xref: /openbmc/linux/security/security.c (revision 565d76cb)
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *	This program is free software; you can redistribute it and/or modify
9  *	it under the terms of the GNU General Public License as published by
10  *	the Free Software Foundation; either version 2 of the License, or
11  *	(at your option) any later version.
12  */
13 
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/ima.h>
20 
21 /* Boot-time LSM user choice */
22 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
23 	CONFIG_DEFAULT_SECURITY;
24 
25 /* things that live in capability.c */
26 extern void __init security_fixup_ops(struct security_operations *ops);
27 
28 static struct security_operations *security_ops;
29 static struct security_operations default_security_ops = {
30 	.name	= "default",
31 };
32 
33 static inline int __init verify(struct security_operations *ops)
34 {
35 	/* verify the security_operations structure exists */
36 	if (!ops)
37 		return -EINVAL;
38 	security_fixup_ops(ops);
39 	return 0;
40 }
41 
42 static void __init do_security_initcalls(void)
43 {
44 	initcall_t *call;
45 	call = __security_initcall_start;
46 	while (call < __security_initcall_end) {
47 		(*call) ();
48 		call++;
49 	}
50 }
51 
52 /**
53  * security_init - initializes the security framework
54  *
55  * This should be called early in the kernel initialization sequence.
56  */
57 int __init security_init(void)
58 {
59 	printk(KERN_INFO "Security Framework initialized\n");
60 
61 	security_fixup_ops(&default_security_ops);
62 	security_ops = &default_security_ops;
63 	do_security_initcalls();
64 
65 	return 0;
66 }
67 
68 void reset_security_ops(void)
69 {
70 	security_ops = &default_security_ops;
71 }
72 
73 /* Save user chosen LSM */
74 static int __init choose_lsm(char *str)
75 {
76 	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
77 	return 1;
78 }
79 __setup("security=", choose_lsm);
80 
81 /**
82  * security_module_enable - Load given security module on boot ?
83  * @ops: a pointer to the struct security_operations that is to be checked.
84  *
85  * Each LSM must pass this method before registering its own operations
86  * to avoid security registration races. This method may also be used
87  * to check if your LSM is currently loaded during kernel initialization.
88  *
89  * Return true if:
90  *	-The passed LSM is the one chosen by user at boot time,
91  *	-or the passed LSM is configured as the default and the user did not
92  *	 choose an alternate LSM at boot time.
93  * Otherwise, return false.
94  */
95 int __init security_module_enable(struct security_operations *ops)
96 {
97 	return !strcmp(ops->name, chosen_lsm);
98 }
99 
100 /**
101  * register_security - registers a security framework with the kernel
102  * @ops: a pointer to the struct security_options that is to be registered
103  *
104  * This function allows a security module to register itself with the
105  * kernel security subsystem.  Some rudimentary checking is done on the @ops
106  * value passed to this function. You'll need to check first if your LSM
107  * is allowed to register its @ops by calling security_module_enable(@ops).
108  *
109  * If there is already a security module registered with the kernel,
110  * an error will be returned.  Otherwise %0 is returned on success.
111  */
112 int __init register_security(struct security_operations *ops)
113 {
114 	if (verify(ops)) {
115 		printk(KERN_DEBUG "%s could not verify "
116 		       "security_operations structure.\n", __func__);
117 		return -EINVAL;
118 	}
119 
120 	if (security_ops != &default_security_ops)
121 		return -EAGAIN;
122 
123 	security_ops = ops;
124 
125 	return 0;
126 }
127 
128 /* Security operations */
129 
130 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
131 {
132 	return security_ops->ptrace_access_check(child, mode);
133 }
134 
135 int security_ptrace_traceme(struct task_struct *parent)
136 {
137 	return security_ops->ptrace_traceme(parent);
138 }
139 
140 int security_capget(struct task_struct *target,
141 		     kernel_cap_t *effective,
142 		     kernel_cap_t *inheritable,
143 		     kernel_cap_t *permitted)
144 {
145 	return security_ops->capget(target, effective, inheritable, permitted);
146 }
147 
148 int security_capset(struct cred *new, const struct cred *old,
149 		    const kernel_cap_t *effective,
150 		    const kernel_cap_t *inheritable,
151 		    const kernel_cap_t *permitted)
152 {
153 	return security_ops->capset(new, old,
154 				    effective, inheritable, permitted);
155 }
156 
157 int security_capable(const struct cred *cred, int cap)
158 {
159 	return security_ops->capable(current, cred, cap, SECURITY_CAP_AUDIT);
160 }
161 
162 int security_real_capable(struct task_struct *tsk, int cap)
163 {
164 	const struct cred *cred;
165 	int ret;
166 
167 	cred = get_task_cred(tsk);
168 	ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT);
169 	put_cred(cred);
170 	return ret;
171 }
172 
173 int security_real_capable_noaudit(struct task_struct *tsk, int cap)
174 {
175 	const struct cred *cred;
176 	int ret;
177 
178 	cred = get_task_cred(tsk);
179 	ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT);
180 	put_cred(cred);
181 	return ret;
182 }
183 
184 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
185 {
186 	return security_ops->quotactl(cmds, type, id, sb);
187 }
188 
189 int security_quota_on(struct dentry *dentry)
190 {
191 	return security_ops->quota_on(dentry);
192 }
193 
194 int security_syslog(int type)
195 {
196 	return security_ops->syslog(type);
197 }
198 
199 int security_settime(const struct timespec *ts, const struct timezone *tz)
200 {
201 	return security_ops->settime(ts, tz);
202 }
203 
204 int security_vm_enough_memory(long pages)
205 {
206 	WARN_ON(current->mm == NULL);
207 	return security_ops->vm_enough_memory(current->mm, pages);
208 }
209 
210 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
211 {
212 	WARN_ON(mm == NULL);
213 	return security_ops->vm_enough_memory(mm, pages);
214 }
215 
216 int security_vm_enough_memory_kern(long pages)
217 {
218 	/* If current->mm is a kernel thread then we will pass NULL,
219 	   for this specific case that is fine */
220 	return security_ops->vm_enough_memory(current->mm, pages);
221 }
222 
223 int security_bprm_set_creds(struct linux_binprm *bprm)
224 {
225 	return security_ops->bprm_set_creds(bprm);
226 }
227 
228 int security_bprm_check(struct linux_binprm *bprm)
229 {
230 	int ret;
231 
232 	ret = security_ops->bprm_check_security(bprm);
233 	if (ret)
234 		return ret;
235 	return ima_bprm_check(bprm);
236 }
237 
238 void security_bprm_committing_creds(struct linux_binprm *bprm)
239 {
240 	security_ops->bprm_committing_creds(bprm);
241 }
242 
243 void security_bprm_committed_creds(struct linux_binprm *bprm)
244 {
245 	security_ops->bprm_committed_creds(bprm);
246 }
247 
248 int security_bprm_secureexec(struct linux_binprm *bprm)
249 {
250 	return security_ops->bprm_secureexec(bprm);
251 }
252 
253 int security_sb_alloc(struct super_block *sb)
254 {
255 	return security_ops->sb_alloc_security(sb);
256 }
257 
258 void security_sb_free(struct super_block *sb)
259 {
260 	security_ops->sb_free_security(sb);
261 }
262 
263 int security_sb_copy_data(char *orig, char *copy)
264 {
265 	return security_ops->sb_copy_data(orig, copy);
266 }
267 EXPORT_SYMBOL(security_sb_copy_data);
268 
269 int security_sb_remount(struct super_block *sb, void *data)
270 {
271 	return security_ops->sb_remount(sb, data);
272 }
273 
274 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
275 {
276 	return security_ops->sb_kern_mount(sb, flags, data);
277 }
278 
279 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
280 {
281 	return security_ops->sb_show_options(m, sb);
282 }
283 
284 int security_sb_statfs(struct dentry *dentry)
285 {
286 	return security_ops->sb_statfs(dentry);
287 }
288 
289 int security_sb_mount(char *dev_name, struct path *path,
290                        char *type, unsigned long flags, void *data)
291 {
292 	return security_ops->sb_mount(dev_name, path, type, flags, data);
293 }
294 
295 int security_sb_umount(struct vfsmount *mnt, int flags)
296 {
297 	return security_ops->sb_umount(mnt, flags);
298 }
299 
300 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
301 {
302 	return security_ops->sb_pivotroot(old_path, new_path);
303 }
304 
305 int security_sb_set_mnt_opts(struct super_block *sb,
306 				struct security_mnt_opts *opts)
307 {
308 	return security_ops->sb_set_mnt_opts(sb, opts);
309 }
310 EXPORT_SYMBOL(security_sb_set_mnt_opts);
311 
312 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
313 				struct super_block *newsb)
314 {
315 	security_ops->sb_clone_mnt_opts(oldsb, newsb);
316 }
317 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
318 
319 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
320 {
321 	return security_ops->sb_parse_opts_str(options, opts);
322 }
323 EXPORT_SYMBOL(security_sb_parse_opts_str);
324 
325 int security_inode_alloc(struct inode *inode)
326 {
327 	inode->i_security = NULL;
328 	return security_ops->inode_alloc_security(inode);
329 }
330 
331 void security_inode_free(struct inode *inode)
332 {
333 	ima_inode_free(inode);
334 	security_ops->inode_free_security(inode);
335 }
336 
337 int security_inode_init_security(struct inode *inode, struct inode *dir,
338 				 const struct qstr *qstr, char **name,
339 				 void **value, size_t *len)
340 {
341 	if (unlikely(IS_PRIVATE(inode)))
342 		return -EOPNOTSUPP;
343 	return security_ops->inode_init_security(inode, dir, qstr, name, value,
344 						 len);
345 }
346 EXPORT_SYMBOL(security_inode_init_security);
347 
348 #ifdef CONFIG_SECURITY_PATH
349 int security_path_mknod(struct path *dir, struct dentry *dentry, int mode,
350 			unsigned int dev)
351 {
352 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
353 		return 0;
354 	return security_ops->path_mknod(dir, dentry, mode, dev);
355 }
356 EXPORT_SYMBOL(security_path_mknod);
357 
358 int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode)
359 {
360 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
361 		return 0;
362 	return security_ops->path_mkdir(dir, dentry, mode);
363 }
364 EXPORT_SYMBOL(security_path_mkdir);
365 
366 int security_path_rmdir(struct path *dir, struct dentry *dentry)
367 {
368 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
369 		return 0;
370 	return security_ops->path_rmdir(dir, dentry);
371 }
372 
373 int security_path_unlink(struct path *dir, struct dentry *dentry)
374 {
375 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
376 		return 0;
377 	return security_ops->path_unlink(dir, dentry);
378 }
379 EXPORT_SYMBOL(security_path_unlink);
380 
381 int security_path_symlink(struct path *dir, struct dentry *dentry,
382 			  const char *old_name)
383 {
384 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
385 		return 0;
386 	return security_ops->path_symlink(dir, dentry, old_name);
387 }
388 
389 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
390 		       struct dentry *new_dentry)
391 {
392 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
393 		return 0;
394 	return security_ops->path_link(old_dentry, new_dir, new_dentry);
395 }
396 
397 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
398 			 struct path *new_dir, struct dentry *new_dentry)
399 {
400 	if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
401 		     (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
402 		return 0;
403 	return security_ops->path_rename(old_dir, old_dentry, new_dir,
404 					 new_dentry);
405 }
406 EXPORT_SYMBOL(security_path_rename);
407 
408 int security_path_truncate(struct path *path)
409 {
410 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
411 		return 0;
412 	return security_ops->path_truncate(path);
413 }
414 
415 int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt,
416 			mode_t mode)
417 {
418 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
419 		return 0;
420 	return security_ops->path_chmod(dentry, mnt, mode);
421 }
422 
423 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
424 {
425 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
426 		return 0;
427 	return security_ops->path_chown(path, uid, gid);
428 }
429 
430 int security_path_chroot(struct path *path)
431 {
432 	return security_ops->path_chroot(path);
433 }
434 #endif
435 
436 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
437 {
438 	if (unlikely(IS_PRIVATE(dir)))
439 		return 0;
440 	return security_ops->inode_create(dir, dentry, mode);
441 }
442 EXPORT_SYMBOL_GPL(security_inode_create);
443 
444 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
445 			 struct dentry *new_dentry)
446 {
447 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
448 		return 0;
449 	return security_ops->inode_link(old_dentry, dir, new_dentry);
450 }
451 
452 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
453 {
454 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
455 		return 0;
456 	return security_ops->inode_unlink(dir, dentry);
457 }
458 
459 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
460 			    const char *old_name)
461 {
462 	if (unlikely(IS_PRIVATE(dir)))
463 		return 0;
464 	return security_ops->inode_symlink(dir, dentry, old_name);
465 }
466 
467 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
468 {
469 	if (unlikely(IS_PRIVATE(dir)))
470 		return 0;
471 	return security_ops->inode_mkdir(dir, dentry, mode);
472 }
473 EXPORT_SYMBOL_GPL(security_inode_mkdir);
474 
475 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
476 {
477 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
478 		return 0;
479 	return security_ops->inode_rmdir(dir, dentry);
480 }
481 
482 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
483 {
484 	if (unlikely(IS_PRIVATE(dir)))
485 		return 0;
486 	return security_ops->inode_mknod(dir, dentry, mode, dev);
487 }
488 
489 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
490 			   struct inode *new_dir, struct dentry *new_dentry)
491 {
492         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
493             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
494 		return 0;
495 	return security_ops->inode_rename(old_dir, old_dentry,
496 					   new_dir, new_dentry);
497 }
498 
499 int security_inode_readlink(struct dentry *dentry)
500 {
501 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
502 		return 0;
503 	return security_ops->inode_readlink(dentry);
504 }
505 
506 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
507 {
508 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
509 		return 0;
510 	return security_ops->inode_follow_link(dentry, nd);
511 }
512 
513 int security_inode_permission(struct inode *inode, int mask)
514 {
515 	if (unlikely(IS_PRIVATE(inode)))
516 		return 0;
517 	return security_ops->inode_permission(inode, mask);
518 }
519 
520 int security_inode_exec_permission(struct inode *inode, unsigned int flags)
521 {
522 	if (unlikely(IS_PRIVATE(inode)))
523 		return 0;
524 	if (flags)
525 		return -ECHILD;
526 	return security_ops->inode_permission(inode, MAY_EXEC);
527 }
528 
529 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
530 {
531 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
532 		return 0;
533 	return security_ops->inode_setattr(dentry, attr);
534 }
535 EXPORT_SYMBOL_GPL(security_inode_setattr);
536 
537 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
538 {
539 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
540 		return 0;
541 	return security_ops->inode_getattr(mnt, dentry);
542 }
543 
544 int security_inode_setxattr(struct dentry *dentry, const char *name,
545 			    const void *value, size_t size, int flags)
546 {
547 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
548 		return 0;
549 	return security_ops->inode_setxattr(dentry, name, value, size, flags);
550 }
551 
552 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
553 				  const void *value, size_t size, int flags)
554 {
555 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
556 		return;
557 	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
558 }
559 
560 int security_inode_getxattr(struct dentry *dentry, const char *name)
561 {
562 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
563 		return 0;
564 	return security_ops->inode_getxattr(dentry, name);
565 }
566 
567 int security_inode_listxattr(struct dentry *dentry)
568 {
569 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
570 		return 0;
571 	return security_ops->inode_listxattr(dentry);
572 }
573 
574 int security_inode_removexattr(struct dentry *dentry, const char *name)
575 {
576 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
577 		return 0;
578 	return security_ops->inode_removexattr(dentry, name);
579 }
580 
581 int security_inode_need_killpriv(struct dentry *dentry)
582 {
583 	return security_ops->inode_need_killpriv(dentry);
584 }
585 
586 int security_inode_killpriv(struct dentry *dentry)
587 {
588 	return security_ops->inode_killpriv(dentry);
589 }
590 
591 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
592 {
593 	if (unlikely(IS_PRIVATE(inode)))
594 		return -EOPNOTSUPP;
595 	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
596 }
597 
598 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
599 {
600 	if (unlikely(IS_PRIVATE(inode)))
601 		return -EOPNOTSUPP;
602 	return security_ops->inode_setsecurity(inode, name, value, size, flags);
603 }
604 
605 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
606 {
607 	if (unlikely(IS_PRIVATE(inode)))
608 		return 0;
609 	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
610 }
611 
612 void security_inode_getsecid(const struct inode *inode, u32 *secid)
613 {
614 	security_ops->inode_getsecid(inode, secid);
615 }
616 
617 int security_file_permission(struct file *file, int mask)
618 {
619 	int ret;
620 
621 	ret = security_ops->file_permission(file, mask);
622 	if (ret)
623 		return ret;
624 
625 	return fsnotify_perm(file, mask);
626 }
627 
628 int security_file_alloc(struct file *file)
629 {
630 	return security_ops->file_alloc_security(file);
631 }
632 
633 void security_file_free(struct file *file)
634 {
635 	security_ops->file_free_security(file);
636 }
637 
638 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
639 {
640 	return security_ops->file_ioctl(file, cmd, arg);
641 }
642 
643 int security_file_mmap(struct file *file, unsigned long reqprot,
644 			unsigned long prot, unsigned long flags,
645 			unsigned long addr, unsigned long addr_only)
646 {
647 	int ret;
648 
649 	ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
650 	if (ret)
651 		return ret;
652 	return ima_file_mmap(file, prot);
653 }
654 
655 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
656 			    unsigned long prot)
657 {
658 	return security_ops->file_mprotect(vma, reqprot, prot);
659 }
660 
661 int security_file_lock(struct file *file, unsigned int cmd)
662 {
663 	return security_ops->file_lock(file, cmd);
664 }
665 
666 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
667 {
668 	return security_ops->file_fcntl(file, cmd, arg);
669 }
670 
671 int security_file_set_fowner(struct file *file)
672 {
673 	return security_ops->file_set_fowner(file);
674 }
675 
676 int security_file_send_sigiotask(struct task_struct *tsk,
677 				  struct fown_struct *fown, int sig)
678 {
679 	return security_ops->file_send_sigiotask(tsk, fown, sig);
680 }
681 
682 int security_file_receive(struct file *file)
683 {
684 	return security_ops->file_receive(file);
685 }
686 
687 int security_dentry_open(struct file *file, const struct cred *cred)
688 {
689 	int ret;
690 
691 	ret = security_ops->dentry_open(file, cred);
692 	if (ret)
693 		return ret;
694 
695 	return fsnotify_perm(file, MAY_OPEN);
696 }
697 
698 int security_task_create(unsigned long clone_flags)
699 {
700 	return security_ops->task_create(clone_flags);
701 }
702 
703 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
704 {
705 	return security_ops->cred_alloc_blank(cred, gfp);
706 }
707 
708 void security_cred_free(struct cred *cred)
709 {
710 	security_ops->cred_free(cred);
711 }
712 
713 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
714 {
715 	return security_ops->cred_prepare(new, old, gfp);
716 }
717 
718 void security_transfer_creds(struct cred *new, const struct cred *old)
719 {
720 	security_ops->cred_transfer(new, old);
721 }
722 
723 int security_kernel_act_as(struct cred *new, u32 secid)
724 {
725 	return security_ops->kernel_act_as(new, secid);
726 }
727 
728 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
729 {
730 	return security_ops->kernel_create_files_as(new, inode);
731 }
732 
733 int security_kernel_module_request(char *kmod_name)
734 {
735 	return security_ops->kernel_module_request(kmod_name);
736 }
737 
738 int security_task_fix_setuid(struct cred *new, const struct cred *old,
739 			     int flags)
740 {
741 	return security_ops->task_fix_setuid(new, old, flags);
742 }
743 
744 int security_task_setpgid(struct task_struct *p, pid_t pgid)
745 {
746 	return security_ops->task_setpgid(p, pgid);
747 }
748 
749 int security_task_getpgid(struct task_struct *p)
750 {
751 	return security_ops->task_getpgid(p);
752 }
753 
754 int security_task_getsid(struct task_struct *p)
755 {
756 	return security_ops->task_getsid(p);
757 }
758 
759 void security_task_getsecid(struct task_struct *p, u32 *secid)
760 {
761 	security_ops->task_getsecid(p, secid);
762 }
763 EXPORT_SYMBOL(security_task_getsecid);
764 
765 int security_task_setnice(struct task_struct *p, int nice)
766 {
767 	return security_ops->task_setnice(p, nice);
768 }
769 
770 int security_task_setioprio(struct task_struct *p, int ioprio)
771 {
772 	return security_ops->task_setioprio(p, ioprio);
773 }
774 
775 int security_task_getioprio(struct task_struct *p)
776 {
777 	return security_ops->task_getioprio(p);
778 }
779 
780 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
781 		struct rlimit *new_rlim)
782 {
783 	return security_ops->task_setrlimit(p, resource, new_rlim);
784 }
785 
786 int security_task_setscheduler(struct task_struct *p)
787 {
788 	return security_ops->task_setscheduler(p);
789 }
790 
791 int security_task_getscheduler(struct task_struct *p)
792 {
793 	return security_ops->task_getscheduler(p);
794 }
795 
796 int security_task_movememory(struct task_struct *p)
797 {
798 	return security_ops->task_movememory(p);
799 }
800 
801 int security_task_kill(struct task_struct *p, struct siginfo *info,
802 			int sig, u32 secid)
803 {
804 	return security_ops->task_kill(p, info, sig, secid);
805 }
806 
807 int security_task_wait(struct task_struct *p)
808 {
809 	return security_ops->task_wait(p);
810 }
811 
812 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
813 			 unsigned long arg4, unsigned long arg5)
814 {
815 	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
816 }
817 
818 void security_task_to_inode(struct task_struct *p, struct inode *inode)
819 {
820 	security_ops->task_to_inode(p, inode);
821 }
822 
823 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
824 {
825 	return security_ops->ipc_permission(ipcp, flag);
826 }
827 
828 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
829 {
830 	security_ops->ipc_getsecid(ipcp, secid);
831 }
832 
833 int security_msg_msg_alloc(struct msg_msg *msg)
834 {
835 	return security_ops->msg_msg_alloc_security(msg);
836 }
837 
838 void security_msg_msg_free(struct msg_msg *msg)
839 {
840 	security_ops->msg_msg_free_security(msg);
841 }
842 
843 int security_msg_queue_alloc(struct msg_queue *msq)
844 {
845 	return security_ops->msg_queue_alloc_security(msq);
846 }
847 
848 void security_msg_queue_free(struct msg_queue *msq)
849 {
850 	security_ops->msg_queue_free_security(msq);
851 }
852 
853 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
854 {
855 	return security_ops->msg_queue_associate(msq, msqflg);
856 }
857 
858 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
859 {
860 	return security_ops->msg_queue_msgctl(msq, cmd);
861 }
862 
863 int security_msg_queue_msgsnd(struct msg_queue *msq,
864 			       struct msg_msg *msg, int msqflg)
865 {
866 	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
867 }
868 
869 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
870 			       struct task_struct *target, long type, int mode)
871 {
872 	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
873 }
874 
875 int security_shm_alloc(struct shmid_kernel *shp)
876 {
877 	return security_ops->shm_alloc_security(shp);
878 }
879 
880 void security_shm_free(struct shmid_kernel *shp)
881 {
882 	security_ops->shm_free_security(shp);
883 }
884 
885 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
886 {
887 	return security_ops->shm_associate(shp, shmflg);
888 }
889 
890 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
891 {
892 	return security_ops->shm_shmctl(shp, cmd);
893 }
894 
895 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
896 {
897 	return security_ops->shm_shmat(shp, shmaddr, shmflg);
898 }
899 
900 int security_sem_alloc(struct sem_array *sma)
901 {
902 	return security_ops->sem_alloc_security(sma);
903 }
904 
905 void security_sem_free(struct sem_array *sma)
906 {
907 	security_ops->sem_free_security(sma);
908 }
909 
910 int security_sem_associate(struct sem_array *sma, int semflg)
911 {
912 	return security_ops->sem_associate(sma, semflg);
913 }
914 
915 int security_sem_semctl(struct sem_array *sma, int cmd)
916 {
917 	return security_ops->sem_semctl(sma, cmd);
918 }
919 
920 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
921 			unsigned nsops, int alter)
922 {
923 	return security_ops->sem_semop(sma, sops, nsops, alter);
924 }
925 
926 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
927 {
928 	if (unlikely(inode && IS_PRIVATE(inode)))
929 		return;
930 	security_ops->d_instantiate(dentry, inode);
931 }
932 EXPORT_SYMBOL(security_d_instantiate);
933 
934 int security_getprocattr(struct task_struct *p, char *name, char **value)
935 {
936 	return security_ops->getprocattr(p, name, value);
937 }
938 
939 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
940 {
941 	return security_ops->setprocattr(p, name, value, size);
942 }
943 
944 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
945 {
946 	return security_ops->netlink_send(sk, skb);
947 }
948 
949 int security_netlink_recv(struct sk_buff *skb, int cap)
950 {
951 	return security_ops->netlink_recv(skb, cap);
952 }
953 EXPORT_SYMBOL(security_netlink_recv);
954 
955 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
956 {
957 	return security_ops->secid_to_secctx(secid, secdata, seclen);
958 }
959 EXPORT_SYMBOL(security_secid_to_secctx);
960 
961 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
962 {
963 	return security_ops->secctx_to_secid(secdata, seclen, secid);
964 }
965 EXPORT_SYMBOL(security_secctx_to_secid);
966 
967 void security_release_secctx(char *secdata, u32 seclen)
968 {
969 	security_ops->release_secctx(secdata, seclen);
970 }
971 EXPORT_SYMBOL(security_release_secctx);
972 
973 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
974 {
975 	return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
976 }
977 EXPORT_SYMBOL(security_inode_notifysecctx);
978 
979 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
980 {
981 	return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
982 }
983 EXPORT_SYMBOL(security_inode_setsecctx);
984 
985 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
986 {
987 	return security_ops->inode_getsecctx(inode, ctx, ctxlen);
988 }
989 EXPORT_SYMBOL(security_inode_getsecctx);
990 
991 #ifdef CONFIG_SECURITY_NETWORK
992 
993 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
994 {
995 	return security_ops->unix_stream_connect(sock, other, newsk);
996 }
997 EXPORT_SYMBOL(security_unix_stream_connect);
998 
999 int security_unix_may_send(struct socket *sock,  struct socket *other)
1000 {
1001 	return security_ops->unix_may_send(sock, other);
1002 }
1003 EXPORT_SYMBOL(security_unix_may_send);
1004 
1005 int security_socket_create(int family, int type, int protocol, int kern)
1006 {
1007 	return security_ops->socket_create(family, type, protocol, kern);
1008 }
1009 
1010 int security_socket_post_create(struct socket *sock, int family,
1011 				int type, int protocol, int kern)
1012 {
1013 	return security_ops->socket_post_create(sock, family, type,
1014 						protocol, kern);
1015 }
1016 
1017 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1018 {
1019 	return security_ops->socket_bind(sock, address, addrlen);
1020 }
1021 
1022 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1023 {
1024 	return security_ops->socket_connect(sock, address, addrlen);
1025 }
1026 
1027 int security_socket_listen(struct socket *sock, int backlog)
1028 {
1029 	return security_ops->socket_listen(sock, backlog);
1030 }
1031 
1032 int security_socket_accept(struct socket *sock, struct socket *newsock)
1033 {
1034 	return security_ops->socket_accept(sock, newsock);
1035 }
1036 
1037 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1038 {
1039 	return security_ops->socket_sendmsg(sock, msg, size);
1040 }
1041 
1042 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1043 			    int size, int flags)
1044 {
1045 	return security_ops->socket_recvmsg(sock, msg, size, flags);
1046 }
1047 
1048 int security_socket_getsockname(struct socket *sock)
1049 {
1050 	return security_ops->socket_getsockname(sock);
1051 }
1052 
1053 int security_socket_getpeername(struct socket *sock)
1054 {
1055 	return security_ops->socket_getpeername(sock);
1056 }
1057 
1058 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1059 {
1060 	return security_ops->socket_getsockopt(sock, level, optname);
1061 }
1062 
1063 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1064 {
1065 	return security_ops->socket_setsockopt(sock, level, optname);
1066 }
1067 
1068 int security_socket_shutdown(struct socket *sock, int how)
1069 {
1070 	return security_ops->socket_shutdown(sock, how);
1071 }
1072 
1073 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1074 {
1075 	return security_ops->socket_sock_rcv_skb(sk, skb);
1076 }
1077 EXPORT_SYMBOL(security_sock_rcv_skb);
1078 
1079 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1080 				      int __user *optlen, unsigned len)
1081 {
1082 	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1083 }
1084 
1085 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1086 {
1087 	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1088 }
1089 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1090 
1091 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1092 {
1093 	return security_ops->sk_alloc_security(sk, family, priority);
1094 }
1095 
1096 void security_sk_free(struct sock *sk)
1097 {
1098 	security_ops->sk_free_security(sk);
1099 }
1100 
1101 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1102 {
1103 	security_ops->sk_clone_security(sk, newsk);
1104 }
1105 
1106 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1107 {
1108 	security_ops->sk_getsecid(sk, &fl->flowi_secid);
1109 }
1110 EXPORT_SYMBOL(security_sk_classify_flow);
1111 
1112 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1113 {
1114 	security_ops->req_classify_flow(req, fl);
1115 }
1116 EXPORT_SYMBOL(security_req_classify_flow);
1117 
1118 void security_sock_graft(struct sock *sk, struct socket *parent)
1119 {
1120 	security_ops->sock_graft(sk, parent);
1121 }
1122 EXPORT_SYMBOL(security_sock_graft);
1123 
1124 int security_inet_conn_request(struct sock *sk,
1125 			struct sk_buff *skb, struct request_sock *req)
1126 {
1127 	return security_ops->inet_conn_request(sk, skb, req);
1128 }
1129 EXPORT_SYMBOL(security_inet_conn_request);
1130 
1131 void security_inet_csk_clone(struct sock *newsk,
1132 			const struct request_sock *req)
1133 {
1134 	security_ops->inet_csk_clone(newsk, req);
1135 }
1136 
1137 void security_inet_conn_established(struct sock *sk,
1138 			struct sk_buff *skb)
1139 {
1140 	security_ops->inet_conn_established(sk, skb);
1141 }
1142 
1143 int security_secmark_relabel_packet(u32 secid)
1144 {
1145 	return security_ops->secmark_relabel_packet(secid);
1146 }
1147 EXPORT_SYMBOL(security_secmark_relabel_packet);
1148 
1149 void security_secmark_refcount_inc(void)
1150 {
1151 	security_ops->secmark_refcount_inc();
1152 }
1153 EXPORT_SYMBOL(security_secmark_refcount_inc);
1154 
1155 void security_secmark_refcount_dec(void)
1156 {
1157 	security_ops->secmark_refcount_dec();
1158 }
1159 EXPORT_SYMBOL(security_secmark_refcount_dec);
1160 
1161 int security_tun_dev_create(void)
1162 {
1163 	return security_ops->tun_dev_create();
1164 }
1165 EXPORT_SYMBOL(security_tun_dev_create);
1166 
1167 void security_tun_dev_post_create(struct sock *sk)
1168 {
1169 	return security_ops->tun_dev_post_create(sk);
1170 }
1171 EXPORT_SYMBOL(security_tun_dev_post_create);
1172 
1173 int security_tun_dev_attach(struct sock *sk)
1174 {
1175 	return security_ops->tun_dev_attach(sk);
1176 }
1177 EXPORT_SYMBOL(security_tun_dev_attach);
1178 
1179 #endif	/* CONFIG_SECURITY_NETWORK */
1180 
1181 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1182 
1183 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1184 {
1185 	return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1186 }
1187 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1188 
1189 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1190 			      struct xfrm_sec_ctx **new_ctxp)
1191 {
1192 	return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1193 }
1194 
1195 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1196 {
1197 	security_ops->xfrm_policy_free_security(ctx);
1198 }
1199 EXPORT_SYMBOL(security_xfrm_policy_free);
1200 
1201 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1202 {
1203 	return security_ops->xfrm_policy_delete_security(ctx);
1204 }
1205 
1206 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1207 {
1208 	return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1209 }
1210 EXPORT_SYMBOL(security_xfrm_state_alloc);
1211 
1212 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1213 				      struct xfrm_sec_ctx *polsec, u32 secid)
1214 {
1215 	if (!polsec)
1216 		return 0;
1217 	/*
1218 	 * We want the context to be taken from secid which is usually
1219 	 * from the sock.
1220 	 */
1221 	return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1222 }
1223 
1224 int security_xfrm_state_delete(struct xfrm_state *x)
1225 {
1226 	return security_ops->xfrm_state_delete_security(x);
1227 }
1228 EXPORT_SYMBOL(security_xfrm_state_delete);
1229 
1230 void security_xfrm_state_free(struct xfrm_state *x)
1231 {
1232 	security_ops->xfrm_state_free_security(x);
1233 }
1234 
1235 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1236 {
1237 	return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1238 }
1239 
1240 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1241 				       struct xfrm_policy *xp,
1242 				       const struct flowi *fl)
1243 {
1244 	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1245 }
1246 
1247 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1248 {
1249 	return security_ops->xfrm_decode_session(skb, secid, 1);
1250 }
1251 
1252 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1253 {
1254 	int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1255 
1256 	BUG_ON(rc);
1257 }
1258 EXPORT_SYMBOL(security_skb_classify_flow);
1259 
1260 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1261 
1262 #ifdef CONFIG_KEYS
1263 
1264 int security_key_alloc(struct key *key, const struct cred *cred,
1265 		       unsigned long flags)
1266 {
1267 	return security_ops->key_alloc(key, cred, flags);
1268 }
1269 
1270 void security_key_free(struct key *key)
1271 {
1272 	security_ops->key_free(key);
1273 }
1274 
1275 int security_key_permission(key_ref_t key_ref,
1276 			    const struct cred *cred, key_perm_t perm)
1277 {
1278 	return security_ops->key_permission(key_ref, cred, perm);
1279 }
1280 
1281 int security_key_getsecurity(struct key *key, char **_buffer)
1282 {
1283 	return security_ops->key_getsecurity(key, _buffer);
1284 }
1285 
1286 #endif	/* CONFIG_KEYS */
1287 
1288 #ifdef CONFIG_AUDIT
1289 
1290 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1291 {
1292 	return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1293 }
1294 
1295 int security_audit_rule_known(struct audit_krule *krule)
1296 {
1297 	return security_ops->audit_rule_known(krule);
1298 }
1299 
1300 void security_audit_rule_free(void *lsmrule)
1301 {
1302 	security_ops->audit_rule_free(lsmrule);
1303 }
1304 
1305 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1306 			      struct audit_context *actx)
1307 {
1308 	return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1309 }
1310 
1311 #endif /* CONFIG_AUDIT */
1312