1 /* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/capability.h> 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/kernel.h> 18 #include <linux/security.h> 19 20 /* Boot-time LSM user choice */ 21 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1]; 22 23 /* things that live in capability.c */ 24 extern struct security_operations default_security_ops; 25 extern void security_fixup_ops(struct security_operations *ops); 26 27 struct security_operations *security_ops; /* Initialized to NULL */ 28 29 /* amount of vm to protect from userspace access */ 30 unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR; 31 32 static inline int verify(struct security_operations *ops) 33 { 34 /* verify the security_operations structure exists */ 35 if (!ops) 36 return -EINVAL; 37 security_fixup_ops(ops); 38 return 0; 39 } 40 41 static void __init do_security_initcalls(void) 42 { 43 initcall_t *call; 44 call = __security_initcall_start; 45 while (call < __security_initcall_end) { 46 (*call) (); 47 call++; 48 } 49 } 50 51 /** 52 * security_init - initializes the security framework 53 * 54 * This should be called early in the kernel initialization sequence. 55 */ 56 int __init security_init(void) 57 { 58 printk(KERN_INFO "Security Framework initialized\n"); 59 60 security_fixup_ops(&default_security_ops); 61 security_ops = &default_security_ops; 62 do_security_initcalls(); 63 64 return 0; 65 } 66 67 /* Save user chosen LSM */ 68 static int __init choose_lsm(char *str) 69 { 70 strncpy(chosen_lsm, str, SECURITY_NAME_MAX); 71 return 1; 72 } 73 __setup("security=", choose_lsm); 74 75 /** 76 * security_module_enable - Load given security module on boot ? 77 * @ops: a pointer to the struct security_operations that is to be checked. 78 * 79 * Each LSM must pass this method before registering its own operations 80 * to avoid security registration races. This method may also be used 81 * to check if your LSM is currently loaded during kernel initialization. 82 * 83 * Return true if: 84 * -The passed LSM is the one chosen by user at boot time, 85 * -or user didn't specify a specific LSM and we're the first to ask 86 * for registration permission, 87 * -or the passed LSM is currently loaded. 88 * Otherwise, return false. 89 */ 90 int __init security_module_enable(struct security_operations *ops) 91 { 92 if (!*chosen_lsm) 93 strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX); 94 else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX)) 95 return 0; 96 97 return 1; 98 } 99 100 /** 101 * register_security - registers a security framework with the kernel 102 * @ops: a pointer to the struct security_options that is to be registered 103 * 104 * This function allows a security module to register itself with the 105 * kernel security subsystem. Some rudimentary checking is done on the @ops 106 * value passed to this function. You'll need to check first if your LSM 107 * is allowed to register its @ops by calling security_module_enable(@ops). 108 * 109 * If there is already a security module registered with the kernel, 110 * an error will be returned. Otherwise %0 is returned on success. 111 */ 112 int register_security(struct security_operations *ops) 113 { 114 if (verify(ops)) { 115 printk(KERN_DEBUG "%s could not verify " 116 "security_operations structure.\n", __func__); 117 return -EINVAL; 118 } 119 120 if (security_ops != &default_security_ops) 121 return -EAGAIN; 122 123 security_ops = ops; 124 125 return 0; 126 } 127 128 /* Security operations */ 129 130 int security_ptrace(struct task_struct *parent, struct task_struct *child, 131 unsigned int mode) 132 { 133 return security_ops->ptrace(parent, child, mode); 134 } 135 136 int security_capget(struct task_struct *target, 137 kernel_cap_t *effective, 138 kernel_cap_t *inheritable, 139 kernel_cap_t *permitted) 140 { 141 return security_ops->capget(target, effective, inheritable, permitted); 142 } 143 144 int security_capset_check(struct task_struct *target, 145 kernel_cap_t *effective, 146 kernel_cap_t *inheritable, 147 kernel_cap_t *permitted) 148 { 149 return security_ops->capset_check(target, effective, inheritable, permitted); 150 } 151 152 void security_capset_set(struct task_struct *target, 153 kernel_cap_t *effective, 154 kernel_cap_t *inheritable, 155 kernel_cap_t *permitted) 156 { 157 security_ops->capset_set(target, effective, inheritable, permitted); 158 } 159 160 int security_capable(struct task_struct *tsk, int cap) 161 { 162 return security_ops->capable(tsk, cap); 163 } 164 165 int security_acct(struct file *file) 166 { 167 return security_ops->acct(file); 168 } 169 170 int security_sysctl(struct ctl_table *table, int op) 171 { 172 return security_ops->sysctl(table, op); 173 } 174 175 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 176 { 177 return security_ops->quotactl(cmds, type, id, sb); 178 } 179 180 int security_quota_on(struct dentry *dentry) 181 { 182 return security_ops->quota_on(dentry); 183 } 184 185 int security_syslog(int type) 186 { 187 return security_ops->syslog(type); 188 } 189 190 int security_settime(struct timespec *ts, struct timezone *tz) 191 { 192 return security_ops->settime(ts, tz); 193 } 194 195 int security_vm_enough_memory(long pages) 196 { 197 return security_ops->vm_enough_memory(current->mm, pages); 198 } 199 200 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 201 { 202 return security_ops->vm_enough_memory(mm, pages); 203 } 204 205 int security_bprm_alloc(struct linux_binprm *bprm) 206 { 207 return security_ops->bprm_alloc_security(bprm); 208 } 209 210 void security_bprm_free(struct linux_binprm *bprm) 211 { 212 security_ops->bprm_free_security(bprm); 213 } 214 215 void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe) 216 { 217 security_ops->bprm_apply_creds(bprm, unsafe); 218 } 219 220 void security_bprm_post_apply_creds(struct linux_binprm *bprm) 221 { 222 security_ops->bprm_post_apply_creds(bprm); 223 } 224 225 int security_bprm_set(struct linux_binprm *bprm) 226 { 227 return security_ops->bprm_set_security(bprm); 228 } 229 230 int security_bprm_check(struct linux_binprm *bprm) 231 { 232 return security_ops->bprm_check_security(bprm); 233 } 234 235 int security_bprm_secureexec(struct linux_binprm *bprm) 236 { 237 return security_ops->bprm_secureexec(bprm); 238 } 239 240 int security_sb_alloc(struct super_block *sb) 241 { 242 return security_ops->sb_alloc_security(sb); 243 } 244 245 void security_sb_free(struct super_block *sb) 246 { 247 security_ops->sb_free_security(sb); 248 } 249 250 int security_sb_copy_data(char *orig, char *copy) 251 { 252 return security_ops->sb_copy_data(orig, copy); 253 } 254 EXPORT_SYMBOL(security_sb_copy_data); 255 256 int security_sb_kern_mount(struct super_block *sb, void *data) 257 { 258 return security_ops->sb_kern_mount(sb, data); 259 } 260 261 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 262 { 263 return security_ops->sb_show_options(m, sb); 264 } 265 266 int security_sb_statfs(struct dentry *dentry) 267 { 268 return security_ops->sb_statfs(dentry); 269 } 270 271 int security_sb_mount(char *dev_name, struct path *path, 272 char *type, unsigned long flags, void *data) 273 { 274 return security_ops->sb_mount(dev_name, path, type, flags, data); 275 } 276 277 int security_sb_check_sb(struct vfsmount *mnt, struct path *path) 278 { 279 return security_ops->sb_check_sb(mnt, path); 280 } 281 282 int security_sb_umount(struct vfsmount *mnt, int flags) 283 { 284 return security_ops->sb_umount(mnt, flags); 285 } 286 287 void security_sb_umount_close(struct vfsmount *mnt) 288 { 289 security_ops->sb_umount_close(mnt); 290 } 291 292 void security_sb_umount_busy(struct vfsmount *mnt) 293 { 294 security_ops->sb_umount_busy(mnt); 295 } 296 297 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data) 298 { 299 security_ops->sb_post_remount(mnt, flags, data); 300 } 301 302 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint) 303 { 304 security_ops->sb_post_addmount(mnt, mountpoint); 305 } 306 307 int security_sb_pivotroot(struct path *old_path, struct path *new_path) 308 { 309 return security_ops->sb_pivotroot(old_path, new_path); 310 } 311 312 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path) 313 { 314 security_ops->sb_post_pivotroot(old_path, new_path); 315 } 316 317 int security_sb_set_mnt_opts(struct super_block *sb, 318 struct security_mnt_opts *opts) 319 { 320 return security_ops->sb_set_mnt_opts(sb, opts); 321 } 322 EXPORT_SYMBOL(security_sb_set_mnt_opts); 323 324 void security_sb_clone_mnt_opts(const struct super_block *oldsb, 325 struct super_block *newsb) 326 { 327 security_ops->sb_clone_mnt_opts(oldsb, newsb); 328 } 329 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 330 331 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) 332 { 333 return security_ops->sb_parse_opts_str(options, opts); 334 } 335 EXPORT_SYMBOL(security_sb_parse_opts_str); 336 337 int security_inode_alloc(struct inode *inode) 338 { 339 inode->i_security = NULL; 340 return security_ops->inode_alloc_security(inode); 341 } 342 343 void security_inode_free(struct inode *inode) 344 { 345 security_ops->inode_free_security(inode); 346 } 347 348 int security_inode_init_security(struct inode *inode, struct inode *dir, 349 char **name, void **value, size_t *len) 350 { 351 if (unlikely(IS_PRIVATE(inode))) 352 return -EOPNOTSUPP; 353 return security_ops->inode_init_security(inode, dir, name, value, len); 354 } 355 EXPORT_SYMBOL(security_inode_init_security); 356 357 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode) 358 { 359 if (unlikely(IS_PRIVATE(dir))) 360 return 0; 361 return security_ops->inode_create(dir, dentry, mode); 362 } 363 364 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 365 struct dentry *new_dentry) 366 { 367 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 368 return 0; 369 return security_ops->inode_link(old_dentry, dir, new_dentry); 370 } 371 372 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 373 { 374 if (unlikely(IS_PRIVATE(dentry->d_inode))) 375 return 0; 376 return security_ops->inode_unlink(dir, dentry); 377 } 378 379 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 380 const char *old_name) 381 { 382 if (unlikely(IS_PRIVATE(dir))) 383 return 0; 384 return security_ops->inode_symlink(dir, dentry, old_name); 385 } 386 387 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode) 388 { 389 if (unlikely(IS_PRIVATE(dir))) 390 return 0; 391 return security_ops->inode_mkdir(dir, dentry, mode); 392 } 393 394 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 395 { 396 if (unlikely(IS_PRIVATE(dentry->d_inode))) 397 return 0; 398 return security_ops->inode_rmdir(dir, dentry); 399 } 400 401 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 402 { 403 if (unlikely(IS_PRIVATE(dir))) 404 return 0; 405 return security_ops->inode_mknod(dir, dentry, mode, dev); 406 } 407 408 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 409 struct inode *new_dir, struct dentry *new_dentry) 410 { 411 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 412 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 413 return 0; 414 return security_ops->inode_rename(old_dir, old_dentry, 415 new_dir, new_dentry); 416 } 417 418 int security_inode_readlink(struct dentry *dentry) 419 { 420 if (unlikely(IS_PRIVATE(dentry->d_inode))) 421 return 0; 422 return security_ops->inode_readlink(dentry); 423 } 424 425 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd) 426 { 427 if (unlikely(IS_PRIVATE(dentry->d_inode))) 428 return 0; 429 return security_ops->inode_follow_link(dentry, nd); 430 } 431 432 int security_inode_permission(struct inode *inode, int mask) 433 { 434 if (unlikely(IS_PRIVATE(inode))) 435 return 0; 436 return security_ops->inode_permission(inode, mask); 437 } 438 439 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 440 { 441 if (unlikely(IS_PRIVATE(dentry->d_inode))) 442 return 0; 443 return security_ops->inode_setattr(dentry, attr); 444 } 445 EXPORT_SYMBOL_GPL(security_inode_setattr); 446 447 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 448 { 449 if (unlikely(IS_PRIVATE(dentry->d_inode))) 450 return 0; 451 return security_ops->inode_getattr(mnt, dentry); 452 } 453 454 void security_inode_delete(struct inode *inode) 455 { 456 if (unlikely(IS_PRIVATE(inode))) 457 return; 458 security_ops->inode_delete(inode); 459 } 460 461 int security_inode_setxattr(struct dentry *dentry, const char *name, 462 const void *value, size_t size, int flags) 463 { 464 if (unlikely(IS_PRIVATE(dentry->d_inode))) 465 return 0; 466 return security_ops->inode_setxattr(dentry, name, value, size, flags); 467 } 468 469 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 470 const void *value, size_t size, int flags) 471 { 472 if (unlikely(IS_PRIVATE(dentry->d_inode))) 473 return; 474 security_ops->inode_post_setxattr(dentry, name, value, size, flags); 475 } 476 477 int security_inode_getxattr(struct dentry *dentry, const char *name) 478 { 479 if (unlikely(IS_PRIVATE(dentry->d_inode))) 480 return 0; 481 return security_ops->inode_getxattr(dentry, name); 482 } 483 484 int security_inode_listxattr(struct dentry *dentry) 485 { 486 if (unlikely(IS_PRIVATE(dentry->d_inode))) 487 return 0; 488 return security_ops->inode_listxattr(dentry); 489 } 490 491 int security_inode_removexattr(struct dentry *dentry, const char *name) 492 { 493 if (unlikely(IS_PRIVATE(dentry->d_inode))) 494 return 0; 495 return security_ops->inode_removexattr(dentry, name); 496 } 497 498 int security_inode_need_killpriv(struct dentry *dentry) 499 { 500 return security_ops->inode_need_killpriv(dentry); 501 } 502 503 int security_inode_killpriv(struct dentry *dentry) 504 { 505 return security_ops->inode_killpriv(dentry); 506 } 507 508 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 509 { 510 if (unlikely(IS_PRIVATE(inode))) 511 return 0; 512 return security_ops->inode_getsecurity(inode, name, buffer, alloc); 513 } 514 515 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 516 { 517 if (unlikely(IS_PRIVATE(inode))) 518 return 0; 519 return security_ops->inode_setsecurity(inode, name, value, size, flags); 520 } 521 522 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 523 { 524 if (unlikely(IS_PRIVATE(inode))) 525 return 0; 526 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 527 } 528 529 void security_inode_getsecid(const struct inode *inode, u32 *secid) 530 { 531 security_ops->inode_getsecid(inode, secid); 532 } 533 534 int security_file_permission(struct file *file, int mask) 535 { 536 return security_ops->file_permission(file, mask); 537 } 538 539 int security_file_alloc(struct file *file) 540 { 541 return security_ops->file_alloc_security(file); 542 } 543 544 void security_file_free(struct file *file) 545 { 546 security_ops->file_free_security(file); 547 } 548 549 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 550 { 551 return security_ops->file_ioctl(file, cmd, arg); 552 } 553 554 int security_file_mmap(struct file *file, unsigned long reqprot, 555 unsigned long prot, unsigned long flags, 556 unsigned long addr, unsigned long addr_only) 557 { 558 return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only); 559 } 560 561 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 562 unsigned long prot) 563 { 564 return security_ops->file_mprotect(vma, reqprot, prot); 565 } 566 567 int security_file_lock(struct file *file, unsigned int cmd) 568 { 569 return security_ops->file_lock(file, cmd); 570 } 571 572 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 573 { 574 return security_ops->file_fcntl(file, cmd, arg); 575 } 576 577 int security_file_set_fowner(struct file *file) 578 { 579 return security_ops->file_set_fowner(file); 580 } 581 582 int security_file_send_sigiotask(struct task_struct *tsk, 583 struct fown_struct *fown, int sig) 584 { 585 return security_ops->file_send_sigiotask(tsk, fown, sig); 586 } 587 588 int security_file_receive(struct file *file) 589 { 590 return security_ops->file_receive(file); 591 } 592 593 int security_dentry_open(struct file *file) 594 { 595 return security_ops->dentry_open(file); 596 } 597 598 int security_task_create(unsigned long clone_flags) 599 { 600 return security_ops->task_create(clone_flags); 601 } 602 603 int security_task_alloc(struct task_struct *p) 604 { 605 return security_ops->task_alloc_security(p); 606 } 607 608 void security_task_free(struct task_struct *p) 609 { 610 security_ops->task_free_security(p); 611 } 612 613 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags) 614 { 615 return security_ops->task_setuid(id0, id1, id2, flags); 616 } 617 618 int security_task_post_setuid(uid_t old_ruid, uid_t old_euid, 619 uid_t old_suid, int flags) 620 { 621 return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags); 622 } 623 624 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags) 625 { 626 return security_ops->task_setgid(id0, id1, id2, flags); 627 } 628 629 int security_task_setpgid(struct task_struct *p, pid_t pgid) 630 { 631 return security_ops->task_setpgid(p, pgid); 632 } 633 634 int security_task_getpgid(struct task_struct *p) 635 { 636 return security_ops->task_getpgid(p); 637 } 638 639 int security_task_getsid(struct task_struct *p) 640 { 641 return security_ops->task_getsid(p); 642 } 643 644 void security_task_getsecid(struct task_struct *p, u32 *secid) 645 { 646 security_ops->task_getsecid(p, secid); 647 } 648 EXPORT_SYMBOL(security_task_getsecid); 649 650 int security_task_setgroups(struct group_info *group_info) 651 { 652 return security_ops->task_setgroups(group_info); 653 } 654 655 int security_task_setnice(struct task_struct *p, int nice) 656 { 657 return security_ops->task_setnice(p, nice); 658 } 659 660 int security_task_setioprio(struct task_struct *p, int ioprio) 661 { 662 return security_ops->task_setioprio(p, ioprio); 663 } 664 665 int security_task_getioprio(struct task_struct *p) 666 { 667 return security_ops->task_getioprio(p); 668 } 669 670 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim) 671 { 672 return security_ops->task_setrlimit(resource, new_rlim); 673 } 674 675 int security_task_setscheduler(struct task_struct *p, 676 int policy, struct sched_param *lp) 677 { 678 return security_ops->task_setscheduler(p, policy, lp); 679 } 680 681 int security_task_getscheduler(struct task_struct *p) 682 { 683 return security_ops->task_getscheduler(p); 684 } 685 686 int security_task_movememory(struct task_struct *p) 687 { 688 return security_ops->task_movememory(p); 689 } 690 691 int security_task_kill(struct task_struct *p, struct siginfo *info, 692 int sig, u32 secid) 693 { 694 return security_ops->task_kill(p, info, sig, secid); 695 } 696 697 int security_task_wait(struct task_struct *p) 698 { 699 return security_ops->task_wait(p); 700 } 701 702 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 703 unsigned long arg4, unsigned long arg5, long *rc_p) 704 { 705 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p); 706 } 707 708 void security_task_reparent_to_init(struct task_struct *p) 709 { 710 security_ops->task_reparent_to_init(p); 711 } 712 713 void security_task_to_inode(struct task_struct *p, struct inode *inode) 714 { 715 security_ops->task_to_inode(p, inode); 716 } 717 718 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 719 { 720 return security_ops->ipc_permission(ipcp, flag); 721 } 722 723 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 724 { 725 security_ops->ipc_getsecid(ipcp, secid); 726 } 727 728 int security_msg_msg_alloc(struct msg_msg *msg) 729 { 730 return security_ops->msg_msg_alloc_security(msg); 731 } 732 733 void security_msg_msg_free(struct msg_msg *msg) 734 { 735 security_ops->msg_msg_free_security(msg); 736 } 737 738 int security_msg_queue_alloc(struct msg_queue *msq) 739 { 740 return security_ops->msg_queue_alloc_security(msq); 741 } 742 743 void security_msg_queue_free(struct msg_queue *msq) 744 { 745 security_ops->msg_queue_free_security(msq); 746 } 747 748 int security_msg_queue_associate(struct msg_queue *msq, int msqflg) 749 { 750 return security_ops->msg_queue_associate(msq, msqflg); 751 } 752 753 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) 754 { 755 return security_ops->msg_queue_msgctl(msq, cmd); 756 } 757 758 int security_msg_queue_msgsnd(struct msg_queue *msq, 759 struct msg_msg *msg, int msqflg) 760 { 761 return security_ops->msg_queue_msgsnd(msq, msg, msqflg); 762 } 763 764 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 765 struct task_struct *target, long type, int mode) 766 { 767 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode); 768 } 769 770 int security_shm_alloc(struct shmid_kernel *shp) 771 { 772 return security_ops->shm_alloc_security(shp); 773 } 774 775 void security_shm_free(struct shmid_kernel *shp) 776 { 777 security_ops->shm_free_security(shp); 778 } 779 780 int security_shm_associate(struct shmid_kernel *shp, int shmflg) 781 { 782 return security_ops->shm_associate(shp, shmflg); 783 } 784 785 int security_shm_shmctl(struct shmid_kernel *shp, int cmd) 786 { 787 return security_ops->shm_shmctl(shp, cmd); 788 } 789 790 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg) 791 { 792 return security_ops->shm_shmat(shp, shmaddr, shmflg); 793 } 794 795 int security_sem_alloc(struct sem_array *sma) 796 { 797 return security_ops->sem_alloc_security(sma); 798 } 799 800 void security_sem_free(struct sem_array *sma) 801 { 802 security_ops->sem_free_security(sma); 803 } 804 805 int security_sem_associate(struct sem_array *sma, int semflg) 806 { 807 return security_ops->sem_associate(sma, semflg); 808 } 809 810 int security_sem_semctl(struct sem_array *sma, int cmd) 811 { 812 return security_ops->sem_semctl(sma, cmd); 813 } 814 815 int security_sem_semop(struct sem_array *sma, struct sembuf *sops, 816 unsigned nsops, int alter) 817 { 818 return security_ops->sem_semop(sma, sops, nsops, alter); 819 } 820 821 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 822 { 823 if (unlikely(inode && IS_PRIVATE(inode))) 824 return; 825 security_ops->d_instantiate(dentry, inode); 826 } 827 EXPORT_SYMBOL(security_d_instantiate); 828 829 int security_getprocattr(struct task_struct *p, char *name, char **value) 830 { 831 return security_ops->getprocattr(p, name, value); 832 } 833 834 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 835 { 836 return security_ops->setprocattr(p, name, value, size); 837 } 838 839 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 840 { 841 return security_ops->netlink_send(sk, skb); 842 } 843 844 int security_netlink_recv(struct sk_buff *skb, int cap) 845 { 846 return security_ops->netlink_recv(skb, cap); 847 } 848 EXPORT_SYMBOL(security_netlink_recv); 849 850 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 851 { 852 return security_ops->secid_to_secctx(secid, secdata, seclen); 853 } 854 EXPORT_SYMBOL(security_secid_to_secctx); 855 856 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 857 { 858 return security_ops->secctx_to_secid(secdata, seclen, secid); 859 } 860 EXPORT_SYMBOL(security_secctx_to_secid); 861 862 void security_release_secctx(char *secdata, u32 seclen) 863 { 864 security_ops->release_secctx(secdata, seclen); 865 } 866 EXPORT_SYMBOL(security_release_secctx); 867 868 #ifdef CONFIG_SECURITY_NETWORK 869 870 int security_unix_stream_connect(struct socket *sock, struct socket *other, 871 struct sock *newsk) 872 { 873 return security_ops->unix_stream_connect(sock, other, newsk); 874 } 875 EXPORT_SYMBOL(security_unix_stream_connect); 876 877 int security_unix_may_send(struct socket *sock, struct socket *other) 878 { 879 return security_ops->unix_may_send(sock, other); 880 } 881 EXPORT_SYMBOL(security_unix_may_send); 882 883 int security_socket_create(int family, int type, int protocol, int kern) 884 { 885 return security_ops->socket_create(family, type, protocol, kern); 886 } 887 888 int security_socket_post_create(struct socket *sock, int family, 889 int type, int protocol, int kern) 890 { 891 return security_ops->socket_post_create(sock, family, type, 892 protocol, kern); 893 } 894 895 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 896 { 897 return security_ops->socket_bind(sock, address, addrlen); 898 } 899 900 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 901 { 902 return security_ops->socket_connect(sock, address, addrlen); 903 } 904 905 int security_socket_listen(struct socket *sock, int backlog) 906 { 907 return security_ops->socket_listen(sock, backlog); 908 } 909 910 int security_socket_accept(struct socket *sock, struct socket *newsock) 911 { 912 return security_ops->socket_accept(sock, newsock); 913 } 914 915 void security_socket_post_accept(struct socket *sock, struct socket *newsock) 916 { 917 security_ops->socket_post_accept(sock, newsock); 918 } 919 920 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 921 { 922 return security_ops->socket_sendmsg(sock, msg, size); 923 } 924 925 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 926 int size, int flags) 927 { 928 return security_ops->socket_recvmsg(sock, msg, size, flags); 929 } 930 931 int security_socket_getsockname(struct socket *sock) 932 { 933 return security_ops->socket_getsockname(sock); 934 } 935 936 int security_socket_getpeername(struct socket *sock) 937 { 938 return security_ops->socket_getpeername(sock); 939 } 940 941 int security_socket_getsockopt(struct socket *sock, int level, int optname) 942 { 943 return security_ops->socket_getsockopt(sock, level, optname); 944 } 945 946 int security_socket_setsockopt(struct socket *sock, int level, int optname) 947 { 948 return security_ops->socket_setsockopt(sock, level, optname); 949 } 950 951 int security_socket_shutdown(struct socket *sock, int how) 952 { 953 return security_ops->socket_shutdown(sock, how); 954 } 955 956 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 957 { 958 return security_ops->socket_sock_rcv_skb(sk, skb); 959 } 960 EXPORT_SYMBOL(security_sock_rcv_skb); 961 962 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 963 int __user *optlen, unsigned len) 964 { 965 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 966 } 967 968 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 969 { 970 return security_ops->socket_getpeersec_dgram(sock, skb, secid); 971 } 972 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 973 974 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 975 { 976 return security_ops->sk_alloc_security(sk, family, priority); 977 } 978 979 void security_sk_free(struct sock *sk) 980 { 981 security_ops->sk_free_security(sk); 982 } 983 984 void security_sk_clone(const struct sock *sk, struct sock *newsk) 985 { 986 security_ops->sk_clone_security(sk, newsk); 987 } 988 989 void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 990 { 991 security_ops->sk_getsecid(sk, &fl->secid); 992 } 993 EXPORT_SYMBOL(security_sk_classify_flow); 994 995 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 996 { 997 security_ops->req_classify_flow(req, fl); 998 } 999 EXPORT_SYMBOL(security_req_classify_flow); 1000 1001 void security_sock_graft(struct sock *sk, struct socket *parent) 1002 { 1003 security_ops->sock_graft(sk, parent); 1004 } 1005 EXPORT_SYMBOL(security_sock_graft); 1006 1007 int security_inet_conn_request(struct sock *sk, 1008 struct sk_buff *skb, struct request_sock *req) 1009 { 1010 return security_ops->inet_conn_request(sk, skb, req); 1011 } 1012 EXPORT_SYMBOL(security_inet_conn_request); 1013 1014 void security_inet_csk_clone(struct sock *newsk, 1015 const struct request_sock *req) 1016 { 1017 security_ops->inet_csk_clone(newsk, req); 1018 } 1019 1020 void security_inet_conn_established(struct sock *sk, 1021 struct sk_buff *skb) 1022 { 1023 security_ops->inet_conn_established(sk, skb); 1024 } 1025 1026 #endif /* CONFIG_SECURITY_NETWORK */ 1027 1028 #ifdef CONFIG_SECURITY_NETWORK_XFRM 1029 1030 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx) 1031 { 1032 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx); 1033 } 1034 EXPORT_SYMBOL(security_xfrm_policy_alloc); 1035 1036 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 1037 struct xfrm_sec_ctx **new_ctxp) 1038 { 1039 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp); 1040 } 1041 1042 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 1043 { 1044 security_ops->xfrm_policy_free_security(ctx); 1045 } 1046 EXPORT_SYMBOL(security_xfrm_policy_free); 1047 1048 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 1049 { 1050 return security_ops->xfrm_policy_delete_security(ctx); 1051 } 1052 1053 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 1054 { 1055 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0); 1056 } 1057 EXPORT_SYMBOL(security_xfrm_state_alloc); 1058 1059 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1060 struct xfrm_sec_ctx *polsec, u32 secid) 1061 { 1062 if (!polsec) 1063 return 0; 1064 /* 1065 * We want the context to be taken from secid which is usually 1066 * from the sock. 1067 */ 1068 return security_ops->xfrm_state_alloc_security(x, NULL, secid); 1069 } 1070 1071 int security_xfrm_state_delete(struct xfrm_state *x) 1072 { 1073 return security_ops->xfrm_state_delete_security(x); 1074 } 1075 EXPORT_SYMBOL(security_xfrm_state_delete); 1076 1077 void security_xfrm_state_free(struct xfrm_state *x) 1078 { 1079 security_ops->xfrm_state_free_security(x); 1080 } 1081 1082 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 1083 { 1084 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir); 1085 } 1086 1087 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1088 struct xfrm_policy *xp, struct flowi *fl) 1089 { 1090 return security_ops->xfrm_state_pol_flow_match(x, xp, fl); 1091 } 1092 1093 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1094 { 1095 return security_ops->xfrm_decode_session(skb, secid, 1); 1096 } 1097 1098 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1099 { 1100 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0); 1101 1102 BUG_ON(rc); 1103 } 1104 EXPORT_SYMBOL(security_skb_classify_flow); 1105 1106 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1107 1108 #ifdef CONFIG_KEYS 1109 1110 int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags) 1111 { 1112 return security_ops->key_alloc(key, tsk, flags); 1113 } 1114 1115 void security_key_free(struct key *key) 1116 { 1117 security_ops->key_free(key); 1118 } 1119 1120 int security_key_permission(key_ref_t key_ref, 1121 struct task_struct *context, key_perm_t perm) 1122 { 1123 return security_ops->key_permission(key_ref, context, perm); 1124 } 1125 1126 int security_key_getsecurity(struct key *key, char **_buffer) 1127 { 1128 return security_ops->key_getsecurity(key, _buffer); 1129 } 1130 1131 #endif /* CONFIG_KEYS */ 1132 1133 #ifdef CONFIG_AUDIT 1134 1135 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 1136 { 1137 return security_ops->audit_rule_init(field, op, rulestr, lsmrule); 1138 } 1139 1140 int security_audit_rule_known(struct audit_krule *krule) 1141 { 1142 return security_ops->audit_rule_known(krule); 1143 } 1144 1145 void security_audit_rule_free(void *lsmrule) 1146 { 1147 security_ops->audit_rule_free(lsmrule); 1148 } 1149 1150 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 1151 struct audit_context *actx) 1152 { 1153 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx); 1154 } 1155 1156 #endif /* CONFIG_AUDIT */ 1157