1 /* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/capability.h> 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/kernel.h> 18 #include <linux/security.h> 19 20 /* Boot-time LSM user choice */ 21 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1]; 22 23 /* things that live in capability.c */ 24 extern struct security_operations default_security_ops; 25 extern void security_fixup_ops(struct security_operations *ops); 26 27 struct security_operations *security_ops; /* Initialized to NULL */ 28 29 /* amount of vm to protect from userspace access */ 30 unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR; 31 32 static inline int verify(struct security_operations *ops) 33 { 34 /* verify the security_operations structure exists */ 35 if (!ops) 36 return -EINVAL; 37 security_fixup_ops(ops); 38 return 0; 39 } 40 41 static void __init do_security_initcalls(void) 42 { 43 initcall_t *call; 44 call = __security_initcall_start; 45 while (call < __security_initcall_end) { 46 (*call) (); 47 call++; 48 } 49 } 50 51 /** 52 * security_init - initializes the security framework 53 * 54 * This should be called early in the kernel initialization sequence. 55 */ 56 int __init security_init(void) 57 { 58 printk(KERN_INFO "Security Framework initialized\n"); 59 60 security_fixup_ops(&default_security_ops); 61 security_ops = &default_security_ops; 62 do_security_initcalls(); 63 64 return 0; 65 } 66 67 /* Save user chosen LSM */ 68 static int __init choose_lsm(char *str) 69 { 70 strncpy(chosen_lsm, str, SECURITY_NAME_MAX); 71 return 1; 72 } 73 __setup("security=", choose_lsm); 74 75 /** 76 * security_module_enable - Load given security module on boot ? 77 * @ops: a pointer to the struct security_operations that is to be checked. 78 * 79 * Each LSM must pass this method before registering its own operations 80 * to avoid security registration races. This method may also be used 81 * to check if your LSM is currently loaded during kernel initialization. 82 * 83 * Return true if: 84 * -The passed LSM is the one chosen by user at boot time, 85 * -or user didn't specify a specific LSM and we're the first to ask 86 * for registration permission, 87 * -or the passed LSM is currently loaded. 88 * Otherwise, return false. 89 */ 90 int __init security_module_enable(struct security_operations *ops) 91 { 92 if (!*chosen_lsm) 93 strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX); 94 else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX)) 95 return 0; 96 97 return 1; 98 } 99 100 /** 101 * register_security - registers a security framework with the kernel 102 * @ops: a pointer to the struct security_options that is to be registered 103 * 104 * This function allows a security module to register itself with the 105 * kernel security subsystem. Some rudimentary checking is done on the @ops 106 * value passed to this function. You'll need to check first if your LSM 107 * is allowed to register its @ops by calling security_module_enable(@ops). 108 * 109 * If there is already a security module registered with the kernel, 110 * an error will be returned. Otherwise %0 is returned on success. 111 */ 112 int register_security(struct security_operations *ops) 113 { 114 if (verify(ops)) { 115 printk(KERN_DEBUG "%s could not verify " 116 "security_operations structure.\n", __func__); 117 return -EINVAL; 118 } 119 120 if (security_ops != &default_security_ops) 121 return -EAGAIN; 122 123 security_ops = ops; 124 125 return 0; 126 } 127 128 /* Security operations */ 129 130 int security_ptrace_may_access(struct task_struct *child, unsigned int mode) 131 { 132 return security_ops->ptrace_may_access(child, mode); 133 } 134 135 int security_ptrace_traceme(struct task_struct *parent) 136 { 137 return security_ops->ptrace_traceme(parent); 138 } 139 140 int security_capget(struct task_struct *target, 141 kernel_cap_t *effective, 142 kernel_cap_t *inheritable, 143 kernel_cap_t *permitted) 144 { 145 return security_ops->capget(target, effective, inheritable, permitted); 146 } 147 148 int security_capset_check(struct task_struct *target, 149 kernel_cap_t *effective, 150 kernel_cap_t *inheritable, 151 kernel_cap_t *permitted) 152 { 153 return security_ops->capset_check(target, effective, inheritable, permitted); 154 } 155 156 void security_capset_set(struct task_struct *target, 157 kernel_cap_t *effective, 158 kernel_cap_t *inheritable, 159 kernel_cap_t *permitted) 160 { 161 security_ops->capset_set(target, effective, inheritable, permitted); 162 } 163 164 int security_capable(struct task_struct *tsk, int cap) 165 { 166 return security_ops->capable(tsk, cap); 167 } 168 169 int security_acct(struct file *file) 170 { 171 return security_ops->acct(file); 172 } 173 174 int security_sysctl(struct ctl_table *table, int op) 175 { 176 return security_ops->sysctl(table, op); 177 } 178 179 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 180 { 181 return security_ops->quotactl(cmds, type, id, sb); 182 } 183 184 int security_quota_on(struct dentry *dentry) 185 { 186 return security_ops->quota_on(dentry); 187 } 188 189 int security_syslog(int type) 190 { 191 return security_ops->syslog(type); 192 } 193 194 int security_settime(struct timespec *ts, struct timezone *tz) 195 { 196 return security_ops->settime(ts, tz); 197 } 198 199 int security_vm_enough_memory(long pages) 200 { 201 WARN_ON(current->mm == NULL); 202 return security_ops->vm_enough_memory(current->mm, pages); 203 } 204 205 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 206 { 207 WARN_ON(mm == NULL); 208 return security_ops->vm_enough_memory(mm, pages); 209 } 210 211 int security_vm_enough_memory_kern(long pages) 212 { 213 /* If current->mm is a kernel thread then we will pass NULL, 214 for this specific case that is fine */ 215 return security_ops->vm_enough_memory(current->mm, pages); 216 } 217 218 int security_bprm_alloc(struct linux_binprm *bprm) 219 { 220 return security_ops->bprm_alloc_security(bprm); 221 } 222 223 void security_bprm_free(struct linux_binprm *bprm) 224 { 225 security_ops->bprm_free_security(bprm); 226 } 227 228 void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe) 229 { 230 security_ops->bprm_apply_creds(bprm, unsafe); 231 } 232 233 void security_bprm_post_apply_creds(struct linux_binprm *bprm) 234 { 235 security_ops->bprm_post_apply_creds(bprm); 236 } 237 238 int security_bprm_set(struct linux_binprm *bprm) 239 { 240 return security_ops->bprm_set_security(bprm); 241 } 242 243 int security_bprm_check(struct linux_binprm *bprm) 244 { 245 return security_ops->bprm_check_security(bprm); 246 } 247 248 int security_bprm_secureexec(struct linux_binprm *bprm) 249 { 250 return security_ops->bprm_secureexec(bprm); 251 } 252 253 int security_sb_alloc(struct super_block *sb) 254 { 255 return security_ops->sb_alloc_security(sb); 256 } 257 258 void security_sb_free(struct super_block *sb) 259 { 260 security_ops->sb_free_security(sb); 261 } 262 263 int security_sb_copy_data(char *orig, char *copy) 264 { 265 return security_ops->sb_copy_data(orig, copy); 266 } 267 EXPORT_SYMBOL(security_sb_copy_data); 268 269 int security_sb_kern_mount(struct super_block *sb, void *data) 270 { 271 return security_ops->sb_kern_mount(sb, data); 272 } 273 274 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 275 { 276 return security_ops->sb_show_options(m, sb); 277 } 278 279 int security_sb_statfs(struct dentry *dentry) 280 { 281 return security_ops->sb_statfs(dentry); 282 } 283 284 int security_sb_mount(char *dev_name, struct path *path, 285 char *type, unsigned long flags, void *data) 286 { 287 return security_ops->sb_mount(dev_name, path, type, flags, data); 288 } 289 290 int security_sb_check_sb(struct vfsmount *mnt, struct path *path) 291 { 292 return security_ops->sb_check_sb(mnt, path); 293 } 294 295 int security_sb_umount(struct vfsmount *mnt, int flags) 296 { 297 return security_ops->sb_umount(mnt, flags); 298 } 299 300 void security_sb_umount_close(struct vfsmount *mnt) 301 { 302 security_ops->sb_umount_close(mnt); 303 } 304 305 void security_sb_umount_busy(struct vfsmount *mnt) 306 { 307 security_ops->sb_umount_busy(mnt); 308 } 309 310 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data) 311 { 312 security_ops->sb_post_remount(mnt, flags, data); 313 } 314 315 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint) 316 { 317 security_ops->sb_post_addmount(mnt, mountpoint); 318 } 319 320 int security_sb_pivotroot(struct path *old_path, struct path *new_path) 321 { 322 return security_ops->sb_pivotroot(old_path, new_path); 323 } 324 325 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path) 326 { 327 security_ops->sb_post_pivotroot(old_path, new_path); 328 } 329 330 int security_sb_set_mnt_opts(struct super_block *sb, 331 struct security_mnt_opts *opts) 332 { 333 return security_ops->sb_set_mnt_opts(sb, opts); 334 } 335 EXPORT_SYMBOL(security_sb_set_mnt_opts); 336 337 void security_sb_clone_mnt_opts(const struct super_block *oldsb, 338 struct super_block *newsb) 339 { 340 security_ops->sb_clone_mnt_opts(oldsb, newsb); 341 } 342 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 343 344 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) 345 { 346 return security_ops->sb_parse_opts_str(options, opts); 347 } 348 EXPORT_SYMBOL(security_sb_parse_opts_str); 349 350 int security_inode_alloc(struct inode *inode) 351 { 352 inode->i_security = NULL; 353 return security_ops->inode_alloc_security(inode); 354 } 355 356 void security_inode_free(struct inode *inode) 357 { 358 security_ops->inode_free_security(inode); 359 } 360 361 int security_inode_init_security(struct inode *inode, struct inode *dir, 362 char **name, void **value, size_t *len) 363 { 364 if (unlikely(IS_PRIVATE(inode))) 365 return -EOPNOTSUPP; 366 return security_ops->inode_init_security(inode, dir, name, value, len); 367 } 368 EXPORT_SYMBOL(security_inode_init_security); 369 370 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode) 371 { 372 if (unlikely(IS_PRIVATE(dir))) 373 return 0; 374 return security_ops->inode_create(dir, dentry, mode); 375 } 376 377 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 378 struct dentry *new_dentry) 379 { 380 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 381 return 0; 382 return security_ops->inode_link(old_dentry, dir, new_dentry); 383 } 384 385 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 386 { 387 if (unlikely(IS_PRIVATE(dentry->d_inode))) 388 return 0; 389 return security_ops->inode_unlink(dir, dentry); 390 } 391 392 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 393 const char *old_name) 394 { 395 if (unlikely(IS_PRIVATE(dir))) 396 return 0; 397 return security_ops->inode_symlink(dir, dentry, old_name); 398 } 399 400 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode) 401 { 402 if (unlikely(IS_PRIVATE(dir))) 403 return 0; 404 return security_ops->inode_mkdir(dir, dentry, mode); 405 } 406 407 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 408 { 409 if (unlikely(IS_PRIVATE(dentry->d_inode))) 410 return 0; 411 return security_ops->inode_rmdir(dir, dentry); 412 } 413 414 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 415 { 416 if (unlikely(IS_PRIVATE(dir))) 417 return 0; 418 return security_ops->inode_mknod(dir, dentry, mode, dev); 419 } 420 421 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 422 struct inode *new_dir, struct dentry *new_dentry) 423 { 424 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 425 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 426 return 0; 427 return security_ops->inode_rename(old_dir, old_dentry, 428 new_dir, new_dentry); 429 } 430 431 int security_inode_readlink(struct dentry *dentry) 432 { 433 if (unlikely(IS_PRIVATE(dentry->d_inode))) 434 return 0; 435 return security_ops->inode_readlink(dentry); 436 } 437 438 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd) 439 { 440 if (unlikely(IS_PRIVATE(dentry->d_inode))) 441 return 0; 442 return security_ops->inode_follow_link(dentry, nd); 443 } 444 445 int security_inode_permission(struct inode *inode, int mask) 446 { 447 if (unlikely(IS_PRIVATE(inode))) 448 return 0; 449 return security_ops->inode_permission(inode, mask); 450 } 451 452 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 453 { 454 if (unlikely(IS_PRIVATE(dentry->d_inode))) 455 return 0; 456 return security_ops->inode_setattr(dentry, attr); 457 } 458 EXPORT_SYMBOL_GPL(security_inode_setattr); 459 460 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 461 { 462 if (unlikely(IS_PRIVATE(dentry->d_inode))) 463 return 0; 464 return security_ops->inode_getattr(mnt, dentry); 465 } 466 467 void security_inode_delete(struct inode *inode) 468 { 469 if (unlikely(IS_PRIVATE(inode))) 470 return; 471 security_ops->inode_delete(inode); 472 } 473 474 int security_inode_setxattr(struct dentry *dentry, const char *name, 475 const void *value, size_t size, int flags) 476 { 477 if (unlikely(IS_PRIVATE(dentry->d_inode))) 478 return 0; 479 return security_ops->inode_setxattr(dentry, name, value, size, flags); 480 } 481 482 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 483 const void *value, size_t size, int flags) 484 { 485 if (unlikely(IS_PRIVATE(dentry->d_inode))) 486 return; 487 security_ops->inode_post_setxattr(dentry, name, value, size, flags); 488 } 489 490 int security_inode_getxattr(struct dentry *dentry, const char *name) 491 { 492 if (unlikely(IS_PRIVATE(dentry->d_inode))) 493 return 0; 494 return security_ops->inode_getxattr(dentry, name); 495 } 496 497 int security_inode_listxattr(struct dentry *dentry) 498 { 499 if (unlikely(IS_PRIVATE(dentry->d_inode))) 500 return 0; 501 return security_ops->inode_listxattr(dentry); 502 } 503 504 int security_inode_removexattr(struct dentry *dentry, const char *name) 505 { 506 if (unlikely(IS_PRIVATE(dentry->d_inode))) 507 return 0; 508 return security_ops->inode_removexattr(dentry, name); 509 } 510 511 int security_inode_need_killpriv(struct dentry *dentry) 512 { 513 return security_ops->inode_need_killpriv(dentry); 514 } 515 516 int security_inode_killpriv(struct dentry *dentry) 517 { 518 return security_ops->inode_killpriv(dentry); 519 } 520 521 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 522 { 523 if (unlikely(IS_PRIVATE(inode))) 524 return 0; 525 return security_ops->inode_getsecurity(inode, name, buffer, alloc); 526 } 527 528 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 529 { 530 if (unlikely(IS_PRIVATE(inode))) 531 return 0; 532 return security_ops->inode_setsecurity(inode, name, value, size, flags); 533 } 534 535 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 536 { 537 if (unlikely(IS_PRIVATE(inode))) 538 return 0; 539 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 540 } 541 542 void security_inode_getsecid(const struct inode *inode, u32 *secid) 543 { 544 security_ops->inode_getsecid(inode, secid); 545 } 546 547 int security_file_permission(struct file *file, int mask) 548 { 549 return security_ops->file_permission(file, mask); 550 } 551 552 int security_file_alloc(struct file *file) 553 { 554 return security_ops->file_alloc_security(file); 555 } 556 557 void security_file_free(struct file *file) 558 { 559 security_ops->file_free_security(file); 560 } 561 562 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 563 { 564 return security_ops->file_ioctl(file, cmd, arg); 565 } 566 567 int security_file_mmap(struct file *file, unsigned long reqprot, 568 unsigned long prot, unsigned long flags, 569 unsigned long addr, unsigned long addr_only) 570 { 571 return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only); 572 } 573 574 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 575 unsigned long prot) 576 { 577 return security_ops->file_mprotect(vma, reqprot, prot); 578 } 579 580 int security_file_lock(struct file *file, unsigned int cmd) 581 { 582 return security_ops->file_lock(file, cmd); 583 } 584 585 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 586 { 587 return security_ops->file_fcntl(file, cmd, arg); 588 } 589 590 int security_file_set_fowner(struct file *file) 591 { 592 return security_ops->file_set_fowner(file); 593 } 594 595 int security_file_send_sigiotask(struct task_struct *tsk, 596 struct fown_struct *fown, int sig) 597 { 598 return security_ops->file_send_sigiotask(tsk, fown, sig); 599 } 600 601 int security_file_receive(struct file *file) 602 { 603 return security_ops->file_receive(file); 604 } 605 606 int security_dentry_open(struct file *file) 607 { 608 return security_ops->dentry_open(file); 609 } 610 611 int security_task_create(unsigned long clone_flags) 612 { 613 return security_ops->task_create(clone_flags); 614 } 615 616 int security_task_alloc(struct task_struct *p) 617 { 618 return security_ops->task_alloc_security(p); 619 } 620 621 void security_task_free(struct task_struct *p) 622 { 623 security_ops->task_free_security(p); 624 } 625 626 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags) 627 { 628 return security_ops->task_setuid(id0, id1, id2, flags); 629 } 630 631 int security_task_post_setuid(uid_t old_ruid, uid_t old_euid, 632 uid_t old_suid, int flags) 633 { 634 return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags); 635 } 636 637 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags) 638 { 639 return security_ops->task_setgid(id0, id1, id2, flags); 640 } 641 642 int security_task_setpgid(struct task_struct *p, pid_t pgid) 643 { 644 return security_ops->task_setpgid(p, pgid); 645 } 646 647 int security_task_getpgid(struct task_struct *p) 648 { 649 return security_ops->task_getpgid(p); 650 } 651 652 int security_task_getsid(struct task_struct *p) 653 { 654 return security_ops->task_getsid(p); 655 } 656 657 void security_task_getsecid(struct task_struct *p, u32 *secid) 658 { 659 security_ops->task_getsecid(p, secid); 660 } 661 EXPORT_SYMBOL(security_task_getsecid); 662 663 int security_task_setgroups(struct group_info *group_info) 664 { 665 return security_ops->task_setgroups(group_info); 666 } 667 668 int security_task_setnice(struct task_struct *p, int nice) 669 { 670 return security_ops->task_setnice(p, nice); 671 } 672 673 int security_task_setioprio(struct task_struct *p, int ioprio) 674 { 675 return security_ops->task_setioprio(p, ioprio); 676 } 677 678 int security_task_getioprio(struct task_struct *p) 679 { 680 return security_ops->task_getioprio(p); 681 } 682 683 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim) 684 { 685 return security_ops->task_setrlimit(resource, new_rlim); 686 } 687 688 int security_task_setscheduler(struct task_struct *p, 689 int policy, struct sched_param *lp) 690 { 691 return security_ops->task_setscheduler(p, policy, lp); 692 } 693 694 int security_task_getscheduler(struct task_struct *p) 695 { 696 return security_ops->task_getscheduler(p); 697 } 698 699 int security_task_movememory(struct task_struct *p) 700 { 701 return security_ops->task_movememory(p); 702 } 703 704 int security_task_kill(struct task_struct *p, struct siginfo *info, 705 int sig, u32 secid) 706 { 707 return security_ops->task_kill(p, info, sig, secid); 708 } 709 710 int security_task_wait(struct task_struct *p) 711 { 712 return security_ops->task_wait(p); 713 } 714 715 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 716 unsigned long arg4, unsigned long arg5, long *rc_p) 717 { 718 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p); 719 } 720 721 void security_task_reparent_to_init(struct task_struct *p) 722 { 723 security_ops->task_reparent_to_init(p); 724 } 725 726 void security_task_to_inode(struct task_struct *p, struct inode *inode) 727 { 728 security_ops->task_to_inode(p, inode); 729 } 730 731 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 732 { 733 return security_ops->ipc_permission(ipcp, flag); 734 } 735 736 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 737 { 738 security_ops->ipc_getsecid(ipcp, secid); 739 } 740 741 int security_msg_msg_alloc(struct msg_msg *msg) 742 { 743 return security_ops->msg_msg_alloc_security(msg); 744 } 745 746 void security_msg_msg_free(struct msg_msg *msg) 747 { 748 security_ops->msg_msg_free_security(msg); 749 } 750 751 int security_msg_queue_alloc(struct msg_queue *msq) 752 { 753 return security_ops->msg_queue_alloc_security(msq); 754 } 755 756 void security_msg_queue_free(struct msg_queue *msq) 757 { 758 security_ops->msg_queue_free_security(msq); 759 } 760 761 int security_msg_queue_associate(struct msg_queue *msq, int msqflg) 762 { 763 return security_ops->msg_queue_associate(msq, msqflg); 764 } 765 766 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) 767 { 768 return security_ops->msg_queue_msgctl(msq, cmd); 769 } 770 771 int security_msg_queue_msgsnd(struct msg_queue *msq, 772 struct msg_msg *msg, int msqflg) 773 { 774 return security_ops->msg_queue_msgsnd(msq, msg, msqflg); 775 } 776 777 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 778 struct task_struct *target, long type, int mode) 779 { 780 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode); 781 } 782 783 int security_shm_alloc(struct shmid_kernel *shp) 784 { 785 return security_ops->shm_alloc_security(shp); 786 } 787 788 void security_shm_free(struct shmid_kernel *shp) 789 { 790 security_ops->shm_free_security(shp); 791 } 792 793 int security_shm_associate(struct shmid_kernel *shp, int shmflg) 794 { 795 return security_ops->shm_associate(shp, shmflg); 796 } 797 798 int security_shm_shmctl(struct shmid_kernel *shp, int cmd) 799 { 800 return security_ops->shm_shmctl(shp, cmd); 801 } 802 803 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg) 804 { 805 return security_ops->shm_shmat(shp, shmaddr, shmflg); 806 } 807 808 int security_sem_alloc(struct sem_array *sma) 809 { 810 return security_ops->sem_alloc_security(sma); 811 } 812 813 void security_sem_free(struct sem_array *sma) 814 { 815 security_ops->sem_free_security(sma); 816 } 817 818 int security_sem_associate(struct sem_array *sma, int semflg) 819 { 820 return security_ops->sem_associate(sma, semflg); 821 } 822 823 int security_sem_semctl(struct sem_array *sma, int cmd) 824 { 825 return security_ops->sem_semctl(sma, cmd); 826 } 827 828 int security_sem_semop(struct sem_array *sma, struct sembuf *sops, 829 unsigned nsops, int alter) 830 { 831 return security_ops->sem_semop(sma, sops, nsops, alter); 832 } 833 834 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 835 { 836 if (unlikely(inode && IS_PRIVATE(inode))) 837 return; 838 security_ops->d_instantiate(dentry, inode); 839 } 840 EXPORT_SYMBOL(security_d_instantiate); 841 842 int security_getprocattr(struct task_struct *p, char *name, char **value) 843 { 844 return security_ops->getprocattr(p, name, value); 845 } 846 847 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 848 { 849 return security_ops->setprocattr(p, name, value, size); 850 } 851 852 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 853 { 854 return security_ops->netlink_send(sk, skb); 855 } 856 857 int security_netlink_recv(struct sk_buff *skb, int cap) 858 { 859 return security_ops->netlink_recv(skb, cap); 860 } 861 EXPORT_SYMBOL(security_netlink_recv); 862 863 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 864 { 865 return security_ops->secid_to_secctx(secid, secdata, seclen); 866 } 867 EXPORT_SYMBOL(security_secid_to_secctx); 868 869 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 870 { 871 return security_ops->secctx_to_secid(secdata, seclen, secid); 872 } 873 EXPORT_SYMBOL(security_secctx_to_secid); 874 875 void security_release_secctx(char *secdata, u32 seclen) 876 { 877 security_ops->release_secctx(secdata, seclen); 878 } 879 EXPORT_SYMBOL(security_release_secctx); 880 881 #ifdef CONFIG_SECURITY_NETWORK 882 883 int security_unix_stream_connect(struct socket *sock, struct socket *other, 884 struct sock *newsk) 885 { 886 return security_ops->unix_stream_connect(sock, other, newsk); 887 } 888 EXPORT_SYMBOL(security_unix_stream_connect); 889 890 int security_unix_may_send(struct socket *sock, struct socket *other) 891 { 892 return security_ops->unix_may_send(sock, other); 893 } 894 EXPORT_SYMBOL(security_unix_may_send); 895 896 int security_socket_create(int family, int type, int protocol, int kern) 897 { 898 return security_ops->socket_create(family, type, protocol, kern); 899 } 900 901 int security_socket_post_create(struct socket *sock, int family, 902 int type, int protocol, int kern) 903 { 904 return security_ops->socket_post_create(sock, family, type, 905 protocol, kern); 906 } 907 908 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 909 { 910 return security_ops->socket_bind(sock, address, addrlen); 911 } 912 913 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 914 { 915 return security_ops->socket_connect(sock, address, addrlen); 916 } 917 918 int security_socket_listen(struct socket *sock, int backlog) 919 { 920 return security_ops->socket_listen(sock, backlog); 921 } 922 923 int security_socket_accept(struct socket *sock, struct socket *newsock) 924 { 925 return security_ops->socket_accept(sock, newsock); 926 } 927 928 void security_socket_post_accept(struct socket *sock, struct socket *newsock) 929 { 930 security_ops->socket_post_accept(sock, newsock); 931 } 932 933 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 934 { 935 return security_ops->socket_sendmsg(sock, msg, size); 936 } 937 938 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 939 int size, int flags) 940 { 941 return security_ops->socket_recvmsg(sock, msg, size, flags); 942 } 943 944 int security_socket_getsockname(struct socket *sock) 945 { 946 return security_ops->socket_getsockname(sock); 947 } 948 949 int security_socket_getpeername(struct socket *sock) 950 { 951 return security_ops->socket_getpeername(sock); 952 } 953 954 int security_socket_getsockopt(struct socket *sock, int level, int optname) 955 { 956 return security_ops->socket_getsockopt(sock, level, optname); 957 } 958 959 int security_socket_setsockopt(struct socket *sock, int level, int optname) 960 { 961 return security_ops->socket_setsockopt(sock, level, optname); 962 } 963 964 int security_socket_shutdown(struct socket *sock, int how) 965 { 966 return security_ops->socket_shutdown(sock, how); 967 } 968 969 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 970 { 971 return security_ops->socket_sock_rcv_skb(sk, skb); 972 } 973 EXPORT_SYMBOL(security_sock_rcv_skb); 974 975 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 976 int __user *optlen, unsigned len) 977 { 978 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 979 } 980 981 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 982 { 983 return security_ops->socket_getpeersec_dgram(sock, skb, secid); 984 } 985 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 986 987 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 988 { 989 return security_ops->sk_alloc_security(sk, family, priority); 990 } 991 992 void security_sk_free(struct sock *sk) 993 { 994 security_ops->sk_free_security(sk); 995 } 996 997 void security_sk_clone(const struct sock *sk, struct sock *newsk) 998 { 999 security_ops->sk_clone_security(sk, newsk); 1000 } 1001 1002 void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 1003 { 1004 security_ops->sk_getsecid(sk, &fl->secid); 1005 } 1006 EXPORT_SYMBOL(security_sk_classify_flow); 1007 1008 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 1009 { 1010 security_ops->req_classify_flow(req, fl); 1011 } 1012 EXPORT_SYMBOL(security_req_classify_flow); 1013 1014 void security_sock_graft(struct sock *sk, struct socket *parent) 1015 { 1016 security_ops->sock_graft(sk, parent); 1017 } 1018 EXPORT_SYMBOL(security_sock_graft); 1019 1020 int security_inet_conn_request(struct sock *sk, 1021 struct sk_buff *skb, struct request_sock *req) 1022 { 1023 return security_ops->inet_conn_request(sk, skb, req); 1024 } 1025 EXPORT_SYMBOL(security_inet_conn_request); 1026 1027 void security_inet_csk_clone(struct sock *newsk, 1028 const struct request_sock *req) 1029 { 1030 security_ops->inet_csk_clone(newsk, req); 1031 } 1032 1033 void security_inet_conn_established(struct sock *sk, 1034 struct sk_buff *skb) 1035 { 1036 security_ops->inet_conn_established(sk, skb); 1037 } 1038 1039 #endif /* CONFIG_SECURITY_NETWORK */ 1040 1041 #ifdef CONFIG_SECURITY_NETWORK_XFRM 1042 1043 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx) 1044 { 1045 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx); 1046 } 1047 EXPORT_SYMBOL(security_xfrm_policy_alloc); 1048 1049 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 1050 struct xfrm_sec_ctx **new_ctxp) 1051 { 1052 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp); 1053 } 1054 1055 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 1056 { 1057 security_ops->xfrm_policy_free_security(ctx); 1058 } 1059 EXPORT_SYMBOL(security_xfrm_policy_free); 1060 1061 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 1062 { 1063 return security_ops->xfrm_policy_delete_security(ctx); 1064 } 1065 1066 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 1067 { 1068 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0); 1069 } 1070 EXPORT_SYMBOL(security_xfrm_state_alloc); 1071 1072 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1073 struct xfrm_sec_ctx *polsec, u32 secid) 1074 { 1075 if (!polsec) 1076 return 0; 1077 /* 1078 * We want the context to be taken from secid which is usually 1079 * from the sock. 1080 */ 1081 return security_ops->xfrm_state_alloc_security(x, NULL, secid); 1082 } 1083 1084 int security_xfrm_state_delete(struct xfrm_state *x) 1085 { 1086 return security_ops->xfrm_state_delete_security(x); 1087 } 1088 EXPORT_SYMBOL(security_xfrm_state_delete); 1089 1090 void security_xfrm_state_free(struct xfrm_state *x) 1091 { 1092 security_ops->xfrm_state_free_security(x); 1093 } 1094 1095 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 1096 { 1097 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir); 1098 } 1099 1100 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1101 struct xfrm_policy *xp, struct flowi *fl) 1102 { 1103 return security_ops->xfrm_state_pol_flow_match(x, xp, fl); 1104 } 1105 1106 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1107 { 1108 return security_ops->xfrm_decode_session(skb, secid, 1); 1109 } 1110 1111 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1112 { 1113 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0); 1114 1115 BUG_ON(rc); 1116 } 1117 EXPORT_SYMBOL(security_skb_classify_flow); 1118 1119 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1120 1121 #ifdef CONFIG_KEYS 1122 1123 int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags) 1124 { 1125 return security_ops->key_alloc(key, tsk, flags); 1126 } 1127 1128 void security_key_free(struct key *key) 1129 { 1130 security_ops->key_free(key); 1131 } 1132 1133 int security_key_permission(key_ref_t key_ref, 1134 struct task_struct *context, key_perm_t perm) 1135 { 1136 return security_ops->key_permission(key_ref, context, perm); 1137 } 1138 1139 int security_key_getsecurity(struct key *key, char **_buffer) 1140 { 1141 return security_ops->key_getsecurity(key, _buffer); 1142 } 1143 1144 #endif /* CONFIG_KEYS */ 1145 1146 #ifdef CONFIG_AUDIT 1147 1148 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 1149 { 1150 return security_ops->audit_rule_init(field, op, rulestr, lsmrule); 1151 } 1152 1153 int security_audit_rule_known(struct audit_krule *krule) 1154 { 1155 return security_ops->audit_rule_known(krule); 1156 } 1157 1158 void security_audit_rule_free(void *lsmrule) 1159 { 1160 security_ops->audit_rule_free(lsmrule); 1161 } 1162 1163 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 1164 struct audit_context *actx) 1165 { 1166 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx); 1167 } 1168 1169 #endif /* CONFIG_AUDIT */ 1170