xref: /openbmc/linux/security/security.c (revision 3f23d815)
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *	This program is free software; you can redistribute it and/or modify
9  *	it under the terms of the GNU General Public License as published by
10  *	the Free Software Foundation; either version 2 of the License, or
11  *	(at your option) any later version.
12  */
13 
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 
20 /* Boot-time LSM user choice */
21 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1];
22 
23 /* things that live in capability.c */
24 extern struct security_operations default_security_ops;
25 extern void security_fixup_ops(struct security_operations *ops);
26 
27 struct security_operations *security_ops;	/* Initialized to NULL */
28 
29 /* amount of vm to protect from userspace access */
30 unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR;
31 
32 static inline int verify(struct security_operations *ops)
33 {
34 	/* verify the security_operations structure exists */
35 	if (!ops)
36 		return -EINVAL;
37 	security_fixup_ops(ops);
38 	return 0;
39 }
40 
41 static void __init do_security_initcalls(void)
42 {
43 	initcall_t *call;
44 	call = __security_initcall_start;
45 	while (call < __security_initcall_end) {
46 		(*call) ();
47 		call++;
48 	}
49 }
50 
51 /**
52  * security_init - initializes the security framework
53  *
54  * This should be called early in the kernel initialization sequence.
55  */
56 int __init security_init(void)
57 {
58 	printk(KERN_INFO "Security Framework initialized\n");
59 
60 	security_fixup_ops(&default_security_ops);
61 	security_ops = &default_security_ops;
62 	do_security_initcalls();
63 
64 	return 0;
65 }
66 
67 /* Save user chosen LSM */
68 static int __init choose_lsm(char *str)
69 {
70 	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
71 	return 1;
72 }
73 __setup("security=", choose_lsm);
74 
75 /**
76  * security_module_enable - Load given security module on boot ?
77  * @ops: a pointer to the struct security_operations that is to be checked.
78  *
79  * Each LSM must pass this method before registering its own operations
80  * to avoid security registration races. This method may also be used
81  * to check if your LSM is currently loaded during kernel initialization.
82  *
83  * Return true if:
84  *	-The passed LSM is the one chosen by user at boot time,
85  *	-or user didn't specify a specific LSM and we're the first to ask
86  *	 for registration permission,
87  *	-or the passed LSM is currently loaded.
88  * Otherwise, return false.
89  */
90 int __init security_module_enable(struct security_operations *ops)
91 {
92 	if (!*chosen_lsm)
93 		strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
94 	else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
95 		return 0;
96 
97 	return 1;
98 }
99 
100 /**
101  * register_security - registers a security framework with the kernel
102  * @ops: a pointer to the struct security_options that is to be registered
103  *
104  * This function allows a security module to register itself with the
105  * kernel security subsystem.  Some rudimentary checking is done on the @ops
106  * value passed to this function. You'll need to check first if your LSM
107  * is allowed to register its @ops by calling security_module_enable(@ops).
108  *
109  * If there is already a security module registered with the kernel,
110  * an error will be returned.  Otherwise %0 is returned on success.
111  */
112 int register_security(struct security_operations *ops)
113 {
114 	if (verify(ops)) {
115 		printk(KERN_DEBUG "%s could not verify "
116 		       "security_operations structure.\n", __func__);
117 		return -EINVAL;
118 	}
119 
120 	if (security_ops != &default_security_ops)
121 		return -EAGAIN;
122 
123 	security_ops = ops;
124 
125 	return 0;
126 }
127 
128 /* Security operations */
129 
130 int security_ptrace(struct task_struct *parent, struct task_struct *child,
131 		    unsigned int mode)
132 {
133 	return security_ops->ptrace(parent, child, mode);
134 }
135 
136 int security_capget(struct task_struct *target,
137 		     kernel_cap_t *effective,
138 		     kernel_cap_t *inheritable,
139 		     kernel_cap_t *permitted)
140 {
141 	return security_ops->capget(target, effective, inheritable, permitted);
142 }
143 
144 int security_capset_check(struct task_struct *target,
145 			   kernel_cap_t *effective,
146 			   kernel_cap_t *inheritable,
147 			   kernel_cap_t *permitted)
148 {
149 	return security_ops->capset_check(target, effective, inheritable, permitted);
150 }
151 
152 void security_capset_set(struct task_struct *target,
153 			  kernel_cap_t *effective,
154 			  kernel_cap_t *inheritable,
155 			  kernel_cap_t *permitted)
156 {
157 	security_ops->capset_set(target, effective, inheritable, permitted);
158 }
159 
160 int security_capable(struct task_struct *tsk, int cap)
161 {
162 	return security_ops->capable(tsk, cap);
163 }
164 
165 int security_acct(struct file *file)
166 {
167 	return security_ops->acct(file);
168 }
169 
170 int security_sysctl(struct ctl_table *table, int op)
171 {
172 	return security_ops->sysctl(table, op);
173 }
174 
175 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
176 {
177 	return security_ops->quotactl(cmds, type, id, sb);
178 }
179 
180 int security_quota_on(struct dentry *dentry)
181 {
182 	return security_ops->quota_on(dentry);
183 }
184 
185 int security_syslog(int type)
186 {
187 	return security_ops->syslog(type);
188 }
189 
190 int security_settime(struct timespec *ts, struct timezone *tz)
191 {
192 	return security_ops->settime(ts, tz);
193 }
194 
195 int security_vm_enough_memory(long pages)
196 {
197 	return security_ops->vm_enough_memory(current->mm, pages);
198 }
199 
200 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
201 {
202 	return security_ops->vm_enough_memory(mm, pages);
203 }
204 
205 int security_bprm_alloc(struct linux_binprm *bprm)
206 {
207 	return security_ops->bprm_alloc_security(bprm);
208 }
209 
210 void security_bprm_free(struct linux_binprm *bprm)
211 {
212 	security_ops->bprm_free_security(bprm);
213 }
214 
215 void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
216 {
217 	security_ops->bprm_apply_creds(bprm, unsafe);
218 }
219 
220 void security_bprm_post_apply_creds(struct linux_binprm *bprm)
221 {
222 	security_ops->bprm_post_apply_creds(bprm);
223 }
224 
225 int security_bprm_set(struct linux_binprm *bprm)
226 {
227 	return security_ops->bprm_set_security(bprm);
228 }
229 
230 int security_bprm_check(struct linux_binprm *bprm)
231 {
232 	return security_ops->bprm_check_security(bprm);
233 }
234 
235 int security_bprm_secureexec(struct linux_binprm *bprm)
236 {
237 	return security_ops->bprm_secureexec(bprm);
238 }
239 
240 int security_sb_alloc(struct super_block *sb)
241 {
242 	return security_ops->sb_alloc_security(sb);
243 }
244 
245 void security_sb_free(struct super_block *sb)
246 {
247 	security_ops->sb_free_security(sb);
248 }
249 
250 int security_sb_copy_data(char *orig, char *copy)
251 {
252 	return security_ops->sb_copy_data(orig, copy);
253 }
254 EXPORT_SYMBOL(security_sb_copy_data);
255 
256 int security_sb_kern_mount(struct super_block *sb, void *data)
257 {
258 	return security_ops->sb_kern_mount(sb, data);
259 }
260 
261 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
262 {
263 	return security_ops->sb_show_options(m, sb);
264 }
265 
266 int security_sb_statfs(struct dentry *dentry)
267 {
268 	return security_ops->sb_statfs(dentry);
269 }
270 
271 int security_sb_mount(char *dev_name, struct path *path,
272                        char *type, unsigned long flags, void *data)
273 {
274 	return security_ops->sb_mount(dev_name, path, type, flags, data);
275 }
276 
277 int security_sb_check_sb(struct vfsmount *mnt, struct path *path)
278 {
279 	return security_ops->sb_check_sb(mnt, path);
280 }
281 
282 int security_sb_umount(struct vfsmount *mnt, int flags)
283 {
284 	return security_ops->sb_umount(mnt, flags);
285 }
286 
287 void security_sb_umount_close(struct vfsmount *mnt)
288 {
289 	security_ops->sb_umount_close(mnt);
290 }
291 
292 void security_sb_umount_busy(struct vfsmount *mnt)
293 {
294 	security_ops->sb_umount_busy(mnt);
295 }
296 
297 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
298 {
299 	security_ops->sb_post_remount(mnt, flags, data);
300 }
301 
302 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint)
303 {
304 	security_ops->sb_post_addmount(mnt, mountpoint);
305 }
306 
307 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
308 {
309 	return security_ops->sb_pivotroot(old_path, new_path);
310 }
311 
312 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path)
313 {
314 	security_ops->sb_post_pivotroot(old_path, new_path);
315 }
316 
317 int security_sb_set_mnt_opts(struct super_block *sb,
318 				struct security_mnt_opts *opts)
319 {
320 	return security_ops->sb_set_mnt_opts(sb, opts);
321 }
322 EXPORT_SYMBOL(security_sb_set_mnt_opts);
323 
324 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
325 				struct super_block *newsb)
326 {
327 	security_ops->sb_clone_mnt_opts(oldsb, newsb);
328 }
329 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
330 
331 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
332 {
333 	return security_ops->sb_parse_opts_str(options, opts);
334 }
335 EXPORT_SYMBOL(security_sb_parse_opts_str);
336 
337 int security_inode_alloc(struct inode *inode)
338 {
339 	inode->i_security = NULL;
340 	return security_ops->inode_alloc_security(inode);
341 }
342 
343 void security_inode_free(struct inode *inode)
344 {
345 	security_ops->inode_free_security(inode);
346 }
347 
348 int security_inode_init_security(struct inode *inode, struct inode *dir,
349 				  char **name, void **value, size_t *len)
350 {
351 	if (unlikely(IS_PRIVATE(inode)))
352 		return -EOPNOTSUPP;
353 	return security_ops->inode_init_security(inode, dir, name, value, len);
354 }
355 EXPORT_SYMBOL(security_inode_init_security);
356 
357 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
358 {
359 	if (unlikely(IS_PRIVATE(dir)))
360 		return 0;
361 	return security_ops->inode_create(dir, dentry, mode);
362 }
363 
364 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
365 			 struct dentry *new_dentry)
366 {
367 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
368 		return 0;
369 	return security_ops->inode_link(old_dentry, dir, new_dentry);
370 }
371 
372 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
373 {
374 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
375 		return 0;
376 	return security_ops->inode_unlink(dir, dentry);
377 }
378 
379 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
380 			    const char *old_name)
381 {
382 	if (unlikely(IS_PRIVATE(dir)))
383 		return 0;
384 	return security_ops->inode_symlink(dir, dentry, old_name);
385 }
386 
387 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
388 {
389 	if (unlikely(IS_PRIVATE(dir)))
390 		return 0;
391 	return security_ops->inode_mkdir(dir, dentry, mode);
392 }
393 
394 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
395 {
396 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
397 		return 0;
398 	return security_ops->inode_rmdir(dir, dentry);
399 }
400 
401 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
402 {
403 	if (unlikely(IS_PRIVATE(dir)))
404 		return 0;
405 	return security_ops->inode_mknod(dir, dentry, mode, dev);
406 }
407 
408 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
409 			   struct inode *new_dir, struct dentry *new_dentry)
410 {
411         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
412             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
413 		return 0;
414 	return security_ops->inode_rename(old_dir, old_dentry,
415 					   new_dir, new_dentry);
416 }
417 
418 int security_inode_readlink(struct dentry *dentry)
419 {
420 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
421 		return 0;
422 	return security_ops->inode_readlink(dentry);
423 }
424 
425 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
426 {
427 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
428 		return 0;
429 	return security_ops->inode_follow_link(dentry, nd);
430 }
431 
432 int security_inode_permission(struct inode *inode, int mask)
433 {
434 	if (unlikely(IS_PRIVATE(inode)))
435 		return 0;
436 	return security_ops->inode_permission(inode, mask);
437 }
438 
439 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
440 {
441 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
442 		return 0;
443 	return security_ops->inode_setattr(dentry, attr);
444 }
445 EXPORT_SYMBOL_GPL(security_inode_setattr);
446 
447 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
448 {
449 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
450 		return 0;
451 	return security_ops->inode_getattr(mnt, dentry);
452 }
453 
454 void security_inode_delete(struct inode *inode)
455 {
456 	if (unlikely(IS_PRIVATE(inode)))
457 		return;
458 	security_ops->inode_delete(inode);
459 }
460 
461 int security_inode_setxattr(struct dentry *dentry, const char *name,
462 			    const void *value, size_t size, int flags)
463 {
464 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
465 		return 0;
466 	return security_ops->inode_setxattr(dentry, name, value, size, flags);
467 }
468 
469 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
470 				  const void *value, size_t size, int flags)
471 {
472 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
473 		return;
474 	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
475 }
476 
477 int security_inode_getxattr(struct dentry *dentry, const char *name)
478 {
479 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
480 		return 0;
481 	return security_ops->inode_getxattr(dentry, name);
482 }
483 
484 int security_inode_listxattr(struct dentry *dentry)
485 {
486 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
487 		return 0;
488 	return security_ops->inode_listxattr(dentry);
489 }
490 
491 int security_inode_removexattr(struct dentry *dentry, const char *name)
492 {
493 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
494 		return 0;
495 	return security_ops->inode_removexattr(dentry, name);
496 }
497 
498 int security_inode_need_killpriv(struct dentry *dentry)
499 {
500 	return security_ops->inode_need_killpriv(dentry);
501 }
502 
503 int security_inode_killpriv(struct dentry *dentry)
504 {
505 	return security_ops->inode_killpriv(dentry);
506 }
507 
508 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
509 {
510 	if (unlikely(IS_PRIVATE(inode)))
511 		return 0;
512 	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
513 }
514 
515 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
516 {
517 	if (unlikely(IS_PRIVATE(inode)))
518 		return 0;
519 	return security_ops->inode_setsecurity(inode, name, value, size, flags);
520 }
521 
522 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
523 {
524 	if (unlikely(IS_PRIVATE(inode)))
525 		return 0;
526 	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
527 }
528 
529 void security_inode_getsecid(const struct inode *inode, u32 *secid)
530 {
531 	security_ops->inode_getsecid(inode, secid);
532 }
533 
534 int security_file_permission(struct file *file, int mask)
535 {
536 	return security_ops->file_permission(file, mask);
537 }
538 
539 int security_file_alloc(struct file *file)
540 {
541 	return security_ops->file_alloc_security(file);
542 }
543 
544 void security_file_free(struct file *file)
545 {
546 	security_ops->file_free_security(file);
547 }
548 
549 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
550 {
551 	return security_ops->file_ioctl(file, cmd, arg);
552 }
553 
554 int security_file_mmap(struct file *file, unsigned long reqprot,
555 			unsigned long prot, unsigned long flags,
556 			unsigned long addr, unsigned long addr_only)
557 {
558 	return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
559 }
560 
561 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
562 			    unsigned long prot)
563 {
564 	return security_ops->file_mprotect(vma, reqprot, prot);
565 }
566 
567 int security_file_lock(struct file *file, unsigned int cmd)
568 {
569 	return security_ops->file_lock(file, cmd);
570 }
571 
572 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
573 {
574 	return security_ops->file_fcntl(file, cmd, arg);
575 }
576 
577 int security_file_set_fowner(struct file *file)
578 {
579 	return security_ops->file_set_fowner(file);
580 }
581 
582 int security_file_send_sigiotask(struct task_struct *tsk,
583 				  struct fown_struct *fown, int sig)
584 {
585 	return security_ops->file_send_sigiotask(tsk, fown, sig);
586 }
587 
588 int security_file_receive(struct file *file)
589 {
590 	return security_ops->file_receive(file);
591 }
592 
593 int security_dentry_open(struct file *file)
594 {
595 	return security_ops->dentry_open(file);
596 }
597 
598 int security_task_create(unsigned long clone_flags)
599 {
600 	return security_ops->task_create(clone_flags);
601 }
602 
603 int security_task_alloc(struct task_struct *p)
604 {
605 	return security_ops->task_alloc_security(p);
606 }
607 
608 void security_task_free(struct task_struct *p)
609 {
610 	security_ops->task_free_security(p);
611 }
612 
613 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
614 {
615 	return security_ops->task_setuid(id0, id1, id2, flags);
616 }
617 
618 int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
619 			       uid_t old_suid, int flags)
620 {
621 	return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags);
622 }
623 
624 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
625 {
626 	return security_ops->task_setgid(id0, id1, id2, flags);
627 }
628 
629 int security_task_setpgid(struct task_struct *p, pid_t pgid)
630 {
631 	return security_ops->task_setpgid(p, pgid);
632 }
633 
634 int security_task_getpgid(struct task_struct *p)
635 {
636 	return security_ops->task_getpgid(p);
637 }
638 
639 int security_task_getsid(struct task_struct *p)
640 {
641 	return security_ops->task_getsid(p);
642 }
643 
644 void security_task_getsecid(struct task_struct *p, u32 *secid)
645 {
646 	security_ops->task_getsecid(p, secid);
647 }
648 EXPORT_SYMBOL(security_task_getsecid);
649 
650 int security_task_setgroups(struct group_info *group_info)
651 {
652 	return security_ops->task_setgroups(group_info);
653 }
654 
655 int security_task_setnice(struct task_struct *p, int nice)
656 {
657 	return security_ops->task_setnice(p, nice);
658 }
659 
660 int security_task_setioprio(struct task_struct *p, int ioprio)
661 {
662 	return security_ops->task_setioprio(p, ioprio);
663 }
664 
665 int security_task_getioprio(struct task_struct *p)
666 {
667 	return security_ops->task_getioprio(p);
668 }
669 
670 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
671 {
672 	return security_ops->task_setrlimit(resource, new_rlim);
673 }
674 
675 int security_task_setscheduler(struct task_struct *p,
676 				int policy, struct sched_param *lp)
677 {
678 	return security_ops->task_setscheduler(p, policy, lp);
679 }
680 
681 int security_task_getscheduler(struct task_struct *p)
682 {
683 	return security_ops->task_getscheduler(p);
684 }
685 
686 int security_task_movememory(struct task_struct *p)
687 {
688 	return security_ops->task_movememory(p);
689 }
690 
691 int security_task_kill(struct task_struct *p, struct siginfo *info,
692 			int sig, u32 secid)
693 {
694 	return security_ops->task_kill(p, info, sig, secid);
695 }
696 
697 int security_task_wait(struct task_struct *p)
698 {
699 	return security_ops->task_wait(p);
700 }
701 
702 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
703 			 unsigned long arg4, unsigned long arg5, long *rc_p)
704 {
705 	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p);
706 }
707 
708 void security_task_reparent_to_init(struct task_struct *p)
709 {
710 	security_ops->task_reparent_to_init(p);
711 }
712 
713 void security_task_to_inode(struct task_struct *p, struct inode *inode)
714 {
715 	security_ops->task_to_inode(p, inode);
716 }
717 
718 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
719 {
720 	return security_ops->ipc_permission(ipcp, flag);
721 }
722 
723 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
724 {
725 	security_ops->ipc_getsecid(ipcp, secid);
726 }
727 
728 int security_msg_msg_alloc(struct msg_msg *msg)
729 {
730 	return security_ops->msg_msg_alloc_security(msg);
731 }
732 
733 void security_msg_msg_free(struct msg_msg *msg)
734 {
735 	security_ops->msg_msg_free_security(msg);
736 }
737 
738 int security_msg_queue_alloc(struct msg_queue *msq)
739 {
740 	return security_ops->msg_queue_alloc_security(msq);
741 }
742 
743 void security_msg_queue_free(struct msg_queue *msq)
744 {
745 	security_ops->msg_queue_free_security(msq);
746 }
747 
748 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
749 {
750 	return security_ops->msg_queue_associate(msq, msqflg);
751 }
752 
753 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
754 {
755 	return security_ops->msg_queue_msgctl(msq, cmd);
756 }
757 
758 int security_msg_queue_msgsnd(struct msg_queue *msq,
759 			       struct msg_msg *msg, int msqflg)
760 {
761 	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
762 }
763 
764 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
765 			       struct task_struct *target, long type, int mode)
766 {
767 	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
768 }
769 
770 int security_shm_alloc(struct shmid_kernel *shp)
771 {
772 	return security_ops->shm_alloc_security(shp);
773 }
774 
775 void security_shm_free(struct shmid_kernel *shp)
776 {
777 	security_ops->shm_free_security(shp);
778 }
779 
780 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
781 {
782 	return security_ops->shm_associate(shp, shmflg);
783 }
784 
785 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
786 {
787 	return security_ops->shm_shmctl(shp, cmd);
788 }
789 
790 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
791 {
792 	return security_ops->shm_shmat(shp, shmaddr, shmflg);
793 }
794 
795 int security_sem_alloc(struct sem_array *sma)
796 {
797 	return security_ops->sem_alloc_security(sma);
798 }
799 
800 void security_sem_free(struct sem_array *sma)
801 {
802 	security_ops->sem_free_security(sma);
803 }
804 
805 int security_sem_associate(struct sem_array *sma, int semflg)
806 {
807 	return security_ops->sem_associate(sma, semflg);
808 }
809 
810 int security_sem_semctl(struct sem_array *sma, int cmd)
811 {
812 	return security_ops->sem_semctl(sma, cmd);
813 }
814 
815 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
816 			unsigned nsops, int alter)
817 {
818 	return security_ops->sem_semop(sma, sops, nsops, alter);
819 }
820 
821 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
822 {
823 	if (unlikely(inode && IS_PRIVATE(inode)))
824 		return;
825 	security_ops->d_instantiate(dentry, inode);
826 }
827 EXPORT_SYMBOL(security_d_instantiate);
828 
829 int security_getprocattr(struct task_struct *p, char *name, char **value)
830 {
831 	return security_ops->getprocattr(p, name, value);
832 }
833 
834 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
835 {
836 	return security_ops->setprocattr(p, name, value, size);
837 }
838 
839 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
840 {
841 	return security_ops->netlink_send(sk, skb);
842 }
843 
844 int security_netlink_recv(struct sk_buff *skb, int cap)
845 {
846 	return security_ops->netlink_recv(skb, cap);
847 }
848 EXPORT_SYMBOL(security_netlink_recv);
849 
850 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
851 {
852 	return security_ops->secid_to_secctx(secid, secdata, seclen);
853 }
854 EXPORT_SYMBOL(security_secid_to_secctx);
855 
856 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
857 {
858 	return security_ops->secctx_to_secid(secdata, seclen, secid);
859 }
860 EXPORT_SYMBOL(security_secctx_to_secid);
861 
862 void security_release_secctx(char *secdata, u32 seclen)
863 {
864 	security_ops->release_secctx(secdata, seclen);
865 }
866 EXPORT_SYMBOL(security_release_secctx);
867 
868 #ifdef CONFIG_SECURITY_NETWORK
869 
870 int security_unix_stream_connect(struct socket *sock, struct socket *other,
871 				 struct sock *newsk)
872 {
873 	return security_ops->unix_stream_connect(sock, other, newsk);
874 }
875 EXPORT_SYMBOL(security_unix_stream_connect);
876 
877 int security_unix_may_send(struct socket *sock,  struct socket *other)
878 {
879 	return security_ops->unix_may_send(sock, other);
880 }
881 EXPORT_SYMBOL(security_unix_may_send);
882 
883 int security_socket_create(int family, int type, int protocol, int kern)
884 {
885 	return security_ops->socket_create(family, type, protocol, kern);
886 }
887 
888 int security_socket_post_create(struct socket *sock, int family,
889 				int type, int protocol, int kern)
890 {
891 	return security_ops->socket_post_create(sock, family, type,
892 						protocol, kern);
893 }
894 
895 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
896 {
897 	return security_ops->socket_bind(sock, address, addrlen);
898 }
899 
900 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
901 {
902 	return security_ops->socket_connect(sock, address, addrlen);
903 }
904 
905 int security_socket_listen(struct socket *sock, int backlog)
906 {
907 	return security_ops->socket_listen(sock, backlog);
908 }
909 
910 int security_socket_accept(struct socket *sock, struct socket *newsock)
911 {
912 	return security_ops->socket_accept(sock, newsock);
913 }
914 
915 void security_socket_post_accept(struct socket *sock, struct socket *newsock)
916 {
917 	security_ops->socket_post_accept(sock, newsock);
918 }
919 
920 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
921 {
922 	return security_ops->socket_sendmsg(sock, msg, size);
923 }
924 
925 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
926 			    int size, int flags)
927 {
928 	return security_ops->socket_recvmsg(sock, msg, size, flags);
929 }
930 
931 int security_socket_getsockname(struct socket *sock)
932 {
933 	return security_ops->socket_getsockname(sock);
934 }
935 
936 int security_socket_getpeername(struct socket *sock)
937 {
938 	return security_ops->socket_getpeername(sock);
939 }
940 
941 int security_socket_getsockopt(struct socket *sock, int level, int optname)
942 {
943 	return security_ops->socket_getsockopt(sock, level, optname);
944 }
945 
946 int security_socket_setsockopt(struct socket *sock, int level, int optname)
947 {
948 	return security_ops->socket_setsockopt(sock, level, optname);
949 }
950 
951 int security_socket_shutdown(struct socket *sock, int how)
952 {
953 	return security_ops->socket_shutdown(sock, how);
954 }
955 
956 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
957 {
958 	return security_ops->socket_sock_rcv_skb(sk, skb);
959 }
960 EXPORT_SYMBOL(security_sock_rcv_skb);
961 
962 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
963 				      int __user *optlen, unsigned len)
964 {
965 	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
966 }
967 
968 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
969 {
970 	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
971 }
972 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
973 
974 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
975 {
976 	return security_ops->sk_alloc_security(sk, family, priority);
977 }
978 
979 void security_sk_free(struct sock *sk)
980 {
981 	security_ops->sk_free_security(sk);
982 }
983 
984 void security_sk_clone(const struct sock *sk, struct sock *newsk)
985 {
986 	security_ops->sk_clone_security(sk, newsk);
987 }
988 
989 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
990 {
991 	security_ops->sk_getsecid(sk, &fl->secid);
992 }
993 EXPORT_SYMBOL(security_sk_classify_flow);
994 
995 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
996 {
997 	security_ops->req_classify_flow(req, fl);
998 }
999 EXPORT_SYMBOL(security_req_classify_flow);
1000 
1001 void security_sock_graft(struct sock *sk, struct socket *parent)
1002 {
1003 	security_ops->sock_graft(sk, parent);
1004 }
1005 EXPORT_SYMBOL(security_sock_graft);
1006 
1007 int security_inet_conn_request(struct sock *sk,
1008 			struct sk_buff *skb, struct request_sock *req)
1009 {
1010 	return security_ops->inet_conn_request(sk, skb, req);
1011 }
1012 EXPORT_SYMBOL(security_inet_conn_request);
1013 
1014 void security_inet_csk_clone(struct sock *newsk,
1015 			const struct request_sock *req)
1016 {
1017 	security_ops->inet_csk_clone(newsk, req);
1018 }
1019 
1020 void security_inet_conn_established(struct sock *sk,
1021 			struct sk_buff *skb)
1022 {
1023 	security_ops->inet_conn_established(sk, skb);
1024 }
1025 
1026 #endif	/* CONFIG_SECURITY_NETWORK */
1027 
1028 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1029 
1030 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1031 {
1032 	return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1033 }
1034 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1035 
1036 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1037 			      struct xfrm_sec_ctx **new_ctxp)
1038 {
1039 	return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1040 }
1041 
1042 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1043 {
1044 	security_ops->xfrm_policy_free_security(ctx);
1045 }
1046 EXPORT_SYMBOL(security_xfrm_policy_free);
1047 
1048 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1049 {
1050 	return security_ops->xfrm_policy_delete_security(ctx);
1051 }
1052 
1053 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1054 {
1055 	return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1056 }
1057 EXPORT_SYMBOL(security_xfrm_state_alloc);
1058 
1059 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1060 				      struct xfrm_sec_ctx *polsec, u32 secid)
1061 {
1062 	if (!polsec)
1063 		return 0;
1064 	/*
1065 	 * We want the context to be taken from secid which is usually
1066 	 * from the sock.
1067 	 */
1068 	return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1069 }
1070 
1071 int security_xfrm_state_delete(struct xfrm_state *x)
1072 {
1073 	return security_ops->xfrm_state_delete_security(x);
1074 }
1075 EXPORT_SYMBOL(security_xfrm_state_delete);
1076 
1077 void security_xfrm_state_free(struct xfrm_state *x)
1078 {
1079 	security_ops->xfrm_state_free_security(x);
1080 }
1081 
1082 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1083 {
1084 	return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1085 }
1086 
1087 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1088 				       struct xfrm_policy *xp, struct flowi *fl)
1089 {
1090 	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1091 }
1092 
1093 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1094 {
1095 	return security_ops->xfrm_decode_session(skb, secid, 1);
1096 }
1097 
1098 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1099 {
1100 	int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1101 
1102 	BUG_ON(rc);
1103 }
1104 EXPORT_SYMBOL(security_skb_classify_flow);
1105 
1106 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1107 
1108 #ifdef CONFIG_KEYS
1109 
1110 int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags)
1111 {
1112 	return security_ops->key_alloc(key, tsk, flags);
1113 }
1114 
1115 void security_key_free(struct key *key)
1116 {
1117 	security_ops->key_free(key);
1118 }
1119 
1120 int security_key_permission(key_ref_t key_ref,
1121 			    struct task_struct *context, key_perm_t perm)
1122 {
1123 	return security_ops->key_permission(key_ref, context, perm);
1124 }
1125 
1126 int security_key_getsecurity(struct key *key, char **_buffer)
1127 {
1128 	return security_ops->key_getsecurity(key, _buffer);
1129 }
1130 
1131 #endif	/* CONFIG_KEYS */
1132 
1133 #ifdef CONFIG_AUDIT
1134 
1135 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1136 {
1137 	return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1138 }
1139 
1140 int security_audit_rule_known(struct audit_krule *krule)
1141 {
1142 	return security_ops->audit_rule_known(krule);
1143 }
1144 
1145 void security_audit_rule_free(void *lsmrule)
1146 {
1147 	security_ops->audit_rule_free(lsmrule);
1148 }
1149 
1150 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1151 			      struct audit_context *actx)
1152 {
1153 	return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1154 }
1155 
1156 #endif /* CONFIG_AUDIT */
1157