xref: /openbmc/linux/security/security.c (revision 5104d265)
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *	This program is free software; you can redistribute it and/or modify
9  *	it under the terms of the GNU General Public License as published by
10  *	the Free Software Foundation; either version 2 of the License, or
11  *	(at your option) any later version.
12  */
13 
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/security.h>
20 #include <linux/integrity.h>
21 #include <linux/ima.h>
22 #include <linux/evm.h>
23 #include <linux/fsnotify.h>
24 #include <linux/mman.h>
25 #include <linux/mount.h>
26 #include <linux/personality.h>
27 #include <linux/backing-dev.h>
28 #include <net/flow.h>
29 
30 #define MAX_LSM_EVM_XATTR	2
31 
32 /* Boot-time LSM user choice */
33 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
34 	CONFIG_DEFAULT_SECURITY;
35 
36 static struct security_operations *security_ops;
37 static struct security_operations default_security_ops = {
38 	.name	= "default",
39 };
40 
41 static inline int __init verify(struct security_operations *ops)
42 {
43 	/* verify the security_operations structure exists */
44 	if (!ops)
45 		return -EINVAL;
46 	security_fixup_ops(ops);
47 	return 0;
48 }
49 
50 static void __init do_security_initcalls(void)
51 {
52 	initcall_t *call;
53 	call = __security_initcall_start;
54 	while (call < __security_initcall_end) {
55 		(*call) ();
56 		call++;
57 	}
58 }
59 
60 /**
61  * security_init - initializes the security framework
62  *
63  * This should be called early in the kernel initialization sequence.
64  */
65 int __init security_init(void)
66 {
67 	printk(KERN_INFO "Security Framework initialized\n");
68 
69 	security_fixup_ops(&default_security_ops);
70 	security_ops = &default_security_ops;
71 	do_security_initcalls();
72 
73 	return 0;
74 }
75 
76 void reset_security_ops(void)
77 {
78 	security_ops = &default_security_ops;
79 }
80 
81 /* Save user chosen LSM */
82 static int __init choose_lsm(char *str)
83 {
84 	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
85 	return 1;
86 }
87 __setup("security=", choose_lsm);
88 
89 /**
90  * security_module_enable - Load given security module on boot ?
91  * @ops: a pointer to the struct security_operations that is to be checked.
92  *
93  * Each LSM must pass this method before registering its own operations
94  * to avoid security registration races. This method may also be used
95  * to check if your LSM is currently loaded during kernel initialization.
96  *
97  * Return true if:
98  *	-The passed LSM is the one chosen by user at boot time,
99  *	-or the passed LSM is configured as the default and the user did not
100  *	 choose an alternate LSM at boot time.
101  * Otherwise, return false.
102  */
103 int __init security_module_enable(struct security_operations *ops)
104 {
105 	return !strcmp(ops->name, chosen_lsm);
106 }
107 
108 /**
109  * register_security - registers a security framework with the kernel
110  * @ops: a pointer to the struct security_options that is to be registered
111  *
112  * This function allows a security module to register itself with the
113  * kernel security subsystem.  Some rudimentary checking is done on the @ops
114  * value passed to this function. You'll need to check first if your LSM
115  * is allowed to register its @ops by calling security_module_enable(@ops).
116  *
117  * If there is already a security module registered with the kernel,
118  * an error will be returned.  Otherwise %0 is returned on success.
119  */
120 int __init register_security(struct security_operations *ops)
121 {
122 	if (verify(ops)) {
123 		printk(KERN_DEBUG "%s could not verify "
124 		       "security_operations structure.\n", __func__);
125 		return -EINVAL;
126 	}
127 
128 	if (security_ops != &default_security_ops)
129 		return -EAGAIN;
130 
131 	security_ops = ops;
132 
133 	return 0;
134 }
135 
136 /* Security operations */
137 
138 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
139 {
140 #ifdef CONFIG_SECURITY_YAMA_STACKED
141 	int rc;
142 	rc = yama_ptrace_access_check(child, mode);
143 	if (rc)
144 		return rc;
145 #endif
146 	return security_ops->ptrace_access_check(child, mode);
147 }
148 
149 int security_ptrace_traceme(struct task_struct *parent)
150 {
151 #ifdef CONFIG_SECURITY_YAMA_STACKED
152 	int rc;
153 	rc = yama_ptrace_traceme(parent);
154 	if (rc)
155 		return rc;
156 #endif
157 	return security_ops->ptrace_traceme(parent);
158 }
159 
160 int security_capget(struct task_struct *target,
161 		     kernel_cap_t *effective,
162 		     kernel_cap_t *inheritable,
163 		     kernel_cap_t *permitted)
164 {
165 	return security_ops->capget(target, effective, inheritable, permitted);
166 }
167 
168 int security_capset(struct cred *new, const struct cred *old,
169 		    const kernel_cap_t *effective,
170 		    const kernel_cap_t *inheritable,
171 		    const kernel_cap_t *permitted)
172 {
173 	return security_ops->capset(new, old,
174 				    effective, inheritable, permitted);
175 }
176 
177 int security_capable(const struct cred *cred, struct user_namespace *ns,
178 		     int cap)
179 {
180 	return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
181 }
182 
183 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
184 			     int cap)
185 {
186 	return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
187 }
188 
189 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
190 {
191 	return security_ops->quotactl(cmds, type, id, sb);
192 }
193 
194 int security_quota_on(struct dentry *dentry)
195 {
196 	return security_ops->quota_on(dentry);
197 }
198 
199 int security_syslog(int type)
200 {
201 	return security_ops->syslog(type);
202 }
203 
204 int security_settime(const struct timespec *ts, const struct timezone *tz)
205 {
206 	return security_ops->settime(ts, tz);
207 }
208 
209 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
210 {
211 	return security_ops->vm_enough_memory(mm, pages);
212 }
213 
214 int security_bprm_set_creds(struct linux_binprm *bprm)
215 {
216 	return security_ops->bprm_set_creds(bprm);
217 }
218 
219 int security_bprm_check(struct linux_binprm *bprm)
220 {
221 	int ret;
222 
223 	ret = security_ops->bprm_check_security(bprm);
224 	if (ret)
225 		return ret;
226 	return ima_bprm_check(bprm);
227 }
228 
229 void security_bprm_committing_creds(struct linux_binprm *bprm)
230 {
231 	security_ops->bprm_committing_creds(bprm);
232 }
233 
234 void security_bprm_committed_creds(struct linux_binprm *bprm)
235 {
236 	security_ops->bprm_committed_creds(bprm);
237 }
238 
239 int security_bprm_secureexec(struct linux_binprm *bprm)
240 {
241 	return security_ops->bprm_secureexec(bprm);
242 }
243 
244 int security_sb_alloc(struct super_block *sb)
245 {
246 	return security_ops->sb_alloc_security(sb);
247 }
248 
249 void security_sb_free(struct super_block *sb)
250 {
251 	security_ops->sb_free_security(sb);
252 }
253 
254 int security_sb_copy_data(char *orig, char *copy)
255 {
256 	return security_ops->sb_copy_data(orig, copy);
257 }
258 EXPORT_SYMBOL(security_sb_copy_data);
259 
260 int security_sb_remount(struct super_block *sb, void *data)
261 {
262 	return security_ops->sb_remount(sb, data);
263 }
264 
265 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
266 {
267 	return security_ops->sb_kern_mount(sb, flags, data);
268 }
269 
270 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
271 {
272 	return security_ops->sb_show_options(m, sb);
273 }
274 
275 int security_sb_statfs(struct dentry *dentry)
276 {
277 	return security_ops->sb_statfs(dentry);
278 }
279 
280 int security_sb_mount(const char *dev_name, struct path *path,
281                        const char *type, unsigned long flags, void *data)
282 {
283 	return security_ops->sb_mount(dev_name, path, type, flags, data);
284 }
285 
286 int security_sb_umount(struct vfsmount *mnt, int flags)
287 {
288 	return security_ops->sb_umount(mnt, flags);
289 }
290 
291 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
292 {
293 	return security_ops->sb_pivotroot(old_path, new_path);
294 }
295 
296 int security_sb_set_mnt_opts(struct super_block *sb,
297 				struct security_mnt_opts *opts,
298 				unsigned long kern_flags,
299 				unsigned long *set_kern_flags)
300 {
301 	return security_ops->sb_set_mnt_opts(sb, opts, kern_flags,
302 						set_kern_flags);
303 }
304 EXPORT_SYMBOL(security_sb_set_mnt_opts);
305 
306 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
307 				struct super_block *newsb)
308 {
309 	return security_ops->sb_clone_mnt_opts(oldsb, newsb);
310 }
311 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
312 
313 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
314 {
315 	return security_ops->sb_parse_opts_str(options, opts);
316 }
317 EXPORT_SYMBOL(security_sb_parse_opts_str);
318 
319 int security_inode_alloc(struct inode *inode)
320 {
321 	inode->i_security = NULL;
322 	return security_ops->inode_alloc_security(inode);
323 }
324 
325 void security_inode_free(struct inode *inode)
326 {
327 	integrity_inode_free(inode);
328 	security_ops->inode_free_security(inode);
329 }
330 
331 int security_dentry_init_security(struct dentry *dentry, int mode,
332 					struct qstr *name, void **ctx,
333 					u32 *ctxlen)
334 {
335 	return security_ops->dentry_init_security(dentry, mode, name,
336 							ctx, ctxlen);
337 }
338 EXPORT_SYMBOL(security_dentry_init_security);
339 
340 int security_inode_init_security(struct inode *inode, struct inode *dir,
341 				 const struct qstr *qstr,
342 				 const initxattrs initxattrs, void *fs_data)
343 {
344 	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
345 	struct xattr *lsm_xattr, *evm_xattr, *xattr;
346 	int ret;
347 
348 	if (unlikely(IS_PRIVATE(inode)))
349 		return 0;
350 
351 	memset(new_xattrs, 0, sizeof new_xattrs);
352 	if (!initxattrs)
353 		return security_ops->inode_init_security(inode, dir, qstr,
354 							 NULL, NULL, NULL);
355 	lsm_xattr = new_xattrs;
356 	ret = security_ops->inode_init_security(inode, dir, qstr,
357 						&lsm_xattr->name,
358 						&lsm_xattr->value,
359 						&lsm_xattr->value_len);
360 	if (ret)
361 		goto out;
362 
363 	evm_xattr = lsm_xattr + 1;
364 	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
365 	if (ret)
366 		goto out;
367 	ret = initxattrs(inode, new_xattrs, fs_data);
368 out:
369 	for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
370 		kfree(xattr->name);
371 		kfree(xattr->value);
372 	}
373 	return (ret == -EOPNOTSUPP) ? 0 : ret;
374 }
375 EXPORT_SYMBOL(security_inode_init_security);
376 
377 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
378 				     const struct qstr *qstr, char **name,
379 				     void **value, size_t *len)
380 {
381 	if (unlikely(IS_PRIVATE(inode)))
382 		return -EOPNOTSUPP;
383 	return security_ops->inode_init_security(inode, dir, qstr, name, value,
384 						 len);
385 }
386 EXPORT_SYMBOL(security_old_inode_init_security);
387 
388 #ifdef CONFIG_SECURITY_PATH
389 int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
390 			unsigned int dev)
391 {
392 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
393 		return 0;
394 	return security_ops->path_mknod(dir, dentry, mode, dev);
395 }
396 EXPORT_SYMBOL(security_path_mknod);
397 
398 int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
399 {
400 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
401 		return 0;
402 	return security_ops->path_mkdir(dir, dentry, mode);
403 }
404 EXPORT_SYMBOL(security_path_mkdir);
405 
406 int security_path_rmdir(struct path *dir, struct dentry *dentry)
407 {
408 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
409 		return 0;
410 	return security_ops->path_rmdir(dir, dentry);
411 }
412 
413 int security_path_unlink(struct path *dir, struct dentry *dentry)
414 {
415 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
416 		return 0;
417 	return security_ops->path_unlink(dir, dentry);
418 }
419 EXPORT_SYMBOL(security_path_unlink);
420 
421 int security_path_symlink(struct path *dir, struct dentry *dentry,
422 			  const char *old_name)
423 {
424 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
425 		return 0;
426 	return security_ops->path_symlink(dir, dentry, old_name);
427 }
428 
429 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
430 		       struct dentry *new_dentry)
431 {
432 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
433 		return 0;
434 	return security_ops->path_link(old_dentry, new_dir, new_dentry);
435 }
436 
437 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
438 			 struct path *new_dir, struct dentry *new_dentry)
439 {
440 	if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
441 		     (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
442 		return 0;
443 	return security_ops->path_rename(old_dir, old_dentry, new_dir,
444 					 new_dentry);
445 }
446 EXPORT_SYMBOL(security_path_rename);
447 
448 int security_path_truncate(struct path *path)
449 {
450 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
451 		return 0;
452 	return security_ops->path_truncate(path);
453 }
454 
455 int security_path_chmod(struct path *path, umode_t mode)
456 {
457 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
458 		return 0;
459 	return security_ops->path_chmod(path, mode);
460 }
461 
462 int security_path_chown(struct path *path, kuid_t uid, kgid_t gid)
463 {
464 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
465 		return 0;
466 	return security_ops->path_chown(path, uid, gid);
467 }
468 
469 int security_path_chroot(struct path *path)
470 {
471 	return security_ops->path_chroot(path);
472 }
473 #endif
474 
475 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
476 {
477 	if (unlikely(IS_PRIVATE(dir)))
478 		return 0;
479 	return security_ops->inode_create(dir, dentry, mode);
480 }
481 EXPORT_SYMBOL_GPL(security_inode_create);
482 
483 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
484 			 struct dentry *new_dentry)
485 {
486 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
487 		return 0;
488 	return security_ops->inode_link(old_dentry, dir, new_dentry);
489 }
490 
491 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
492 {
493 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
494 		return 0;
495 	return security_ops->inode_unlink(dir, dentry);
496 }
497 
498 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
499 			    const char *old_name)
500 {
501 	if (unlikely(IS_PRIVATE(dir)))
502 		return 0;
503 	return security_ops->inode_symlink(dir, dentry, old_name);
504 }
505 
506 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
507 {
508 	if (unlikely(IS_PRIVATE(dir)))
509 		return 0;
510 	return security_ops->inode_mkdir(dir, dentry, mode);
511 }
512 EXPORT_SYMBOL_GPL(security_inode_mkdir);
513 
514 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
515 {
516 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
517 		return 0;
518 	return security_ops->inode_rmdir(dir, dentry);
519 }
520 
521 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
522 {
523 	if (unlikely(IS_PRIVATE(dir)))
524 		return 0;
525 	return security_ops->inode_mknod(dir, dentry, mode, dev);
526 }
527 
528 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
529 			   struct inode *new_dir, struct dentry *new_dentry)
530 {
531         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
532             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
533 		return 0;
534 	return security_ops->inode_rename(old_dir, old_dentry,
535 					   new_dir, new_dentry);
536 }
537 
538 int security_inode_readlink(struct dentry *dentry)
539 {
540 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
541 		return 0;
542 	return security_ops->inode_readlink(dentry);
543 }
544 
545 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
546 {
547 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
548 		return 0;
549 	return security_ops->inode_follow_link(dentry, nd);
550 }
551 
552 int security_inode_permission(struct inode *inode, int mask)
553 {
554 	if (unlikely(IS_PRIVATE(inode)))
555 		return 0;
556 	return security_ops->inode_permission(inode, mask);
557 }
558 
559 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
560 {
561 	int ret;
562 
563 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
564 		return 0;
565 	ret = security_ops->inode_setattr(dentry, attr);
566 	if (ret)
567 		return ret;
568 	return evm_inode_setattr(dentry, attr);
569 }
570 EXPORT_SYMBOL_GPL(security_inode_setattr);
571 
572 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
573 {
574 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
575 		return 0;
576 	return security_ops->inode_getattr(mnt, dentry);
577 }
578 
579 int security_inode_setxattr(struct dentry *dentry, const char *name,
580 			    const void *value, size_t size, int flags)
581 {
582 	int ret;
583 
584 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
585 		return 0;
586 	ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
587 	if (ret)
588 		return ret;
589 	ret = ima_inode_setxattr(dentry, name, value, size);
590 	if (ret)
591 		return ret;
592 	return evm_inode_setxattr(dentry, name, value, size);
593 }
594 
595 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
596 				  const void *value, size_t size, int flags)
597 {
598 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
599 		return;
600 	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
601 	evm_inode_post_setxattr(dentry, name, value, size);
602 }
603 
604 int security_inode_getxattr(struct dentry *dentry, const char *name)
605 {
606 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
607 		return 0;
608 	return security_ops->inode_getxattr(dentry, name);
609 }
610 
611 int security_inode_listxattr(struct dentry *dentry)
612 {
613 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
614 		return 0;
615 	return security_ops->inode_listxattr(dentry);
616 }
617 
618 int security_inode_removexattr(struct dentry *dentry, const char *name)
619 {
620 	int ret;
621 
622 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
623 		return 0;
624 	ret = security_ops->inode_removexattr(dentry, name);
625 	if (ret)
626 		return ret;
627 	ret = ima_inode_removexattr(dentry, name);
628 	if (ret)
629 		return ret;
630 	return evm_inode_removexattr(dentry, name);
631 }
632 
633 int security_inode_need_killpriv(struct dentry *dentry)
634 {
635 	return security_ops->inode_need_killpriv(dentry);
636 }
637 
638 int security_inode_killpriv(struct dentry *dentry)
639 {
640 	return security_ops->inode_killpriv(dentry);
641 }
642 
643 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
644 {
645 	if (unlikely(IS_PRIVATE(inode)))
646 		return -EOPNOTSUPP;
647 	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
648 }
649 
650 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
651 {
652 	if (unlikely(IS_PRIVATE(inode)))
653 		return -EOPNOTSUPP;
654 	return security_ops->inode_setsecurity(inode, name, value, size, flags);
655 }
656 
657 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
658 {
659 	if (unlikely(IS_PRIVATE(inode)))
660 		return 0;
661 	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
662 }
663 EXPORT_SYMBOL(security_inode_listsecurity);
664 
665 void security_inode_getsecid(const struct inode *inode, u32 *secid)
666 {
667 	security_ops->inode_getsecid(inode, secid);
668 }
669 
670 int security_file_permission(struct file *file, int mask)
671 {
672 	int ret;
673 
674 	ret = security_ops->file_permission(file, mask);
675 	if (ret)
676 		return ret;
677 
678 	return fsnotify_perm(file, mask);
679 }
680 
681 int security_file_alloc(struct file *file)
682 {
683 	return security_ops->file_alloc_security(file);
684 }
685 
686 void security_file_free(struct file *file)
687 {
688 	security_ops->file_free_security(file);
689 }
690 
691 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
692 {
693 	return security_ops->file_ioctl(file, cmd, arg);
694 }
695 
696 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
697 {
698 	/*
699 	 * Does we have PROT_READ and does the application expect
700 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
701 	 */
702 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
703 		return prot;
704 	if (!(current->personality & READ_IMPLIES_EXEC))
705 		return prot;
706 	/*
707 	 * if that's an anonymous mapping, let it.
708 	 */
709 	if (!file)
710 		return prot | PROT_EXEC;
711 	/*
712 	 * ditto if it's not on noexec mount, except that on !MMU we need
713 	 * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case
714 	 */
715 	if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
716 #ifndef CONFIG_MMU
717 		unsigned long caps = 0;
718 		struct address_space *mapping = file->f_mapping;
719 		if (mapping && mapping->backing_dev_info)
720 			caps = mapping->backing_dev_info->capabilities;
721 		if (!(caps & BDI_CAP_EXEC_MAP))
722 			return prot;
723 #endif
724 		return prot | PROT_EXEC;
725 	}
726 	/* anything on noexec mount won't get PROT_EXEC */
727 	return prot;
728 }
729 
730 int security_mmap_file(struct file *file, unsigned long prot,
731 			unsigned long flags)
732 {
733 	int ret;
734 	ret = security_ops->mmap_file(file, prot,
735 					mmap_prot(file, prot), flags);
736 	if (ret)
737 		return ret;
738 	return ima_file_mmap(file, prot);
739 }
740 
741 int security_mmap_addr(unsigned long addr)
742 {
743 	return security_ops->mmap_addr(addr);
744 }
745 
746 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
747 			    unsigned long prot)
748 {
749 	return security_ops->file_mprotect(vma, reqprot, prot);
750 }
751 
752 int security_file_lock(struct file *file, unsigned int cmd)
753 {
754 	return security_ops->file_lock(file, cmd);
755 }
756 
757 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
758 {
759 	return security_ops->file_fcntl(file, cmd, arg);
760 }
761 
762 int security_file_set_fowner(struct file *file)
763 {
764 	return security_ops->file_set_fowner(file);
765 }
766 
767 int security_file_send_sigiotask(struct task_struct *tsk,
768 				  struct fown_struct *fown, int sig)
769 {
770 	return security_ops->file_send_sigiotask(tsk, fown, sig);
771 }
772 
773 int security_file_receive(struct file *file)
774 {
775 	return security_ops->file_receive(file);
776 }
777 
778 int security_file_open(struct file *file, const struct cred *cred)
779 {
780 	int ret;
781 
782 	ret = security_ops->file_open(file, cred);
783 	if (ret)
784 		return ret;
785 
786 	return fsnotify_perm(file, MAY_OPEN);
787 }
788 
789 int security_task_create(unsigned long clone_flags)
790 {
791 	return security_ops->task_create(clone_flags);
792 }
793 
794 void security_task_free(struct task_struct *task)
795 {
796 #ifdef CONFIG_SECURITY_YAMA_STACKED
797 	yama_task_free(task);
798 #endif
799 	security_ops->task_free(task);
800 }
801 
802 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
803 {
804 	return security_ops->cred_alloc_blank(cred, gfp);
805 }
806 
807 void security_cred_free(struct cred *cred)
808 {
809 	security_ops->cred_free(cred);
810 }
811 
812 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
813 {
814 	return security_ops->cred_prepare(new, old, gfp);
815 }
816 
817 void security_transfer_creds(struct cred *new, const struct cred *old)
818 {
819 	security_ops->cred_transfer(new, old);
820 }
821 
822 int security_kernel_act_as(struct cred *new, u32 secid)
823 {
824 	return security_ops->kernel_act_as(new, secid);
825 }
826 
827 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
828 {
829 	return security_ops->kernel_create_files_as(new, inode);
830 }
831 
832 int security_kernel_module_request(char *kmod_name)
833 {
834 	return security_ops->kernel_module_request(kmod_name);
835 }
836 
837 int security_kernel_module_from_file(struct file *file)
838 {
839 	int ret;
840 
841 	ret = security_ops->kernel_module_from_file(file);
842 	if (ret)
843 		return ret;
844 	return ima_module_check(file);
845 }
846 
847 int security_task_fix_setuid(struct cred *new, const struct cred *old,
848 			     int flags)
849 {
850 	return security_ops->task_fix_setuid(new, old, flags);
851 }
852 
853 int security_task_setpgid(struct task_struct *p, pid_t pgid)
854 {
855 	return security_ops->task_setpgid(p, pgid);
856 }
857 
858 int security_task_getpgid(struct task_struct *p)
859 {
860 	return security_ops->task_getpgid(p);
861 }
862 
863 int security_task_getsid(struct task_struct *p)
864 {
865 	return security_ops->task_getsid(p);
866 }
867 
868 void security_task_getsecid(struct task_struct *p, u32 *secid)
869 {
870 	security_ops->task_getsecid(p, secid);
871 }
872 EXPORT_SYMBOL(security_task_getsecid);
873 
874 int security_task_setnice(struct task_struct *p, int nice)
875 {
876 	return security_ops->task_setnice(p, nice);
877 }
878 
879 int security_task_setioprio(struct task_struct *p, int ioprio)
880 {
881 	return security_ops->task_setioprio(p, ioprio);
882 }
883 
884 int security_task_getioprio(struct task_struct *p)
885 {
886 	return security_ops->task_getioprio(p);
887 }
888 
889 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
890 		struct rlimit *new_rlim)
891 {
892 	return security_ops->task_setrlimit(p, resource, new_rlim);
893 }
894 
895 int security_task_setscheduler(struct task_struct *p)
896 {
897 	return security_ops->task_setscheduler(p);
898 }
899 
900 int security_task_getscheduler(struct task_struct *p)
901 {
902 	return security_ops->task_getscheduler(p);
903 }
904 
905 int security_task_movememory(struct task_struct *p)
906 {
907 	return security_ops->task_movememory(p);
908 }
909 
910 int security_task_kill(struct task_struct *p, struct siginfo *info,
911 			int sig, u32 secid)
912 {
913 	return security_ops->task_kill(p, info, sig, secid);
914 }
915 
916 int security_task_wait(struct task_struct *p)
917 {
918 	return security_ops->task_wait(p);
919 }
920 
921 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
922 			 unsigned long arg4, unsigned long arg5)
923 {
924 #ifdef CONFIG_SECURITY_YAMA_STACKED
925 	int rc;
926 	rc = yama_task_prctl(option, arg2, arg3, arg4, arg5);
927 	if (rc != -ENOSYS)
928 		return rc;
929 #endif
930 	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
931 }
932 
933 void security_task_to_inode(struct task_struct *p, struct inode *inode)
934 {
935 	security_ops->task_to_inode(p, inode);
936 }
937 
938 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
939 {
940 	return security_ops->ipc_permission(ipcp, flag);
941 }
942 
943 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
944 {
945 	security_ops->ipc_getsecid(ipcp, secid);
946 }
947 
948 int security_msg_msg_alloc(struct msg_msg *msg)
949 {
950 	return security_ops->msg_msg_alloc_security(msg);
951 }
952 
953 void security_msg_msg_free(struct msg_msg *msg)
954 {
955 	security_ops->msg_msg_free_security(msg);
956 }
957 
958 int security_msg_queue_alloc(struct msg_queue *msq)
959 {
960 	return security_ops->msg_queue_alloc_security(msq);
961 }
962 
963 void security_msg_queue_free(struct msg_queue *msq)
964 {
965 	security_ops->msg_queue_free_security(msq);
966 }
967 
968 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
969 {
970 	return security_ops->msg_queue_associate(msq, msqflg);
971 }
972 
973 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
974 {
975 	return security_ops->msg_queue_msgctl(msq, cmd);
976 }
977 
978 int security_msg_queue_msgsnd(struct msg_queue *msq,
979 			       struct msg_msg *msg, int msqflg)
980 {
981 	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
982 }
983 
984 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
985 			       struct task_struct *target, long type, int mode)
986 {
987 	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
988 }
989 
990 int security_shm_alloc(struct shmid_kernel *shp)
991 {
992 	return security_ops->shm_alloc_security(shp);
993 }
994 
995 void security_shm_free(struct shmid_kernel *shp)
996 {
997 	security_ops->shm_free_security(shp);
998 }
999 
1000 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
1001 {
1002 	return security_ops->shm_associate(shp, shmflg);
1003 }
1004 
1005 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
1006 {
1007 	return security_ops->shm_shmctl(shp, cmd);
1008 }
1009 
1010 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
1011 {
1012 	return security_ops->shm_shmat(shp, shmaddr, shmflg);
1013 }
1014 
1015 int security_sem_alloc(struct sem_array *sma)
1016 {
1017 	return security_ops->sem_alloc_security(sma);
1018 }
1019 
1020 void security_sem_free(struct sem_array *sma)
1021 {
1022 	security_ops->sem_free_security(sma);
1023 }
1024 
1025 int security_sem_associate(struct sem_array *sma, int semflg)
1026 {
1027 	return security_ops->sem_associate(sma, semflg);
1028 }
1029 
1030 int security_sem_semctl(struct sem_array *sma, int cmd)
1031 {
1032 	return security_ops->sem_semctl(sma, cmd);
1033 }
1034 
1035 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
1036 			unsigned nsops, int alter)
1037 {
1038 	return security_ops->sem_semop(sma, sops, nsops, alter);
1039 }
1040 
1041 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1042 {
1043 	if (unlikely(inode && IS_PRIVATE(inode)))
1044 		return;
1045 	security_ops->d_instantiate(dentry, inode);
1046 }
1047 EXPORT_SYMBOL(security_d_instantiate);
1048 
1049 int security_getprocattr(struct task_struct *p, char *name, char **value)
1050 {
1051 	return security_ops->getprocattr(p, name, value);
1052 }
1053 
1054 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
1055 {
1056 	return security_ops->setprocattr(p, name, value, size);
1057 }
1058 
1059 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1060 {
1061 	return security_ops->netlink_send(sk, skb);
1062 }
1063 
1064 int security_ismaclabel(const char *name)
1065 {
1066 	return security_ops->ismaclabel(name);
1067 }
1068 EXPORT_SYMBOL(security_ismaclabel);
1069 
1070 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1071 {
1072 	return security_ops->secid_to_secctx(secid, secdata, seclen);
1073 }
1074 EXPORT_SYMBOL(security_secid_to_secctx);
1075 
1076 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1077 {
1078 	return security_ops->secctx_to_secid(secdata, seclen, secid);
1079 }
1080 EXPORT_SYMBOL(security_secctx_to_secid);
1081 
1082 void security_release_secctx(char *secdata, u32 seclen)
1083 {
1084 	security_ops->release_secctx(secdata, seclen);
1085 }
1086 EXPORT_SYMBOL(security_release_secctx);
1087 
1088 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1089 {
1090 	return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1091 }
1092 EXPORT_SYMBOL(security_inode_notifysecctx);
1093 
1094 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1095 {
1096 	return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1097 }
1098 EXPORT_SYMBOL(security_inode_setsecctx);
1099 
1100 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1101 {
1102 	return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1103 }
1104 EXPORT_SYMBOL(security_inode_getsecctx);
1105 
1106 #ifdef CONFIG_SECURITY_NETWORK
1107 
1108 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1109 {
1110 	return security_ops->unix_stream_connect(sock, other, newsk);
1111 }
1112 EXPORT_SYMBOL(security_unix_stream_connect);
1113 
1114 int security_unix_may_send(struct socket *sock,  struct socket *other)
1115 {
1116 	return security_ops->unix_may_send(sock, other);
1117 }
1118 EXPORT_SYMBOL(security_unix_may_send);
1119 
1120 int security_socket_create(int family, int type, int protocol, int kern)
1121 {
1122 	return security_ops->socket_create(family, type, protocol, kern);
1123 }
1124 
1125 int security_socket_post_create(struct socket *sock, int family,
1126 				int type, int protocol, int kern)
1127 {
1128 	return security_ops->socket_post_create(sock, family, type,
1129 						protocol, kern);
1130 }
1131 
1132 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1133 {
1134 	return security_ops->socket_bind(sock, address, addrlen);
1135 }
1136 
1137 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1138 {
1139 	return security_ops->socket_connect(sock, address, addrlen);
1140 }
1141 
1142 int security_socket_listen(struct socket *sock, int backlog)
1143 {
1144 	return security_ops->socket_listen(sock, backlog);
1145 }
1146 
1147 int security_socket_accept(struct socket *sock, struct socket *newsock)
1148 {
1149 	return security_ops->socket_accept(sock, newsock);
1150 }
1151 
1152 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1153 {
1154 	return security_ops->socket_sendmsg(sock, msg, size);
1155 }
1156 
1157 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1158 			    int size, int flags)
1159 {
1160 	return security_ops->socket_recvmsg(sock, msg, size, flags);
1161 }
1162 
1163 int security_socket_getsockname(struct socket *sock)
1164 {
1165 	return security_ops->socket_getsockname(sock);
1166 }
1167 
1168 int security_socket_getpeername(struct socket *sock)
1169 {
1170 	return security_ops->socket_getpeername(sock);
1171 }
1172 
1173 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1174 {
1175 	return security_ops->socket_getsockopt(sock, level, optname);
1176 }
1177 
1178 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1179 {
1180 	return security_ops->socket_setsockopt(sock, level, optname);
1181 }
1182 
1183 int security_socket_shutdown(struct socket *sock, int how)
1184 {
1185 	return security_ops->socket_shutdown(sock, how);
1186 }
1187 
1188 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1189 {
1190 	return security_ops->socket_sock_rcv_skb(sk, skb);
1191 }
1192 EXPORT_SYMBOL(security_sock_rcv_skb);
1193 
1194 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1195 				      int __user *optlen, unsigned len)
1196 {
1197 	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1198 }
1199 
1200 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1201 {
1202 	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1203 }
1204 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1205 
1206 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1207 {
1208 	return security_ops->sk_alloc_security(sk, family, priority);
1209 }
1210 
1211 void security_sk_free(struct sock *sk)
1212 {
1213 	security_ops->sk_free_security(sk);
1214 }
1215 
1216 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1217 {
1218 	security_ops->sk_clone_security(sk, newsk);
1219 }
1220 EXPORT_SYMBOL(security_sk_clone);
1221 
1222 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1223 {
1224 	security_ops->sk_getsecid(sk, &fl->flowi_secid);
1225 }
1226 EXPORT_SYMBOL(security_sk_classify_flow);
1227 
1228 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1229 {
1230 	security_ops->req_classify_flow(req, fl);
1231 }
1232 EXPORT_SYMBOL(security_req_classify_flow);
1233 
1234 void security_sock_graft(struct sock *sk, struct socket *parent)
1235 {
1236 	security_ops->sock_graft(sk, parent);
1237 }
1238 EXPORT_SYMBOL(security_sock_graft);
1239 
1240 int security_inet_conn_request(struct sock *sk,
1241 			struct sk_buff *skb, struct request_sock *req)
1242 {
1243 	return security_ops->inet_conn_request(sk, skb, req);
1244 }
1245 EXPORT_SYMBOL(security_inet_conn_request);
1246 
1247 void security_inet_csk_clone(struct sock *newsk,
1248 			const struct request_sock *req)
1249 {
1250 	security_ops->inet_csk_clone(newsk, req);
1251 }
1252 
1253 void security_inet_conn_established(struct sock *sk,
1254 			struct sk_buff *skb)
1255 {
1256 	security_ops->inet_conn_established(sk, skb);
1257 }
1258 
1259 int security_secmark_relabel_packet(u32 secid)
1260 {
1261 	return security_ops->secmark_relabel_packet(secid);
1262 }
1263 EXPORT_SYMBOL(security_secmark_relabel_packet);
1264 
1265 void security_secmark_refcount_inc(void)
1266 {
1267 	security_ops->secmark_refcount_inc();
1268 }
1269 EXPORT_SYMBOL(security_secmark_refcount_inc);
1270 
1271 void security_secmark_refcount_dec(void)
1272 {
1273 	security_ops->secmark_refcount_dec();
1274 }
1275 EXPORT_SYMBOL(security_secmark_refcount_dec);
1276 
1277 int security_tun_dev_alloc_security(void **security)
1278 {
1279 	return security_ops->tun_dev_alloc_security(security);
1280 }
1281 EXPORT_SYMBOL(security_tun_dev_alloc_security);
1282 
1283 void security_tun_dev_free_security(void *security)
1284 {
1285 	security_ops->tun_dev_free_security(security);
1286 }
1287 EXPORT_SYMBOL(security_tun_dev_free_security);
1288 
1289 int security_tun_dev_create(void)
1290 {
1291 	return security_ops->tun_dev_create();
1292 }
1293 EXPORT_SYMBOL(security_tun_dev_create);
1294 
1295 int security_tun_dev_attach_queue(void *security)
1296 {
1297 	return security_ops->tun_dev_attach_queue(security);
1298 }
1299 EXPORT_SYMBOL(security_tun_dev_attach_queue);
1300 
1301 int security_tun_dev_attach(struct sock *sk, void *security)
1302 {
1303 	return security_ops->tun_dev_attach(sk, security);
1304 }
1305 EXPORT_SYMBOL(security_tun_dev_attach);
1306 
1307 int security_tun_dev_open(void *security)
1308 {
1309 	return security_ops->tun_dev_open(security);
1310 }
1311 EXPORT_SYMBOL(security_tun_dev_open);
1312 
1313 void security_skb_owned_by(struct sk_buff *skb, struct sock *sk)
1314 {
1315 	security_ops->skb_owned_by(skb, sk);
1316 }
1317 
1318 #endif	/* CONFIG_SECURITY_NETWORK */
1319 
1320 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1321 
1322 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1323 {
1324 	return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1325 }
1326 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1327 
1328 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1329 			      struct xfrm_sec_ctx **new_ctxp)
1330 {
1331 	return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1332 }
1333 
1334 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1335 {
1336 	security_ops->xfrm_policy_free_security(ctx);
1337 }
1338 EXPORT_SYMBOL(security_xfrm_policy_free);
1339 
1340 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1341 {
1342 	return security_ops->xfrm_policy_delete_security(ctx);
1343 }
1344 
1345 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1346 {
1347 	return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1348 }
1349 EXPORT_SYMBOL(security_xfrm_state_alloc);
1350 
1351 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1352 				      struct xfrm_sec_ctx *polsec, u32 secid)
1353 {
1354 	if (!polsec)
1355 		return 0;
1356 	/*
1357 	 * We want the context to be taken from secid which is usually
1358 	 * from the sock.
1359 	 */
1360 	return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1361 }
1362 
1363 int security_xfrm_state_delete(struct xfrm_state *x)
1364 {
1365 	return security_ops->xfrm_state_delete_security(x);
1366 }
1367 EXPORT_SYMBOL(security_xfrm_state_delete);
1368 
1369 void security_xfrm_state_free(struct xfrm_state *x)
1370 {
1371 	security_ops->xfrm_state_free_security(x);
1372 }
1373 
1374 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1375 {
1376 	return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1377 }
1378 
1379 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1380 				       struct xfrm_policy *xp,
1381 				       const struct flowi *fl)
1382 {
1383 	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1384 }
1385 
1386 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1387 {
1388 	return security_ops->xfrm_decode_session(skb, secid, 1);
1389 }
1390 
1391 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1392 {
1393 	int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1394 
1395 	BUG_ON(rc);
1396 }
1397 EXPORT_SYMBOL(security_skb_classify_flow);
1398 
1399 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1400 
1401 #ifdef CONFIG_KEYS
1402 
1403 int security_key_alloc(struct key *key, const struct cred *cred,
1404 		       unsigned long flags)
1405 {
1406 	return security_ops->key_alloc(key, cred, flags);
1407 }
1408 
1409 void security_key_free(struct key *key)
1410 {
1411 	security_ops->key_free(key);
1412 }
1413 
1414 int security_key_permission(key_ref_t key_ref,
1415 			    const struct cred *cred, key_perm_t perm)
1416 {
1417 	return security_ops->key_permission(key_ref, cred, perm);
1418 }
1419 
1420 int security_key_getsecurity(struct key *key, char **_buffer)
1421 {
1422 	return security_ops->key_getsecurity(key, _buffer);
1423 }
1424 
1425 #endif	/* CONFIG_KEYS */
1426 
1427 #ifdef CONFIG_AUDIT
1428 
1429 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1430 {
1431 	return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1432 }
1433 
1434 int security_audit_rule_known(struct audit_krule *krule)
1435 {
1436 	return security_ops->audit_rule_known(krule);
1437 }
1438 
1439 void security_audit_rule_free(void *lsmrule)
1440 {
1441 	security_ops->audit_rule_free(lsmrule);
1442 }
1443 
1444 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1445 			      struct audit_context *actx)
1446 {
1447 	return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1448 }
1449 
1450 #endif /* CONFIG_AUDIT */
1451