1 /* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/capability.h> 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/kernel.h> 18 #include <linux/security.h> 19 20 /* Boot-time LSM user choice */ 21 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1]; 22 23 /* things that live in capability.c */ 24 extern struct security_operations default_security_ops; 25 extern void security_fixup_ops(struct security_operations *ops); 26 27 struct security_operations *security_ops; /* Initialized to NULL */ 28 29 /* amount of vm to protect from userspace access */ 30 unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR; 31 32 static inline int verify(struct security_operations *ops) 33 { 34 /* verify the security_operations structure exists */ 35 if (!ops) 36 return -EINVAL; 37 security_fixup_ops(ops); 38 return 0; 39 } 40 41 static void __init do_security_initcalls(void) 42 { 43 initcall_t *call; 44 call = __security_initcall_start; 45 while (call < __security_initcall_end) { 46 (*call) (); 47 call++; 48 } 49 } 50 51 /** 52 * security_init - initializes the security framework 53 * 54 * This should be called early in the kernel initialization sequence. 55 */ 56 int __init security_init(void) 57 { 58 printk(KERN_INFO "Security Framework initialized\n"); 59 60 security_fixup_ops(&default_security_ops); 61 security_ops = &default_security_ops; 62 do_security_initcalls(); 63 64 return 0; 65 } 66 67 /* Save user chosen LSM */ 68 static int __init choose_lsm(char *str) 69 { 70 strncpy(chosen_lsm, str, SECURITY_NAME_MAX); 71 return 1; 72 } 73 __setup("security=", choose_lsm); 74 75 /** 76 * security_module_enable - Load given security module on boot ? 77 * @ops: a pointer to the struct security_operations that is to be checked. 78 * 79 * Each LSM must pass this method before registering its own operations 80 * to avoid security registration races. This method may also be used 81 * to check if your LSM is currently loaded during kernel initialization. 82 * 83 * Return true if: 84 * -The passed LSM is the one chosen by user at boot time, 85 * -or user didn't specify a specific LSM and we're the first to ask 86 * for registration permission, 87 * -or the passed LSM is currently loaded. 88 * Otherwise, return false. 89 */ 90 int __init security_module_enable(struct security_operations *ops) 91 { 92 if (!*chosen_lsm) 93 strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX); 94 else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX)) 95 return 0; 96 97 return 1; 98 } 99 100 /** 101 * register_security - registers a security framework with the kernel 102 * @ops: a pointer to the struct security_options that is to be registered 103 * 104 * This function allows a security module to register itself with the 105 * kernel security subsystem. Some rudimentary checking is done on the @ops 106 * value passed to this function. You'll need to check first if your LSM 107 * is allowed to register its @ops by calling security_module_enable(@ops). 108 * 109 * If there is already a security module registered with the kernel, 110 * an error will be returned. Otherwise %0 is returned on success. 111 */ 112 int register_security(struct security_operations *ops) 113 { 114 if (verify(ops)) { 115 printk(KERN_DEBUG "%s could not verify " 116 "security_operations structure.\n", __func__); 117 return -EINVAL; 118 } 119 120 if (security_ops != &default_security_ops) 121 return -EAGAIN; 122 123 security_ops = ops; 124 125 return 0; 126 } 127 128 /* Security operations */ 129 130 int security_ptrace_may_access(struct task_struct *child, unsigned int mode) 131 { 132 return security_ops->ptrace_may_access(child, mode); 133 } 134 135 int security_ptrace_traceme(struct task_struct *parent) 136 { 137 return security_ops->ptrace_traceme(parent); 138 } 139 140 int security_capget(struct task_struct *target, 141 kernel_cap_t *effective, 142 kernel_cap_t *inheritable, 143 kernel_cap_t *permitted) 144 { 145 return security_ops->capget(target, effective, inheritable, permitted); 146 } 147 148 int security_capset_check(struct task_struct *target, 149 kernel_cap_t *effective, 150 kernel_cap_t *inheritable, 151 kernel_cap_t *permitted) 152 { 153 return security_ops->capset_check(target, effective, inheritable, permitted); 154 } 155 156 void security_capset_set(struct task_struct *target, 157 kernel_cap_t *effective, 158 kernel_cap_t *inheritable, 159 kernel_cap_t *permitted) 160 { 161 security_ops->capset_set(target, effective, inheritable, permitted); 162 } 163 164 int security_capable(struct task_struct *tsk, int cap) 165 { 166 return security_ops->capable(tsk, cap); 167 } 168 169 int security_acct(struct file *file) 170 { 171 return security_ops->acct(file); 172 } 173 174 int security_sysctl(struct ctl_table *table, int op) 175 { 176 return security_ops->sysctl(table, op); 177 } 178 179 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 180 { 181 return security_ops->quotactl(cmds, type, id, sb); 182 } 183 184 int security_quota_on(struct dentry *dentry) 185 { 186 return security_ops->quota_on(dentry); 187 } 188 189 int security_syslog(int type) 190 { 191 return security_ops->syslog(type); 192 } 193 194 int security_settime(struct timespec *ts, struct timezone *tz) 195 { 196 return security_ops->settime(ts, tz); 197 } 198 199 int security_vm_enough_memory(long pages) 200 { 201 return security_ops->vm_enough_memory(current->mm, pages); 202 } 203 204 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 205 { 206 return security_ops->vm_enough_memory(mm, pages); 207 } 208 209 int security_bprm_alloc(struct linux_binprm *bprm) 210 { 211 return security_ops->bprm_alloc_security(bprm); 212 } 213 214 void security_bprm_free(struct linux_binprm *bprm) 215 { 216 security_ops->bprm_free_security(bprm); 217 } 218 219 void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe) 220 { 221 security_ops->bprm_apply_creds(bprm, unsafe); 222 } 223 224 void security_bprm_post_apply_creds(struct linux_binprm *bprm) 225 { 226 security_ops->bprm_post_apply_creds(bprm); 227 } 228 229 int security_bprm_set(struct linux_binprm *bprm) 230 { 231 return security_ops->bprm_set_security(bprm); 232 } 233 234 int security_bprm_check(struct linux_binprm *bprm) 235 { 236 return security_ops->bprm_check_security(bprm); 237 } 238 239 int security_bprm_secureexec(struct linux_binprm *bprm) 240 { 241 return security_ops->bprm_secureexec(bprm); 242 } 243 244 int security_sb_alloc(struct super_block *sb) 245 { 246 return security_ops->sb_alloc_security(sb); 247 } 248 249 void security_sb_free(struct super_block *sb) 250 { 251 security_ops->sb_free_security(sb); 252 } 253 254 int security_sb_copy_data(char *orig, char *copy) 255 { 256 return security_ops->sb_copy_data(orig, copy); 257 } 258 EXPORT_SYMBOL(security_sb_copy_data); 259 260 int security_sb_kern_mount(struct super_block *sb, void *data) 261 { 262 return security_ops->sb_kern_mount(sb, data); 263 } 264 265 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 266 { 267 return security_ops->sb_show_options(m, sb); 268 } 269 270 int security_sb_statfs(struct dentry *dentry) 271 { 272 return security_ops->sb_statfs(dentry); 273 } 274 275 int security_sb_mount(char *dev_name, struct path *path, 276 char *type, unsigned long flags, void *data) 277 { 278 return security_ops->sb_mount(dev_name, path, type, flags, data); 279 } 280 281 int security_sb_check_sb(struct vfsmount *mnt, struct path *path) 282 { 283 return security_ops->sb_check_sb(mnt, path); 284 } 285 286 int security_sb_umount(struct vfsmount *mnt, int flags) 287 { 288 return security_ops->sb_umount(mnt, flags); 289 } 290 291 void security_sb_umount_close(struct vfsmount *mnt) 292 { 293 security_ops->sb_umount_close(mnt); 294 } 295 296 void security_sb_umount_busy(struct vfsmount *mnt) 297 { 298 security_ops->sb_umount_busy(mnt); 299 } 300 301 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data) 302 { 303 security_ops->sb_post_remount(mnt, flags, data); 304 } 305 306 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint) 307 { 308 security_ops->sb_post_addmount(mnt, mountpoint); 309 } 310 311 int security_sb_pivotroot(struct path *old_path, struct path *new_path) 312 { 313 return security_ops->sb_pivotroot(old_path, new_path); 314 } 315 316 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path) 317 { 318 security_ops->sb_post_pivotroot(old_path, new_path); 319 } 320 321 int security_sb_set_mnt_opts(struct super_block *sb, 322 struct security_mnt_opts *opts) 323 { 324 return security_ops->sb_set_mnt_opts(sb, opts); 325 } 326 EXPORT_SYMBOL(security_sb_set_mnt_opts); 327 328 void security_sb_clone_mnt_opts(const struct super_block *oldsb, 329 struct super_block *newsb) 330 { 331 security_ops->sb_clone_mnt_opts(oldsb, newsb); 332 } 333 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 334 335 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) 336 { 337 return security_ops->sb_parse_opts_str(options, opts); 338 } 339 EXPORT_SYMBOL(security_sb_parse_opts_str); 340 341 int security_inode_alloc(struct inode *inode) 342 { 343 inode->i_security = NULL; 344 return security_ops->inode_alloc_security(inode); 345 } 346 347 void security_inode_free(struct inode *inode) 348 { 349 security_ops->inode_free_security(inode); 350 } 351 352 int security_inode_init_security(struct inode *inode, struct inode *dir, 353 char **name, void **value, size_t *len) 354 { 355 if (unlikely(IS_PRIVATE(inode))) 356 return -EOPNOTSUPP; 357 return security_ops->inode_init_security(inode, dir, name, value, len); 358 } 359 EXPORT_SYMBOL(security_inode_init_security); 360 361 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode) 362 { 363 if (unlikely(IS_PRIVATE(dir))) 364 return 0; 365 return security_ops->inode_create(dir, dentry, mode); 366 } 367 368 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 369 struct dentry *new_dentry) 370 { 371 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 372 return 0; 373 return security_ops->inode_link(old_dentry, dir, new_dentry); 374 } 375 376 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 377 { 378 if (unlikely(IS_PRIVATE(dentry->d_inode))) 379 return 0; 380 return security_ops->inode_unlink(dir, dentry); 381 } 382 383 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 384 const char *old_name) 385 { 386 if (unlikely(IS_PRIVATE(dir))) 387 return 0; 388 return security_ops->inode_symlink(dir, dentry, old_name); 389 } 390 391 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode) 392 { 393 if (unlikely(IS_PRIVATE(dir))) 394 return 0; 395 return security_ops->inode_mkdir(dir, dentry, mode); 396 } 397 398 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 399 { 400 if (unlikely(IS_PRIVATE(dentry->d_inode))) 401 return 0; 402 return security_ops->inode_rmdir(dir, dentry); 403 } 404 405 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 406 { 407 if (unlikely(IS_PRIVATE(dir))) 408 return 0; 409 return security_ops->inode_mknod(dir, dentry, mode, dev); 410 } 411 412 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 413 struct inode *new_dir, struct dentry *new_dentry) 414 { 415 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 416 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 417 return 0; 418 return security_ops->inode_rename(old_dir, old_dentry, 419 new_dir, new_dentry); 420 } 421 422 int security_inode_readlink(struct dentry *dentry) 423 { 424 if (unlikely(IS_PRIVATE(dentry->d_inode))) 425 return 0; 426 return security_ops->inode_readlink(dentry); 427 } 428 429 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd) 430 { 431 if (unlikely(IS_PRIVATE(dentry->d_inode))) 432 return 0; 433 return security_ops->inode_follow_link(dentry, nd); 434 } 435 436 int security_inode_permission(struct inode *inode, int mask) 437 { 438 if (unlikely(IS_PRIVATE(inode))) 439 return 0; 440 return security_ops->inode_permission(inode, mask); 441 } 442 443 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 444 { 445 if (unlikely(IS_PRIVATE(dentry->d_inode))) 446 return 0; 447 return security_ops->inode_setattr(dentry, attr); 448 } 449 EXPORT_SYMBOL_GPL(security_inode_setattr); 450 451 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 452 { 453 if (unlikely(IS_PRIVATE(dentry->d_inode))) 454 return 0; 455 return security_ops->inode_getattr(mnt, dentry); 456 } 457 458 void security_inode_delete(struct inode *inode) 459 { 460 if (unlikely(IS_PRIVATE(inode))) 461 return; 462 security_ops->inode_delete(inode); 463 } 464 465 int security_inode_setxattr(struct dentry *dentry, const char *name, 466 const void *value, size_t size, int flags) 467 { 468 if (unlikely(IS_PRIVATE(dentry->d_inode))) 469 return 0; 470 return security_ops->inode_setxattr(dentry, name, value, size, flags); 471 } 472 473 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 474 const void *value, size_t size, int flags) 475 { 476 if (unlikely(IS_PRIVATE(dentry->d_inode))) 477 return; 478 security_ops->inode_post_setxattr(dentry, name, value, size, flags); 479 } 480 481 int security_inode_getxattr(struct dentry *dentry, const char *name) 482 { 483 if (unlikely(IS_PRIVATE(dentry->d_inode))) 484 return 0; 485 return security_ops->inode_getxattr(dentry, name); 486 } 487 488 int security_inode_listxattr(struct dentry *dentry) 489 { 490 if (unlikely(IS_PRIVATE(dentry->d_inode))) 491 return 0; 492 return security_ops->inode_listxattr(dentry); 493 } 494 495 int security_inode_removexattr(struct dentry *dentry, const char *name) 496 { 497 if (unlikely(IS_PRIVATE(dentry->d_inode))) 498 return 0; 499 return security_ops->inode_removexattr(dentry, name); 500 } 501 502 int security_inode_need_killpriv(struct dentry *dentry) 503 { 504 return security_ops->inode_need_killpriv(dentry); 505 } 506 507 int security_inode_killpriv(struct dentry *dentry) 508 { 509 return security_ops->inode_killpriv(dentry); 510 } 511 512 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 513 { 514 if (unlikely(IS_PRIVATE(inode))) 515 return 0; 516 return security_ops->inode_getsecurity(inode, name, buffer, alloc); 517 } 518 519 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 520 { 521 if (unlikely(IS_PRIVATE(inode))) 522 return 0; 523 return security_ops->inode_setsecurity(inode, name, value, size, flags); 524 } 525 526 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 527 { 528 if (unlikely(IS_PRIVATE(inode))) 529 return 0; 530 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 531 } 532 533 void security_inode_getsecid(const struct inode *inode, u32 *secid) 534 { 535 security_ops->inode_getsecid(inode, secid); 536 } 537 538 int security_file_permission(struct file *file, int mask) 539 { 540 return security_ops->file_permission(file, mask); 541 } 542 543 int security_file_alloc(struct file *file) 544 { 545 return security_ops->file_alloc_security(file); 546 } 547 548 void security_file_free(struct file *file) 549 { 550 security_ops->file_free_security(file); 551 } 552 553 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 554 { 555 return security_ops->file_ioctl(file, cmd, arg); 556 } 557 558 int security_file_mmap(struct file *file, unsigned long reqprot, 559 unsigned long prot, unsigned long flags, 560 unsigned long addr, unsigned long addr_only) 561 { 562 return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only); 563 } 564 565 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 566 unsigned long prot) 567 { 568 return security_ops->file_mprotect(vma, reqprot, prot); 569 } 570 571 int security_file_lock(struct file *file, unsigned int cmd) 572 { 573 return security_ops->file_lock(file, cmd); 574 } 575 576 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 577 { 578 return security_ops->file_fcntl(file, cmd, arg); 579 } 580 581 int security_file_set_fowner(struct file *file) 582 { 583 return security_ops->file_set_fowner(file); 584 } 585 586 int security_file_send_sigiotask(struct task_struct *tsk, 587 struct fown_struct *fown, int sig) 588 { 589 return security_ops->file_send_sigiotask(tsk, fown, sig); 590 } 591 592 int security_file_receive(struct file *file) 593 { 594 return security_ops->file_receive(file); 595 } 596 597 int security_dentry_open(struct file *file) 598 { 599 return security_ops->dentry_open(file); 600 } 601 602 int security_task_create(unsigned long clone_flags) 603 { 604 return security_ops->task_create(clone_flags); 605 } 606 607 int security_task_alloc(struct task_struct *p) 608 { 609 return security_ops->task_alloc_security(p); 610 } 611 612 void security_task_free(struct task_struct *p) 613 { 614 security_ops->task_free_security(p); 615 } 616 617 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags) 618 { 619 return security_ops->task_setuid(id0, id1, id2, flags); 620 } 621 622 int security_task_post_setuid(uid_t old_ruid, uid_t old_euid, 623 uid_t old_suid, int flags) 624 { 625 return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags); 626 } 627 628 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags) 629 { 630 return security_ops->task_setgid(id0, id1, id2, flags); 631 } 632 633 int security_task_setpgid(struct task_struct *p, pid_t pgid) 634 { 635 return security_ops->task_setpgid(p, pgid); 636 } 637 638 int security_task_getpgid(struct task_struct *p) 639 { 640 return security_ops->task_getpgid(p); 641 } 642 643 int security_task_getsid(struct task_struct *p) 644 { 645 return security_ops->task_getsid(p); 646 } 647 648 void security_task_getsecid(struct task_struct *p, u32 *secid) 649 { 650 security_ops->task_getsecid(p, secid); 651 } 652 EXPORT_SYMBOL(security_task_getsecid); 653 654 int security_task_setgroups(struct group_info *group_info) 655 { 656 return security_ops->task_setgroups(group_info); 657 } 658 659 int security_task_setnice(struct task_struct *p, int nice) 660 { 661 return security_ops->task_setnice(p, nice); 662 } 663 664 int security_task_setioprio(struct task_struct *p, int ioprio) 665 { 666 return security_ops->task_setioprio(p, ioprio); 667 } 668 669 int security_task_getioprio(struct task_struct *p) 670 { 671 return security_ops->task_getioprio(p); 672 } 673 674 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim) 675 { 676 return security_ops->task_setrlimit(resource, new_rlim); 677 } 678 679 int security_task_setscheduler(struct task_struct *p, 680 int policy, struct sched_param *lp) 681 { 682 return security_ops->task_setscheduler(p, policy, lp); 683 } 684 685 int security_task_getscheduler(struct task_struct *p) 686 { 687 return security_ops->task_getscheduler(p); 688 } 689 690 int security_task_movememory(struct task_struct *p) 691 { 692 return security_ops->task_movememory(p); 693 } 694 695 int security_task_kill(struct task_struct *p, struct siginfo *info, 696 int sig, u32 secid) 697 { 698 return security_ops->task_kill(p, info, sig, secid); 699 } 700 701 int security_task_wait(struct task_struct *p) 702 { 703 return security_ops->task_wait(p); 704 } 705 706 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 707 unsigned long arg4, unsigned long arg5, long *rc_p) 708 { 709 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p); 710 } 711 712 void security_task_reparent_to_init(struct task_struct *p) 713 { 714 security_ops->task_reparent_to_init(p); 715 } 716 717 void security_task_to_inode(struct task_struct *p, struct inode *inode) 718 { 719 security_ops->task_to_inode(p, inode); 720 } 721 722 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 723 { 724 return security_ops->ipc_permission(ipcp, flag); 725 } 726 727 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 728 { 729 security_ops->ipc_getsecid(ipcp, secid); 730 } 731 732 int security_msg_msg_alloc(struct msg_msg *msg) 733 { 734 return security_ops->msg_msg_alloc_security(msg); 735 } 736 737 void security_msg_msg_free(struct msg_msg *msg) 738 { 739 security_ops->msg_msg_free_security(msg); 740 } 741 742 int security_msg_queue_alloc(struct msg_queue *msq) 743 { 744 return security_ops->msg_queue_alloc_security(msq); 745 } 746 747 void security_msg_queue_free(struct msg_queue *msq) 748 { 749 security_ops->msg_queue_free_security(msq); 750 } 751 752 int security_msg_queue_associate(struct msg_queue *msq, int msqflg) 753 { 754 return security_ops->msg_queue_associate(msq, msqflg); 755 } 756 757 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) 758 { 759 return security_ops->msg_queue_msgctl(msq, cmd); 760 } 761 762 int security_msg_queue_msgsnd(struct msg_queue *msq, 763 struct msg_msg *msg, int msqflg) 764 { 765 return security_ops->msg_queue_msgsnd(msq, msg, msqflg); 766 } 767 768 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 769 struct task_struct *target, long type, int mode) 770 { 771 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode); 772 } 773 774 int security_shm_alloc(struct shmid_kernel *shp) 775 { 776 return security_ops->shm_alloc_security(shp); 777 } 778 779 void security_shm_free(struct shmid_kernel *shp) 780 { 781 security_ops->shm_free_security(shp); 782 } 783 784 int security_shm_associate(struct shmid_kernel *shp, int shmflg) 785 { 786 return security_ops->shm_associate(shp, shmflg); 787 } 788 789 int security_shm_shmctl(struct shmid_kernel *shp, int cmd) 790 { 791 return security_ops->shm_shmctl(shp, cmd); 792 } 793 794 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg) 795 { 796 return security_ops->shm_shmat(shp, shmaddr, shmflg); 797 } 798 799 int security_sem_alloc(struct sem_array *sma) 800 { 801 return security_ops->sem_alloc_security(sma); 802 } 803 804 void security_sem_free(struct sem_array *sma) 805 { 806 security_ops->sem_free_security(sma); 807 } 808 809 int security_sem_associate(struct sem_array *sma, int semflg) 810 { 811 return security_ops->sem_associate(sma, semflg); 812 } 813 814 int security_sem_semctl(struct sem_array *sma, int cmd) 815 { 816 return security_ops->sem_semctl(sma, cmd); 817 } 818 819 int security_sem_semop(struct sem_array *sma, struct sembuf *sops, 820 unsigned nsops, int alter) 821 { 822 return security_ops->sem_semop(sma, sops, nsops, alter); 823 } 824 825 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 826 { 827 if (unlikely(inode && IS_PRIVATE(inode))) 828 return; 829 security_ops->d_instantiate(dentry, inode); 830 } 831 EXPORT_SYMBOL(security_d_instantiate); 832 833 int security_getprocattr(struct task_struct *p, char *name, char **value) 834 { 835 return security_ops->getprocattr(p, name, value); 836 } 837 838 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 839 { 840 return security_ops->setprocattr(p, name, value, size); 841 } 842 843 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 844 { 845 return security_ops->netlink_send(sk, skb); 846 } 847 848 int security_netlink_recv(struct sk_buff *skb, int cap) 849 { 850 return security_ops->netlink_recv(skb, cap); 851 } 852 EXPORT_SYMBOL(security_netlink_recv); 853 854 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 855 { 856 return security_ops->secid_to_secctx(secid, secdata, seclen); 857 } 858 EXPORT_SYMBOL(security_secid_to_secctx); 859 860 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 861 { 862 return security_ops->secctx_to_secid(secdata, seclen, secid); 863 } 864 EXPORT_SYMBOL(security_secctx_to_secid); 865 866 void security_release_secctx(char *secdata, u32 seclen) 867 { 868 security_ops->release_secctx(secdata, seclen); 869 } 870 EXPORT_SYMBOL(security_release_secctx); 871 872 #ifdef CONFIG_SECURITY_NETWORK 873 874 int security_unix_stream_connect(struct socket *sock, struct socket *other, 875 struct sock *newsk) 876 { 877 return security_ops->unix_stream_connect(sock, other, newsk); 878 } 879 EXPORT_SYMBOL(security_unix_stream_connect); 880 881 int security_unix_may_send(struct socket *sock, struct socket *other) 882 { 883 return security_ops->unix_may_send(sock, other); 884 } 885 EXPORT_SYMBOL(security_unix_may_send); 886 887 int security_socket_create(int family, int type, int protocol, int kern) 888 { 889 return security_ops->socket_create(family, type, protocol, kern); 890 } 891 892 int security_socket_post_create(struct socket *sock, int family, 893 int type, int protocol, int kern) 894 { 895 return security_ops->socket_post_create(sock, family, type, 896 protocol, kern); 897 } 898 899 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 900 { 901 return security_ops->socket_bind(sock, address, addrlen); 902 } 903 904 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 905 { 906 return security_ops->socket_connect(sock, address, addrlen); 907 } 908 909 int security_socket_listen(struct socket *sock, int backlog) 910 { 911 return security_ops->socket_listen(sock, backlog); 912 } 913 914 int security_socket_accept(struct socket *sock, struct socket *newsock) 915 { 916 return security_ops->socket_accept(sock, newsock); 917 } 918 919 void security_socket_post_accept(struct socket *sock, struct socket *newsock) 920 { 921 security_ops->socket_post_accept(sock, newsock); 922 } 923 924 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 925 { 926 return security_ops->socket_sendmsg(sock, msg, size); 927 } 928 929 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 930 int size, int flags) 931 { 932 return security_ops->socket_recvmsg(sock, msg, size, flags); 933 } 934 935 int security_socket_getsockname(struct socket *sock) 936 { 937 return security_ops->socket_getsockname(sock); 938 } 939 940 int security_socket_getpeername(struct socket *sock) 941 { 942 return security_ops->socket_getpeername(sock); 943 } 944 945 int security_socket_getsockopt(struct socket *sock, int level, int optname) 946 { 947 return security_ops->socket_getsockopt(sock, level, optname); 948 } 949 950 int security_socket_setsockopt(struct socket *sock, int level, int optname) 951 { 952 return security_ops->socket_setsockopt(sock, level, optname); 953 } 954 955 int security_socket_shutdown(struct socket *sock, int how) 956 { 957 return security_ops->socket_shutdown(sock, how); 958 } 959 960 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 961 { 962 return security_ops->socket_sock_rcv_skb(sk, skb); 963 } 964 EXPORT_SYMBOL(security_sock_rcv_skb); 965 966 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 967 int __user *optlen, unsigned len) 968 { 969 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 970 } 971 972 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 973 { 974 return security_ops->socket_getpeersec_dgram(sock, skb, secid); 975 } 976 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 977 978 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 979 { 980 return security_ops->sk_alloc_security(sk, family, priority); 981 } 982 983 void security_sk_free(struct sock *sk) 984 { 985 security_ops->sk_free_security(sk); 986 } 987 988 void security_sk_clone(const struct sock *sk, struct sock *newsk) 989 { 990 security_ops->sk_clone_security(sk, newsk); 991 } 992 993 void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 994 { 995 security_ops->sk_getsecid(sk, &fl->secid); 996 } 997 EXPORT_SYMBOL(security_sk_classify_flow); 998 999 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 1000 { 1001 security_ops->req_classify_flow(req, fl); 1002 } 1003 EXPORT_SYMBOL(security_req_classify_flow); 1004 1005 void security_sock_graft(struct sock *sk, struct socket *parent) 1006 { 1007 security_ops->sock_graft(sk, parent); 1008 } 1009 EXPORT_SYMBOL(security_sock_graft); 1010 1011 int security_inet_conn_request(struct sock *sk, 1012 struct sk_buff *skb, struct request_sock *req) 1013 { 1014 return security_ops->inet_conn_request(sk, skb, req); 1015 } 1016 EXPORT_SYMBOL(security_inet_conn_request); 1017 1018 void security_inet_csk_clone(struct sock *newsk, 1019 const struct request_sock *req) 1020 { 1021 security_ops->inet_csk_clone(newsk, req); 1022 } 1023 1024 void security_inet_conn_established(struct sock *sk, 1025 struct sk_buff *skb) 1026 { 1027 security_ops->inet_conn_established(sk, skb); 1028 } 1029 1030 #endif /* CONFIG_SECURITY_NETWORK */ 1031 1032 #ifdef CONFIG_SECURITY_NETWORK_XFRM 1033 1034 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx) 1035 { 1036 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx); 1037 } 1038 EXPORT_SYMBOL(security_xfrm_policy_alloc); 1039 1040 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 1041 struct xfrm_sec_ctx **new_ctxp) 1042 { 1043 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp); 1044 } 1045 1046 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 1047 { 1048 security_ops->xfrm_policy_free_security(ctx); 1049 } 1050 EXPORT_SYMBOL(security_xfrm_policy_free); 1051 1052 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 1053 { 1054 return security_ops->xfrm_policy_delete_security(ctx); 1055 } 1056 1057 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 1058 { 1059 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0); 1060 } 1061 EXPORT_SYMBOL(security_xfrm_state_alloc); 1062 1063 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1064 struct xfrm_sec_ctx *polsec, u32 secid) 1065 { 1066 if (!polsec) 1067 return 0; 1068 /* 1069 * We want the context to be taken from secid which is usually 1070 * from the sock. 1071 */ 1072 return security_ops->xfrm_state_alloc_security(x, NULL, secid); 1073 } 1074 1075 int security_xfrm_state_delete(struct xfrm_state *x) 1076 { 1077 return security_ops->xfrm_state_delete_security(x); 1078 } 1079 EXPORT_SYMBOL(security_xfrm_state_delete); 1080 1081 void security_xfrm_state_free(struct xfrm_state *x) 1082 { 1083 security_ops->xfrm_state_free_security(x); 1084 } 1085 1086 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 1087 { 1088 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir); 1089 } 1090 1091 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1092 struct xfrm_policy *xp, struct flowi *fl) 1093 { 1094 return security_ops->xfrm_state_pol_flow_match(x, xp, fl); 1095 } 1096 1097 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1098 { 1099 return security_ops->xfrm_decode_session(skb, secid, 1); 1100 } 1101 1102 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1103 { 1104 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0); 1105 1106 BUG_ON(rc); 1107 } 1108 EXPORT_SYMBOL(security_skb_classify_flow); 1109 1110 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1111 1112 #ifdef CONFIG_KEYS 1113 1114 int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags) 1115 { 1116 return security_ops->key_alloc(key, tsk, flags); 1117 } 1118 1119 void security_key_free(struct key *key) 1120 { 1121 security_ops->key_free(key); 1122 } 1123 1124 int security_key_permission(key_ref_t key_ref, 1125 struct task_struct *context, key_perm_t perm) 1126 { 1127 return security_ops->key_permission(key_ref, context, perm); 1128 } 1129 1130 int security_key_getsecurity(struct key *key, char **_buffer) 1131 { 1132 return security_ops->key_getsecurity(key, _buffer); 1133 } 1134 1135 #endif /* CONFIG_KEYS */ 1136 1137 #ifdef CONFIG_AUDIT 1138 1139 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 1140 { 1141 return security_ops->audit_rule_init(field, op, rulestr, lsmrule); 1142 } 1143 1144 int security_audit_rule_known(struct audit_krule *krule) 1145 { 1146 return security_ops->audit_rule_known(krule); 1147 } 1148 1149 void security_audit_rule_free(void *lsmrule) 1150 { 1151 security_ops->audit_rule_free(lsmrule); 1152 } 1153 1154 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 1155 struct audit_context *actx) 1156 { 1157 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx); 1158 } 1159 1160 #endif /* CONFIG_AUDIT */ 1161