xref: /openbmc/linux/security/security.c (revision 4da722ca)
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  * Copyright (C) 2016 Mellanox Technologies
8  *
9  *	This program is free software; you can redistribute it and/or modify
10  *	it under the terms of the GNU General Public License as published by
11  *	the Free Software Foundation; either version 2 of the License, or
12  *	(at your option) any later version.
13  */
14 
15 #include <linux/capability.h>
16 #include <linux/dcache.h>
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/lsm_hooks.h>
21 #include <linux/integrity.h>
22 #include <linux/ima.h>
23 #include <linux/evm.h>
24 #include <linux/fsnotify.h>
25 #include <linux/mman.h>
26 #include <linux/mount.h>
27 #include <linux/personality.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <net/flow.h>
31 
32 #define MAX_LSM_EVM_XATTR	2
33 
34 /* Maximum number of letters for an LSM name string */
35 #define SECURITY_NAME_MAX	10
36 
37 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
38 static ATOMIC_NOTIFIER_HEAD(lsm_notifier_chain);
39 
40 char *lsm_names;
41 /* Boot-time LSM user choice */
42 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
43 	CONFIG_DEFAULT_SECURITY;
44 
45 static void __init do_security_initcalls(void)
46 {
47 	initcall_t *call;
48 	call = __security_initcall_start;
49 	while (call < __security_initcall_end) {
50 		(*call) ();
51 		call++;
52 	}
53 }
54 
55 /**
56  * security_init - initializes the security framework
57  *
58  * This should be called early in the kernel initialization sequence.
59  */
60 int __init security_init(void)
61 {
62 	int i;
63 	struct list_head *list = (struct list_head *) &security_hook_heads;
64 
65 	for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct list_head);
66 	     i++)
67 		INIT_LIST_HEAD(&list[i]);
68 	pr_info("Security Framework initialized\n");
69 
70 	/*
71 	 * Load minor LSMs, with the capability module always first.
72 	 */
73 	capability_add_hooks();
74 	yama_add_hooks();
75 	loadpin_add_hooks();
76 
77 	/*
78 	 * Load all the remaining security modules.
79 	 */
80 	do_security_initcalls();
81 
82 	return 0;
83 }
84 
85 /* Save user chosen LSM */
86 static int __init choose_lsm(char *str)
87 {
88 	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
89 	return 1;
90 }
91 __setup("security=", choose_lsm);
92 
93 static bool match_last_lsm(const char *list, const char *lsm)
94 {
95 	const char *last;
96 
97 	if (WARN_ON(!list || !lsm))
98 		return false;
99 	last = strrchr(list, ',');
100 	if (last)
101 		/* Pass the comma, strcmp() will check for '\0' */
102 		last++;
103 	else
104 		last = list;
105 	return !strcmp(last, lsm);
106 }
107 
108 static int lsm_append(char *new, char **result)
109 {
110 	char *cp;
111 
112 	if (*result == NULL) {
113 		*result = kstrdup(new, GFP_KERNEL);
114 	} else {
115 		/* Check if it is the last registered name */
116 		if (match_last_lsm(*result, new))
117 			return 0;
118 		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
119 		if (cp == NULL)
120 			return -ENOMEM;
121 		kfree(*result);
122 		*result = cp;
123 	}
124 	return 0;
125 }
126 
127 /**
128  * security_module_enable - Load given security module on boot ?
129  * @module: the name of the module
130  *
131  * Each LSM must pass this method before registering its own operations
132  * to avoid security registration races. This method may also be used
133  * to check if your LSM is currently loaded during kernel initialization.
134  *
135  * Returns:
136  *
137  * true if:
138  *
139  * - The passed LSM is the one chosen by user at boot time,
140  * - or the passed LSM is configured as the default and the user did not
141  *   choose an alternate LSM at boot time.
142  *
143  * Otherwise, return false.
144  */
145 int __init security_module_enable(const char *module)
146 {
147 	return !strcmp(module, chosen_lsm);
148 }
149 
150 /**
151  * security_add_hooks - Add a modules hooks to the hook lists.
152  * @hooks: the hooks to add
153  * @count: the number of hooks to add
154  * @lsm: the name of the security module
155  *
156  * Each LSM has to register its hooks with the infrastructure.
157  */
158 void __init security_add_hooks(struct security_hook_list *hooks, int count,
159 				char *lsm)
160 {
161 	int i;
162 
163 	for (i = 0; i < count; i++) {
164 		hooks[i].lsm = lsm;
165 		list_add_tail_rcu(&hooks[i].list, hooks[i].head);
166 	}
167 	if (lsm_append(lsm, &lsm_names) < 0)
168 		panic("%s - Cannot get early memory.\n", __func__);
169 }
170 
171 int call_lsm_notifier(enum lsm_event event, void *data)
172 {
173 	return atomic_notifier_call_chain(&lsm_notifier_chain, event, data);
174 }
175 EXPORT_SYMBOL(call_lsm_notifier);
176 
177 int register_lsm_notifier(struct notifier_block *nb)
178 {
179 	return atomic_notifier_chain_register(&lsm_notifier_chain, nb);
180 }
181 EXPORT_SYMBOL(register_lsm_notifier);
182 
183 int unregister_lsm_notifier(struct notifier_block *nb)
184 {
185 	return atomic_notifier_chain_unregister(&lsm_notifier_chain, nb);
186 }
187 EXPORT_SYMBOL(unregister_lsm_notifier);
188 
189 /*
190  * Hook list operation macros.
191  *
192  * call_void_hook:
193  *	This is a hook that does not return a value.
194  *
195  * call_int_hook:
196  *	This is a hook that returns a value.
197  */
198 
199 #define call_void_hook(FUNC, ...)				\
200 	do {							\
201 		struct security_hook_list *P;			\
202 								\
203 		list_for_each_entry(P, &security_hook_heads.FUNC, list)	\
204 			P->hook.FUNC(__VA_ARGS__);		\
205 	} while (0)
206 
207 #define call_int_hook(FUNC, IRC, ...) ({			\
208 	int RC = IRC;						\
209 	do {							\
210 		struct security_hook_list *P;			\
211 								\
212 		list_for_each_entry(P, &security_hook_heads.FUNC, list) { \
213 			RC = P->hook.FUNC(__VA_ARGS__);		\
214 			if (RC != 0)				\
215 				break;				\
216 		}						\
217 	} while (0);						\
218 	RC;							\
219 })
220 
221 /* Security operations */
222 
223 int security_binder_set_context_mgr(struct task_struct *mgr)
224 {
225 	return call_int_hook(binder_set_context_mgr, 0, mgr);
226 }
227 
228 int security_binder_transaction(struct task_struct *from,
229 				struct task_struct *to)
230 {
231 	return call_int_hook(binder_transaction, 0, from, to);
232 }
233 
234 int security_binder_transfer_binder(struct task_struct *from,
235 				    struct task_struct *to)
236 {
237 	return call_int_hook(binder_transfer_binder, 0, from, to);
238 }
239 
240 int security_binder_transfer_file(struct task_struct *from,
241 				  struct task_struct *to, struct file *file)
242 {
243 	return call_int_hook(binder_transfer_file, 0, from, to, file);
244 }
245 
246 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
247 {
248 	return call_int_hook(ptrace_access_check, 0, child, mode);
249 }
250 
251 int security_ptrace_traceme(struct task_struct *parent)
252 {
253 	return call_int_hook(ptrace_traceme, 0, parent);
254 }
255 
256 int security_capget(struct task_struct *target,
257 		     kernel_cap_t *effective,
258 		     kernel_cap_t *inheritable,
259 		     kernel_cap_t *permitted)
260 {
261 	return call_int_hook(capget, 0, target,
262 				effective, inheritable, permitted);
263 }
264 
265 int security_capset(struct cred *new, const struct cred *old,
266 		    const kernel_cap_t *effective,
267 		    const kernel_cap_t *inheritable,
268 		    const kernel_cap_t *permitted)
269 {
270 	return call_int_hook(capset, 0, new, old,
271 				effective, inheritable, permitted);
272 }
273 
274 int security_capable(const struct cred *cred, struct user_namespace *ns,
275 		     int cap)
276 {
277 	return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_AUDIT);
278 }
279 
280 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
281 			     int cap)
282 {
283 	return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_NOAUDIT);
284 }
285 
286 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
287 {
288 	return call_int_hook(quotactl, 0, cmds, type, id, sb);
289 }
290 
291 int security_quota_on(struct dentry *dentry)
292 {
293 	return call_int_hook(quota_on, 0, dentry);
294 }
295 
296 int security_syslog(int type)
297 {
298 	return call_int_hook(syslog, 0, type);
299 }
300 
301 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
302 {
303 	return call_int_hook(settime, 0, ts, tz);
304 }
305 
306 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
307 {
308 	struct security_hook_list *hp;
309 	int cap_sys_admin = 1;
310 	int rc;
311 
312 	/*
313 	 * The module will respond with a positive value if
314 	 * it thinks the __vm_enough_memory() call should be
315 	 * made with the cap_sys_admin set. If all of the modules
316 	 * agree that it should be set it will. If any module
317 	 * thinks it should not be set it won't.
318 	 */
319 	list_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
320 		rc = hp->hook.vm_enough_memory(mm, pages);
321 		if (rc <= 0) {
322 			cap_sys_admin = 0;
323 			break;
324 		}
325 	}
326 	return __vm_enough_memory(mm, pages, cap_sys_admin);
327 }
328 
329 int security_bprm_set_creds(struct linux_binprm *bprm)
330 {
331 	return call_int_hook(bprm_set_creds, 0, bprm);
332 }
333 
334 int security_bprm_check(struct linux_binprm *bprm)
335 {
336 	int ret;
337 
338 	ret = call_int_hook(bprm_check_security, 0, bprm);
339 	if (ret)
340 		return ret;
341 	return ima_bprm_check(bprm);
342 }
343 
344 void security_bprm_committing_creds(struct linux_binprm *bprm)
345 {
346 	call_void_hook(bprm_committing_creds, bprm);
347 }
348 
349 void security_bprm_committed_creds(struct linux_binprm *bprm)
350 {
351 	call_void_hook(bprm_committed_creds, bprm);
352 }
353 
354 int security_bprm_secureexec(struct linux_binprm *bprm)
355 {
356 	return call_int_hook(bprm_secureexec, 0, bprm);
357 }
358 
359 int security_sb_alloc(struct super_block *sb)
360 {
361 	return call_int_hook(sb_alloc_security, 0, sb);
362 }
363 
364 void security_sb_free(struct super_block *sb)
365 {
366 	call_void_hook(sb_free_security, sb);
367 }
368 
369 int security_sb_copy_data(char *orig, char *copy)
370 {
371 	return call_int_hook(sb_copy_data, 0, orig, copy);
372 }
373 EXPORT_SYMBOL(security_sb_copy_data);
374 
375 int security_sb_remount(struct super_block *sb, void *data)
376 {
377 	return call_int_hook(sb_remount, 0, sb, data);
378 }
379 
380 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
381 {
382 	return call_int_hook(sb_kern_mount, 0, sb, flags, data);
383 }
384 
385 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
386 {
387 	return call_int_hook(sb_show_options, 0, m, sb);
388 }
389 
390 int security_sb_statfs(struct dentry *dentry)
391 {
392 	return call_int_hook(sb_statfs, 0, dentry);
393 }
394 
395 int security_sb_mount(const char *dev_name, const struct path *path,
396                        const char *type, unsigned long flags, void *data)
397 {
398 	return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
399 }
400 
401 int security_sb_umount(struct vfsmount *mnt, int flags)
402 {
403 	return call_int_hook(sb_umount, 0, mnt, flags);
404 }
405 
406 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
407 {
408 	return call_int_hook(sb_pivotroot, 0, old_path, new_path);
409 }
410 
411 int security_sb_set_mnt_opts(struct super_block *sb,
412 				struct security_mnt_opts *opts,
413 				unsigned long kern_flags,
414 				unsigned long *set_kern_flags)
415 {
416 	return call_int_hook(sb_set_mnt_opts,
417 				opts->num_mnt_opts ? -EOPNOTSUPP : 0, sb,
418 				opts, kern_flags, set_kern_flags);
419 }
420 EXPORT_SYMBOL(security_sb_set_mnt_opts);
421 
422 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
423 				struct super_block *newsb,
424 				unsigned long kern_flags,
425 				unsigned long *set_kern_flags)
426 {
427 	return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
428 				kern_flags, set_kern_flags);
429 }
430 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
431 
432 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
433 {
434 	return call_int_hook(sb_parse_opts_str, 0, options, opts);
435 }
436 EXPORT_SYMBOL(security_sb_parse_opts_str);
437 
438 int security_inode_alloc(struct inode *inode)
439 {
440 	inode->i_security = NULL;
441 	return call_int_hook(inode_alloc_security, 0, inode);
442 }
443 
444 void security_inode_free(struct inode *inode)
445 {
446 	integrity_inode_free(inode);
447 	call_void_hook(inode_free_security, inode);
448 }
449 
450 int security_dentry_init_security(struct dentry *dentry, int mode,
451 					const struct qstr *name, void **ctx,
452 					u32 *ctxlen)
453 {
454 	return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
455 				name, ctx, ctxlen);
456 }
457 EXPORT_SYMBOL(security_dentry_init_security);
458 
459 int security_dentry_create_files_as(struct dentry *dentry, int mode,
460 				    struct qstr *name,
461 				    const struct cred *old, struct cred *new)
462 {
463 	return call_int_hook(dentry_create_files_as, 0, dentry, mode,
464 				name, old, new);
465 }
466 EXPORT_SYMBOL(security_dentry_create_files_as);
467 
468 int security_inode_init_security(struct inode *inode, struct inode *dir,
469 				 const struct qstr *qstr,
470 				 const initxattrs initxattrs, void *fs_data)
471 {
472 	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
473 	struct xattr *lsm_xattr, *evm_xattr, *xattr;
474 	int ret;
475 
476 	if (unlikely(IS_PRIVATE(inode)))
477 		return 0;
478 
479 	if (!initxattrs)
480 		return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
481 				     dir, qstr, NULL, NULL, NULL);
482 	memset(new_xattrs, 0, sizeof(new_xattrs));
483 	lsm_xattr = new_xattrs;
484 	ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
485 						&lsm_xattr->name,
486 						&lsm_xattr->value,
487 						&lsm_xattr->value_len);
488 	if (ret)
489 		goto out;
490 
491 	evm_xattr = lsm_xattr + 1;
492 	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
493 	if (ret)
494 		goto out;
495 	ret = initxattrs(inode, new_xattrs, fs_data);
496 out:
497 	for (xattr = new_xattrs; xattr->value != NULL; xattr++)
498 		kfree(xattr->value);
499 	return (ret == -EOPNOTSUPP) ? 0 : ret;
500 }
501 EXPORT_SYMBOL(security_inode_init_security);
502 
503 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
504 				     const struct qstr *qstr, const char **name,
505 				     void **value, size_t *len)
506 {
507 	if (unlikely(IS_PRIVATE(inode)))
508 		return -EOPNOTSUPP;
509 	return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
510 			     qstr, name, value, len);
511 }
512 EXPORT_SYMBOL(security_old_inode_init_security);
513 
514 #ifdef CONFIG_SECURITY_PATH
515 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
516 			unsigned int dev)
517 {
518 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
519 		return 0;
520 	return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
521 }
522 EXPORT_SYMBOL(security_path_mknod);
523 
524 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
525 {
526 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
527 		return 0;
528 	return call_int_hook(path_mkdir, 0, dir, dentry, mode);
529 }
530 EXPORT_SYMBOL(security_path_mkdir);
531 
532 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
533 {
534 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
535 		return 0;
536 	return call_int_hook(path_rmdir, 0, dir, dentry);
537 }
538 
539 int security_path_unlink(const struct path *dir, struct dentry *dentry)
540 {
541 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
542 		return 0;
543 	return call_int_hook(path_unlink, 0, dir, dentry);
544 }
545 EXPORT_SYMBOL(security_path_unlink);
546 
547 int security_path_symlink(const struct path *dir, struct dentry *dentry,
548 			  const char *old_name)
549 {
550 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
551 		return 0;
552 	return call_int_hook(path_symlink, 0, dir, dentry, old_name);
553 }
554 
555 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
556 		       struct dentry *new_dentry)
557 {
558 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
559 		return 0;
560 	return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
561 }
562 
563 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
564 			 const struct path *new_dir, struct dentry *new_dentry,
565 			 unsigned int flags)
566 {
567 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
568 		     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
569 		return 0;
570 
571 	if (flags & RENAME_EXCHANGE) {
572 		int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
573 					old_dir, old_dentry);
574 		if (err)
575 			return err;
576 	}
577 
578 	return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
579 				new_dentry);
580 }
581 EXPORT_SYMBOL(security_path_rename);
582 
583 int security_path_truncate(const struct path *path)
584 {
585 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
586 		return 0;
587 	return call_int_hook(path_truncate, 0, path);
588 }
589 
590 int security_path_chmod(const struct path *path, umode_t mode)
591 {
592 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
593 		return 0;
594 	return call_int_hook(path_chmod, 0, path, mode);
595 }
596 
597 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
598 {
599 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
600 		return 0;
601 	return call_int_hook(path_chown, 0, path, uid, gid);
602 }
603 
604 int security_path_chroot(const struct path *path)
605 {
606 	return call_int_hook(path_chroot, 0, path);
607 }
608 #endif
609 
610 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
611 {
612 	if (unlikely(IS_PRIVATE(dir)))
613 		return 0;
614 	return call_int_hook(inode_create, 0, dir, dentry, mode);
615 }
616 EXPORT_SYMBOL_GPL(security_inode_create);
617 
618 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
619 			 struct dentry *new_dentry)
620 {
621 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
622 		return 0;
623 	return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
624 }
625 
626 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
627 {
628 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
629 		return 0;
630 	return call_int_hook(inode_unlink, 0, dir, dentry);
631 }
632 
633 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
634 			    const char *old_name)
635 {
636 	if (unlikely(IS_PRIVATE(dir)))
637 		return 0;
638 	return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
639 }
640 
641 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
642 {
643 	if (unlikely(IS_PRIVATE(dir)))
644 		return 0;
645 	return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
646 }
647 EXPORT_SYMBOL_GPL(security_inode_mkdir);
648 
649 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
650 {
651 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
652 		return 0;
653 	return call_int_hook(inode_rmdir, 0, dir, dentry);
654 }
655 
656 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
657 {
658 	if (unlikely(IS_PRIVATE(dir)))
659 		return 0;
660 	return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
661 }
662 
663 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
664 			   struct inode *new_dir, struct dentry *new_dentry,
665 			   unsigned int flags)
666 {
667         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
668             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
669 		return 0;
670 
671 	if (flags & RENAME_EXCHANGE) {
672 		int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
673 						     old_dir, old_dentry);
674 		if (err)
675 			return err;
676 	}
677 
678 	return call_int_hook(inode_rename, 0, old_dir, old_dentry,
679 					   new_dir, new_dentry);
680 }
681 
682 int security_inode_readlink(struct dentry *dentry)
683 {
684 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
685 		return 0;
686 	return call_int_hook(inode_readlink, 0, dentry);
687 }
688 
689 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
690 			       bool rcu)
691 {
692 	if (unlikely(IS_PRIVATE(inode)))
693 		return 0;
694 	return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
695 }
696 
697 int security_inode_permission(struct inode *inode, int mask)
698 {
699 	if (unlikely(IS_PRIVATE(inode)))
700 		return 0;
701 	return call_int_hook(inode_permission, 0, inode, mask);
702 }
703 
704 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
705 {
706 	int ret;
707 
708 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
709 		return 0;
710 	ret = call_int_hook(inode_setattr, 0, dentry, attr);
711 	if (ret)
712 		return ret;
713 	return evm_inode_setattr(dentry, attr);
714 }
715 EXPORT_SYMBOL_GPL(security_inode_setattr);
716 
717 int security_inode_getattr(const struct path *path)
718 {
719 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
720 		return 0;
721 	return call_int_hook(inode_getattr, 0, path);
722 }
723 
724 int security_inode_setxattr(struct dentry *dentry, const char *name,
725 			    const void *value, size_t size, int flags)
726 {
727 	int ret;
728 
729 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
730 		return 0;
731 	/*
732 	 * SELinux and Smack integrate the cap call,
733 	 * so assume that all LSMs supplying this call do so.
734 	 */
735 	ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
736 				flags);
737 
738 	if (ret == 1)
739 		ret = cap_inode_setxattr(dentry, name, value, size, flags);
740 	if (ret)
741 		return ret;
742 	ret = ima_inode_setxattr(dentry, name, value, size);
743 	if (ret)
744 		return ret;
745 	return evm_inode_setxattr(dentry, name, value, size);
746 }
747 
748 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
749 				  const void *value, size_t size, int flags)
750 {
751 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
752 		return;
753 	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
754 	evm_inode_post_setxattr(dentry, name, value, size);
755 }
756 
757 int security_inode_getxattr(struct dentry *dentry, const char *name)
758 {
759 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
760 		return 0;
761 	return call_int_hook(inode_getxattr, 0, dentry, name);
762 }
763 
764 int security_inode_listxattr(struct dentry *dentry)
765 {
766 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
767 		return 0;
768 	return call_int_hook(inode_listxattr, 0, dentry);
769 }
770 
771 int security_inode_removexattr(struct dentry *dentry, const char *name)
772 {
773 	int ret;
774 
775 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
776 		return 0;
777 	/*
778 	 * SELinux and Smack integrate the cap call,
779 	 * so assume that all LSMs supplying this call do so.
780 	 */
781 	ret = call_int_hook(inode_removexattr, 1, dentry, name);
782 	if (ret == 1)
783 		ret = cap_inode_removexattr(dentry, name);
784 	if (ret)
785 		return ret;
786 	ret = ima_inode_removexattr(dentry, name);
787 	if (ret)
788 		return ret;
789 	return evm_inode_removexattr(dentry, name);
790 }
791 
792 int security_inode_need_killpriv(struct dentry *dentry)
793 {
794 	return call_int_hook(inode_need_killpriv, 0, dentry);
795 }
796 
797 int security_inode_killpriv(struct dentry *dentry)
798 {
799 	return call_int_hook(inode_killpriv, 0, dentry);
800 }
801 
802 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
803 {
804 	struct security_hook_list *hp;
805 	int rc;
806 
807 	if (unlikely(IS_PRIVATE(inode)))
808 		return -EOPNOTSUPP;
809 	/*
810 	 * Only one module will provide an attribute with a given name.
811 	 */
812 	list_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
813 		rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
814 		if (rc != -EOPNOTSUPP)
815 			return rc;
816 	}
817 	return -EOPNOTSUPP;
818 }
819 
820 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
821 {
822 	struct security_hook_list *hp;
823 	int rc;
824 
825 	if (unlikely(IS_PRIVATE(inode)))
826 		return -EOPNOTSUPP;
827 	/*
828 	 * Only one module will provide an attribute with a given name.
829 	 */
830 	list_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
831 		rc = hp->hook.inode_setsecurity(inode, name, value, size,
832 								flags);
833 		if (rc != -EOPNOTSUPP)
834 			return rc;
835 	}
836 	return -EOPNOTSUPP;
837 }
838 
839 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
840 {
841 	if (unlikely(IS_PRIVATE(inode)))
842 		return 0;
843 	return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
844 }
845 EXPORT_SYMBOL(security_inode_listsecurity);
846 
847 void security_inode_getsecid(struct inode *inode, u32 *secid)
848 {
849 	call_void_hook(inode_getsecid, inode, secid);
850 }
851 
852 int security_inode_copy_up(struct dentry *src, struct cred **new)
853 {
854 	return call_int_hook(inode_copy_up, 0, src, new);
855 }
856 EXPORT_SYMBOL(security_inode_copy_up);
857 
858 int security_inode_copy_up_xattr(const char *name)
859 {
860 	return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
861 }
862 EXPORT_SYMBOL(security_inode_copy_up_xattr);
863 
864 int security_file_permission(struct file *file, int mask)
865 {
866 	int ret;
867 
868 	ret = call_int_hook(file_permission, 0, file, mask);
869 	if (ret)
870 		return ret;
871 
872 	return fsnotify_perm(file, mask);
873 }
874 
875 int security_file_alloc(struct file *file)
876 {
877 	return call_int_hook(file_alloc_security, 0, file);
878 }
879 
880 void security_file_free(struct file *file)
881 {
882 	call_void_hook(file_free_security, file);
883 }
884 
885 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
886 {
887 	return call_int_hook(file_ioctl, 0, file, cmd, arg);
888 }
889 
890 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
891 {
892 	/*
893 	 * Does we have PROT_READ and does the application expect
894 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
895 	 */
896 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
897 		return prot;
898 	if (!(current->personality & READ_IMPLIES_EXEC))
899 		return prot;
900 	/*
901 	 * if that's an anonymous mapping, let it.
902 	 */
903 	if (!file)
904 		return prot | PROT_EXEC;
905 	/*
906 	 * ditto if it's not on noexec mount, except that on !MMU we need
907 	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
908 	 */
909 	if (!path_noexec(&file->f_path)) {
910 #ifndef CONFIG_MMU
911 		if (file->f_op->mmap_capabilities) {
912 			unsigned caps = file->f_op->mmap_capabilities(file);
913 			if (!(caps & NOMMU_MAP_EXEC))
914 				return prot;
915 		}
916 #endif
917 		return prot | PROT_EXEC;
918 	}
919 	/* anything on noexec mount won't get PROT_EXEC */
920 	return prot;
921 }
922 
923 int security_mmap_file(struct file *file, unsigned long prot,
924 			unsigned long flags)
925 {
926 	int ret;
927 	ret = call_int_hook(mmap_file, 0, file, prot,
928 					mmap_prot(file, prot), flags);
929 	if (ret)
930 		return ret;
931 	return ima_file_mmap(file, prot);
932 }
933 
934 int security_mmap_addr(unsigned long addr)
935 {
936 	return call_int_hook(mmap_addr, 0, addr);
937 }
938 
939 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
940 			    unsigned long prot)
941 {
942 	return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
943 }
944 
945 int security_file_lock(struct file *file, unsigned int cmd)
946 {
947 	return call_int_hook(file_lock, 0, file, cmd);
948 }
949 
950 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
951 {
952 	return call_int_hook(file_fcntl, 0, file, cmd, arg);
953 }
954 
955 void security_file_set_fowner(struct file *file)
956 {
957 	call_void_hook(file_set_fowner, file);
958 }
959 
960 int security_file_send_sigiotask(struct task_struct *tsk,
961 				  struct fown_struct *fown, int sig)
962 {
963 	return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
964 }
965 
966 int security_file_receive(struct file *file)
967 {
968 	return call_int_hook(file_receive, 0, file);
969 }
970 
971 int security_file_open(struct file *file, const struct cred *cred)
972 {
973 	int ret;
974 
975 	ret = call_int_hook(file_open, 0, file, cred);
976 	if (ret)
977 		return ret;
978 
979 	return fsnotify_perm(file, MAY_OPEN);
980 }
981 
982 int security_task_create(unsigned long clone_flags)
983 {
984 	return call_int_hook(task_create, 0, clone_flags);
985 }
986 
987 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
988 {
989 	return call_int_hook(task_alloc, 0, task, clone_flags);
990 }
991 
992 void security_task_free(struct task_struct *task)
993 {
994 	call_void_hook(task_free, task);
995 }
996 
997 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
998 {
999 	return call_int_hook(cred_alloc_blank, 0, cred, gfp);
1000 }
1001 
1002 void security_cred_free(struct cred *cred)
1003 {
1004 	call_void_hook(cred_free, cred);
1005 }
1006 
1007 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1008 {
1009 	return call_int_hook(cred_prepare, 0, new, old, gfp);
1010 }
1011 
1012 void security_transfer_creds(struct cred *new, const struct cred *old)
1013 {
1014 	call_void_hook(cred_transfer, new, old);
1015 }
1016 
1017 int security_kernel_act_as(struct cred *new, u32 secid)
1018 {
1019 	return call_int_hook(kernel_act_as, 0, new, secid);
1020 }
1021 
1022 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1023 {
1024 	return call_int_hook(kernel_create_files_as, 0, new, inode);
1025 }
1026 
1027 int security_kernel_module_request(char *kmod_name)
1028 {
1029 	return call_int_hook(kernel_module_request, 0, kmod_name);
1030 }
1031 
1032 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1033 {
1034 	int ret;
1035 
1036 	ret = call_int_hook(kernel_read_file, 0, file, id);
1037 	if (ret)
1038 		return ret;
1039 	return ima_read_file(file, id);
1040 }
1041 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1042 
1043 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1044 				   enum kernel_read_file_id id)
1045 {
1046 	int ret;
1047 
1048 	ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1049 	if (ret)
1050 		return ret;
1051 	return ima_post_read_file(file, buf, size, id);
1052 }
1053 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1054 
1055 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1056 			     int flags)
1057 {
1058 	return call_int_hook(task_fix_setuid, 0, new, old, flags);
1059 }
1060 
1061 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1062 {
1063 	return call_int_hook(task_setpgid, 0, p, pgid);
1064 }
1065 
1066 int security_task_getpgid(struct task_struct *p)
1067 {
1068 	return call_int_hook(task_getpgid, 0, p);
1069 }
1070 
1071 int security_task_getsid(struct task_struct *p)
1072 {
1073 	return call_int_hook(task_getsid, 0, p);
1074 }
1075 
1076 void security_task_getsecid(struct task_struct *p, u32 *secid)
1077 {
1078 	*secid = 0;
1079 	call_void_hook(task_getsecid, p, secid);
1080 }
1081 EXPORT_SYMBOL(security_task_getsecid);
1082 
1083 int security_task_setnice(struct task_struct *p, int nice)
1084 {
1085 	return call_int_hook(task_setnice, 0, p, nice);
1086 }
1087 
1088 int security_task_setioprio(struct task_struct *p, int ioprio)
1089 {
1090 	return call_int_hook(task_setioprio, 0, p, ioprio);
1091 }
1092 
1093 int security_task_getioprio(struct task_struct *p)
1094 {
1095 	return call_int_hook(task_getioprio, 0, p);
1096 }
1097 
1098 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1099 			  unsigned int flags)
1100 {
1101 	return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1102 }
1103 
1104 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1105 		struct rlimit *new_rlim)
1106 {
1107 	return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1108 }
1109 
1110 int security_task_setscheduler(struct task_struct *p)
1111 {
1112 	return call_int_hook(task_setscheduler, 0, p);
1113 }
1114 
1115 int security_task_getscheduler(struct task_struct *p)
1116 {
1117 	return call_int_hook(task_getscheduler, 0, p);
1118 }
1119 
1120 int security_task_movememory(struct task_struct *p)
1121 {
1122 	return call_int_hook(task_movememory, 0, p);
1123 }
1124 
1125 int security_task_kill(struct task_struct *p, struct siginfo *info,
1126 			int sig, u32 secid)
1127 {
1128 	return call_int_hook(task_kill, 0, p, info, sig, secid);
1129 }
1130 
1131 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1132 			 unsigned long arg4, unsigned long arg5)
1133 {
1134 	int thisrc;
1135 	int rc = -ENOSYS;
1136 	struct security_hook_list *hp;
1137 
1138 	list_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1139 		thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1140 		if (thisrc != -ENOSYS) {
1141 			rc = thisrc;
1142 			if (thisrc != 0)
1143 				break;
1144 		}
1145 	}
1146 	return rc;
1147 }
1148 
1149 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1150 {
1151 	call_void_hook(task_to_inode, p, inode);
1152 }
1153 
1154 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1155 {
1156 	return call_int_hook(ipc_permission, 0, ipcp, flag);
1157 }
1158 
1159 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1160 {
1161 	*secid = 0;
1162 	call_void_hook(ipc_getsecid, ipcp, secid);
1163 }
1164 
1165 int security_msg_msg_alloc(struct msg_msg *msg)
1166 {
1167 	return call_int_hook(msg_msg_alloc_security, 0, msg);
1168 }
1169 
1170 void security_msg_msg_free(struct msg_msg *msg)
1171 {
1172 	call_void_hook(msg_msg_free_security, msg);
1173 }
1174 
1175 int security_msg_queue_alloc(struct msg_queue *msq)
1176 {
1177 	return call_int_hook(msg_queue_alloc_security, 0, msq);
1178 }
1179 
1180 void security_msg_queue_free(struct msg_queue *msq)
1181 {
1182 	call_void_hook(msg_queue_free_security, msq);
1183 }
1184 
1185 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
1186 {
1187 	return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1188 }
1189 
1190 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
1191 {
1192 	return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1193 }
1194 
1195 int security_msg_queue_msgsnd(struct msg_queue *msq,
1196 			       struct msg_msg *msg, int msqflg)
1197 {
1198 	return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1199 }
1200 
1201 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
1202 			       struct task_struct *target, long type, int mode)
1203 {
1204 	return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1205 }
1206 
1207 int security_shm_alloc(struct shmid_kernel *shp)
1208 {
1209 	return call_int_hook(shm_alloc_security, 0, shp);
1210 }
1211 
1212 void security_shm_free(struct shmid_kernel *shp)
1213 {
1214 	call_void_hook(shm_free_security, shp);
1215 }
1216 
1217 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
1218 {
1219 	return call_int_hook(shm_associate, 0, shp, shmflg);
1220 }
1221 
1222 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
1223 {
1224 	return call_int_hook(shm_shmctl, 0, shp, cmd);
1225 }
1226 
1227 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
1228 {
1229 	return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1230 }
1231 
1232 int security_sem_alloc(struct sem_array *sma)
1233 {
1234 	return call_int_hook(sem_alloc_security, 0, sma);
1235 }
1236 
1237 void security_sem_free(struct sem_array *sma)
1238 {
1239 	call_void_hook(sem_free_security, sma);
1240 }
1241 
1242 int security_sem_associate(struct sem_array *sma, int semflg)
1243 {
1244 	return call_int_hook(sem_associate, 0, sma, semflg);
1245 }
1246 
1247 int security_sem_semctl(struct sem_array *sma, int cmd)
1248 {
1249 	return call_int_hook(sem_semctl, 0, sma, cmd);
1250 }
1251 
1252 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
1253 			unsigned nsops, int alter)
1254 {
1255 	return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1256 }
1257 
1258 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1259 {
1260 	if (unlikely(inode && IS_PRIVATE(inode)))
1261 		return;
1262 	call_void_hook(d_instantiate, dentry, inode);
1263 }
1264 EXPORT_SYMBOL(security_d_instantiate);
1265 
1266 int security_getprocattr(struct task_struct *p, char *name, char **value)
1267 {
1268 	return call_int_hook(getprocattr, -EINVAL, p, name, value);
1269 }
1270 
1271 int security_setprocattr(const char *name, void *value, size_t size)
1272 {
1273 	return call_int_hook(setprocattr, -EINVAL, name, value, size);
1274 }
1275 
1276 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1277 {
1278 	return call_int_hook(netlink_send, 0, sk, skb);
1279 }
1280 
1281 int security_ismaclabel(const char *name)
1282 {
1283 	return call_int_hook(ismaclabel, 0, name);
1284 }
1285 EXPORT_SYMBOL(security_ismaclabel);
1286 
1287 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1288 {
1289 	return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1290 				seclen);
1291 }
1292 EXPORT_SYMBOL(security_secid_to_secctx);
1293 
1294 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1295 {
1296 	*secid = 0;
1297 	return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1298 }
1299 EXPORT_SYMBOL(security_secctx_to_secid);
1300 
1301 void security_release_secctx(char *secdata, u32 seclen)
1302 {
1303 	call_void_hook(release_secctx, secdata, seclen);
1304 }
1305 EXPORT_SYMBOL(security_release_secctx);
1306 
1307 void security_inode_invalidate_secctx(struct inode *inode)
1308 {
1309 	call_void_hook(inode_invalidate_secctx, inode);
1310 }
1311 EXPORT_SYMBOL(security_inode_invalidate_secctx);
1312 
1313 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1314 {
1315 	return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1316 }
1317 EXPORT_SYMBOL(security_inode_notifysecctx);
1318 
1319 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1320 {
1321 	return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
1322 }
1323 EXPORT_SYMBOL(security_inode_setsecctx);
1324 
1325 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1326 {
1327 	return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
1328 }
1329 EXPORT_SYMBOL(security_inode_getsecctx);
1330 
1331 #ifdef CONFIG_SECURITY_NETWORK
1332 
1333 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1334 {
1335 	return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
1336 }
1337 EXPORT_SYMBOL(security_unix_stream_connect);
1338 
1339 int security_unix_may_send(struct socket *sock,  struct socket *other)
1340 {
1341 	return call_int_hook(unix_may_send, 0, sock, other);
1342 }
1343 EXPORT_SYMBOL(security_unix_may_send);
1344 
1345 int security_socket_create(int family, int type, int protocol, int kern)
1346 {
1347 	return call_int_hook(socket_create, 0, family, type, protocol, kern);
1348 }
1349 
1350 int security_socket_post_create(struct socket *sock, int family,
1351 				int type, int protocol, int kern)
1352 {
1353 	return call_int_hook(socket_post_create, 0, sock, family, type,
1354 						protocol, kern);
1355 }
1356 
1357 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1358 {
1359 	return call_int_hook(socket_bind, 0, sock, address, addrlen);
1360 }
1361 
1362 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1363 {
1364 	return call_int_hook(socket_connect, 0, sock, address, addrlen);
1365 }
1366 
1367 int security_socket_listen(struct socket *sock, int backlog)
1368 {
1369 	return call_int_hook(socket_listen, 0, sock, backlog);
1370 }
1371 
1372 int security_socket_accept(struct socket *sock, struct socket *newsock)
1373 {
1374 	return call_int_hook(socket_accept, 0, sock, newsock);
1375 }
1376 
1377 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1378 {
1379 	return call_int_hook(socket_sendmsg, 0, sock, msg, size);
1380 }
1381 
1382 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1383 			    int size, int flags)
1384 {
1385 	return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
1386 }
1387 
1388 int security_socket_getsockname(struct socket *sock)
1389 {
1390 	return call_int_hook(socket_getsockname, 0, sock);
1391 }
1392 
1393 int security_socket_getpeername(struct socket *sock)
1394 {
1395 	return call_int_hook(socket_getpeername, 0, sock);
1396 }
1397 
1398 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1399 {
1400 	return call_int_hook(socket_getsockopt, 0, sock, level, optname);
1401 }
1402 
1403 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1404 {
1405 	return call_int_hook(socket_setsockopt, 0, sock, level, optname);
1406 }
1407 
1408 int security_socket_shutdown(struct socket *sock, int how)
1409 {
1410 	return call_int_hook(socket_shutdown, 0, sock, how);
1411 }
1412 
1413 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1414 {
1415 	return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
1416 }
1417 EXPORT_SYMBOL(security_sock_rcv_skb);
1418 
1419 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1420 				      int __user *optlen, unsigned len)
1421 {
1422 	return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
1423 				optval, optlen, len);
1424 }
1425 
1426 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1427 {
1428 	return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
1429 			     skb, secid);
1430 }
1431 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1432 
1433 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1434 {
1435 	return call_int_hook(sk_alloc_security, 0, sk, family, priority);
1436 }
1437 
1438 void security_sk_free(struct sock *sk)
1439 {
1440 	call_void_hook(sk_free_security, sk);
1441 }
1442 
1443 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1444 {
1445 	call_void_hook(sk_clone_security, sk, newsk);
1446 }
1447 EXPORT_SYMBOL(security_sk_clone);
1448 
1449 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1450 {
1451 	call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
1452 }
1453 EXPORT_SYMBOL(security_sk_classify_flow);
1454 
1455 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1456 {
1457 	call_void_hook(req_classify_flow, req, fl);
1458 }
1459 EXPORT_SYMBOL(security_req_classify_flow);
1460 
1461 void security_sock_graft(struct sock *sk, struct socket *parent)
1462 {
1463 	call_void_hook(sock_graft, sk, parent);
1464 }
1465 EXPORT_SYMBOL(security_sock_graft);
1466 
1467 int security_inet_conn_request(struct sock *sk,
1468 			struct sk_buff *skb, struct request_sock *req)
1469 {
1470 	return call_int_hook(inet_conn_request, 0, sk, skb, req);
1471 }
1472 EXPORT_SYMBOL(security_inet_conn_request);
1473 
1474 void security_inet_csk_clone(struct sock *newsk,
1475 			const struct request_sock *req)
1476 {
1477 	call_void_hook(inet_csk_clone, newsk, req);
1478 }
1479 
1480 void security_inet_conn_established(struct sock *sk,
1481 			struct sk_buff *skb)
1482 {
1483 	call_void_hook(inet_conn_established, sk, skb);
1484 }
1485 
1486 int security_secmark_relabel_packet(u32 secid)
1487 {
1488 	return call_int_hook(secmark_relabel_packet, 0, secid);
1489 }
1490 EXPORT_SYMBOL(security_secmark_relabel_packet);
1491 
1492 void security_secmark_refcount_inc(void)
1493 {
1494 	call_void_hook(secmark_refcount_inc);
1495 }
1496 EXPORT_SYMBOL(security_secmark_refcount_inc);
1497 
1498 void security_secmark_refcount_dec(void)
1499 {
1500 	call_void_hook(secmark_refcount_dec);
1501 }
1502 EXPORT_SYMBOL(security_secmark_refcount_dec);
1503 
1504 int security_tun_dev_alloc_security(void **security)
1505 {
1506 	return call_int_hook(tun_dev_alloc_security, 0, security);
1507 }
1508 EXPORT_SYMBOL(security_tun_dev_alloc_security);
1509 
1510 void security_tun_dev_free_security(void *security)
1511 {
1512 	call_void_hook(tun_dev_free_security, security);
1513 }
1514 EXPORT_SYMBOL(security_tun_dev_free_security);
1515 
1516 int security_tun_dev_create(void)
1517 {
1518 	return call_int_hook(tun_dev_create, 0);
1519 }
1520 EXPORT_SYMBOL(security_tun_dev_create);
1521 
1522 int security_tun_dev_attach_queue(void *security)
1523 {
1524 	return call_int_hook(tun_dev_attach_queue, 0, security);
1525 }
1526 EXPORT_SYMBOL(security_tun_dev_attach_queue);
1527 
1528 int security_tun_dev_attach(struct sock *sk, void *security)
1529 {
1530 	return call_int_hook(tun_dev_attach, 0, sk, security);
1531 }
1532 EXPORT_SYMBOL(security_tun_dev_attach);
1533 
1534 int security_tun_dev_open(void *security)
1535 {
1536 	return call_int_hook(tun_dev_open, 0, security);
1537 }
1538 EXPORT_SYMBOL(security_tun_dev_open);
1539 
1540 #endif	/* CONFIG_SECURITY_NETWORK */
1541 
1542 #ifdef CONFIG_SECURITY_INFINIBAND
1543 
1544 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
1545 {
1546 	return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
1547 }
1548 EXPORT_SYMBOL(security_ib_pkey_access);
1549 
1550 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
1551 {
1552 	return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
1553 }
1554 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
1555 
1556 int security_ib_alloc_security(void **sec)
1557 {
1558 	return call_int_hook(ib_alloc_security, 0, sec);
1559 }
1560 EXPORT_SYMBOL(security_ib_alloc_security);
1561 
1562 void security_ib_free_security(void *sec)
1563 {
1564 	call_void_hook(ib_free_security, sec);
1565 }
1566 EXPORT_SYMBOL(security_ib_free_security);
1567 #endif	/* CONFIG_SECURITY_INFINIBAND */
1568 
1569 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1570 
1571 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
1572 			       struct xfrm_user_sec_ctx *sec_ctx,
1573 			       gfp_t gfp)
1574 {
1575 	return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
1576 }
1577 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1578 
1579 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1580 			      struct xfrm_sec_ctx **new_ctxp)
1581 {
1582 	return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
1583 }
1584 
1585 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1586 {
1587 	call_void_hook(xfrm_policy_free_security, ctx);
1588 }
1589 EXPORT_SYMBOL(security_xfrm_policy_free);
1590 
1591 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1592 {
1593 	return call_int_hook(xfrm_policy_delete_security, 0, ctx);
1594 }
1595 
1596 int security_xfrm_state_alloc(struct xfrm_state *x,
1597 			      struct xfrm_user_sec_ctx *sec_ctx)
1598 {
1599 	return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
1600 }
1601 EXPORT_SYMBOL(security_xfrm_state_alloc);
1602 
1603 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1604 				      struct xfrm_sec_ctx *polsec, u32 secid)
1605 {
1606 	return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
1607 }
1608 
1609 int security_xfrm_state_delete(struct xfrm_state *x)
1610 {
1611 	return call_int_hook(xfrm_state_delete_security, 0, x);
1612 }
1613 EXPORT_SYMBOL(security_xfrm_state_delete);
1614 
1615 void security_xfrm_state_free(struct xfrm_state *x)
1616 {
1617 	call_void_hook(xfrm_state_free_security, x);
1618 }
1619 
1620 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1621 {
1622 	return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
1623 }
1624 
1625 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1626 				       struct xfrm_policy *xp,
1627 				       const struct flowi *fl)
1628 {
1629 	struct security_hook_list *hp;
1630 	int rc = 1;
1631 
1632 	/*
1633 	 * Since this function is expected to return 0 or 1, the judgment
1634 	 * becomes difficult if multiple LSMs supply this call. Fortunately,
1635 	 * we can use the first LSM's judgment because currently only SELinux
1636 	 * supplies this call.
1637 	 *
1638 	 * For speed optimization, we explicitly break the loop rather than
1639 	 * using the macro
1640 	 */
1641 	list_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
1642 				list) {
1643 		rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
1644 		break;
1645 	}
1646 	return rc;
1647 }
1648 
1649 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1650 {
1651 	return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
1652 }
1653 
1654 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1655 {
1656 	int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
1657 				0);
1658 
1659 	BUG_ON(rc);
1660 }
1661 EXPORT_SYMBOL(security_skb_classify_flow);
1662 
1663 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1664 
1665 #ifdef CONFIG_KEYS
1666 
1667 int security_key_alloc(struct key *key, const struct cred *cred,
1668 		       unsigned long flags)
1669 {
1670 	return call_int_hook(key_alloc, 0, key, cred, flags);
1671 }
1672 
1673 void security_key_free(struct key *key)
1674 {
1675 	call_void_hook(key_free, key);
1676 }
1677 
1678 int security_key_permission(key_ref_t key_ref,
1679 			    const struct cred *cred, unsigned perm)
1680 {
1681 	return call_int_hook(key_permission, 0, key_ref, cred, perm);
1682 }
1683 
1684 int security_key_getsecurity(struct key *key, char **_buffer)
1685 {
1686 	*_buffer = NULL;
1687 	return call_int_hook(key_getsecurity, 0, key, _buffer);
1688 }
1689 
1690 #endif	/* CONFIG_KEYS */
1691 
1692 #ifdef CONFIG_AUDIT
1693 
1694 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1695 {
1696 	return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
1697 }
1698 
1699 int security_audit_rule_known(struct audit_krule *krule)
1700 {
1701 	return call_int_hook(audit_rule_known, 0, krule);
1702 }
1703 
1704 void security_audit_rule_free(void *lsmrule)
1705 {
1706 	call_void_hook(audit_rule_free, lsmrule);
1707 }
1708 
1709 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1710 			      struct audit_context *actx)
1711 {
1712 	return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule,
1713 				actx);
1714 }
1715 #endif /* CONFIG_AUDIT */
1716