xref: /openbmc/linux/security/security.c (revision 384740dc)
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *	This program is free software; you can redistribute it and/or modify
9  *	it under the terms of the GNU General Public License as published by
10  *	the Free Software Foundation; either version 2 of the License, or
11  *	(at your option) any later version.
12  */
13 
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 
20 /* Boot-time LSM user choice */
21 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1];
22 
23 /* things that live in capability.c */
24 extern struct security_operations default_security_ops;
25 extern void security_fixup_ops(struct security_operations *ops);
26 
27 struct security_operations *security_ops;	/* Initialized to NULL */
28 
29 /* amount of vm to protect from userspace access */
30 unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR;
31 
32 static inline int verify(struct security_operations *ops)
33 {
34 	/* verify the security_operations structure exists */
35 	if (!ops)
36 		return -EINVAL;
37 	security_fixup_ops(ops);
38 	return 0;
39 }
40 
41 static void __init do_security_initcalls(void)
42 {
43 	initcall_t *call;
44 	call = __security_initcall_start;
45 	while (call < __security_initcall_end) {
46 		(*call) ();
47 		call++;
48 	}
49 }
50 
51 /**
52  * security_init - initializes the security framework
53  *
54  * This should be called early in the kernel initialization sequence.
55  */
56 int __init security_init(void)
57 {
58 	printk(KERN_INFO "Security Framework initialized\n");
59 
60 	security_fixup_ops(&default_security_ops);
61 	security_ops = &default_security_ops;
62 	do_security_initcalls();
63 
64 	return 0;
65 }
66 
67 /* Save user chosen LSM */
68 static int __init choose_lsm(char *str)
69 {
70 	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
71 	return 1;
72 }
73 __setup("security=", choose_lsm);
74 
75 /**
76  * security_module_enable - Load given security module on boot ?
77  * @ops: a pointer to the struct security_operations that is to be checked.
78  *
79  * Each LSM must pass this method before registering its own operations
80  * to avoid security registration races. This method may also be used
81  * to check if your LSM is currently loaded during kernel initialization.
82  *
83  * Return true if:
84  *	-The passed LSM is the one chosen by user at boot time,
85  *	-or user didn't specify a specific LSM and we're the first to ask
86  *	 for registration permission,
87  *	-or the passed LSM is currently loaded.
88  * Otherwise, return false.
89  */
90 int __init security_module_enable(struct security_operations *ops)
91 {
92 	if (!*chosen_lsm)
93 		strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
94 	else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
95 		return 0;
96 
97 	return 1;
98 }
99 
100 /**
101  * register_security - registers a security framework with the kernel
102  * @ops: a pointer to the struct security_options that is to be registered
103  *
104  * This function allows a security module to register itself with the
105  * kernel security subsystem.  Some rudimentary checking is done on the @ops
106  * value passed to this function. You'll need to check first if your LSM
107  * is allowed to register its @ops by calling security_module_enable(@ops).
108  *
109  * If there is already a security module registered with the kernel,
110  * an error will be returned.  Otherwise %0 is returned on success.
111  */
112 int register_security(struct security_operations *ops)
113 {
114 	if (verify(ops)) {
115 		printk(KERN_DEBUG "%s could not verify "
116 		       "security_operations structure.\n", __func__);
117 		return -EINVAL;
118 	}
119 
120 	if (security_ops != &default_security_ops)
121 		return -EAGAIN;
122 
123 	security_ops = ops;
124 
125 	return 0;
126 }
127 
128 /* Security operations */
129 
130 int security_ptrace_may_access(struct task_struct *child, unsigned int mode)
131 {
132 	return security_ops->ptrace_may_access(child, mode);
133 }
134 
135 int security_ptrace_traceme(struct task_struct *parent)
136 {
137 	return security_ops->ptrace_traceme(parent);
138 }
139 
140 int security_capget(struct task_struct *target,
141 		     kernel_cap_t *effective,
142 		     kernel_cap_t *inheritable,
143 		     kernel_cap_t *permitted)
144 {
145 	return security_ops->capget(target, effective, inheritable, permitted);
146 }
147 
148 int security_capset_check(struct task_struct *target,
149 			   kernel_cap_t *effective,
150 			   kernel_cap_t *inheritable,
151 			   kernel_cap_t *permitted)
152 {
153 	return security_ops->capset_check(target, effective, inheritable, permitted);
154 }
155 
156 void security_capset_set(struct task_struct *target,
157 			  kernel_cap_t *effective,
158 			  kernel_cap_t *inheritable,
159 			  kernel_cap_t *permitted)
160 {
161 	security_ops->capset_set(target, effective, inheritable, permitted);
162 }
163 
164 int security_capable(struct task_struct *tsk, int cap)
165 {
166 	return security_ops->capable(tsk, cap);
167 }
168 
169 int security_acct(struct file *file)
170 {
171 	return security_ops->acct(file);
172 }
173 
174 int security_sysctl(struct ctl_table *table, int op)
175 {
176 	return security_ops->sysctl(table, op);
177 }
178 
179 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
180 {
181 	return security_ops->quotactl(cmds, type, id, sb);
182 }
183 
184 int security_quota_on(struct dentry *dentry)
185 {
186 	return security_ops->quota_on(dentry);
187 }
188 
189 int security_syslog(int type)
190 {
191 	return security_ops->syslog(type);
192 }
193 
194 int security_settime(struct timespec *ts, struct timezone *tz)
195 {
196 	return security_ops->settime(ts, tz);
197 }
198 
199 int security_vm_enough_memory(long pages)
200 {
201 	return security_ops->vm_enough_memory(current->mm, pages);
202 }
203 
204 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
205 {
206 	return security_ops->vm_enough_memory(mm, pages);
207 }
208 
209 int security_bprm_alloc(struct linux_binprm *bprm)
210 {
211 	return security_ops->bprm_alloc_security(bprm);
212 }
213 
214 void security_bprm_free(struct linux_binprm *bprm)
215 {
216 	security_ops->bprm_free_security(bprm);
217 }
218 
219 void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
220 {
221 	security_ops->bprm_apply_creds(bprm, unsafe);
222 }
223 
224 void security_bprm_post_apply_creds(struct linux_binprm *bprm)
225 {
226 	security_ops->bprm_post_apply_creds(bprm);
227 }
228 
229 int security_bprm_set(struct linux_binprm *bprm)
230 {
231 	return security_ops->bprm_set_security(bprm);
232 }
233 
234 int security_bprm_check(struct linux_binprm *bprm)
235 {
236 	return security_ops->bprm_check_security(bprm);
237 }
238 
239 int security_bprm_secureexec(struct linux_binprm *bprm)
240 {
241 	return security_ops->bprm_secureexec(bprm);
242 }
243 
244 int security_sb_alloc(struct super_block *sb)
245 {
246 	return security_ops->sb_alloc_security(sb);
247 }
248 
249 void security_sb_free(struct super_block *sb)
250 {
251 	security_ops->sb_free_security(sb);
252 }
253 
254 int security_sb_copy_data(char *orig, char *copy)
255 {
256 	return security_ops->sb_copy_data(orig, copy);
257 }
258 EXPORT_SYMBOL(security_sb_copy_data);
259 
260 int security_sb_kern_mount(struct super_block *sb, void *data)
261 {
262 	return security_ops->sb_kern_mount(sb, data);
263 }
264 
265 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
266 {
267 	return security_ops->sb_show_options(m, sb);
268 }
269 
270 int security_sb_statfs(struct dentry *dentry)
271 {
272 	return security_ops->sb_statfs(dentry);
273 }
274 
275 int security_sb_mount(char *dev_name, struct path *path,
276                        char *type, unsigned long flags, void *data)
277 {
278 	return security_ops->sb_mount(dev_name, path, type, flags, data);
279 }
280 
281 int security_sb_check_sb(struct vfsmount *mnt, struct path *path)
282 {
283 	return security_ops->sb_check_sb(mnt, path);
284 }
285 
286 int security_sb_umount(struct vfsmount *mnt, int flags)
287 {
288 	return security_ops->sb_umount(mnt, flags);
289 }
290 
291 void security_sb_umount_close(struct vfsmount *mnt)
292 {
293 	security_ops->sb_umount_close(mnt);
294 }
295 
296 void security_sb_umount_busy(struct vfsmount *mnt)
297 {
298 	security_ops->sb_umount_busy(mnt);
299 }
300 
301 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
302 {
303 	security_ops->sb_post_remount(mnt, flags, data);
304 }
305 
306 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint)
307 {
308 	security_ops->sb_post_addmount(mnt, mountpoint);
309 }
310 
311 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
312 {
313 	return security_ops->sb_pivotroot(old_path, new_path);
314 }
315 
316 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path)
317 {
318 	security_ops->sb_post_pivotroot(old_path, new_path);
319 }
320 
321 int security_sb_set_mnt_opts(struct super_block *sb,
322 				struct security_mnt_opts *opts)
323 {
324 	return security_ops->sb_set_mnt_opts(sb, opts);
325 }
326 EXPORT_SYMBOL(security_sb_set_mnt_opts);
327 
328 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
329 				struct super_block *newsb)
330 {
331 	security_ops->sb_clone_mnt_opts(oldsb, newsb);
332 }
333 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
334 
335 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
336 {
337 	return security_ops->sb_parse_opts_str(options, opts);
338 }
339 EXPORT_SYMBOL(security_sb_parse_opts_str);
340 
341 int security_inode_alloc(struct inode *inode)
342 {
343 	inode->i_security = NULL;
344 	return security_ops->inode_alloc_security(inode);
345 }
346 
347 void security_inode_free(struct inode *inode)
348 {
349 	security_ops->inode_free_security(inode);
350 }
351 
352 int security_inode_init_security(struct inode *inode, struct inode *dir,
353 				  char **name, void **value, size_t *len)
354 {
355 	if (unlikely(IS_PRIVATE(inode)))
356 		return -EOPNOTSUPP;
357 	return security_ops->inode_init_security(inode, dir, name, value, len);
358 }
359 EXPORT_SYMBOL(security_inode_init_security);
360 
361 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
362 {
363 	if (unlikely(IS_PRIVATE(dir)))
364 		return 0;
365 	return security_ops->inode_create(dir, dentry, mode);
366 }
367 
368 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
369 			 struct dentry *new_dentry)
370 {
371 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
372 		return 0;
373 	return security_ops->inode_link(old_dentry, dir, new_dentry);
374 }
375 
376 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
377 {
378 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
379 		return 0;
380 	return security_ops->inode_unlink(dir, dentry);
381 }
382 
383 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
384 			    const char *old_name)
385 {
386 	if (unlikely(IS_PRIVATE(dir)))
387 		return 0;
388 	return security_ops->inode_symlink(dir, dentry, old_name);
389 }
390 
391 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
392 {
393 	if (unlikely(IS_PRIVATE(dir)))
394 		return 0;
395 	return security_ops->inode_mkdir(dir, dentry, mode);
396 }
397 
398 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
399 {
400 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
401 		return 0;
402 	return security_ops->inode_rmdir(dir, dentry);
403 }
404 
405 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
406 {
407 	if (unlikely(IS_PRIVATE(dir)))
408 		return 0;
409 	return security_ops->inode_mknod(dir, dentry, mode, dev);
410 }
411 
412 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
413 			   struct inode *new_dir, struct dentry *new_dentry)
414 {
415         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
416             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
417 		return 0;
418 	return security_ops->inode_rename(old_dir, old_dentry,
419 					   new_dir, new_dentry);
420 }
421 
422 int security_inode_readlink(struct dentry *dentry)
423 {
424 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
425 		return 0;
426 	return security_ops->inode_readlink(dentry);
427 }
428 
429 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
430 {
431 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
432 		return 0;
433 	return security_ops->inode_follow_link(dentry, nd);
434 }
435 
436 int security_inode_permission(struct inode *inode, int mask)
437 {
438 	if (unlikely(IS_PRIVATE(inode)))
439 		return 0;
440 	return security_ops->inode_permission(inode, mask);
441 }
442 
443 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
444 {
445 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
446 		return 0;
447 	return security_ops->inode_setattr(dentry, attr);
448 }
449 EXPORT_SYMBOL_GPL(security_inode_setattr);
450 
451 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
452 {
453 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
454 		return 0;
455 	return security_ops->inode_getattr(mnt, dentry);
456 }
457 
458 void security_inode_delete(struct inode *inode)
459 {
460 	if (unlikely(IS_PRIVATE(inode)))
461 		return;
462 	security_ops->inode_delete(inode);
463 }
464 
465 int security_inode_setxattr(struct dentry *dentry, const char *name,
466 			    const void *value, size_t size, int flags)
467 {
468 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
469 		return 0;
470 	return security_ops->inode_setxattr(dentry, name, value, size, flags);
471 }
472 
473 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
474 				  const void *value, size_t size, int flags)
475 {
476 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
477 		return;
478 	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
479 }
480 
481 int security_inode_getxattr(struct dentry *dentry, const char *name)
482 {
483 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
484 		return 0;
485 	return security_ops->inode_getxattr(dentry, name);
486 }
487 
488 int security_inode_listxattr(struct dentry *dentry)
489 {
490 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
491 		return 0;
492 	return security_ops->inode_listxattr(dentry);
493 }
494 
495 int security_inode_removexattr(struct dentry *dentry, const char *name)
496 {
497 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
498 		return 0;
499 	return security_ops->inode_removexattr(dentry, name);
500 }
501 
502 int security_inode_need_killpriv(struct dentry *dentry)
503 {
504 	return security_ops->inode_need_killpriv(dentry);
505 }
506 
507 int security_inode_killpriv(struct dentry *dentry)
508 {
509 	return security_ops->inode_killpriv(dentry);
510 }
511 
512 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
513 {
514 	if (unlikely(IS_PRIVATE(inode)))
515 		return 0;
516 	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
517 }
518 
519 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
520 {
521 	if (unlikely(IS_PRIVATE(inode)))
522 		return 0;
523 	return security_ops->inode_setsecurity(inode, name, value, size, flags);
524 }
525 
526 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
527 {
528 	if (unlikely(IS_PRIVATE(inode)))
529 		return 0;
530 	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
531 }
532 
533 void security_inode_getsecid(const struct inode *inode, u32 *secid)
534 {
535 	security_ops->inode_getsecid(inode, secid);
536 }
537 
538 int security_file_permission(struct file *file, int mask)
539 {
540 	return security_ops->file_permission(file, mask);
541 }
542 
543 int security_file_alloc(struct file *file)
544 {
545 	return security_ops->file_alloc_security(file);
546 }
547 
548 void security_file_free(struct file *file)
549 {
550 	security_ops->file_free_security(file);
551 }
552 
553 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
554 {
555 	return security_ops->file_ioctl(file, cmd, arg);
556 }
557 
558 int security_file_mmap(struct file *file, unsigned long reqprot,
559 			unsigned long prot, unsigned long flags,
560 			unsigned long addr, unsigned long addr_only)
561 {
562 	return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
563 }
564 
565 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
566 			    unsigned long prot)
567 {
568 	return security_ops->file_mprotect(vma, reqprot, prot);
569 }
570 
571 int security_file_lock(struct file *file, unsigned int cmd)
572 {
573 	return security_ops->file_lock(file, cmd);
574 }
575 
576 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
577 {
578 	return security_ops->file_fcntl(file, cmd, arg);
579 }
580 
581 int security_file_set_fowner(struct file *file)
582 {
583 	return security_ops->file_set_fowner(file);
584 }
585 
586 int security_file_send_sigiotask(struct task_struct *tsk,
587 				  struct fown_struct *fown, int sig)
588 {
589 	return security_ops->file_send_sigiotask(tsk, fown, sig);
590 }
591 
592 int security_file_receive(struct file *file)
593 {
594 	return security_ops->file_receive(file);
595 }
596 
597 int security_dentry_open(struct file *file)
598 {
599 	return security_ops->dentry_open(file);
600 }
601 
602 int security_task_create(unsigned long clone_flags)
603 {
604 	return security_ops->task_create(clone_flags);
605 }
606 
607 int security_task_alloc(struct task_struct *p)
608 {
609 	return security_ops->task_alloc_security(p);
610 }
611 
612 void security_task_free(struct task_struct *p)
613 {
614 	security_ops->task_free_security(p);
615 }
616 
617 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
618 {
619 	return security_ops->task_setuid(id0, id1, id2, flags);
620 }
621 
622 int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
623 			       uid_t old_suid, int flags)
624 {
625 	return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags);
626 }
627 
628 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
629 {
630 	return security_ops->task_setgid(id0, id1, id2, flags);
631 }
632 
633 int security_task_setpgid(struct task_struct *p, pid_t pgid)
634 {
635 	return security_ops->task_setpgid(p, pgid);
636 }
637 
638 int security_task_getpgid(struct task_struct *p)
639 {
640 	return security_ops->task_getpgid(p);
641 }
642 
643 int security_task_getsid(struct task_struct *p)
644 {
645 	return security_ops->task_getsid(p);
646 }
647 
648 void security_task_getsecid(struct task_struct *p, u32 *secid)
649 {
650 	security_ops->task_getsecid(p, secid);
651 }
652 EXPORT_SYMBOL(security_task_getsecid);
653 
654 int security_task_setgroups(struct group_info *group_info)
655 {
656 	return security_ops->task_setgroups(group_info);
657 }
658 
659 int security_task_setnice(struct task_struct *p, int nice)
660 {
661 	return security_ops->task_setnice(p, nice);
662 }
663 
664 int security_task_setioprio(struct task_struct *p, int ioprio)
665 {
666 	return security_ops->task_setioprio(p, ioprio);
667 }
668 
669 int security_task_getioprio(struct task_struct *p)
670 {
671 	return security_ops->task_getioprio(p);
672 }
673 
674 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
675 {
676 	return security_ops->task_setrlimit(resource, new_rlim);
677 }
678 
679 int security_task_setscheduler(struct task_struct *p,
680 				int policy, struct sched_param *lp)
681 {
682 	return security_ops->task_setscheduler(p, policy, lp);
683 }
684 
685 int security_task_getscheduler(struct task_struct *p)
686 {
687 	return security_ops->task_getscheduler(p);
688 }
689 
690 int security_task_movememory(struct task_struct *p)
691 {
692 	return security_ops->task_movememory(p);
693 }
694 
695 int security_task_kill(struct task_struct *p, struct siginfo *info,
696 			int sig, u32 secid)
697 {
698 	return security_ops->task_kill(p, info, sig, secid);
699 }
700 
701 int security_task_wait(struct task_struct *p)
702 {
703 	return security_ops->task_wait(p);
704 }
705 
706 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
707 			 unsigned long arg4, unsigned long arg5, long *rc_p)
708 {
709 	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p);
710 }
711 
712 void security_task_reparent_to_init(struct task_struct *p)
713 {
714 	security_ops->task_reparent_to_init(p);
715 }
716 
717 void security_task_to_inode(struct task_struct *p, struct inode *inode)
718 {
719 	security_ops->task_to_inode(p, inode);
720 }
721 
722 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
723 {
724 	return security_ops->ipc_permission(ipcp, flag);
725 }
726 
727 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
728 {
729 	security_ops->ipc_getsecid(ipcp, secid);
730 }
731 
732 int security_msg_msg_alloc(struct msg_msg *msg)
733 {
734 	return security_ops->msg_msg_alloc_security(msg);
735 }
736 
737 void security_msg_msg_free(struct msg_msg *msg)
738 {
739 	security_ops->msg_msg_free_security(msg);
740 }
741 
742 int security_msg_queue_alloc(struct msg_queue *msq)
743 {
744 	return security_ops->msg_queue_alloc_security(msq);
745 }
746 
747 void security_msg_queue_free(struct msg_queue *msq)
748 {
749 	security_ops->msg_queue_free_security(msq);
750 }
751 
752 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
753 {
754 	return security_ops->msg_queue_associate(msq, msqflg);
755 }
756 
757 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
758 {
759 	return security_ops->msg_queue_msgctl(msq, cmd);
760 }
761 
762 int security_msg_queue_msgsnd(struct msg_queue *msq,
763 			       struct msg_msg *msg, int msqflg)
764 {
765 	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
766 }
767 
768 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
769 			       struct task_struct *target, long type, int mode)
770 {
771 	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
772 }
773 
774 int security_shm_alloc(struct shmid_kernel *shp)
775 {
776 	return security_ops->shm_alloc_security(shp);
777 }
778 
779 void security_shm_free(struct shmid_kernel *shp)
780 {
781 	security_ops->shm_free_security(shp);
782 }
783 
784 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
785 {
786 	return security_ops->shm_associate(shp, shmflg);
787 }
788 
789 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
790 {
791 	return security_ops->shm_shmctl(shp, cmd);
792 }
793 
794 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
795 {
796 	return security_ops->shm_shmat(shp, shmaddr, shmflg);
797 }
798 
799 int security_sem_alloc(struct sem_array *sma)
800 {
801 	return security_ops->sem_alloc_security(sma);
802 }
803 
804 void security_sem_free(struct sem_array *sma)
805 {
806 	security_ops->sem_free_security(sma);
807 }
808 
809 int security_sem_associate(struct sem_array *sma, int semflg)
810 {
811 	return security_ops->sem_associate(sma, semflg);
812 }
813 
814 int security_sem_semctl(struct sem_array *sma, int cmd)
815 {
816 	return security_ops->sem_semctl(sma, cmd);
817 }
818 
819 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
820 			unsigned nsops, int alter)
821 {
822 	return security_ops->sem_semop(sma, sops, nsops, alter);
823 }
824 
825 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
826 {
827 	if (unlikely(inode && IS_PRIVATE(inode)))
828 		return;
829 	security_ops->d_instantiate(dentry, inode);
830 }
831 EXPORT_SYMBOL(security_d_instantiate);
832 
833 int security_getprocattr(struct task_struct *p, char *name, char **value)
834 {
835 	return security_ops->getprocattr(p, name, value);
836 }
837 
838 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
839 {
840 	return security_ops->setprocattr(p, name, value, size);
841 }
842 
843 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
844 {
845 	return security_ops->netlink_send(sk, skb);
846 }
847 
848 int security_netlink_recv(struct sk_buff *skb, int cap)
849 {
850 	return security_ops->netlink_recv(skb, cap);
851 }
852 EXPORT_SYMBOL(security_netlink_recv);
853 
854 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
855 {
856 	return security_ops->secid_to_secctx(secid, secdata, seclen);
857 }
858 EXPORT_SYMBOL(security_secid_to_secctx);
859 
860 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
861 {
862 	return security_ops->secctx_to_secid(secdata, seclen, secid);
863 }
864 EXPORT_SYMBOL(security_secctx_to_secid);
865 
866 void security_release_secctx(char *secdata, u32 seclen)
867 {
868 	security_ops->release_secctx(secdata, seclen);
869 }
870 EXPORT_SYMBOL(security_release_secctx);
871 
872 #ifdef CONFIG_SECURITY_NETWORK
873 
874 int security_unix_stream_connect(struct socket *sock, struct socket *other,
875 				 struct sock *newsk)
876 {
877 	return security_ops->unix_stream_connect(sock, other, newsk);
878 }
879 EXPORT_SYMBOL(security_unix_stream_connect);
880 
881 int security_unix_may_send(struct socket *sock,  struct socket *other)
882 {
883 	return security_ops->unix_may_send(sock, other);
884 }
885 EXPORT_SYMBOL(security_unix_may_send);
886 
887 int security_socket_create(int family, int type, int protocol, int kern)
888 {
889 	return security_ops->socket_create(family, type, protocol, kern);
890 }
891 
892 int security_socket_post_create(struct socket *sock, int family,
893 				int type, int protocol, int kern)
894 {
895 	return security_ops->socket_post_create(sock, family, type,
896 						protocol, kern);
897 }
898 
899 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
900 {
901 	return security_ops->socket_bind(sock, address, addrlen);
902 }
903 
904 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
905 {
906 	return security_ops->socket_connect(sock, address, addrlen);
907 }
908 
909 int security_socket_listen(struct socket *sock, int backlog)
910 {
911 	return security_ops->socket_listen(sock, backlog);
912 }
913 
914 int security_socket_accept(struct socket *sock, struct socket *newsock)
915 {
916 	return security_ops->socket_accept(sock, newsock);
917 }
918 
919 void security_socket_post_accept(struct socket *sock, struct socket *newsock)
920 {
921 	security_ops->socket_post_accept(sock, newsock);
922 }
923 
924 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
925 {
926 	return security_ops->socket_sendmsg(sock, msg, size);
927 }
928 
929 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
930 			    int size, int flags)
931 {
932 	return security_ops->socket_recvmsg(sock, msg, size, flags);
933 }
934 
935 int security_socket_getsockname(struct socket *sock)
936 {
937 	return security_ops->socket_getsockname(sock);
938 }
939 
940 int security_socket_getpeername(struct socket *sock)
941 {
942 	return security_ops->socket_getpeername(sock);
943 }
944 
945 int security_socket_getsockopt(struct socket *sock, int level, int optname)
946 {
947 	return security_ops->socket_getsockopt(sock, level, optname);
948 }
949 
950 int security_socket_setsockopt(struct socket *sock, int level, int optname)
951 {
952 	return security_ops->socket_setsockopt(sock, level, optname);
953 }
954 
955 int security_socket_shutdown(struct socket *sock, int how)
956 {
957 	return security_ops->socket_shutdown(sock, how);
958 }
959 
960 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
961 {
962 	return security_ops->socket_sock_rcv_skb(sk, skb);
963 }
964 EXPORT_SYMBOL(security_sock_rcv_skb);
965 
966 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
967 				      int __user *optlen, unsigned len)
968 {
969 	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
970 }
971 
972 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
973 {
974 	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
975 }
976 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
977 
978 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
979 {
980 	return security_ops->sk_alloc_security(sk, family, priority);
981 }
982 
983 void security_sk_free(struct sock *sk)
984 {
985 	security_ops->sk_free_security(sk);
986 }
987 
988 void security_sk_clone(const struct sock *sk, struct sock *newsk)
989 {
990 	security_ops->sk_clone_security(sk, newsk);
991 }
992 
993 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
994 {
995 	security_ops->sk_getsecid(sk, &fl->secid);
996 }
997 EXPORT_SYMBOL(security_sk_classify_flow);
998 
999 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1000 {
1001 	security_ops->req_classify_flow(req, fl);
1002 }
1003 EXPORT_SYMBOL(security_req_classify_flow);
1004 
1005 void security_sock_graft(struct sock *sk, struct socket *parent)
1006 {
1007 	security_ops->sock_graft(sk, parent);
1008 }
1009 EXPORT_SYMBOL(security_sock_graft);
1010 
1011 int security_inet_conn_request(struct sock *sk,
1012 			struct sk_buff *skb, struct request_sock *req)
1013 {
1014 	return security_ops->inet_conn_request(sk, skb, req);
1015 }
1016 EXPORT_SYMBOL(security_inet_conn_request);
1017 
1018 void security_inet_csk_clone(struct sock *newsk,
1019 			const struct request_sock *req)
1020 {
1021 	security_ops->inet_csk_clone(newsk, req);
1022 }
1023 
1024 void security_inet_conn_established(struct sock *sk,
1025 			struct sk_buff *skb)
1026 {
1027 	security_ops->inet_conn_established(sk, skb);
1028 }
1029 
1030 #endif	/* CONFIG_SECURITY_NETWORK */
1031 
1032 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1033 
1034 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1035 {
1036 	return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1037 }
1038 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1039 
1040 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1041 			      struct xfrm_sec_ctx **new_ctxp)
1042 {
1043 	return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1044 }
1045 
1046 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1047 {
1048 	security_ops->xfrm_policy_free_security(ctx);
1049 }
1050 EXPORT_SYMBOL(security_xfrm_policy_free);
1051 
1052 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1053 {
1054 	return security_ops->xfrm_policy_delete_security(ctx);
1055 }
1056 
1057 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1058 {
1059 	return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1060 }
1061 EXPORT_SYMBOL(security_xfrm_state_alloc);
1062 
1063 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1064 				      struct xfrm_sec_ctx *polsec, u32 secid)
1065 {
1066 	if (!polsec)
1067 		return 0;
1068 	/*
1069 	 * We want the context to be taken from secid which is usually
1070 	 * from the sock.
1071 	 */
1072 	return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1073 }
1074 
1075 int security_xfrm_state_delete(struct xfrm_state *x)
1076 {
1077 	return security_ops->xfrm_state_delete_security(x);
1078 }
1079 EXPORT_SYMBOL(security_xfrm_state_delete);
1080 
1081 void security_xfrm_state_free(struct xfrm_state *x)
1082 {
1083 	security_ops->xfrm_state_free_security(x);
1084 }
1085 
1086 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1087 {
1088 	return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1089 }
1090 
1091 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1092 				       struct xfrm_policy *xp, struct flowi *fl)
1093 {
1094 	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1095 }
1096 
1097 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1098 {
1099 	return security_ops->xfrm_decode_session(skb, secid, 1);
1100 }
1101 
1102 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1103 {
1104 	int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1105 
1106 	BUG_ON(rc);
1107 }
1108 EXPORT_SYMBOL(security_skb_classify_flow);
1109 
1110 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1111 
1112 #ifdef CONFIG_KEYS
1113 
1114 int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags)
1115 {
1116 	return security_ops->key_alloc(key, tsk, flags);
1117 }
1118 
1119 void security_key_free(struct key *key)
1120 {
1121 	security_ops->key_free(key);
1122 }
1123 
1124 int security_key_permission(key_ref_t key_ref,
1125 			    struct task_struct *context, key_perm_t perm)
1126 {
1127 	return security_ops->key_permission(key_ref, context, perm);
1128 }
1129 
1130 int security_key_getsecurity(struct key *key, char **_buffer)
1131 {
1132 	return security_ops->key_getsecurity(key, _buffer);
1133 }
1134 
1135 #endif	/* CONFIG_KEYS */
1136 
1137 #ifdef CONFIG_AUDIT
1138 
1139 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1140 {
1141 	return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1142 }
1143 
1144 int security_audit_rule_known(struct audit_krule *krule)
1145 {
1146 	return security_ops->audit_rule_known(krule);
1147 }
1148 
1149 void security_audit_rule_free(void *lsmrule)
1150 {
1151 	security_ops->audit_rule_free(lsmrule);
1152 }
1153 
1154 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1155 			      struct audit_context *actx)
1156 {
1157 	return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1158 }
1159 
1160 #endif /* CONFIG_AUDIT */
1161