 				actx);
1711 }
1712 #endif /* CONFIG_AUDIT */
1713 
1714 #ifdef CONFIG_BPF_SYSCALL
1715 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
1716 {
1717 	return call_int_hook(bpf, 0, cmd, attr, size);
1718 }
1719 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
1720 {
1721 	return call_int_hook(bpf_map, 0, map, fmode);
1722 }
1723 int security_bpf_prog(struct bpf_prog *prog)
1724 {
1725 	return call_int_hook(bpf_prog, 0, prog);
1726 }
1727 int security_bpf_map_alloc(struct bpf_map *map)
1728 {
1729 	return call_int_hook(bpf_map_alloc_security, 0, map);
1730 }
1731 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
1732 {
1733 	return call_int_hook(bpf_prog_alloc_security, 0, aux);
1734 }
1735 void security_bpf_map_free(struct bpf_map *map)
1736 {
1737 	call_void_hook(bpf_map_free_security, map);
1738 }
1739 void security_bpf_prog_free(struct bpf_prog_aux *aux)
1740 {
1741 	call_void_hook(bpf_prog_free_security, aux);
1742 }
1743 #endif /* CONFIG_BPF_SYSCALL */
1744