xref: /openbmc/linux/security/security.c (revision 56305aa9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8  * Copyright (C) 2016 Mellanox Technologies
9  */
10 
11 #define pr_fmt(fmt) "LSM: " fmt
12 
13 #include <linux/bpf.h>
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/lsm_hooks.h>
20 #include <linux/integrity.h>
21 #include <linux/ima.h>
22 #include <linux/evm.h>
23 #include <linux/fsnotify.h>
24 #include <linux/mman.h>
25 #include <linux/mount.h>
26 #include <linux/personality.h>
27 #include <linux/backing-dev.h>
28 #include <linux/string.h>
29 #include <linux/msg.h>
30 #include <net/flow.h>
31 
32 #define MAX_LSM_EVM_XATTR	2
33 
34 /* How many LSMs were built into the kernel? */
35 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
36 
37 /*
38  * These are descriptions of the reasons that can be passed to the
39  * security_locked_down() LSM hook. Placing this array here allows
40  * all security modules to use the same descriptions for auditing
41  * purposes.
42  */
43 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
44 	[LOCKDOWN_NONE] = "none",
45 	[LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
46 	[LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
47 	[LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
48 	[LOCKDOWN_KEXEC] = "kexec of unsigned images",
49 	[LOCKDOWN_HIBERNATION] = "hibernation",
50 	[LOCKDOWN_PCI_ACCESS] = "direct PCI access",
51 	[LOCKDOWN_IOPORT] = "raw io port access",
52 	[LOCKDOWN_MSR] = "raw MSR access",
53 	[LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
54 	[LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
55 	[LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
56 	[LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
57 	[LOCKDOWN_MMIOTRACE] = "unsafe mmio",
58 	[LOCKDOWN_DEBUGFS] = "debugfs access",
59 	[LOCKDOWN_XMON_WR] = "xmon write access",
60 	[LOCKDOWN_INTEGRITY_MAX] = "integrity",
61 	[LOCKDOWN_KCORE] = "/proc/kcore access",
62 	[LOCKDOWN_KPROBES] = "use of kprobes",
63 	[LOCKDOWN_BPF_READ] = "use of bpf to read kernel RAM",
64 	[LOCKDOWN_PERF] = "unsafe use of perf",
65 	[LOCKDOWN_TRACEFS] = "use of tracefs",
66 	[LOCKDOWN_XMON_RW] = "xmon read and write access",
67 	[LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
68 };
69 
70 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
71 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
72 
73 static struct kmem_cache *lsm_file_cache;
74 static struct kmem_cache *lsm_inode_cache;
75 
76 char *lsm_names;
77 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
78 
79 /* Boot-time LSM user choice */
80 static __initdata const char *chosen_lsm_order;
81 static __initdata const char *chosen_major_lsm;
82 
83 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
84 
85 /* Ordered list of LSMs to initialize. */
86 static __initdata struct lsm_info **ordered_lsms;
87 static __initdata struct lsm_info *exclusive;
88 
89 static __initdata bool debug;
90 #define init_debug(...)						\
91 	do {							\
92 		if (debug)					\
93 			pr_info(__VA_ARGS__);			\
94 	} while (0)
95 
96 static bool __init is_enabled(struct lsm_info *lsm)
97 {
98 	if (!lsm->enabled)
99 		return false;
100 
101 	return *lsm->enabled;
102 }
103 
104 /* Mark an LSM's enabled flag. */
105 static int lsm_enabled_true __initdata = 1;
106 static int lsm_enabled_false __initdata = 0;
107 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
108 {
109 	/*
110 	 * When an LSM hasn't configured an enable variable, we can use
111 	 * a hard-coded location for storing the default enabled state.
112 	 */
113 	if (!lsm->enabled) {
114 		if (enabled)
115 			lsm->enabled = &lsm_enabled_true;
116 		else
117 			lsm->enabled = &lsm_enabled_false;
118 	} else if (lsm->enabled == &lsm_enabled_true) {
119 		if (!enabled)
120 			lsm->enabled = &lsm_enabled_false;
121 	} else if (lsm->enabled == &lsm_enabled_false) {
122 		if (enabled)
123 			lsm->enabled = &lsm_enabled_true;
124 	} else {
125 		*lsm->enabled = enabled;
126 	}
127 }
128 
129 /* Is an LSM already listed in the ordered LSMs list? */
130 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
131 {
132 	struct lsm_info **check;
133 
134 	for (check = ordered_lsms; *check; check++)
135 		if (*check == lsm)
136 			return true;
137 
138 	return false;
139 }
140 
141 /* Append an LSM to the list of ordered LSMs to initialize. */
142 static int last_lsm __initdata;
143 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
144 {
145 	/* Ignore duplicate selections. */
146 	if (exists_ordered_lsm(lsm))
147 		return;
148 
149 	if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
150 		return;
151 
152 	/* Enable this LSM, if it is not already set. */
153 	if (!lsm->enabled)
154 		lsm->enabled = &lsm_enabled_true;
155 	ordered_lsms[last_lsm++] = lsm;
156 
157 	init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
158 		   is_enabled(lsm) ? "en" : "dis");
159 }
160 
161 /* Is an LSM allowed to be initialized? */
162 static bool __init lsm_allowed(struct lsm_info *lsm)
163 {
164 	/* Skip if the LSM is disabled. */
165 	if (!is_enabled(lsm))
166 		return false;
167 
168 	/* Not allowed if another exclusive LSM already initialized. */
169 	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
170 		init_debug("exclusive disabled: %s\n", lsm->name);
171 		return false;
172 	}
173 
174 	return true;
175 }
176 
177 static void __init lsm_set_blob_size(int *need, int *lbs)
178 {
179 	int offset;
180 
181 	if (*need > 0) {
182 		offset = *lbs;
183 		*lbs += *need;
184 		*need = offset;
185 	}
186 }
187 
188 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
189 {
190 	if (!needed)
191 		return;
192 
193 	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
194 	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
195 	/*
196 	 * The inode blob gets an rcu_head in addition to
197 	 * what the modules might need.
198 	 */
199 	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
200 		blob_sizes.lbs_inode = sizeof(struct rcu_head);
201 	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
202 	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
203 	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
204 	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
205 }
206 
207 /* Prepare LSM for initialization. */
208 static void __init prepare_lsm(struct lsm_info *lsm)
209 {
210 	int enabled = lsm_allowed(lsm);
211 
212 	/* Record enablement (to handle any following exclusive LSMs). */
213 	set_enabled(lsm, enabled);
214 
215 	/* If enabled, do pre-initialization work. */
216 	if (enabled) {
217 		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
218 			exclusive = lsm;
219 			init_debug("exclusive chosen: %s\n", lsm->name);
220 		}
221 
222 		lsm_set_blob_sizes(lsm->blobs);
223 	}
224 }
225 
226 /* Initialize a given LSM, if it is enabled. */
227 static void __init initialize_lsm(struct lsm_info *lsm)
228 {
229 	if (is_enabled(lsm)) {
230 		int ret;
231 
232 		init_debug("initializing %s\n", lsm->name);
233 		ret = lsm->init();
234 		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
235 	}
236 }
237 
238 /* Populate ordered LSMs list from comma-separated LSM name list. */
239 static void __init ordered_lsm_parse(const char *order, const char *origin)
240 {
241 	struct lsm_info *lsm;
242 	char *sep, *name, *next;
243 
244 	/* LSM_ORDER_FIRST is always first. */
245 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
246 		if (lsm->order == LSM_ORDER_FIRST)
247 			append_ordered_lsm(lsm, "first");
248 	}
249 
250 	/* Process "security=", if given. */
251 	if (chosen_major_lsm) {
252 		struct lsm_info *major;
253 
254 		/*
255 		 * To match the original "security=" behavior, this
256 		 * explicitly does NOT fallback to another Legacy Major
257 		 * if the selected one was separately disabled: disable
258 		 * all non-matching Legacy Major LSMs.
259 		 */
260 		for (major = __start_lsm_info; major < __end_lsm_info;
261 		     major++) {
262 			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
263 			    strcmp(major->name, chosen_major_lsm) != 0) {
264 				set_enabled(major, false);
265 				init_debug("security=%s disabled: %s\n",
266 					   chosen_major_lsm, major->name);
267 			}
268 		}
269 	}
270 
271 	sep = kstrdup(order, GFP_KERNEL);
272 	next = sep;
273 	/* Walk the list, looking for matching LSMs. */
274 	while ((name = strsep(&next, ",")) != NULL) {
275 		bool found = false;
276 
277 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
278 			if (lsm->order == LSM_ORDER_MUTABLE &&
279 			    strcmp(lsm->name, name) == 0) {
280 				append_ordered_lsm(lsm, origin);
281 				found = true;
282 			}
283 		}
284 
285 		if (!found)
286 			init_debug("%s ignored: %s\n", origin, name);
287 	}
288 
289 	/* Process "security=", if given. */
290 	if (chosen_major_lsm) {
291 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
292 			if (exists_ordered_lsm(lsm))
293 				continue;
294 			if (strcmp(lsm->name, chosen_major_lsm) == 0)
295 				append_ordered_lsm(lsm, "security=");
296 		}
297 	}
298 
299 	/* Disable all LSMs not in the ordered list. */
300 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
301 		if (exists_ordered_lsm(lsm))
302 			continue;
303 		set_enabled(lsm, false);
304 		init_debug("%s disabled: %s\n", origin, lsm->name);
305 	}
306 
307 	kfree(sep);
308 }
309 
310 static void __init lsm_early_cred(struct cred *cred);
311 static void __init lsm_early_task(struct task_struct *task);
312 
313 static int lsm_append(const char *new, char **result);
314 
315 static void __init ordered_lsm_init(void)
316 {
317 	struct lsm_info **lsm;
318 
319 	ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
320 				GFP_KERNEL);
321 
322 	if (chosen_lsm_order) {
323 		if (chosen_major_lsm) {
324 			pr_info("security= is ignored because it is superseded by lsm=\n");
325 			chosen_major_lsm = NULL;
326 		}
327 		ordered_lsm_parse(chosen_lsm_order, "cmdline");
328 	} else
329 		ordered_lsm_parse(builtin_lsm_order, "builtin");
330 
331 	for (lsm = ordered_lsms; *lsm; lsm++)
332 		prepare_lsm(*lsm);
333 
334 	init_debug("cred blob size     = %d\n", blob_sizes.lbs_cred);
335 	init_debug("file blob size     = %d\n", blob_sizes.lbs_file);
336 	init_debug("inode blob size    = %d\n", blob_sizes.lbs_inode);
337 	init_debug("ipc blob size      = %d\n", blob_sizes.lbs_ipc);
338 	init_debug("msg_msg blob size  = %d\n", blob_sizes.lbs_msg_msg);
339 	init_debug("task blob size     = %d\n", blob_sizes.lbs_task);
340 
341 	/*
342 	 * Create any kmem_caches needed for blobs
343 	 */
344 	if (blob_sizes.lbs_file)
345 		lsm_file_cache = kmem_cache_create("lsm_file_cache",
346 						   blob_sizes.lbs_file, 0,
347 						   SLAB_PANIC, NULL);
348 	if (blob_sizes.lbs_inode)
349 		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
350 						    blob_sizes.lbs_inode, 0,
351 						    SLAB_PANIC, NULL);
352 
353 	lsm_early_cred((struct cred *) current->cred);
354 	lsm_early_task(current);
355 	for (lsm = ordered_lsms; *lsm; lsm++)
356 		initialize_lsm(*lsm);
357 
358 	kfree(ordered_lsms);
359 }
360 
361 int __init early_security_init(void)
362 {
363 	int i;
364 	struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
365 	struct lsm_info *lsm;
366 
367 	for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
368 	     i++)
369 		INIT_HLIST_HEAD(&list[i]);
370 
371 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
372 		if (!lsm->enabled)
373 			lsm->enabled = &lsm_enabled_true;
374 		prepare_lsm(lsm);
375 		initialize_lsm(lsm);
376 	}
377 
378 	return 0;
379 }
380 
381 /**
382  * security_init - initializes the security framework
383  *
384  * This should be called early in the kernel initialization sequence.
385  */
386 int __init security_init(void)
387 {
388 	struct lsm_info *lsm;
389 
390 	pr_info("Security Framework initializing\n");
391 
392 	/*
393 	 * Append the names of the early LSM modules now that kmalloc() is
394 	 * available
395 	 */
396 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
397 		if (lsm->enabled)
398 			lsm_append(lsm->name, &lsm_names);
399 	}
400 
401 	/* Load LSMs in specified order. */
402 	ordered_lsm_init();
403 
404 	return 0;
405 }
406 
407 /* Save user chosen LSM */
408 static int __init choose_major_lsm(char *str)
409 {
410 	chosen_major_lsm = str;
411 	return 1;
412 }
413 __setup("security=", choose_major_lsm);
414 
415 /* Explicitly choose LSM initialization order. */
416 static int __init choose_lsm_order(char *str)
417 {
418 	chosen_lsm_order = str;
419 	return 1;
420 }
421 __setup("lsm=", choose_lsm_order);
422 
423 /* Enable LSM order debugging. */
424 static int __init enable_debug(char *str)
425 {
426 	debug = true;
427 	return 1;
428 }
429 __setup("lsm.debug", enable_debug);
430 
431 static bool match_last_lsm(const char *list, const char *lsm)
432 {
433 	const char *last;
434 
435 	if (WARN_ON(!list || !lsm))
436 		return false;
437 	last = strrchr(list, ',');
438 	if (last)
439 		/* Pass the comma, strcmp() will check for '\0' */
440 		last++;
441 	else
442 		last = list;
443 	return !strcmp(last, lsm);
444 }
445 
446 static int lsm_append(const char *new, char **result)
447 {
448 	char *cp;
449 
450 	if (*result == NULL) {
451 		*result = kstrdup(new, GFP_KERNEL);
452 		if (*result == NULL)
453 			return -ENOMEM;
454 	} else {
455 		/* Check if it is the last registered name */
456 		if (match_last_lsm(*result, new))
457 			return 0;
458 		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
459 		if (cp == NULL)
460 			return -ENOMEM;
461 		kfree(*result);
462 		*result = cp;
463 	}
464 	return 0;
465 }
466 
467 /**
468  * security_add_hooks - Add a modules hooks to the hook lists.
469  * @hooks: the hooks to add
470  * @count: the number of hooks to add
471  * @lsm: the name of the security module
472  *
473  * Each LSM has to register its hooks with the infrastructure.
474  */
475 void __init security_add_hooks(struct security_hook_list *hooks, int count,
476 				char *lsm)
477 {
478 	int i;
479 
480 	for (i = 0; i < count; i++) {
481 		hooks[i].lsm = lsm;
482 		hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
483 	}
484 
485 	/*
486 	 * Don't try to append during early_security_init(), we'll come back
487 	 * and fix this up afterwards.
488 	 */
489 	if (slab_is_available()) {
490 		if (lsm_append(lsm, &lsm_names) < 0)
491 			panic("%s - Cannot get early memory.\n", __func__);
492 	}
493 }
494 
495 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
496 {
497 	return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
498 					    event, data);
499 }
500 EXPORT_SYMBOL(call_blocking_lsm_notifier);
501 
502 int register_blocking_lsm_notifier(struct notifier_block *nb)
503 {
504 	return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
505 						nb);
506 }
507 EXPORT_SYMBOL(register_blocking_lsm_notifier);
508 
509 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
510 {
511 	return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
512 						  nb);
513 }
514 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
515 
516 /**
517  * lsm_cred_alloc - allocate a composite cred blob
518  * @cred: the cred that needs a blob
519  * @gfp: allocation type
520  *
521  * Allocate the cred blob for all the modules
522  *
523  * Returns 0, or -ENOMEM if memory can't be allocated.
524  */
525 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
526 {
527 	if (blob_sizes.lbs_cred == 0) {
528 		cred->security = NULL;
529 		return 0;
530 	}
531 
532 	cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
533 	if (cred->security == NULL)
534 		return -ENOMEM;
535 	return 0;
536 }
537 
538 /**
539  * lsm_early_cred - during initialization allocate a composite cred blob
540  * @cred: the cred that needs a blob
541  *
542  * Allocate the cred blob for all the modules
543  */
544 static void __init lsm_early_cred(struct cred *cred)
545 {
546 	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
547 
548 	if (rc)
549 		panic("%s: Early cred alloc failed.\n", __func__);
550 }
551 
552 /**
553  * lsm_file_alloc - allocate a composite file blob
554  * @file: the file that needs a blob
555  *
556  * Allocate the file blob for all the modules
557  *
558  * Returns 0, or -ENOMEM if memory can't be allocated.
559  */
560 static int lsm_file_alloc(struct file *file)
561 {
562 	if (!lsm_file_cache) {
563 		file->f_security = NULL;
564 		return 0;
565 	}
566 
567 	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
568 	if (file->f_security == NULL)
569 		return -ENOMEM;
570 	return 0;
571 }
572 
573 /**
574  * lsm_inode_alloc - allocate a composite inode blob
575  * @inode: the inode that needs a blob
576  *
577  * Allocate the inode blob for all the modules
578  *
579  * Returns 0, or -ENOMEM if memory can't be allocated.
580  */
581 int lsm_inode_alloc(struct inode *inode)
582 {
583 	if (!lsm_inode_cache) {
584 		inode->i_security = NULL;
585 		return 0;
586 	}
587 
588 	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
589 	if (inode->i_security == NULL)
590 		return -ENOMEM;
591 	return 0;
592 }
593 
594 /**
595  * lsm_task_alloc - allocate a composite task blob
596  * @task: the task that needs a blob
597  *
598  * Allocate the task blob for all the modules
599  *
600  * Returns 0, or -ENOMEM if memory can't be allocated.
601  */
602 static int lsm_task_alloc(struct task_struct *task)
603 {
604 	if (blob_sizes.lbs_task == 0) {
605 		task->security = NULL;
606 		return 0;
607 	}
608 
609 	task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
610 	if (task->security == NULL)
611 		return -ENOMEM;
612 	return 0;
613 }
614 
615 /**
616  * lsm_ipc_alloc - allocate a composite ipc blob
617  * @kip: the ipc that needs a blob
618  *
619  * Allocate the ipc blob for all the modules
620  *
621  * Returns 0, or -ENOMEM if memory can't be allocated.
622  */
623 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
624 {
625 	if (blob_sizes.lbs_ipc == 0) {
626 		kip->security = NULL;
627 		return 0;
628 	}
629 
630 	kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
631 	if (kip->security == NULL)
632 		return -ENOMEM;
633 	return 0;
634 }
635 
636 /**
637  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
638  * @mp: the msg_msg that needs a blob
639  *
640  * Allocate the ipc blob for all the modules
641  *
642  * Returns 0, or -ENOMEM if memory can't be allocated.
643  */
644 static int lsm_msg_msg_alloc(struct msg_msg *mp)
645 {
646 	if (blob_sizes.lbs_msg_msg == 0) {
647 		mp->security = NULL;
648 		return 0;
649 	}
650 
651 	mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
652 	if (mp->security == NULL)
653 		return -ENOMEM;
654 	return 0;
655 }
656 
657 /**
658  * lsm_early_task - during initialization allocate a composite task blob
659  * @task: the task that needs a blob
660  *
661  * Allocate the task blob for all the modules
662  */
663 static void __init lsm_early_task(struct task_struct *task)
664 {
665 	int rc = lsm_task_alloc(task);
666 
667 	if (rc)
668 		panic("%s: Early task alloc failed.\n", __func__);
669 }
670 
671 /*
672  * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
673  * can be accessed with:
674  *
675  *	LSM_RET_DEFAULT(<hook_name>)
676  *
677  * The macros below define static constants for the default value of each
678  * LSM hook.
679  */
680 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
681 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
682 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
683 	static const int LSM_RET_DEFAULT(NAME) = (DEFAULT);
684 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
685 	DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
686 
687 #include <linux/lsm_hook_defs.h>
688 #undef LSM_HOOK
689 
690 /*
691  * Hook list operation macros.
692  *
693  * call_void_hook:
694  *	This is a hook that does not return a value.
695  *
696  * call_int_hook:
697  *	This is a hook that returns a value.
698  */
699 
700 #define call_void_hook(FUNC, ...)				\
701 	do {							\
702 		struct security_hook_list *P;			\
703 								\
704 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
705 			P->hook.FUNC(__VA_ARGS__);		\
706 	} while (0)
707 
708 #define call_int_hook(FUNC, IRC, ...) ({			\
709 	int RC = IRC;						\
710 	do {							\
711 		struct security_hook_list *P;			\
712 								\
713 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
714 			RC = P->hook.FUNC(__VA_ARGS__);		\
715 			if (RC != 0)				\
716 				break;				\
717 		}						\
718 	} while (0);						\
719 	RC;							\
720 })
721 
722 /* Security operations */
723 
724 int security_binder_set_context_mgr(struct task_struct *mgr)
725 {
726 	return call_int_hook(binder_set_context_mgr, 0, mgr);
727 }
728 
729 int security_binder_transaction(struct task_struct *from,
730 				struct task_struct *to)
731 {
732 	return call_int_hook(binder_transaction, 0, from, to);
733 }
734 
735 int security_binder_transfer_binder(struct task_struct *from,
736 				    struct task_struct *to)
737 {
738 	return call_int_hook(binder_transfer_binder, 0, from, to);
739 }
740 
741 int security_binder_transfer_file(struct task_struct *from,
742 				  struct task_struct *to, struct file *file)
743 {
744 	return call_int_hook(binder_transfer_file, 0, from, to, file);
745 }
746 
747 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
748 {
749 	return call_int_hook(ptrace_access_check, 0, child, mode);
750 }
751 
752 int security_ptrace_traceme(struct task_struct *parent)
753 {
754 	return call_int_hook(ptrace_traceme, 0, parent);
755 }
756 
757 int security_capget(struct task_struct *target,
758 		     kernel_cap_t *effective,
759 		     kernel_cap_t *inheritable,
760 		     kernel_cap_t *permitted)
761 {
762 	return call_int_hook(capget, 0, target,
763 				effective, inheritable, permitted);
764 }
765 
766 int security_capset(struct cred *new, const struct cred *old,
767 		    const kernel_cap_t *effective,
768 		    const kernel_cap_t *inheritable,
769 		    const kernel_cap_t *permitted)
770 {
771 	return call_int_hook(capset, 0, new, old,
772 				effective, inheritable, permitted);
773 }
774 
775 int security_capable(const struct cred *cred,
776 		     struct user_namespace *ns,
777 		     int cap,
778 		     unsigned int opts)
779 {
780 	return call_int_hook(capable, 0, cred, ns, cap, opts);
781 }
782 
783 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
784 {
785 	return call_int_hook(quotactl, 0, cmds, type, id, sb);
786 }
787 
788 int security_quota_on(struct dentry *dentry)
789 {
790 	return call_int_hook(quota_on, 0, dentry);
791 }
792 
793 int security_syslog(int type)
794 {
795 	return call_int_hook(syslog, 0, type);
796 }
797 
798 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
799 {
800 	return call_int_hook(settime, 0, ts, tz);
801 }
802 
803 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
804 {
805 	struct security_hook_list *hp;
806 	int cap_sys_admin = 1;
807 	int rc;
808 
809 	/*
810 	 * The module will respond with a positive value if
811 	 * it thinks the __vm_enough_memory() call should be
812 	 * made with the cap_sys_admin set. If all of the modules
813 	 * agree that it should be set it will. If any module
814 	 * thinks it should not be set it won't.
815 	 */
816 	hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
817 		rc = hp->hook.vm_enough_memory(mm, pages);
818 		if (rc <= 0) {
819 			cap_sys_admin = 0;
820 			break;
821 		}
822 	}
823 	return __vm_enough_memory(mm, pages, cap_sys_admin);
824 }
825 
826 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
827 {
828 	return call_int_hook(bprm_creds_for_exec, 0, bprm);
829 }
830 
831 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
832 {
833 	return call_int_hook(bprm_creds_from_file, 0, bprm, file);
834 }
835 
836 int security_bprm_check(struct linux_binprm *bprm)
837 {
838 	int ret;
839 
840 	ret = call_int_hook(bprm_check_security, 0, bprm);
841 	if (ret)
842 		return ret;
843 	return ima_bprm_check(bprm);
844 }
845 
846 void security_bprm_committing_creds(struct linux_binprm *bprm)
847 {
848 	call_void_hook(bprm_committing_creds, bprm);
849 }
850 
851 void security_bprm_committed_creds(struct linux_binprm *bprm)
852 {
853 	call_void_hook(bprm_committed_creds, bprm);
854 }
855 
856 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
857 {
858 	return call_int_hook(fs_context_dup, 0, fc, src_fc);
859 }
860 
861 int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
862 {
863 	return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
864 }
865 
866 int security_sb_alloc(struct super_block *sb)
867 {
868 	return call_int_hook(sb_alloc_security, 0, sb);
869 }
870 
871 void security_sb_free(struct super_block *sb)
872 {
873 	call_void_hook(sb_free_security, sb);
874 }
875 
876 void security_free_mnt_opts(void **mnt_opts)
877 {
878 	if (!*mnt_opts)
879 		return;
880 	call_void_hook(sb_free_mnt_opts, *mnt_opts);
881 	*mnt_opts = NULL;
882 }
883 EXPORT_SYMBOL(security_free_mnt_opts);
884 
885 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
886 {
887 	return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
888 }
889 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
890 
891 int security_sb_remount(struct super_block *sb,
892 			void *mnt_opts)
893 {
894 	return call_int_hook(sb_remount, 0, sb, mnt_opts);
895 }
896 EXPORT_SYMBOL(security_sb_remount);
897 
898 int security_sb_kern_mount(struct super_block *sb)
899 {
900 	return call_int_hook(sb_kern_mount, 0, sb);
901 }
902 
903 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
904 {
905 	return call_int_hook(sb_show_options, 0, m, sb);
906 }
907 
908 int security_sb_statfs(struct dentry *dentry)
909 {
910 	return call_int_hook(sb_statfs, 0, dentry);
911 }
912 
913 int security_sb_mount(const char *dev_name, const struct path *path,
914                        const char *type, unsigned long flags, void *data)
915 {
916 	return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
917 }
918 
919 int security_sb_umount(struct vfsmount *mnt, int flags)
920 {
921 	return call_int_hook(sb_umount, 0, mnt, flags);
922 }
923 
924 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
925 {
926 	return call_int_hook(sb_pivotroot, 0, old_path, new_path);
927 }
928 
929 int security_sb_set_mnt_opts(struct super_block *sb,
930 				void *mnt_opts,
931 				unsigned long kern_flags,
932 				unsigned long *set_kern_flags)
933 {
934 	return call_int_hook(sb_set_mnt_opts,
935 				mnt_opts ? -EOPNOTSUPP : 0, sb,
936 				mnt_opts, kern_flags, set_kern_flags);
937 }
938 EXPORT_SYMBOL(security_sb_set_mnt_opts);
939 
940 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
941 				struct super_block *newsb,
942 				unsigned long kern_flags,
943 				unsigned long *set_kern_flags)
944 {
945 	return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
946 				kern_flags, set_kern_flags);
947 }
948 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
949 
950 int security_add_mnt_opt(const char *option, const char *val, int len,
951 			 void **mnt_opts)
952 {
953 	return call_int_hook(sb_add_mnt_opt, -EINVAL,
954 					option, val, len, mnt_opts);
955 }
956 EXPORT_SYMBOL(security_add_mnt_opt);
957 
958 int security_move_mount(const struct path *from_path, const struct path *to_path)
959 {
960 	return call_int_hook(move_mount, 0, from_path, to_path);
961 }
962 
963 int security_path_notify(const struct path *path, u64 mask,
964 				unsigned int obj_type)
965 {
966 	return call_int_hook(path_notify, 0, path, mask, obj_type);
967 }
968 
969 int security_inode_alloc(struct inode *inode)
970 {
971 	int rc = lsm_inode_alloc(inode);
972 
973 	if (unlikely(rc))
974 		return rc;
975 	rc = call_int_hook(inode_alloc_security, 0, inode);
976 	if (unlikely(rc))
977 		security_inode_free(inode);
978 	return rc;
979 }
980 
981 static void inode_free_by_rcu(struct rcu_head *head)
982 {
983 	/*
984 	 * The rcu head is at the start of the inode blob
985 	 */
986 	kmem_cache_free(lsm_inode_cache, head);
987 }
988 
989 void security_inode_free(struct inode *inode)
990 {
991 	integrity_inode_free(inode);
992 	call_void_hook(inode_free_security, inode);
993 	/*
994 	 * The inode may still be referenced in a path walk and
995 	 * a call to security_inode_permission() can be made
996 	 * after inode_free_security() is called. Ideally, the VFS
997 	 * wouldn't do this, but fixing that is a much harder
998 	 * job. For now, simply free the i_security via RCU, and
999 	 * leave the current inode->i_security pointer intact.
1000 	 * The inode will be freed after the RCU grace period too.
1001 	 */
1002 	if (inode->i_security)
1003 		call_rcu((struct rcu_head *)inode->i_security,
1004 				inode_free_by_rcu);
1005 }
1006 
1007 int security_dentry_init_security(struct dentry *dentry, int mode,
1008 					const struct qstr *name, void **ctx,
1009 					u32 *ctxlen)
1010 {
1011 	return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
1012 				name, ctx, ctxlen);
1013 }
1014 EXPORT_SYMBOL(security_dentry_init_security);
1015 
1016 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1017 				    struct qstr *name,
1018 				    const struct cred *old, struct cred *new)
1019 {
1020 	return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1021 				name, old, new);
1022 }
1023 EXPORT_SYMBOL(security_dentry_create_files_as);
1024 
1025 int security_inode_init_security(struct inode *inode, struct inode *dir,
1026 				 const struct qstr *qstr,
1027 				 const initxattrs initxattrs, void *fs_data)
1028 {
1029 	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1030 	struct xattr *lsm_xattr, *evm_xattr, *xattr;
1031 	int ret;
1032 
1033 	if (unlikely(IS_PRIVATE(inode)))
1034 		return 0;
1035 
1036 	if (!initxattrs)
1037 		return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1038 				     dir, qstr, NULL, NULL, NULL);
1039 	memset(new_xattrs, 0, sizeof(new_xattrs));
1040 	lsm_xattr = new_xattrs;
1041 	ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1042 						&lsm_xattr->name,
1043 						&lsm_xattr->value,
1044 						&lsm_xattr->value_len);
1045 	if (ret)
1046 		goto out;
1047 
1048 	evm_xattr = lsm_xattr + 1;
1049 	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1050 	if (ret)
1051 		goto out;
1052 	ret = initxattrs(inode, new_xattrs, fs_data);
1053 out:
1054 	for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1055 		kfree(xattr->value);
1056 	return (ret == -EOPNOTSUPP) ? 0 : ret;
1057 }
1058 EXPORT_SYMBOL(security_inode_init_security);
1059 
1060 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1061 				     const struct qstr *qstr, const char **name,
1062 				     void **value, size_t *len)
1063 {
1064 	if (unlikely(IS_PRIVATE(inode)))
1065 		return -EOPNOTSUPP;
1066 	return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1067 			     qstr, name, value, len);
1068 }
1069 EXPORT_SYMBOL(security_old_inode_init_security);
1070 
1071 #ifdef CONFIG_SECURITY_PATH
1072 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1073 			unsigned int dev)
1074 {
1075 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1076 		return 0;
1077 	return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1078 }
1079 EXPORT_SYMBOL(security_path_mknod);
1080 
1081 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1082 {
1083 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1084 		return 0;
1085 	return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1086 }
1087 EXPORT_SYMBOL(security_path_mkdir);
1088 
1089 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1090 {
1091 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1092 		return 0;
1093 	return call_int_hook(path_rmdir, 0, dir, dentry);
1094 }
1095 
1096 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1097 {
1098 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1099 		return 0;
1100 	return call_int_hook(path_unlink, 0, dir, dentry);
1101 }
1102 EXPORT_SYMBOL(security_path_unlink);
1103 
1104 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1105 			  const char *old_name)
1106 {
1107 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1108 		return 0;
1109 	return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1110 }
1111 
1112 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1113 		       struct dentry *new_dentry)
1114 {
1115 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1116 		return 0;
1117 	return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1118 }
1119 
1120 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1121 			 const struct path *new_dir, struct dentry *new_dentry,
1122 			 unsigned int flags)
1123 {
1124 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1125 		     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1126 		return 0;
1127 
1128 	if (flags & RENAME_EXCHANGE) {
1129 		int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1130 					old_dir, old_dentry);
1131 		if (err)
1132 			return err;
1133 	}
1134 
1135 	return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1136 				new_dentry);
1137 }
1138 EXPORT_SYMBOL(security_path_rename);
1139 
1140 int security_path_truncate(const struct path *path)
1141 {
1142 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1143 		return 0;
1144 	return call_int_hook(path_truncate, 0, path);
1145 }
1146 
1147 int security_path_chmod(const struct path *path, umode_t mode)
1148 {
1149 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1150 		return 0;
1151 	return call_int_hook(path_chmod, 0, path, mode);
1152 }
1153 
1154 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1155 {
1156 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1157 		return 0;
1158 	return call_int_hook(path_chown, 0, path, uid, gid);
1159 }
1160 
1161 int security_path_chroot(const struct path *path)
1162 {
1163 	return call_int_hook(path_chroot, 0, path);
1164 }
1165 #endif
1166 
1167 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1168 {
1169 	if (unlikely(IS_PRIVATE(dir)))
1170 		return 0;
1171 	return call_int_hook(inode_create, 0, dir, dentry, mode);
1172 }
1173 EXPORT_SYMBOL_GPL(security_inode_create);
1174 
1175 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1176 			 struct dentry *new_dentry)
1177 {
1178 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1179 		return 0;
1180 	return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1181 }
1182 
1183 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1184 {
1185 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1186 		return 0;
1187 	return call_int_hook(inode_unlink, 0, dir, dentry);
1188 }
1189 
1190 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1191 			    const char *old_name)
1192 {
1193 	if (unlikely(IS_PRIVATE(dir)))
1194 		return 0;
1195 	return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1196 }
1197 
1198 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1199 {
1200 	if (unlikely(IS_PRIVATE(dir)))
1201 		return 0;
1202 	return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1203 }
1204 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1205 
1206 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1207 {
1208 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1209 		return 0;
1210 	return call_int_hook(inode_rmdir, 0, dir, dentry);
1211 }
1212 
1213 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1214 {
1215 	if (unlikely(IS_PRIVATE(dir)))
1216 		return 0;
1217 	return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1218 }
1219 
1220 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1221 			   struct inode *new_dir, struct dentry *new_dentry,
1222 			   unsigned int flags)
1223 {
1224         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1225             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1226 		return 0;
1227 
1228 	if (flags & RENAME_EXCHANGE) {
1229 		int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1230 						     old_dir, old_dentry);
1231 		if (err)
1232 			return err;
1233 	}
1234 
1235 	return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1236 					   new_dir, new_dentry);
1237 }
1238 
1239 int security_inode_readlink(struct dentry *dentry)
1240 {
1241 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1242 		return 0;
1243 	return call_int_hook(inode_readlink, 0, dentry);
1244 }
1245 
1246 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1247 			       bool rcu)
1248 {
1249 	if (unlikely(IS_PRIVATE(inode)))
1250 		return 0;
1251 	return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1252 }
1253 
1254 int security_inode_permission(struct inode *inode, int mask)
1255 {
1256 	if (unlikely(IS_PRIVATE(inode)))
1257 		return 0;
1258 	return call_int_hook(inode_permission, 0, inode, mask);
1259 }
1260 
1261 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1262 {
1263 	int ret;
1264 
1265 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1266 		return 0;
1267 	ret = call_int_hook(inode_setattr, 0, dentry, attr);
1268 	if (ret)
1269 		return ret;
1270 	return evm_inode_setattr(dentry, attr);
1271 }
1272 EXPORT_SYMBOL_GPL(security_inode_setattr);
1273 
1274 int security_inode_getattr(const struct path *path)
1275 {
1276 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1277 		return 0;
1278 	return call_int_hook(inode_getattr, 0, path);
1279 }
1280 
1281 int security_inode_setxattr(struct dentry *dentry, const char *name,
1282 			    const void *value, size_t size, int flags)
1283 {
1284 	int ret;
1285 
1286 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1287 		return 0;
1288 	/*
1289 	 * SELinux and Smack integrate the cap call,
1290 	 * so assume that all LSMs supplying this call do so.
1291 	 */
1292 	ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
1293 				flags);
1294 
1295 	if (ret == 1)
1296 		ret = cap_inode_setxattr(dentry, name, value, size, flags);
1297 	if (ret)
1298 		return ret;
1299 	ret = ima_inode_setxattr(dentry, name, value, size);
1300 	if (ret)
1301 		return ret;
1302 	return evm_inode_setxattr(dentry, name, value, size);
1303 }
1304 
1305 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1306 				  const void *value, size_t size, int flags)
1307 {
1308 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1309 		return;
1310 	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1311 	evm_inode_post_setxattr(dentry, name, value, size);
1312 }
1313 
1314 int security_inode_getxattr(struct dentry *dentry, const char *name)
1315 {
1316 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1317 		return 0;
1318 	return call_int_hook(inode_getxattr, 0, dentry, name);
1319 }
1320 
1321 int security_inode_listxattr(struct dentry *dentry)
1322 {
1323 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1324 		return 0;
1325 	return call_int_hook(inode_listxattr, 0, dentry);
1326 }
1327 
1328 int security_inode_removexattr(struct dentry *dentry, const char *name)
1329 {
1330 	int ret;
1331 
1332 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1333 		return 0;
1334 	/*
1335 	 * SELinux and Smack integrate the cap call,
1336 	 * so assume that all LSMs supplying this call do so.
1337 	 */
1338 	ret = call_int_hook(inode_removexattr, 1, dentry, name);
1339 	if (ret == 1)
1340 		ret = cap_inode_removexattr(dentry, name);
1341 	if (ret)
1342 		return ret;
1343 	ret = ima_inode_removexattr(dentry, name);
1344 	if (ret)
1345 		return ret;
1346 	return evm_inode_removexattr(dentry, name);
1347 }
1348 
1349 int security_inode_need_killpriv(struct dentry *dentry)
1350 {
1351 	return call_int_hook(inode_need_killpriv, 0, dentry);
1352 }
1353 
1354 int security_inode_killpriv(struct dentry *dentry)
1355 {
1356 	return call_int_hook(inode_killpriv, 0, dentry);
1357 }
1358 
1359 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1360 {
1361 	struct security_hook_list *hp;
1362 	int rc;
1363 
1364 	if (unlikely(IS_PRIVATE(inode)))
1365 		return LSM_RET_DEFAULT(inode_getsecurity);
1366 	/*
1367 	 * Only one module will provide an attribute with a given name.
1368 	 */
1369 	hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1370 		rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1371 		if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1372 			return rc;
1373 	}
1374 	return LSM_RET_DEFAULT(inode_getsecurity);
1375 }
1376 
1377 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1378 {
1379 	struct security_hook_list *hp;
1380 	int rc;
1381 
1382 	if (unlikely(IS_PRIVATE(inode)))
1383 		return LSM_RET_DEFAULT(inode_setsecurity);
1384 	/*
1385 	 * Only one module will provide an attribute with a given name.
1386 	 */
1387 	hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1388 		rc = hp->hook.inode_setsecurity(inode, name, value, size,
1389 								flags);
1390 		if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1391 			return rc;
1392 	}
1393 	return LSM_RET_DEFAULT(inode_setsecurity);
1394 }
1395 
1396 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1397 {
1398 	if (unlikely(IS_PRIVATE(inode)))
1399 		return 0;
1400 	return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1401 }
1402 EXPORT_SYMBOL(security_inode_listsecurity);
1403 
1404 void security_inode_getsecid(struct inode *inode, u32 *secid)
1405 {
1406 	call_void_hook(inode_getsecid, inode, secid);
1407 }
1408 
1409 int security_inode_copy_up(struct dentry *src, struct cred **new)
1410 {
1411 	return call_int_hook(inode_copy_up, 0, src, new);
1412 }
1413 EXPORT_SYMBOL(security_inode_copy_up);
1414 
1415 int security_inode_copy_up_xattr(const char *name)
1416 {
1417 	return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
1418 }
1419 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1420 
1421 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1422 				  struct kernfs_node *kn)
1423 {
1424 	return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1425 }
1426 
1427 int security_file_permission(struct file *file, int mask)
1428 {
1429 	int ret;
1430 
1431 	ret = call_int_hook(file_permission, 0, file, mask);
1432 	if (ret)
1433 		return ret;
1434 
1435 	return fsnotify_perm(file, mask);
1436 }
1437 
1438 int security_file_alloc(struct file *file)
1439 {
1440 	int rc = lsm_file_alloc(file);
1441 
1442 	if (rc)
1443 		return rc;
1444 	rc = call_int_hook(file_alloc_security, 0, file);
1445 	if (unlikely(rc))
1446 		security_file_free(file);
1447 	return rc;
1448 }
1449 
1450 void security_file_free(struct file *file)
1451 {
1452 	void *blob;
1453 
1454 	call_void_hook(file_free_security, file);
1455 
1456 	blob = file->f_security;
1457 	if (blob) {
1458 		file->f_security = NULL;
1459 		kmem_cache_free(lsm_file_cache, blob);
1460 	}
1461 }
1462 
1463 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1464 {
1465 	return call_int_hook(file_ioctl, 0, file, cmd, arg);
1466 }
1467 
1468 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1469 {
1470 	/*
1471 	 * Does we have PROT_READ and does the application expect
1472 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
1473 	 */
1474 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1475 		return prot;
1476 	if (!(current->personality & READ_IMPLIES_EXEC))
1477 		return prot;
1478 	/*
1479 	 * if that's an anonymous mapping, let it.
1480 	 */
1481 	if (!file)
1482 		return prot | PROT_EXEC;
1483 	/*
1484 	 * ditto if it's not on noexec mount, except that on !MMU we need
1485 	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1486 	 */
1487 	if (!path_noexec(&file->f_path)) {
1488 #ifndef CONFIG_MMU
1489 		if (file->f_op->mmap_capabilities) {
1490 			unsigned caps = file->f_op->mmap_capabilities(file);
1491 			if (!(caps & NOMMU_MAP_EXEC))
1492 				return prot;
1493 		}
1494 #endif
1495 		return prot | PROT_EXEC;
1496 	}
1497 	/* anything on noexec mount won't get PROT_EXEC */
1498 	return prot;
1499 }
1500 
1501 int security_mmap_file(struct file *file, unsigned long prot,
1502 			unsigned long flags)
1503 {
1504 	int ret;
1505 	ret = call_int_hook(mmap_file, 0, file, prot,
1506 					mmap_prot(file, prot), flags);
1507 	if (ret)
1508 		return ret;
1509 	return ima_file_mmap(file, prot);
1510 }
1511 
1512 int security_mmap_addr(unsigned long addr)
1513 {
1514 	return call_int_hook(mmap_addr, 0, addr);
1515 }
1516 
1517 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1518 			    unsigned long prot)
1519 {
1520 	return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1521 }
1522 
1523 int security_file_lock(struct file *file, unsigned int cmd)
1524 {
1525 	return call_int_hook(file_lock, 0, file, cmd);
1526 }
1527 
1528 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1529 {
1530 	return call_int_hook(file_fcntl, 0, file, cmd, arg);
1531 }
1532 
1533 void security_file_set_fowner(struct file *file)
1534 {
1535 	call_void_hook(file_set_fowner, file);
1536 }
1537 
1538 int security_file_send_sigiotask(struct task_struct *tsk,
1539 				  struct fown_struct *fown, int sig)
1540 {
1541 	return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1542 }
1543 
1544 int security_file_receive(struct file *file)
1545 {
1546 	return call_int_hook(file_receive, 0, file);
1547 }
1548 
1549 int security_file_open(struct file *file)
1550 {
1551 	int ret;
1552 
1553 	ret = call_int_hook(file_open, 0, file);
1554 	if (ret)
1555 		return ret;
1556 
1557 	return fsnotify_perm(file, MAY_OPEN);
1558 }
1559 
1560 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1561 {
1562 	int rc = lsm_task_alloc(task);
1563 
1564 	if (rc)
1565 		return rc;
1566 	rc = call_int_hook(task_alloc, 0, task, clone_flags);
1567 	if (unlikely(rc))
1568 		security_task_free(task);
1569 	return rc;
1570 }
1571 
1572 void security_task_free(struct task_struct *task)
1573 {
1574 	call_void_hook(task_free, task);
1575 
1576 	kfree(task->security);
1577 	task->security = NULL;
1578 }
1579 
1580 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1581 {
1582 	int rc = lsm_cred_alloc(cred, gfp);
1583 
1584 	if (rc)
1585 		return rc;
1586 
1587 	rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1588 	if (unlikely(rc))
1589 		security_cred_free(cred);
1590 	return rc;
1591 }
1592 
1593 void security_cred_free(struct cred *cred)
1594 {
1595 	/*
1596 	 * There is a failure case in prepare_creds() that
1597 	 * may result in a call here with ->security being NULL.
1598 	 */
1599 	if (unlikely(cred->security == NULL))
1600 		return;
1601 
1602 	call_void_hook(cred_free, cred);
1603 
1604 	kfree(cred->security);
1605 	cred->security = NULL;
1606 }
1607 
1608 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1609 {
1610 	int rc = lsm_cred_alloc(new, gfp);
1611 
1612 	if (rc)
1613 		return rc;
1614 
1615 	rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1616 	if (unlikely(rc))
1617 		security_cred_free(new);
1618 	return rc;
1619 }
1620 
1621 void security_transfer_creds(struct cred *new, const struct cred *old)
1622 {
1623 	call_void_hook(cred_transfer, new, old);
1624 }
1625 
1626 void security_cred_getsecid(const struct cred *c, u32 *secid)
1627 {
1628 	*secid = 0;
1629 	call_void_hook(cred_getsecid, c, secid);
1630 }
1631 EXPORT_SYMBOL(security_cred_getsecid);
1632 
1633 int security_kernel_act_as(struct cred *new, u32 secid)
1634 {
1635 	return call_int_hook(kernel_act_as, 0, new, secid);
1636 }
1637 
1638 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1639 {
1640 	return call_int_hook(kernel_create_files_as, 0, new, inode);
1641 }
1642 
1643 int security_kernel_module_request(char *kmod_name)
1644 {
1645 	int ret;
1646 
1647 	ret = call_int_hook(kernel_module_request, 0, kmod_name);
1648 	if (ret)
1649 		return ret;
1650 	return integrity_kernel_module_request(kmod_name);
1651 }
1652 
1653 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1654 {
1655 	int ret;
1656 
1657 	ret = call_int_hook(kernel_read_file, 0, file, id);
1658 	if (ret)
1659 		return ret;
1660 	return ima_read_file(file, id);
1661 }
1662 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1663 
1664 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1665 				   enum kernel_read_file_id id)
1666 {
1667 	int ret;
1668 
1669 	ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1670 	if (ret)
1671 		return ret;
1672 	return ima_post_read_file(file, buf, size, id);
1673 }
1674 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1675 
1676 int security_kernel_load_data(enum kernel_load_data_id id)
1677 {
1678 	int ret;
1679 
1680 	ret = call_int_hook(kernel_load_data, 0, id);
1681 	if (ret)
1682 		return ret;
1683 	return ima_load_data(id);
1684 }
1685 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1686 
1687 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1688 			     int flags)
1689 {
1690 	return call_int_hook(task_fix_setuid, 0, new, old, flags);
1691 }
1692 
1693 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1694 {
1695 	return call_int_hook(task_setpgid, 0, p, pgid);
1696 }
1697 
1698 int security_task_getpgid(struct task_struct *p)
1699 {
1700 	return call_int_hook(task_getpgid, 0, p);
1701 }
1702 
1703 int security_task_getsid(struct task_struct *p)
1704 {
1705 	return call_int_hook(task_getsid, 0, p);
1706 }
1707 
1708 void security_task_getsecid(struct task_struct *p, u32 *secid)
1709 {
1710 	*secid = 0;
1711 	call_void_hook(task_getsecid, p, secid);
1712 }
1713 EXPORT_SYMBOL(security_task_getsecid);
1714 
1715 int security_task_setnice(struct task_struct *p, int nice)
1716 {
1717 	return call_int_hook(task_setnice, 0, p, nice);
1718 }
1719 
1720 int security_task_setioprio(struct task_struct *p, int ioprio)
1721 {
1722 	return call_int_hook(task_setioprio, 0, p, ioprio);
1723 }
1724 
1725 int security_task_getioprio(struct task_struct *p)
1726 {
1727 	return call_int_hook(task_getioprio, 0, p);
1728 }
1729 
1730 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1731 			  unsigned int flags)
1732 {
1733 	return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1734 }
1735 
1736 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1737 		struct rlimit *new_rlim)
1738 {
1739 	return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1740 }
1741 
1742 int security_task_setscheduler(struct task_struct *p)
1743 {
1744 	return call_int_hook(task_setscheduler, 0, p);
1745 }
1746 
1747 int security_task_getscheduler(struct task_struct *p)
1748 {
1749 	return call_int_hook(task_getscheduler, 0, p);
1750 }
1751 
1752 int security_task_movememory(struct task_struct *p)
1753 {
1754 	return call_int_hook(task_movememory, 0, p);
1755 }
1756 
1757 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1758 			int sig, const struct cred *cred)
1759 {
1760 	return call_int_hook(task_kill, 0, p, info, sig, cred);
1761 }
1762 
1763 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1764 			 unsigned long arg4, unsigned long arg5)
1765 {
1766 	int thisrc;
1767 	int rc = LSM_RET_DEFAULT(task_prctl);
1768 	struct security_hook_list *hp;
1769 
1770 	hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1771 		thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1772 		if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1773 			rc = thisrc;
1774 			if (thisrc != 0)
1775 				break;
1776 		}
1777 	}
1778 	return rc;
1779 }
1780 
1781 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1782 {
1783 	call_void_hook(task_to_inode, p, inode);
1784 }
1785 
1786 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1787 {
1788 	return call_int_hook(ipc_permission, 0, ipcp, flag);
1789 }
1790 
1791 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1792 {
1793 	*secid = 0;
1794 	call_void_hook(ipc_getsecid, ipcp, secid);
1795 }
1796 
1797 int security_msg_msg_alloc(struct msg_msg *msg)
1798 {
1799 	int rc = lsm_msg_msg_alloc(msg);
1800 
1801 	if (unlikely(rc))
1802 		return rc;
1803 	rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1804 	if (unlikely(rc))
1805 		security_msg_msg_free(msg);
1806 	return rc;
1807 }
1808 
1809 void security_msg_msg_free(struct msg_msg *msg)
1810 {
1811 	call_void_hook(msg_msg_free_security, msg);
1812 	kfree(msg->security);
1813 	msg->security = NULL;
1814 }
1815 
1816 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1817 {
1818 	int rc = lsm_ipc_alloc(msq);
1819 
1820 	if (unlikely(rc))
1821 		return rc;
1822 	rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1823 	if (unlikely(rc))
1824 		security_msg_queue_free(msq);
1825 	return rc;
1826 }
1827 
1828 void security_msg_queue_free(struct kern_ipc_perm *msq)
1829 {
1830 	call_void_hook(msg_queue_free_security, msq);
1831 	kfree(msq->security);
1832 	msq->security = NULL;
1833 }
1834 
1835 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1836 {
1837 	return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1838 }
1839 
1840 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1841 {
1842 	return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1843 }
1844 
1845 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1846 			       struct msg_msg *msg, int msqflg)
1847 {
1848 	return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1849 }
1850 
1851 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1852 			       struct task_struct *target, long type, int mode)
1853 {
1854 	return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1855 }
1856 
1857 int security_shm_alloc(struct kern_ipc_perm *shp)
1858 {
1859 	int rc = lsm_ipc_alloc(shp);
1860 
1861 	if (unlikely(rc))
1862 		return rc;
1863 	rc = call_int_hook(shm_alloc_security, 0, shp);
1864 	if (unlikely(rc))
1865 		security_shm_free(shp);
1866 	return rc;
1867 }
1868 
1869 void security_shm_free(struct kern_ipc_perm *shp)
1870 {
1871 	call_void_hook(shm_free_security, shp);
1872 	kfree(shp->security);
1873 	shp->security = NULL;
1874 }
1875 
1876 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1877 {
1878 	return call_int_hook(shm_associate, 0, shp, shmflg);
1879 }
1880 
1881 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1882 {
1883 	return call_int_hook(shm_shmctl, 0, shp, cmd);
1884 }
1885 
1886 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1887 {
1888 	return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1889 }
1890 
1891 int security_sem_alloc(struct kern_ipc_perm *sma)
1892 {
1893 	int rc = lsm_ipc_alloc(sma);
1894 
1895 	if (unlikely(rc))
1896 		return rc;
1897 	rc = call_int_hook(sem_alloc_security, 0, sma);
1898 	if (unlikely(rc))
1899 		security_sem_free(sma);
1900 	return rc;
1901 }
1902 
1903 void security_sem_free(struct kern_ipc_perm *sma)
1904 {
1905 	call_void_hook(sem_free_security, sma);
1906 	kfree(sma->security);
1907 	sma->security = NULL;
1908 }
1909 
1910 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1911 {
1912 	return call_int_hook(sem_associate, 0, sma, semflg);
1913 }
1914 
1915 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1916 {
1917 	return call_int_hook(sem_semctl, 0, sma, cmd);
1918 }
1919 
1920 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1921 			unsigned nsops, int alter)
1922 {
1923 	return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1924 }
1925 
1926 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1927 {
1928 	if (unlikely(inode && IS_PRIVATE(inode)))
1929 		return;
1930 	call_void_hook(d_instantiate, dentry, inode);
1931 }
1932 EXPORT_SYMBOL(security_d_instantiate);
1933 
1934 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
1935 				char **value)
1936 {
1937 	struct security_hook_list *hp;
1938 
1939 	hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
1940 		if (lsm != NULL && strcmp(lsm, hp->lsm))
1941 			continue;
1942 		return hp->hook.getprocattr(p, name, value);
1943 	}
1944 	return LSM_RET_DEFAULT(getprocattr);
1945 }
1946 
1947 int security_setprocattr(const char *lsm, const char *name, void *value,
1948 			 size_t size)
1949 {
1950 	struct security_hook_list *hp;
1951 
1952 	hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
1953 		if (lsm != NULL && strcmp(lsm, hp->lsm))
1954 			continue;
1955 		return hp->hook.setprocattr(name, value, size);
1956 	}
1957 	return LSM_RET_DEFAULT(setprocattr);
1958 }
1959 
1960 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1961 {
1962 	return call_int_hook(netlink_send, 0, sk, skb);
1963 }
1964 
1965 int security_ismaclabel(const char *name)
1966 {
1967 	return call_int_hook(ismaclabel, 0, name);
1968 }
1969 EXPORT_SYMBOL(security_ismaclabel);
1970 
1971 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1972 {
1973 	return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1974 				seclen);
1975 }
1976 EXPORT_SYMBOL(security_secid_to_secctx);
1977 
1978 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1979 {
1980 	*secid = 0;
1981 	return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1982 }
1983 EXPORT_SYMBOL(security_secctx_to_secid);
1984 
1985 void security_release_secctx(char *secdata, u32 seclen)
1986 {
1987 	call_void_hook(release_secctx, secdata, seclen);
1988 }
1989 EXPORT_SYMBOL(security_release_secctx);
1990 
1991 void security_inode_invalidate_secctx(struct inode *inode)
1992 {
1993 	call_void_hook(inode_invalidate_secctx, inode);
1994 }
1995 EXPORT_SYMBOL(security_inode_invalidate_secctx);
1996 
1997 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1998 {
1999 	return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2000 }
2001 EXPORT_SYMBOL(security_inode_notifysecctx);
2002 
2003 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2004 {
2005 	return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2006 }
2007 EXPORT_SYMBOL(security_inode_setsecctx);
2008 
2009 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2010 {
2011 	return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2012 }
2013 EXPORT_SYMBOL(security_inode_getsecctx);
2014 
2015 #ifdef CONFIG_SECURITY_NETWORK
2016 
2017 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2018 {
2019 	return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2020 }
2021 EXPORT_SYMBOL(security_unix_stream_connect);
2022 
2023 int security_unix_may_send(struct socket *sock,  struct socket *other)
2024 {
2025 	return call_int_hook(unix_may_send, 0, sock, other);
2026 }
2027 EXPORT_SYMBOL(security_unix_may_send);
2028 
2029 int security_socket_create(int family, int type, int protocol, int kern)
2030 {
2031 	return call_int_hook(socket_create, 0, family, type, protocol, kern);
2032 }
2033 
2034 int security_socket_post_create(struct socket *sock, int family,
2035 				int type, int protocol, int kern)
2036 {
2037 	return call_int_hook(socket_post_create, 0, sock, family, type,
2038 						protocol, kern);
2039 }
2040 
2041 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2042 {
2043 	return call_int_hook(socket_socketpair, 0, socka, sockb);
2044 }
2045 EXPORT_SYMBOL(security_socket_socketpair);
2046 
2047 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2048 {
2049 	return call_int_hook(socket_bind, 0, sock, address, addrlen);
2050 }
2051 
2052 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2053 {
2054 	return call_int_hook(socket_connect, 0, sock, address, addrlen);
2055 }
2056 
2057 int security_socket_listen(struct socket *sock, int backlog)
2058 {
2059 	return call_int_hook(socket_listen, 0, sock, backlog);
2060 }
2061 
2062 int security_socket_accept(struct socket *sock, struct socket *newsock)
2063 {
2064 	return call_int_hook(socket_accept, 0, sock, newsock);
2065 }
2066 
2067 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2068 {
2069 	return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2070 }
2071 
2072 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2073 			    int size, int flags)
2074 {
2075 	return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2076 }
2077 
2078 int security_socket_getsockname(struct socket *sock)
2079 {
2080 	return call_int_hook(socket_getsockname, 0, sock);
2081 }
2082 
2083 int security_socket_getpeername(struct socket *sock)
2084 {
2085 	return call_int_hook(socket_getpeername, 0, sock);
2086 }
2087 
2088 int security_socket_getsockopt(struct socket *sock, int level, int optname)
2089 {
2090 	return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2091 }
2092 
2093 int security_socket_setsockopt(struct socket *sock, int level, int optname)
2094 {
2095 	return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2096 }
2097 
2098 int security_socket_shutdown(struct socket *sock, int how)
2099 {
2100 	return call_int_hook(socket_shutdown, 0, sock, how);
2101 }
2102 
2103 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2104 {
2105 	return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2106 }
2107 EXPORT_SYMBOL(security_sock_rcv_skb);
2108 
2109 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2110 				      int __user *optlen, unsigned len)
2111 {
2112 	return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2113 				optval, optlen, len);
2114 }
2115 
2116 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2117 {
2118 	return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2119 			     skb, secid);
2120 }
2121 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2122 
2123 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2124 {
2125 	return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2126 }
2127 
2128 void security_sk_free(struct sock *sk)
2129 {
2130 	call_void_hook(sk_free_security, sk);
2131 }
2132 
2133 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2134 {
2135 	call_void_hook(sk_clone_security, sk, newsk);
2136 }
2137 EXPORT_SYMBOL(security_sk_clone);
2138 
2139 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2140 {
2141 	call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
2142 }
2143 EXPORT_SYMBOL(security_sk_classify_flow);
2144 
2145 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2146 {
2147 	call_void_hook(req_classify_flow, req, fl);
2148 }
2149 EXPORT_SYMBOL(security_req_classify_flow);
2150 
2151 void security_sock_graft(struct sock *sk, struct socket *parent)
2152 {
2153 	call_void_hook(sock_graft, sk, parent);
2154 }
2155 EXPORT_SYMBOL(security_sock_graft);
2156 
2157 int security_inet_conn_request(struct sock *sk,
2158 			struct sk_buff *skb, struct request_sock *req)
2159 {
2160 	return call_int_hook(inet_conn_request, 0, sk, skb, req);
2161 }
2162 EXPORT_SYMBOL(security_inet_conn_request);
2163 
2164 void security_inet_csk_clone(struct sock *newsk,
2165 			const struct request_sock *req)
2166 {
2167 	call_void_hook(inet_csk_clone, newsk, req);
2168 }
2169 
2170 void security_inet_conn_established(struct sock *sk,
2171 			struct sk_buff *skb)
2172 {
2173 	call_void_hook(inet_conn_established, sk, skb);
2174 }
2175 EXPORT_SYMBOL(security_inet_conn_established);
2176 
2177 int security_secmark_relabel_packet(u32 secid)
2178 {
2179 	return call_int_hook(secmark_relabel_packet, 0, secid);
2180 }
2181 EXPORT_SYMBOL(security_secmark_relabel_packet);
2182 
2183 void security_secmark_refcount_inc(void)
2184 {
2185 	call_void_hook(secmark_refcount_inc);
2186 }
2187 EXPORT_SYMBOL(security_secmark_refcount_inc);
2188 
2189 void security_secmark_refcount_dec(void)
2190 {
2191 	call_void_hook(secmark_refcount_dec);
2192 }
2193 EXPORT_SYMBOL(security_secmark_refcount_dec);
2194 
2195 int security_tun_dev_alloc_security(void **security)
2196 {
2197 	return call_int_hook(tun_dev_alloc_security, 0, security);
2198 }
2199 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2200 
2201 void security_tun_dev_free_security(void *security)
2202 {
2203 	call_void_hook(tun_dev_free_security, security);
2204 }
2205 EXPORT_SYMBOL(security_tun_dev_free_security);
2206 
2207 int security_tun_dev_create(void)
2208 {
2209 	return call_int_hook(tun_dev_create, 0);
2210 }
2211 EXPORT_SYMBOL(security_tun_dev_create);
2212 
2213 int security_tun_dev_attach_queue(void *security)
2214 {
2215 	return call_int_hook(tun_dev_attach_queue, 0, security);
2216 }
2217 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2218 
2219 int security_tun_dev_attach(struct sock *sk, void *security)
2220 {
2221 	return call_int_hook(tun_dev_attach, 0, sk, security);
2222 }
2223 EXPORT_SYMBOL(security_tun_dev_attach);
2224 
2225 int security_tun_dev_open(void *security)
2226 {
2227 	return call_int_hook(tun_dev_open, 0, security);
2228 }
2229 EXPORT_SYMBOL(security_tun_dev_open);
2230 
2231 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2232 {
2233 	return call_int_hook(sctp_assoc_request, 0, ep, skb);
2234 }
2235 EXPORT_SYMBOL(security_sctp_assoc_request);
2236 
2237 int security_sctp_bind_connect(struct sock *sk, int optname,
2238 			       struct sockaddr *address, int addrlen)
2239 {
2240 	return call_int_hook(sctp_bind_connect, 0, sk, optname,
2241 			     address, addrlen);
2242 }
2243 EXPORT_SYMBOL(security_sctp_bind_connect);
2244 
2245 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2246 			    struct sock *newsk)
2247 {
2248 	call_void_hook(sctp_sk_clone, ep, sk, newsk);
2249 }
2250 EXPORT_SYMBOL(security_sctp_sk_clone);
2251 
2252 #endif	/* CONFIG_SECURITY_NETWORK */
2253 
2254 #ifdef CONFIG_SECURITY_INFINIBAND
2255 
2256 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2257 {
2258 	return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2259 }
2260 EXPORT_SYMBOL(security_ib_pkey_access);
2261 
2262 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2263 {
2264 	return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2265 }
2266 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2267 
2268 int security_ib_alloc_security(void **sec)
2269 {
2270 	return call_int_hook(ib_alloc_security, 0, sec);
2271 }
2272 EXPORT_SYMBOL(security_ib_alloc_security);
2273 
2274 void security_ib_free_security(void *sec)
2275 {
2276 	call_void_hook(ib_free_security, sec);
2277 }
2278 EXPORT_SYMBOL(security_ib_free_security);
2279 #endif	/* CONFIG_SECURITY_INFINIBAND */
2280 
2281 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2282 
2283 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2284 			       struct xfrm_user_sec_ctx *sec_ctx,
2285 			       gfp_t gfp)
2286 {
2287 	return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2288 }
2289 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2290 
2291 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2292 			      struct xfrm_sec_ctx **new_ctxp)
2293 {
2294 	return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2295 }
2296 
2297 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2298 {
2299 	call_void_hook(xfrm_policy_free_security, ctx);
2300 }
2301 EXPORT_SYMBOL(security_xfrm_policy_free);
2302 
2303 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2304 {
2305 	return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2306 }
2307 
2308 int security_xfrm_state_alloc(struct xfrm_state *x,
2309 			      struct xfrm_user_sec_ctx *sec_ctx)
2310 {
2311 	return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2312 }
2313 EXPORT_SYMBOL(security_xfrm_state_alloc);
2314 
2315 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2316 				      struct xfrm_sec_ctx *polsec, u32 secid)
2317 {
2318 	return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2319 }
2320 
2321 int security_xfrm_state_delete(struct xfrm_state *x)
2322 {
2323 	return call_int_hook(xfrm_state_delete_security, 0, x);
2324 }
2325 EXPORT_SYMBOL(security_xfrm_state_delete);
2326 
2327 void security_xfrm_state_free(struct xfrm_state *x)
2328 {
2329 	call_void_hook(xfrm_state_free_security, x);
2330 }
2331 
2332 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2333 {
2334 	return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2335 }
2336 
2337 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2338 				       struct xfrm_policy *xp,
2339 				       const struct flowi *fl)
2340 {
2341 	struct security_hook_list *hp;
2342 	int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2343 
2344 	/*
2345 	 * Since this function is expected to return 0 or 1, the judgment
2346 	 * becomes difficult if multiple LSMs supply this call. Fortunately,
2347 	 * we can use the first LSM's judgment because currently only SELinux
2348 	 * supplies this call.
2349 	 *
2350 	 * For speed optimization, we explicitly break the loop rather than
2351 	 * using the macro
2352 	 */
2353 	hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2354 				list) {
2355 		rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
2356 		break;
2357 	}
2358 	return rc;
2359 }
2360 
2361 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2362 {
2363 	return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2364 }
2365 
2366 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
2367 {
2368 	int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
2369 				0);
2370 
2371 	BUG_ON(rc);
2372 }
2373 EXPORT_SYMBOL(security_skb_classify_flow);
2374 
2375 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
2376 
2377 #ifdef CONFIG_KEYS
2378 
2379 int security_key_alloc(struct key *key, const struct cred *cred,
2380 		       unsigned long flags)
2381 {
2382 	return call_int_hook(key_alloc, 0, key, cred, flags);
2383 }
2384 
2385 void security_key_free(struct key *key)
2386 {
2387 	call_void_hook(key_free, key);
2388 }
2389 
2390 int security_key_permission(key_ref_t key_ref,
2391 			    const struct cred *cred, unsigned perm)
2392 {
2393 	return call_int_hook(key_permission, 0, key_ref, cred, perm);
2394 }
2395 
2396 int security_key_getsecurity(struct key *key, char **_buffer)
2397 {
2398 	*_buffer = NULL;
2399 	return call_int_hook(key_getsecurity, 0, key, _buffer);
2400 }
2401 
2402 #endif	/* CONFIG_KEYS */
2403 
2404 #ifdef CONFIG_AUDIT
2405 
2406 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2407 {
2408 	return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2409 }
2410 
2411 int security_audit_rule_known(struct audit_krule *krule)
2412 {
2413 	return call_int_hook(audit_rule_known, 0, krule);
2414 }
2415 
2416 void security_audit_rule_free(void *lsmrule)
2417 {
2418 	call_void_hook(audit_rule_free, lsmrule);
2419 }
2420 
2421 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2422 {
2423 	return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2424 }
2425 #endif /* CONFIG_AUDIT */
2426 
2427 #ifdef CONFIG_BPF_SYSCALL
2428 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2429 {
2430 	return call_int_hook(bpf, 0, cmd, attr, size);
2431 }
2432 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2433 {
2434 	return call_int_hook(bpf_map, 0, map, fmode);
2435 }
2436 int security_bpf_prog(struct bpf_prog *prog)
2437 {
2438 	return call_int_hook(bpf_prog, 0, prog);
2439 }
2440 int security_bpf_map_alloc(struct bpf_map *map)
2441 {
2442 	return call_int_hook(bpf_map_alloc_security, 0, map);
2443 }
2444 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2445 {
2446 	return call_int_hook(bpf_prog_alloc_security, 0, aux);
2447 }
2448 void security_bpf_map_free(struct bpf_map *map)
2449 {
2450 	call_void_hook(bpf_map_free_security, map);
2451 }
2452 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2453 {
2454 	call_void_hook(bpf_prog_free_security, aux);
2455 }
2456 #endif /* CONFIG_BPF_SYSCALL */
2457 
2458 int security_locked_down(enum lockdown_reason what)
2459 {
2460 	return call_int_hook(locked_down, 0, what);
2461 }
2462 EXPORT_SYMBOL(security_locked_down);
2463 
2464 #ifdef CONFIG_PERF_EVENTS
2465 int security_perf_event_open(struct perf_event_attr *attr, int type)
2466 {
2467 	return call_int_hook(perf_event_open, 0, attr, type);
2468 }
2469 
2470 int security_perf_event_alloc(struct perf_event *event)
2471 {
2472 	return call_int_hook(perf_event_alloc, 0, event);
2473 }
2474 
2475 void security_perf_event_free(struct perf_event *event)
2476 {
2477 	call_void_hook(perf_event_free, event);
2478 }
2479 
2480 int security_perf_event_read(struct perf_event *event)
2481 {
2482 	return call_int_hook(perf_event_read, 0, event);
2483 }
2484 
2485 int security_perf_event_write(struct perf_event *event)
2486 {
2487 	return call_int_hook(perf_event_write, 0, event);
2488 }
2489 #endif /* CONFIG_PERF_EVENTS */
2490