1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Security plug functions 4 * 5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 8 * Copyright (C) 2016 Mellanox Technologies 9 * Copyright (C) 2023 Microsoft Corporation <paul@paul-moore.com> 10 */ 11 12 #define pr_fmt(fmt) "LSM: " fmt 13 14 #include <linux/bpf.h> 15 #include <linux/capability.h> 16 #include <linux/dcache.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/kernel.h> 20 #include <linux/kernel_read_file.h> 21 #include <linux/lsm_hooks.h> 22 #include <linux/integrity.h> 23 #include <linux/ima.h> 24 #include <linux/evm.h> 25 #include <linux/fsnotify.h> 26 #include <linux/mman.h> 27 #include <linux/mount.h> 28 #include <linux/personality.h> 29 #include <linux/backing-dev.h> 30 #include <linux/string.h> 31 #include <linux/msg.h> 32 #include <net/flow.h> 33 34 #define MAX_LSM_EVM_XATTR 2 35 36 /* How many LSMs were built into the kernel? */ 37 #define LSM_COUNT (__end_lsm_info - __start_lsm_info) 38 39 /* 40 * These are descriptions of the reasons that can be passed to the 41 * security_locked_down() LSM hook. Placing this array here allows 42 * all security modules to use the same descriptions for auditing 43 * purposes. 44 */ 45 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX + 1] = { 46 [LOCKDOWN_NONE] = "none", 47 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading", 48 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port", 49 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access", 50 [LOCKDOWN_KEXEC] = "kexec of unsigned images", 51 [LOCKDOWN_HIBERNATION] = "hibernation", 52 [LOCKDOWN_PCI_ACCESS] = "direct PCI access", 53 [LOCKDOWN_IOPORT] = "raw io port access", 54 [LOCKDOWN_MSR] = "raw MSR access", 55 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables", 56 [LOCKDOWN_DEVICE_TREE] = "modifying device tree contents", 57 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage", 58 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO", 59 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters", 60 [LOCKDOWN_MMIOTRACE] = "unsafe mmio", 61 [LOCKDOWN_DEBUGFS] = "debugfs access", 62 [LOCKDOWN_XMON_WR] = "xmon write access", 63 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM", 64 [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM", 65 [LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection", 66 [LOCKDOWN_INTEGRITY_MAX] = "integrity", 67 [LOCKDOWN_KCORE] = "/proc/kcore access", 68 [LOCKDOWN_KPROBES] = "use of kprobes", 69 [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM", 70 [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM", 71 [LOCKDOWN_PERF] = "unsafe use of perf", 72 [LOCKDOWN_TRACEFS] = "use of tracefs", 73 [LOCKDOWN_XMON_RW] = "xmon read and write access", 74 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret", 75 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality", 76 }; 77 78 struct security_hook_heads security_hook_heads __ro_after_init; 79 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain); 80 81 static struct kmem_cache *lsm_file_cache; 82 static struct kmem_cache *lsm_inode_cache; 83 84 char *lsm_names; 85 static struct lsm_blob_sizes blob_sizes __ro_after_init; 86 87 /* Boot-time LSM user choice */ 88 static __initdata const char *chosen_lsm_order; 89 static __initdata const char *chosen_major_lsm; 90 91 static __initconst const char *const builtin_lsm_order = CONFIG_LSM; 92 93 /* Ordered list of LSMs to initialize. */ 94 static __initdata struct lsm_info **ordered_lsms; 95 static __initdata struct lsm_info *exclusive; 96 97 static __initdata bool debug; 98 #define init_debug(...) \ 99 do { \ 100 if (debug) \ 101 pr_info(__VA_ARGS__); \ 102 } while (0) 103 104 static bool __init is_enabled(struct lsm_info *lsm) 105 { 106 if (!lsm->enabled) 107 return false; 108 109 return *lsm->enabled; 110 } 111 112 /* Mark an LSM's enabled flag. */ 113 static int lsm_enabled_true __initdata = 1; 114 static int lsm_enabled_false __initdata = 0; 115 static void __init set_enabled(struct lsm_info *lsm, bool enabled) 116 { 117 /* 118 * When an LSM hasn't configured an enable variable, we can use 119 * a hard-coded location for storing the default enabled state. 120 */ 121 if (!lsm->enabled) { 122 if (enabled) 123 lsm->enabled = &lsm_enabled_true; 124 else 125 lsm->enabled = &lsm_enabled_false; 126 } else if (lsm->enabled == &lsm_enabled_true) { 127 if (!enabled) 128 lsm->enabled = &lsm_enabled_false; 129 } else if (lsm->enabled == &lsm_enabled_false) { 130 if (enabled) 131 lsm->enabled = &lsm_enabled_true; 132 } else { 133 *lsm->enabled = enabled; 134 } 135 } 136 137 /* Is an LSM already listed in the ordered LSMs list? */ 138 static bool __init exists_ordered_lsm(struct lsm_info *lsm) 139 { 140 struct lsm_info **check; 141 142 for (check = ordered_lsms; *check; check++) 143 if (*check == lsm) 144 return true; 145 146 return false; 147 } 148 149 /* Append an LSM to the list of ordered LSMs to initialize. */ 150 static int last_lsm __initdata; 151 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from) 152 { 153 /* Ignore duplicate selections. */ 154 if (exists_ordered_lsm(lsm)) 155 return; 156 157 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from)) 158 return; 159 160 /* Enable this LSM, if it is not already set. */ 161 if (!lsm->enabled) 162 lsm->enabled = &lsm_enabled_true; 163 ordered_lsms[last_lsm++] = lsm; 164 165 init_debug("%s ordered: %s (%s)\n", from, lsm->name, 166 is_enabled(lsm) ? "enabled" : "disabled"); 167 } 168 169 /* Is an LSM allowed to be initialized? */ 170 static bool __init lsm_allowed(struct lsm_info *lsm) 171 { 172 /* Skip if the LSM is disabled. */ 173 if (!is_enabled(lsm)) 174 return false; 175 176 /* Not allowed if another exclusive LSM already initialized. */ 177 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) { 178 init_debug("exclusive disabled: %s\n", lsm->name); 179 return false; 180 } 181 182 return true; 183 } 184 185 static void __init lsm_set_blob_size(int *need, int *lbs) 186 { 187 int offset; 188 189 if (*need <= 0) 190 return; 191 192 offset = ALIGN(*lbs, sizeof(void *)); 193 *lbs = offset + *need; 194 *need = offset; 195 } 196 197 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed) 198 { 199 if (!needed) 200 return; 201 202 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred); 203 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file); 204 /* 205 * The inode blob gets an rcu_head in addition to 206 * what the modules might need. 207 */ 208 if (needed->lbs_inode && blob_sizes.lbs_inode == 0) 209 blob_sizes.lbs_inode = sizeof(struct rcu_head); 210 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode); 211 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc); 212 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg); 213 lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock); 214 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task); 215 } 216 217 /* Prepare LSM for initialization. */ 218 static void __init prepare_lsm(struct lsm_info *lsm) 219 { 220 int enabled = lsm_allowed(lsm); 221 222 /* Record enablement (to handle any following exclusive LSMs). */ 223 set_enabled(lsm, enabled); 224 225 /* If enabled, do pre-initialization work. */ 226 if (enabled) { 227 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) { 228 exclusive = lsm; 229 init_debug("exclusive chosen: %s\n", lsm->name); 230 } 231 232 lsm_set_blob_sizes(lsm->blobs); 233 } 234 } 235 236 /* Initialize a given LSM, if it is enabled. */ 237 static void __init initialize_lsm(struct lsm_info *lsm) 238 { 239 if (is_enabled(lsm)) { 240 int ret; 241 242 init_debug("initializing %s\n", lsm->name); 243 ret = lsm->init(); 244 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); 245 } 246 } 247 248 /* Populate ordered LSMs list from comma-separated LSM name list. */ 249 static void __init ordered_lsm_parse(const char *order, const char *origin) 250 { 251 struct lsm_info *lsm; 252 char *sep, *name, *next; 253 254 /* LSM_ORDER_FIRST is always first. */ 255 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 256 if (lsm->order == LSM_ORDER_FIRST) 257 append_ordered_lsm(lsm, " first"); 258 } 259 260 /* Process "security=", if given. */ 261 if (chosen_major_lsm) { 262 struct lsm_info *major; 263 264 /* 265 * To match the original "security=" behavior, this 266 * explicitly does NOT fallback to another Legacy Major 267 * if the selected one was separately disabled: disable 268 * all non-matching Legacy Major LSMs. 269 */ 270 for (major = __start_lsm_info; major < __end_lsm_info; 271 major++) { 272 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) && 273 strcmp(major->name, chosen_major_lsm) != 0) { 274 set_enabled(major, false); 275 init_debug("security=%s disabled: %s (only one legacy major LSM)\n", 276 chosen_major_lsm, major->name); 277 } 278 } 279 } 280 281 sep = kstrdup(order, GFP_KERNEL); 282 next = sep; 283 /* Walk the list, looking for matching LSMs. */ 284 while ((name = strsep(&next, ",")) != NULL) { 285 bool found = false; 286 287 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 288 if (strcmp(lsm->name, name) == 0) { 289 if (lsm->order == LSM_ORDER_MUTABLE) 290 append_ordered_lsm(lsm, origin); 291 found = true; 292 } 293 } 294 295 if (!found) 296 init_debug("%s ignored: %s (not built into kernel)\n", 297 origin, name); 298 } 299 300 /* Process "security=", if given. */ 301 if (chosen_major_lsm) { 302 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 303 if (exists_ordered_lsm(lsm)) 304 continue; 305 if (strcmp(lsm->name, chosen_major_lsm) == 0) 306 append_ordered_lsm(lsm, "security="); 307 } 308 } 309 310 /* LSM_ORDER_LAST is always last. */ 311 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 312 if (lsm->order == LSM_ORDER_LAST) 313 append_ordered_lsm(lsm, " last"); 314 } 315 316 /* Disable all LSMs not in the ordered list. */ 317 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 318 if (exists_ordered_lsm(lsm)) 319 continue; 320 set_enabled(lsm, false); 321 init_debug("%s skipped: %s (not in requested order)\n", 322 origin, lsm->name); 323 } 324 325 kfree(sep); 326 } 327 328 static void __init lsm_early_cred(struct cred *cred); 329 static void __init lsm_early_task(struct task_struct *task); 330 331 static int lsm_append(const char *new, char **result); 332 333 static void __init report_lsm_order(void) 334 { 335 struct lsm_info **lsm, *early; 336 int first = 0; 337 338 pr_info("initializing lsm="); 339 340 /* Report each enabled LSM name, comma separated. */ 341 for (early = __start_early_lsm_info; 342 early < __end_early_lsm_info; early++) 343 if (is_enabled(early)) 344 pr_cont("%s%s", first++ == 0 ? "" : ",", early->name); 345 for (lsm = ordered_lsms; *lsm; lsm++) 346 if (is_enabled(*lsm)) 347 pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name); 348 349 pr_cont("\n"); 350 } 351 352 static void __init ordered_lsm_init(void) 353 { 354 struct lsm_info **lsm; 355 356 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms), 357 GFP_KERNEL); 358 359 if (chosen_lsm_order) { 360 if (chosen_major_lsm) { 361 pr_warn("security=%s is ignored because it is superseded by lsm=%s\n", 362 chosen_major_lsm, chosen_lsm_order); 363 chosen_major_lsm = NULL; 364 } 365 ordered_lsm_parse(chosen_lsm_order, "cmdline"); 366 } else 367 ordered_lsm_parse(builtin_lsm_order, "builtin"); 368 369 for (lsm = ordered_lsms; *lsm; lsm++) 370 prepare_lsm(*lsm); 371 372 report_lsm_order(); 373 374 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred); 375 init_debug("file blob size = %d\n", blob_sizes.lbs_file); 376 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode); 377 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc); 378 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg); 379 init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock); 380 init_debug("task blob size = %d\n", blob_sizes.lbs_task); 381 382 /* 383 * Create any kmem_caches needed for blobs 384 */ 385 if (blob_sizes.lbs_file) 386 lsm_file_cache = kmem_cache_create("lsm_file_cache", 387 blob_sizes.lbs_file, 0, 388 SLAB_PANIC, NULL); 389 if (blob_sizes.lbs_inode) 390 lsm_inode_cache = kmem_cache_create("lsm_inode_cache", 391 blob_sizes.lbs_inode, 0, 392 SLAB_PANIC, NULL); 393 394 lsm_early_cred((struct cred *) current->cred); 395 lsm_early_task(current); 396 for (lsm = ordered_lsms; *lsm; lsm++) 397 initialize_lsm(*lsm); 398 399 kfree(ordered_lsms); 400 } 401 402 int __init early_security_init(void) 403 { 404 struct lsm_info *lsm; 405 406 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 407 INIT_HLIST_HEAD(&security_hook_heads.NAME); 408 #include "linux/lsm_hook_defs.h" 409 #undef LSM_HOOK 410 411 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 412 if (!lsm->enabled) 413 lsm->enabled = &lsm_enabled_true; 414 prepare_lsm(lsm); 415 initialize_lsm(lsm); 416 } 417 418 return 0; 419 } 420 421 /** 422 * security_init - initializes the security framework 423 * 424 * This should be called early in the kernel initialization sequence. 425 */ 426 int __init security_init(void) 427 { 428 struct lsm_info *lsm; 429 430 init_debug("legacy security=%s\n", chosen_major_lsm ? : " *unspecified*"); 431 init_debug(" CONFIG_LSM=%s\n", builtin_lsm_order); 432 init_debug("boot arg lsm=%s\n", chosen_lsm_order ? : " *unspecified*"); 433 434 /* 435 * Append the names of the early LSM modules now that kmalloc() is 436 * available 437 */ 438 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 439 init_debug(" early started: %s (%s)\n", lsm->name, 440 is_enabled(lsm) ? "enabled" : "disabled"); 441 if (lsm->enabled) 442 lsm_append(lsm->name, &lsm_names); 443 } 444 445 /* Load LSMs in specified order. */ 446 ordered_lsm_init(); 447 448 return 0; 449 } 450 451 /* Save user chosen LSM */ 452 static int __init choose_major_lsm(char *str) 453 { 454 chosen_major_lsm = str; 455 return 1; 456 } 457 __setup("security=", choose_major_lsm); 458 459 /* Explicitly choose LSM initialization order. */ 460 static int __init choose_lsm_order(char *str) 461 { 462 chosen_lsm_order = str; 463 return 1; 464 } 465 __setup("lsm=", choose_lsm_order); 466 467 /* Enable LSM order debugging. */ 468 static int __init enable_debug(char *str) 469 { 470 debug = true; 471 return 1; 472 } 473 __setup("lsm.debug", enable_debug); 474 475 static bool match_last_lsm(const char *list, const char *lsm) 476 { 477 const char *last; 478 479 if (WARN_ON(!list || !lsm)) 480 return false; 481 last = strrchr(list, ','); 482 if (last) 483 /* Pass the comma, strcmp() will check for '\0' */ 484 last++; 485 else 486 last = list; 487 return !strcmp(last, lsm); 488 } 489 490 static int lsm_append(const char *new, char **result) 491 { 492 char *cp; 493 494 if (*result == NULL) { 495 *result = kstrdup(new, GFP_KERNEL); 496 if (*result == NULL) 497 return -ENOMEM; 498 } else { 499 /* Check if it is the last registered name */ 500 if (match_last_lsm(*result, new)) 501 return 0; 502 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 503 if (cp == NULL) 504 return -ENOMEM; 505 kfree(*result); 506 *result = cp; 507 } 508 return 0; 509 } 510 511 /** 512 * security_add_hooks - Add a modules hooks to the hook lists. 513 * @hooks: the hooks to add 514 * @count: the number of hooks to add 515 * @lsm: the name of the security module 516 * 517 * Each LSM has to register its hooks with the infrastructure. 518 */ 519 void __init security_add_hooks(struct security_hook_list *hooks, int count, 520 const char *lsm) 521 { 522 int i; 523 524 for (i = 0; i < count; i++) { 525 hooks[i].lsm = lsm; 526 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 527 } 528 529 /* 530 * Don't try to append during early_security_init(), we'll come back 531 * and fix this up afterwards. 532 */ 533 if (slab_is_available()) { 534 if (lsm_append(lsm, &lsm_names) < 0) 535 panic("%s - Cannot get early memory.\n", __func__); 536 } 537 } 538 539 int call_blocking_lsm_notifier(enum lsm_event event, void *data) 540 { 541 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain, 542 event, data); 543 } 544 EXPORT_SYMBOL(call_blocking_lsm_notifier); 545 546 int register_blocking_lsm_notifier(struct notifier_block *nb) 547 { 548 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain, 549 nb); 550 } 551 EXPORT_SYMBOL(register_blocking_lsm_notifier); 552 553 int unregister_blocking_lsm_notifier(struct notifier_block *nb) 554 { 555 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain, 556 nb); 557 } 558 EXPORT_SYMBOL(unregister_blocking_lsm_notifier); 559 560 /** 561 * lsm_cred_alloc - allocate a composite cred blob 562 * @cred: the cred that needs a blob 563 * @gfp: allocation type 564 * 565 * Allocate the cred blob for all the modules 566 * 567 * Returns 0, or -ENOMEM if memory can't be allocated. 568 */ 569 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp) 570 { 571 if (blob_sizes.lbs_cred == 0) { 572 cred->security = NULL; 573 return 0; 574 } 575 576 cred->security = kzalloc(blob_sizes.lbs_cred, gfp); 577 if (cred->security == NULL) 578 return -ENOMEM; 579 return 0; 580 } 581 582 /** 583 * lsm_early_cred - during initialization allocate a composite cred blob 584 * @cred: the cred that needs a blob 585 * 586 * Allocate the cred blob for all the modules 587 */ 588 static void __init lsm_early_cred(struct cred *cred) 589 { 590 int rc = lsm_cred_alloc(cred, GFP_KERNEL); 591 592 if (rc) 593 panic("%s: Early cred alloc failed.\n", __func__); 594 } 595 596 /** 597 * lsm_file_alloc - allocate a composite file blob 598 * @file: the file that needs a blob 599 * 600 * Allocate the file blob for all the modules 601 * 602 * Returns 0, or -ENOMEM if memory can't be allocated. 603 */ 604 static int lsm_file_alloc(struct file *file) 605 { 606 if (!lsm_file_cache) { 607 file->f_security = NULL; 608 return 0; 609 } 610 611 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL); 612 if (file->f_security == NULL) 613 return -ENOMEM; 614 return 0; 615 } 616 617 /** 618 * lsm_inode_alloc - allocate a composite inode blob 619 * @inode: the inode that needs a blob 620 * 621 * Allocate the inode blob for all the modules 622 * 623 * Returns 0, or -ENOMEM if memory can't be allocated. 624 */ 625 int lsm_inode_alloc(struct inode *inode) 626 { 627 if (!lsm_inode_cache) { 628 inode->i_security = NULL; 629 return 0; 630 } 631 632 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS); 633 if (inode->i_security == NULL) 634 return -ENOMEM; 635 return 0; 636 } 637 638 /** 639 * lsm_task_alloc - allocate a composite task blob 640 * @task: the task that needs a blob 641 * 642 * Allocate the task blob for all the modules 643 * 644 * Returns 0, or -ENOMEM if memory can't be allocated. 645 */ 646 static int lsm_task_alloc(struct task_struct *task) 647 { 648 if (blob_sizes.lbs_task == 0) { 649 task->security = NULL; 650 return 0; 651 } 652 653 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL); 654 if (task->security == NULL) 655 return -ENOMEM; 656 return 0; 657 } 658 659 /** 660 * lsm_ipc_alloc - allocate a composite ipc blob 661 * @kip: the ipc that needs a blob 662 * 663 * Allocate the ipc blob for all the modules 664 * 665 * Returns 0, or -ENOMEM if memory can't be allocated. 666 */ 667 static int lsm_ipc_alloc(struct kern_ipc_perm *kip) 668 { 669 if (blob_sizes.lbs_ipc == 0) { 670 kip->security = NULL; 671 return 0; 672 } 673 674 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL); 675 if (kip->security == NULL) 676 return -ENOMEM; 677 return 0; 678 } 679 680 /** 681 * lsm_msg_msg_alloc - allocate a composite msg_msg blob 682 * @mp: the msg_msg that needs a blob 683 * 684 * Allocate the ipc blob for all the modules 685 * 686 * Returns 0, or -ENOMEM if memory can't be allocated. 687 */ 688 static int lsm_msg_msg_alloc(struct msg_msg *mp) 689 { 690 if (blob_sizes.lbs_msg_msg == 0) { 691 mp->security = NULL; 692 return 0; 693 } 694 695 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL); 696 if (mp->security == NULL) 697 return -ENOMEM; 698 return 0; 699 } 700 701 /** 702 * lsm_early_task - during initialization allocate a composite task blob 703 * @task: the task that needs a blob 704 * 705 * Allocate the task blob for all the modules 706 */ 707 static void __init lsm_early_task(struct task_struct *task) 708 { 709 int rc = lsm_task_alloc(task); 710 711 if (rc) 712 panic("%s: Early task alloc failed.\n", __func__); 713 } 714 715 /** 716 * lsm_superblock_alloc - allocate a composite superblock blob 717 * @sb: the superblock that needs a blob 718 * 719 * Allocate the superblock blob for all the modules 720 * 721 * Returns 0, or -ENOMEM if memory can't be allocated. 722 */ 723 static int lsm_superblock_alloc(struct super_block *sb) 724 { 725 if (blob_sizes.lbs_superblock == 0) { 726 sb->s_security = NULL; 727 return 0; 728 } 729 730 sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL); 731 if (sb->s_security == NULL) 732 return -ENOMEM; 733 return 0; 734 } 735 736 /* 737 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and 738 * can be accessed with: 739 * 740 * LSM_RET_DEFAULT(<hook_name>) 741 * 742 * The macros below define static constants for the default value of each 743 * LSM hook. 744 */ 745 #define LSM_RET_DEFAULT(NAME) (NAME##_default) 746 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME) 747 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \ 748 static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT); 749 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 750 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME) 751 752 #include <linux/lsm_hook_defs.h> 753 #undef LSM_HOOK 754 755 /* 756 * Hook list operation macros. 757 * 758 * call_void_hook: 759 * This is a hook that does not return a value. 760 * 761 * call_int_hook: 762 * This is a hook that returns a value. 763 */ 764 765 #define call_void_hook(FUNC, ...) \ 766 do { \ 767 struct security_hook_list *P; \ 768 \ 769 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 770 P->hook.FUNC(__VA_ARGS__); \ 771 } while (0) 772 773 #define call_int_hook(FUNC, IRC, ...) ({ \ 774 int RC = IRC; \ 775 do { \ 776 struct security_hook_list *P; \ 777 \ 778 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 779 RC = P->hook.FUNC(__VA_ARGS__); \ 780 if (RC != 0) \ 781 break; \ 782 } \ 783 } while (0); \ 784 RC; \ 785 }) 786 787 /* Security operations */ 788 789 /** 790 * security_binder_set_context_mgr() - Check if becoming binder ctx mgr is ok 791 * @mgr: task credentials of current binder process 792 * 793 * Check whether @mgr is allowed to be the binder context manager. 794 * 795 * Return: Return 0 if permission is granted. 796 */ 797 int security_binder_set_context_mgr(const struct cred *mgr) 798 { 799 return call_int_hook(binder_set_context_mgr, 0, mgr); 800 } 801 802 /** 803 * security_binder_transaction() - Check if a binder transaction is allowed 804 * @from: sending process 805 * @to: receiving process 806 * 807 * Check whether @from is allowed to invoke a binder transaction call to @to. 808 * 809 * Return: Returns 0 if permission is granted. 810 */ 811 int security_binder_transaction(const struct cred *from, 812 const struct cred *to) 813 { 814 return call_int_hook(binder_transaction, 0, from, to); 815 } 816 817 /** 818 * security_binder_transfer_binder() - Check if a binder transfer is allowed 819 * @from: sending process 820 * @to: receiving process 821 * 822 * Check whether @from is allowed to transfer a binder reference to @to. 823 * 824 * Return: Returns 0 if permission is granted. 825 */ 826 int security_binder_transfer_binder(const struct cred *from, 827 const struct cred *to) 828 { 829 return call_int_hook(binder_transfer_binder, 0, from, to); 830 } 831 832 /** 833 * security_binder_transfer_file() - Check if a binder file xfer is allowed 834 * @from: sending process 835 * @to: receiving process 836 * @file: file being transferred 837 * 838 * Check whether @from is allowed to transfer @file to @to. 839 * 840 * Return: Returns 0 if permission is granted. 841 */ 842 int security_binder_transfer_file(const struct cred *from, 843 const struct cred *to, struct file *file) 844 { 845 return call_int_hook(binder_transfer_file, 0, from, to, file); 846 } 847 848 /** 849 * security_ptrace_access_check() - Check if tracing is allowed 850 * @child: target process 851 * @mode: PTRACE_MODE flags 852 * 853 * Check permission before allowing the current process to trace the @child 854 * process. Security modules may also want to perform a process tracing check 855 * during an execve in the set_security or apply_creds hooks of tracing check 856 * during an execve in the bprm_set_creds hook of binprm_security_ops if the 857 * process is being traced and its security attributes would be changed by the 858 * execve. 859 * 860 * Return: Returns 0 if permission is granted. 861 */ 862 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 863 { 864 return call_int_hook(ptrace_access_check, 0, child, mode); 865 } 866 867 /** 868 * security_ptrace_traceme() - Check if tracing is allowed 869 * @parent: tracing process 870 * 871 * Check that the @parent process has sufficient permission to trace the 872 * current process before allowing the current process to present itself to the 873 * @parent process for tracing. 874 * 875 * Return: Returns 0 if permission is granted. 876 */ 877 int security_ptrace_traceme(struct task_struct *parent) 878 { 879 return call_int_hook(ptrace_traceme, 0, parent); 880 } 881 882 /** 883 * security_capget() - Get the capability sets for a process 884 * @target: target process 885 * @effective: effective capability set 886 * @inheritable: inheritable capability set 887 * @permitted: permitted capability set 888 * 889 * Get the @effective, @inheritable, and @permitted capability sets for the 890 * @target process. The hook may also perform permission checking to determine 891 * if the current process is allowed to see the capability sets of the @target 892 * process. 893 * 894 * Return: Returns 0 if the capability sets were successfully obtained. 895 */ 896 int security_capget(struct task_struct *target, 897 kernel_cap_t *effective, 898 kernel_cap_t *inheritable, 899 kernel_cap_t *permitted) 900 { 901 return call_int_hook(capget, 0, target, 902 effective, inheritable, permitted); 903 } 904 905 /** 906 * security_capset() - Set the capability sets for a process 907 * @new: new credentials for the target process 908 * @old: current credentials of the target process 909 * @effective: effective capability set 910 * @inheritable: inheritable capability set 911 * @permitted: permitted capability set 912 * 913 * Set the @effective, @inheritable, and @permitted capability sets for the 914 * current process. 915 * 916 * Return: Returns 0 and update @new if permission is granted. 917 */ 918 int security_capset(struct cred *new, const struct cred *old, 919 const kernel_cap_t *effective, 920 const kernel_cap_t *inheritable, 921 const kernel_cap_t *permitted) 922 { 923 return call_int_hook(capset, 0, new, old, 924 effective, inheritable, permitted); 925 } 926 927 /** 928 * security_capable() - Check if a process has the necessary capability 929 * @cred: credentials to examine 930 * @ns: user namespace 931 * @cap: capability requested 932 * @opts: capability check options 933 * 934 * Check whether the @tsk process has the @cap capability in the indicated 935 * credentials. @cap contains the capability <include/linux/capability.h>. 936 * @opts contains options for the capable check <include/linux/security.h>. 937 * 938 * Return: Returns 0 if the capability is granted. 939 */ 940 int security_capable(const struct cred *cred, 941 struct user_namespace *ns, 942 int cap, 943 unsigned int opts) 944 { 945 return call_int_hook(capable, 0, cred, ns, cap, opts); 946 } 947 948 /** 949 * security_quotactl() - Check if a quotactl() syscall is allowed for this fs 950 * @cmds: commands 951 * @type: type 952 * @id: id 953 * @sb: filesystem 954 * 955 * Check whether the quotactl syscall is allowed for this @sb. 956 * 957 * Return: Returns 0 if permission is granted. 958 */ 959 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 960 { 961 return call_int_hook(quotactl, 0, cmds, type, id, sb); 962 } 963 964 /** 965 * security_quota_on() - Check if QUOTAON is allowed for a dentry 966 * @dentry: dentry 967 * 968 * Check whether QUOTAON is allowed for @dentry. 969 * 970 * Return: Returns 0 if permission is granted. 971 */ 972 int security_quota_on(struct dentry *dentry) 973 { 974 return call_int_hook(quota_on, 0, dentry); 975 } 976 977 /** 978 * security_syslog() - Check if accessing the kernel message ring is allowed 979 * @type: SYSLOG_ACTION_* type 980 * 981 * Check permission before accessing the kernel message ring or changing 982 * logging to the console. See the syslog(2) manual page for an explanation of 983 * the @type values. 984 * 985 * Return: Return 0 if permission is granted. 986 */ 987 int security_syslog(int type) 988 { 989 return call_int_hook(syslog, 0, type); 990 } 991 992 /** 993 * security_settime64() - Check if changing the system time is allowed 994 * @ts: new time 995 * @tz: timezone 996 * 997 * Check permission to change the system time, struct timespec64 is defined in 998 * <include/linux/time64.h> and timezone is defined in <include/linux/time.h>. 999 * 1000 * Return: Returns 0 if permission is granted. 1001 */ 1002 int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 1003 { 1004 return call_int_hook(settime, 0, ts, tz); 1005 } 1006 1007 /** 1008 * security_vm_enough_memory_mm() - Check if allocating a new mem map is allowed 1009 * @mm: mm struct 1010 * @pages: number of pages 1011 * 1012 * Check permissions for allocating a new virtual mapping. If all LSMs return 1013 * a positive value, __vm_enough_memory() will be called with cap_sys_admin 1014 * set. If at least one LSM returns 0 or negative, __vm_enough_memory() will be 1015 * called with cap_sys_admin cleared. 1016 * 1017 * Return: Returns 0 if permission is granted by the LSM infrastructure to the 1018 * caller. 1019 */ 1020 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 1021 { 1022 struct security_hook_list *hp; 1023 int cap_sys_admin = 1; 1024 int rc; 1025 1026 /* 1027 * The module will respond with a positive value if 1028 * it thinks the __vm_enough_memory() call should be 1029 * made with the cap_sys_admin set. If all of the modules 1030 * agree that it should be set it will. If any module 1031 * thinks it should not be set it won't. 1032 */ 1033 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 1034 rc = hp->hook.vm_enough_memory(mm, pages); 1035 if (rc <= 0) { 1036 cap_sys_admin = 0; 1037 break; 1038 } 1039 } 1040 return __vm_enough_memory(mm, pages, cap_sys_admin); 1041 } 1042 1043 /** 1044 * security_bprm_creds_for_exec() - Prepare the credentials for exec() 1045 * @bprm: binary program information 1046 * 1047 * If the setup in prepare_exec_creds did not setup @bprm->cred->security 1048 * properly for executing @bprm->file, update the LSM's portion of 1049 * @bprm->cred->security to be what commit_creds needs to install for the new 1050 * program. This hook may also optionally check permissions (e.g. for 1051 * transitions between security domains). The hook must set @bprm->secureexec 1052 * to 1 if AT_SECURE should be set to request libc enable secure mode. @bprm 1053 * contains the linux_binprm structure. 1054 * 1055 * Return: Returns 0 if the hook is successful and permission is granted. 1056 */ 1057 int security_bprm_creds_for_exec(struct linux_binprm *bprm) 1058 { 1059 return call_int_hook(bprm_creds_for_exec, 0, bprm); 1060 } 1061 1062 /** 1063 * security_bprm_creds_from_file() - Update linux_binprm creds based on file 1064 * @bprm: binary program information 1065 * @file: associated file 1066 * 1067 * If @file is setpcap, suid, sgid or otherwise marked to change privilege upon 1068 * exec, update @bprm->cred to reflect that change. This is called after 1069 * finding the binary that will be executed without an interpreter. This 1070 * ensures that the credentials will not be derived from a script that the 1071 * binary will need to reopen, which when reopend may end up being a completely 1072 * different file. This hook may also optionally check permissions (e.g. for 1073 * transitions between security domains). The hook must set @bprm->secureexec 1074 * to 1 if AT_SECURE should be set to request libc enable secure mode. The 1075 * hook must add to @bprm->per_clear any personality flags that should be 1076 * cleared from current->personality. @bprm contains the linux_binprm 1077 * structure. 1078 * 1079 * Return: Returns 0 if the hook is successful and permission is granted. 1080 */ 1081 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file) 1082 { 1083 return call_int_hook(bprm_creds_from_file, 0, bprm, file); 1084 } 1085 1086 /** 1087 * security_bprm_check() - Mediate binary handler search 1088 * @bprm: binary program information 1089 * 1090 * This hook mediates the point when a search for a binary handler will begin. 1091 * It allows a check against the @bprm->cred->security value which was set in 1092 * the preceding creds_for_exec call. The argv list and envp list are reliably 1093 * available in @bprm. This hook may be called multiple times during a single 1094 * execve. @bprm contains the linux_binprm structure. 1095 * 1096 * Return: Returns 0 if the hook is successful and permission is granted. 1097 */ 1098 int security_bprm_check(struct linux_binprm *bprm) 1099 { 1100 int ret; 1101 1102 ret = call_int_hook(bprm_check_security, 0, bprm); 1103 if (ret) 1104 return ret; 1105 return ima_bprm_check(bprm); 1106 } 1107 1108 /** 1109 * security_bprm_committing_creds() - Install creds for a process during exec() 1110 * @bprm: binary program information 1111 * 1112 * Prepare to install the new security attributes of a process being 1113 * transformed by an execve operation, based on the old credentials pointed to 1114 * by @current->cred and the information set in @bprm->cred by the 1115 * bprm_creds_for_exec hook. @bprm points to the linux_binprm structure. This 1116 * hook is a good place to perform state changes on the process such as closing 1117 * open file descriptors to which access will no longer be granted when the 1118 * attributes are changed. This is called immediately before commit_creds(). 1119 */ 1120 void security_bprm_committing_creds(struct linux_binprm *bprm) 1121 { 1122 call_void_hook(bprm_committing_creds, bprm); 1123 } 1124 1125 /** 1126 * security_bprm_committed_creds() - Tidy up after cred install during exec() 1127 * @bprm: binary program information 1128 * 1129 * Tidy up after the installation of the new security attributes of a process 1130 * being transformed by an execve operation. The new credentials have, by this 1131 * point, been set to @current->cred. @bprm points to the linux_binprm 1132 * structure. This hook is a good place to perform state changes on the 1133 * process such as clearing out non-inheritable signal state. This is called 1134 * immediately after commit_creds(). 1135 */ 1136 void security_bprm_committed_creds(struct linux_binprm *bprm) 1137 { 1138 call_void_hook(bprm_committed_creds, bprm); 1139 } 1140 1141 /** 1142 * security_fs_context_dup() - Duplicate a fs_context LSM blob 1143 * @fc: destination filesystem context 1144 * @src_fc: source filesystem context 1145 * 1146 * Allocate and attach a security structure to sc->security. This pointer is 1147 * initialised to NULL by the caller. @fc indicates the new filesystem context. 1148 * @src_fc indicates the original filesystem context. 1149 * 1150 * Return: Returns 0 on success or a negative error code on failure. 1151 */ 1152 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) 1153 { 1154 return call_int_hook(fs_context_dup, 0, fc, src_fc); 1155 } 1156 1157 /** 1158 * security_fs_context_parse_param() - Configure a filesystem context 1159 * @fc: filesystem context 1160 * @param: filesystem parameter 1161 * 1162 * Userspace provided a parameter to configure a superblock. The LSM can 1163 * consume the parameter or return it to the caller for use elsewhere. 1164 * 1165 * Return: If the parameter is used by the LSM it should return 0, if it is 1166 * returned to the caller -ENOPARAM is returned, otherwise a negative 1167 * error code is returned. 1168 */ 1169 int security_fs_context_parse_param(struct fs_context *fc, 1170 struct fs_parameter *param) 1171 { 1172 struct security_hook_list *hp; 1173 int trc; 1174 int rc = -ENOPARAM; 1175 1176 hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param, 1177 list) { 1178 trc = hp->hook.fs_context_parse_param(fc, param); 1179 if (trc == 0) 1180 rc = 0; 1181 else if (trc != -ENOPARAM) 1182 return trc; 1183 } 1184 return rc; 1185 } 1186 1187 /** 1188 * security_sb_alloc() - Allocate a super_block LSM blob 1189 * @sb: filesystem superblock 1190 * 1191 * Allocate and attach a security structure to the sb->s_security field. The 1192 * s_security field is initialized to NULL when the structure is allocated. 1193 * @sb contains the super_block structure to be modified. 1194 * 1195 * Return: Returns 0 if operation was successful. 1196 */ 1197 int security_sb_alloc(struct super_block *sb) 1198 { 1199 int rc = lsm_superblock_alloc(sb); 1200 1201 if (unlikely(rc)) 1202 return rc; 1203 rc = call_int_hook(sb_alloc_security, 0, sb); 1204 if (unlikely(rc)) 1205 security_sb_free(sb); 1206 return rc; 1207 } 1208 1209 /** 1210 * security_sb_delete() - Release super_block LSM associated objects 1211 * @sb: filesystem superblock 1212 * 1213 * Release objects tied to a superblock (e.g. inodes). @sb contains the 1214 * super_block structure being released. 1215 */ 1216 void security_sb_delete(struct super_block *sb) 1217 { 1218 call_void_hook(sb_delete, sb); 1219 } 1220 1221 /** 1222 * security_sb_free() - Free a super_block LSM blob 1223 * @sb: filesystem superblock 1224 * 1225 * Deallocate and clear the sb->s_security field. @sb contains the super_block 1226 * structure to be modified. 1227 */ 1228 void security_sb_free(struct super_block *sb) 1229 { 1230 call_void_hook(sb_free_security, sb); 1231 kfree(sb->s_security); 1232 sb->s_security = NULL; 1233 } 1234 1235 /** 1236 * security_free_mnt_opts() - Free memory associated with mount options 1237 * @mnt_opts: LSM processed mount options 1238 * 1239 * Free memory associated with @mnt_ops. 1240 */ 1241 void security_free_mnt_opts(void **mnt_opts) 1242 { 1243 if (!*mnt_opts) 1244 return; 1245 call_void_hook(sb_free_mnt_opts, *mnt_opts); 1246 *mnt_opts = NULL; 1247 } 1248 EXPORT_SYMBOL(security_free_mnt_opts); 1249 1250 /** 1251 * security_sb_eat_lsm_opts() - Consume LSM mount options 1252 * @options: mount options 1253 * @mnt_opts: LSM processed mount options 1254 * 1255 * Eat (scan @options) and save them in @mnt_opts. 1256 * 1257 * Return: Returns 0 on success, negative values on failure. 1258 */ 1259 int security_sb_eat_lsm_opts(char *options, void **mnt_opts) 1260 { 1261 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts); 1262 } 1263 EXPORT_SYMBOL(security_sb_eat_lsm_opts); 1264 1265 /** 1266 * security_sb_mnt_opts_compat() - Check if new mount options are allowed 1267 * @sb: filesystem superblock 1268 * @mnt_opts: new mount options 1269 * 1270 * Determine if the new mount options in @mnt_opts are allowed given the 1271 * existing mounted filesystem at @sb. @sb superblock being compared. 1272 * 1273 * Return: Returns 0 if options are compatible. 1274 */ 1275 int security_sb_mnt_opts_compat(struct super_block *sb, 1276 void *mnt_opts) 1277 { 1278 return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts); 1279 } 1280 EXPORT_SYMBOL(security_sb_mnt_opts_compat); 1281 1282 /** 1283 * security_sb_remount() - Verify no incompatible mount changes during remount 1284 * @sb: filesystem superblock 1285 * @mnt_opts: (re)mount options 1286 * 1287 * Extracts security system specific mount options and verifies no changes are 1288 * being made to those options. 1289 * 1290 * Return: Returns 0 if permission is granted. 1291 */ 1292 int security_sb_remount(struct super_block *sb, 1293 void *mnt_opts) 1294 { 1295 return call_int_hook(sb_remount, 0, sb, mnt_opts); 1296 } 1297 EXPORT_SYMBOL(security_sb_remount); 1298 1299 /** 1300 * security_sb_kern_mount() - Check if a kernel mount is allowed 1301 * @sb: filesystem superblock 1302 * 1303 * Mount this @sb if allowed by permissions. 1304 * 1305 * Return: Returns 0 if permission is granted. 1306 */ 1307 int security_sb_kern_mount(struct super_block *sb) 1308 { 1309 return call_int_hook(sb_kern_mount, 0, sb); 1310 } 1311 1312 /** 1313 * security_sb_show_options() - Output the mount options for a superblock 1314 * @m: output file 1315 * @sb: filesystem superblock 1316 * 1317 * Show (print on @m) mount options for this @sb. 1318 * 1319 * Return: Returns 0 on success, negative values on failure. 1320 */ 1321 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 1322 { 1323 return call_int_hook(sb_show_options, 0, m, sb); 1324 } 1325 1326 /** 1327 * security_sb_statfs() - Check if accessing fs stats is allowed 1328 * @dentry: superblock handle 1329 * 1330 * Check permission before obtaining filesystem statistics for the @mnt 1331 * mountpoint. @dentry is a handle on the superblock for the filesystem. 1332 * 1333 * Return: Returns 0 if permission is granted. 1334 */ 1335 int security_sb_statfs(struct dentry *dentry) 1336 { 1337 return call_int_hook(sb_statfs, 0, dentry); 1338 } 1339 1340 /** 1341 * security_sb_mount() - Check permission for mounting a filesystem 1342 * @dev_name: filesystem backing device 1343 * @path: mount point 1344 * @type: filesystem type 1345 * @flags: mount flags 1346 * @data: filesystem specific data 1347 * 1348 * Check permission before an object specified by @dev_name is mounted on the 1349 * mount point named by @nd. For an ordinary mount, @dev_name identifies a 1350 * device if the file system type requires a device. For a remount 1351 * (@flags & MS_REMOUNT), @dev_name is irrelevant. For a loopback/bind mount 1352 * (@flags & MS_BIND), @dev_name identifies the pathname of the object being 1353 * mounted. 1354 * 1355 * Return: Returns 0 if permission is granted. 1356 */ 1357 int security_sb_mount(const char *dev_name, const struct path *path, 1358 const char *type, unsigned long flags, void *data) 1359 { 1360 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data); 1361 } 1362 1363 /** 1364 * security_sb_umount() - Check permission for unmounting a filesystem 1365 * @mnt: mounted filesystem 1366 * @flags: unmount flags 1367 * 1368 * Check permission before the @mnt file system is unmounted. 1369 * 1370 * Return: Returns 0 if permission is granted. 1371 */ 1372 int security_sb_umount(struct vfsmount *mnt, int flags) 1373 { 1374 return call_int_hook(sb_umount, 0, mnt, flags); 1375 } 1376 1377 /** 1378 * security_sb_pivotroot() - Check permissions for pivoting the rootfs 1379 * @old_path: new location for current rootfs 1380 * @new_path: location of the new rootfs 1381 * 1382 * Check permission before pivoting the root filesystem. 1383 * 1384 * Return: Returns 0 if permission is granted. 1385 */ 1386 int security_sb_pivotroot(const struct path *old_path, 1387 const struct path *new_path) 1388 { 1389 return call_int_hook(sb_pivotroot, 0, old_path, new_path); 1390 } 1391 1392 /** 1393 * security_sb_set_mnt_opts() - Set the mount options for a filesystem 1394 * @sb: filesystem superblock 1395 * @mnt_opts: binary mount options 1396 * @kern_flags: kernel flags (in) 1397 * @set_kern_flags: kernel flags (out) 1398 * 1399 * Set the security relevant mount options used for a superblock. 1400 * 1401 * Return: Returns 0 on success, error on failure. 1402 */ 1403 int security_sb_set_mnt_opts(struct super_block *sb, 1404 void *mnt_opts, 1405 unsigned long kern_flags, 1406 unsigned long *set_kern_flags) 1407 { 1408 return call_int_hook(sb_set_mnt_opts, 1409 mnt_opts ? -EOPNOTSUPP : 0, sb, 1410 mnt_opts, kern_flags, set_kern_flags); 1411 } 1412 EXPORT_SYMBOL(security_sb_set_mnt_opts); 1413 1414 /** 1415 * security_sb_clone_mnt_opts() - Duplicate superblock mount options 1416 * @oldsb: source superblock 1417 * @newsb: destination superblock 1418 * @kern_flags: kernel flags (in) 1419 * @set_kern_flags: kernel flags (out) 1420 * 1421 * Copy all security options from a given superblock to another. 1422 * 1423 * Return: Returns 0 on success, error on failure. 1424 */ 1425 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 1426 struct super_block *newsb, 1427 unsigned long kern_flags, 1428 unsigned long *set_kern_flags) 1429 { 1430 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb, 1431 kern_flags, set_kern_flags); 1432 } 1433 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 1434 1435 /** 1436 * security_move_mount() - Check permissions for moving a mount 1437 * @from_path: source mount point 1438 * @to_path: destination mount point 1439 * 1440 * Check permission before a mount is moved. 1441 * 1442 * Return: Returns 0 if permission is granted. 1443 */ 1444 int security_move_mount(const struct path *from_path, 1445 const struct path *to_path) 1446 { 1447 return call_int_hook(move_mount, 0, from_path, to_path); 1448 } 1449 1450 /** 1451 * security_path_notify() - Check if setting a watch is allowed 1452 * @path: file path 1453 * @mask: event mask 1454 * @obj_type: file path type 1455 * 1456 * Check permissions before setting a watch on events as defined by @mask, on 1457 * an object at @path, whose type is defined by @obj_type. 1458 * 1459 * Return: Returns 0 if permission is granted. 1460 */ 1461 int security_path_notify(const struct path *path, u64 mask, 1462 unsigned int obj_type) 1463 { 1464 return call_int_hook(path_notify, 0, path, mask, obj_type); 1465 } 1466 1467 /** 1468 * security_inode_alloc() - Allocate an inode LSM blob 1469 * @inode: the inode 1470 * 1471 * Allocate and attach a security structure to @inode->i_security. The 1472 * i_security field is initialized to NULL when the inode structure is 1473 * allocated. 1474 * 1475 * Return: Return 0 if operation was successful. 1476 */ 1477 int security_inode_alloc(struct inode *inode) 1478 { 1479 int rc = lsm_inode_alloc(inode); 1480 1481 if (unlikely(rc)) 1482 return rc; 1483 rc = call_int_hook(inode_alloc_security, 0, inode); 1484 if (unlikely(rc)) 1485 security_inode_free(inode); 1486 return rc; 1487 } 1488 1489 static void inode_free_by_rcu(struct rcu_head *head) 1490 { 1491 /* 1492 * The rcu head is at the start of the inode blob 1493 */ 1494 kmem_cache_free(lsm_inode_cache, head); 1495 } 1496 1497 /** 1498 * security_inode_free() - Free an inode's LSM blob 1499 * @inode: the inode 1500 * 1501 * Deallocate the inode security structure and set @inode->i_security to NULL. 1502 */ 1503 void security_inode_free(struct inode *inode) 1504 { 1505 integrity_inode_free(inode); 1506 call_void_hook(inode_free_security, inode); 1507 /* 1508 * The inode may still be referenced in a path walk and 1509 * a call to security_inode_permission() can be made 1510 * after inode_free_security() is called. Ideally, the VFS 1511 * wouldn't do this, but fixing that is a much harder 1512 * job. For now, simply free the i_security via RCU, and 1513 * leave the current inode->i_security pointer intact. 1514 * The inode will be freed after the RCU grace period too. 1515 */ 1516 if (inode->i_security) 1517 call_rcu((struct rcu_head *)inode->i_security, 1518 inode_free_by_rcu); 1519 } 1520 1521 /** 1522 * security_dentry_init_security() - Perform dentry initialization 1523 * @dentry: the dentry to initialize 1524 * @mode: mode used to determine resource type 1525 * @name: name of the last path component 1526 * @xattr_name: name of the security/LSM xattr 1527 * @ctx: pointer to the resulting LSM context 1528 * @ctxlen: length of @ctx 1529 * 1530 * Compute a context for a dentry as the inode is not yet available since NFSv4 1531 * has no label backed by an EA anyway. It is important to note that 1532 * @xattr_name does not need to be free'd by the caller, it is a static string. 1533 * 1534 * Return: Returns 0 on success, negative values on failure. 1535 */ 1536 int security_dentry_init_security(struct dentry *dentry, int mode, 1537 const struct qstr *name, 1538 const char **xattr_name, void **ctx, 1539 u32 *ctxlen) 1540 { 1541 struct security_hook_list *hp; 1542 int rc; 1543 1544 /* 1545 * Only one module will provide a security context. 1546 */ 1547 hlist_for_each_entry(hp, &security_hook_heads.dentry_init_security, 1548 list) { 1549 rc = hp->hook.dentry_init_security(dentry, mode, name, 1550 xattr_name, ctx, ctxlen); 1551 if (rc != LSM_RET_DEFAULT(dentry_init_security)) 1552 return rc; 1553 } 1554 return LSM_RET_DEFAULT(dentry_init_security); 1555 } 1556 EXPORT_SYMBOL(security_dentry_init_security); 1557 1558 /** 1559 * security_dentry_create_files_as() - Perform dentry initialization 1560 * @dentry: the dentry to initialize 1561 * @mode: mode used to determine resource type 1562 * @name: name of the last path component 1563 * @old: creds to use for LSM context calculations 1564 * @new: creds to modify 1565 * 1566 * Compute a context for a dentry as the inode is not yet available and set 1567 * that context in passed in creds so that new files are created using that 1568 * context. Context is calculated using the passed in creds and not the creds 1569 * of the caller. 1570 * 1571 * Return: Returns 0 on success, error on failure. 1572 */ 1573 int security_dentry_create_files_as(struct dentry *dentry, int mode, 1574 struct qstr *name, 1575 const struct cred *old, struct cred *new) 1576 { 1577 return call_int_hook(dentry_create_files_as, 0, dentry, mode, 1578 name, old, new); 1579 } 1580 EXPORT_SYMBOL(security_dentry_create_files_as); 1581 1582 /** 1583 * security_inode_init_security() - Initialize an inode's LSM context 1584 * @inode: the inode 1585 * @dir: parent directory 1586 * @qstr: last component of the pathname 1587 * @initxattrs: callback function to write xattrs 1588 * @fs_data: filesystem specific data 1589 * 1590 * Obtain the security attribute name suffix and value to set on a newly 1591 * created inode and set up the incore security field for the new inode. This 1592 * hook is called by the fs code as part of the inode creation transaction and 1593 * provides for atomic labeling of the inode, unlike the post_create/mkdir/... 1594 * hooks called by the VFS. The hook function is expected to allocate the name 1595 * and value via kmalloc, with the caller being responsible for calling kfree 1596 * after using them. If the security module does not use security attributes 1597 * or does not wish to put a security attribute on this particular inode, then 1598 * it should return -EOPNOTSUPP to skip this processing. 1599 * 1600 * Return: Returns 0 on success, -EOPNOTSUPP if no security attribute is 1601 * needed, or -ENOMEM on memory allocation failure. 1602 */ 1603 int security_inode_init_security(struct inode *inode, struct inode *dir, 1604 const struct qstr *qstr, 1605 const initxattrs initxattrs, void *fs_data) 1606 { 1607 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 1608 struct xattr *lsm_xattr, *evm_xattr, *xattr; 1609 int ret; 1610 1611 if (unlikely(IS_PRIVATE(inode))) 1612 return 0; 1613 1614 if (!initxattrs) 1615 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, 1616 dir, qstr, NULL, NULL, NULL); 1617 memset(new_xattrs, 0, sizeof(new_xattrs)); 1618 lsm_xattr = new_xattrs; 1619 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr, 1620 &lsm_xattr->name, 1621 &lsm_xattr->value, 1622 &lsm_xattr->value_len); 1623 if (ret) 1624 goto out; 1625 1626 evm_xattr = lsm_xattr + 1; 1627 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 1628 if (ret) 1629 goto out; 1630 ret = initxattrs(inode, new_xattrs, fs_data); 1631 out: 1632 for (xattr = new_xattrs; xattr->value != NULL; xattr++) 1633 kfree(xattr->value); 1634 return (ret == -EOPNOTSUPP) ? 0 : ret; 1635 } 1636 EXPORT_SYMBOL(security_inode_init_security); 1637 1638 /** 1639 * security_inode_init_security_anon() - Initialize an anonymous inode 1640 * @inode: the inode 1641 * @name: the anonymous inode class 1642 * @context_inode: an optional related inode 1643 * 1644 * Set up the incore security field for the new anonymous inode and return 1645 * whether the inode creation is permitted by the security module or not. 1646 * 1647 * Return: Returns 0 on success, -EACCES if the security module denies the 1648 * creation of this inode, or another -errno upon other errors. 1649 */ 1650 int security_inode_init_security_anon(struct inode *inode, 1651 const struct qstr *name, 1652 const struct inode *context_inode) 1653 { 1654 return call_int_hook(inode_init_security_anon, 0, inode, name, 1655 context_inode); 1656 } 1657 1658 #ifdef CONFIG_SECURITY_PATH 1659 /** 1660 * security_path_mknod() - Check if creating a special file is allowed 1661 * @dir: parent directory 1662 * @dentry: new file 1663 * @mode: new file mode 1664 * @dev: device number 1665 * 1666 * Check permissions when creating a file. Note that this hook is called even 1667 * if mknod operation is being done for a regular file. 1668 * 1669 * Return: Returns 0 if permission is granted. 1670 */ 1671 int security_path_mknod(const struct path *dir, struct dentry *dentry, 1672 umode_t mode, unsigned int dev) 1673 { 1674 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1675 return 0; 1676 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev); 1677 } 1678 EXPORT_SYMBOL(security_path_mknod); 1679 1680 /** 1681 * security_path_mkdir() - Check if creating a new directory is allowed 1682 * @dir: parent directory 1683 * @dentry: new directory 1684 * @mode: new directory mode 1685 * 1686 * Check permissions to create a new directory in the existing directory. 1687 * 1688 * Return: Returns 0 if permission is granted. 1689 */ 1690 int security_path_mkdir(const struct path *dir, struct dentry *dentry, 1691 umode_t mode) 1692 { 1693 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1694 return 0; 1695 return call_int_hook(path_mkdir, 0, dir, dentry, mode); 1696 } 1697 EXPORT_SYMBOL(security_path_mkdir); 1698 1699 /** 1700 * security_path_rmdir() - Check if removing a directory is allowed 1701 * @dir: parent directory 1702 * @dentry: directory to remove 1703 * 1704 * Check the permission to remove a directory. 1705 * 1706 * Return: Returns 0 if permission is granted. 1707 */ 1708 int security_path_rmdir(const struct path *dir, struct dentry *dentry) 1709 { 1710 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1711 return 0; 1712 return call_int_hook(path_rmdir, 0, dir, dentry); 1713 } 1714 1715 /** 1716 * security_path_unlink() - Check if removing a hard link is allowed 1717 * @dir: parent directory 1718 * @dentry: file 1719 * 1720 * Check the permission to remove a hard link to a file. 1721 * 1722 * Return: Returns 0 if permission is granted. 1723 */ 1724 int security_path_unlink(const struct path *dir, struct dentry *dentry) 1725 { 1726 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1727 return 0; 1728 return call_int_hook(path_unlink, 0, dir, dentry); 1729 } 1730 EXPORT_SYMBOL(security_path_unlink); 1731 1732 /** 1733 * security_path_symlink() - Check if creating a symbolic link is allowed 1734 * @dir: parent directory 1735 * @dentry: symbolic link 1736 * @old_name: file pathname 1737 * 1738 * Check the permission to create a symbolic link to a file. 1739 * 1740 * Return: Returns 0 if permission is granted. 1741 */ 1742 int security_path_symlink(const struct path *dir, struct dentry *dentry, 1743 const char *old_name) 1744 { 1745 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1746 return 0; 1747 return call_int_hook(path_symlink, 0, dir, dentry, old_name); 1748 } 1749 1750 /** 1751 * security_path_link - Check if creating a hard link is allowed 1752 * @old_dentry: existing file 1753 * @new_dir: new parent directory 1754 * @new_dentry: new link 1755 * 1756 * Check permission before creating a new hard link to a file. 1757 * 1758 * Return: Returns 0 if permission is granted. 1759 */ 1760 int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 1761 struct dentry *new_dentry) 1762 { 1763 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1764 return 0; 1765 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry); 1766 } 1767 1768 /** 1769 * security_path_rename() - Check if renaming a file is allowed 1770 * @old_dir: parent directory of the old file 1771 * @old_dentry: the old file 1772 * @new_dir: parent directory of the new file 1773 * @new_dentry: the new file 1774 * @flags: flags 1775 * 1776 * Check for permission to rename a file or directory. 1777 * 1778 * Return: Returns 0 if permission is granted. 1779 */ 1780 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 1781 const struct path *new_dir, struct dentry *new_dentry, 1782 unsigned int flags) 1783 { 1784 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1785 (d_is_positive(new_dentry) && 1786 IS_PRIVATE(d_backing_inode(new_dentry))))) 1787 return 0; 1788 1789 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir, 1790 new_dentry, flags); 1791 } 1792 EXPORT_SYMBOL(security_path_rename); 1793 1794 /** 1795 * security_path_truncate() - Check if truncating a file is allowed 1796 * @path: file 1797 * 1798 * Check permission before truncating the file indicated by path. Note that 1799 * truncation permissions may also be checked based on already opened files, 1800 * using the security_file_truncate() hook. 1801 * 1802 * Return: Returns 0 if permission is granted. 1803 */ 1804 int security_path_truncate(const struct path *path) 1805 { 1806 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1807 return 0; 1808 return call_int_hook(path_truncate, 0, path); 1809 } 1810 1811 /** 1812 * security_path_chmod() - Check if changing the file's mode is allowed 1813 * @path: file 1814 * @mode: new mode 1815 * 1816 * Check for permission to change a mode of the file @path. The new mode is 1817 * specified in @mode which is a bitmask of constants from 1818 * <include/uapi/linux/stat.h>. 1819 * 1820 * Return: Returns 0 if permission is granted. 1821 */ 1822 int security_path_chmod(const struct path *path, umode_t mode) 1823 { 1824 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1825 return 0; 1826 return call_int_hook(path_chmod, 0, path, mode); 1827 } 1828 1829 /** 1830 * security_path_chown() - Check if changing the file's owner/group is allowed 1831 * @path: file 1832 * @uid: file owner 1833 * @gid: file group 1834 * 1835 * Check for permission to change owner/group of a file or directory. 1836 * 1837 * Return: Returns 0 if permission is granted. 1838 */ 1839 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 1840 { 1841 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1842 return 0; 1843 return call_int_hook(path_chown, 0, path, uid, gid); 1844 } 1845 1846 /** 1847 * security_path_chroot() - Check if changing the root directory is allowed 1848 * @path: directory 1849 * 1850 * Check for permission to change root directory. 1851 * 1852 * Return: Returns 0 if permission is granted. 1853 */ 1854 int security_path_chroot(const struct path *path) 1855 { 1856 return call_int_hook(path_chroot, 0, path); 1857 } 1858 #endif /* CONFIG_SECURITY_PATH */ 1859 1860 /** 1861 * security_inode_create() - Check if creating a file is allowed 1862 * @dir: the parent directory 1863 * @dentry: the file being created 1864 * @mode: requested file mode 1865 * 1866 * Check permission to create a regular file. 1867 * 1868 * Return: Returns 0 if permission is granted. 1869 */ 1870 int security_inode_create(struct inode *dir, struct dentry *dentry, 1871 umode_t mode) 1872 { 1873 if (unlikely(IS_PRIVATE(dir))) 1874 return 0; 1875 return call_int_hook(inode_create, 0, dir, dentry, mode); 1876 } 1877 EXPORT_SYMBOL_GPL(security_inode_create); 1878 1879 /** 1880 * security_inode_link() - Check if creating a hard link is allowed 1881 * @old_dentry: existing file 1882 * @dir: new parent directory 1883 * @new_dentry: new link 1884 * 1885 * Check permission before creating a new hard link to a file. 1886 * 1887 * Return: Returns 0 if permission is granted. 1888 */ 1889 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 1890 struct dentry *new_dentry) 1891 { 1892 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1893 return 0; 1894 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry); 1895 } 1896 1897 /** 1898 * security_inode_unlink() - Check if removing a hard link is allowed 1899 * @dir: parent directory 1900 * @dentry: file 1901 * 1902 * Check the permission to remove a hard link to a file. 1903 * 1904 * Return: Returns 0 if permission is granted. 1905 */ 1906 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 1907 { 1908 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1909 return 0; 1910 return call_int_hook(inode_unlink, 0, dir, dentry); 1911 } 1912 1913 /** 1914 * security_inode_symlink() - Check if creating a symbolic link is allowed 1915 * @dir: parent directory 1916 * @dentry: symbolic link 1917 * @old_name: existing filename 1918 * 1919 * Check the permission to create a symbolic link to a file. 1920 * 1921 * Return: Returns 0 if permission is granted. 1922 */ 1923 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 1924 const char *old_name) 1925 { 1926 if (unlikely(IS_PRIVATE(dir))) 1927 return 0; 1928 return call_int_hook(inode_symlink, 0, dir, dentry, old_name); 1929 } 1930 1931 /** 1932 * security_inode_mkdir() - Check if creation a new director is allowed 1933 * @dir: parent directory 1934 * @dentry: new directory 1935 * @mode: new directory mode 1936 * 1937 * Check permissions to create a new directory in the existing directory 1938 * associated with inode structure @dir. 1939 * 1940 * Return: Returns 0 if permission is granted. 1941 */ 1942 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1943 { 1944 if (unlikely(IS_PRIVATE(dir))) 1945 return 0; 1946 return call_int_hook(inode_mkdir, 0, dir, dentry, mode); 1947 } 1948 EXPORT_SYMBOL_GPL(security_inode_mkdir); 1949 1950 /** 1951 * security_inode_rmdir() - Check if removing a directory is allowed 1952 * @dir: parent directory 1953 * @dentry: directory to be removed 1954 * 1955 * Check the permission to remove a directory. 1956 * 1957 * Return: Returns 0 if permission is granted. 1958 */ 1959 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 1960 { 1961 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1962 return 0; 1963 return call_int_hook(inode_rmdir, 0, dir, dentry); 1964 } 1965 1966 /** 1967 * security_inode_mknod() - Check if creating a special file is allowed 1968 * @dir: parent directory 1969 * @dentry: new file 1970 * @mode: new file mode 1971 * @dev: device number 1972 * 1973 * Check permissions when creating a special file (or a socket or a fifo file 1974 * created via the mknod system call). Note that if mknod operation is being 1975 * done for a regular file, then the create hook will be called and not this 1976 * hook. 1977 * 1978 * Return: Returns 0 if permission is granted. 1979 */ 1980 int security_inode_mknod(struct inode *dir, struct dentry *dentry, 1981 umode_t mode, dev_t dev) 1982 { 1983 if (unlikely(IS_PRIVATE(dir))) 1984 return 0; 1985 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev); 1986 } 1987 1988 /** 1989 * security_inode_rename() - Check if renaming a file is allowed 1990 * @old_dir: parent directory of the old file 1991 * @old_dentry: the old file 1992 * @new_dir: parent directory of the new file 1993 * @new_dentry: the new file 1994 * @flags: flags 1995 * 1996 * Check for permission to rename a file or directory. 1997 * 1998 * Return: Returns 0 if permission is granted. 1999 */ 2000 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 2001 struct inode *new_dir, struct dentry *new_dentry, 2002 unsigned int flags) 2003 { 2004 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 2005 (d_is_positive(new_dentry) && 2006 IS_PRIVATE(d_backing_inode(new_dentry))))) 2007 return 0; 2008 2009 if (flags & RENAME_EXCHANGE) { 2010 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry, 2011 old_dir, old_dentry); 2012 if (err) 2013 return err; 2014 } 2015 2016 return call_int_hook(inode_rename, 0, old_dir, old_dentry, 2017 new_dir, new_dentry); 2018 } 2019 2020 /** 2021 * security_inode_readlink() - Check if reading a symbolic link is allowed 2022 * @dentry: link 2023 * 2024 * Check the permission to read the symbolic link. 2025 * 2026 * Return: Returns 0 if permission is granted. 2027 */ 2028 int security_inode_readlink(struct dentry *dentry) 2029 { 2030 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2031 return 0; 2032 return call_int_hook(inode_readlink, 0, dentry); 2033 } 2034 2035 /** 2036 * security_inode_follow_link() - Check if following a symbolic link is allowed 2037 * @dentry: link dentry 2038 * @inode: link inode 2039 * @rcu: true if in RCU-walk mode 2040 * 2041 * Check permission to follow a symbolic link when looking up a pathname. If 2042 * @rcu is true, @inode is not stable. 2043 * 2044 * Return: Returns 0 if permission is granted. 2045 */ 2046 int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 2047 bool rcu) 2048 { 2049 if (unlikely(IS_PRIVATE(inode))) 2050 return 0; 2051 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu); 2052 } 2053 2054 /** 2055 * security_inode_permission() - Check if accessing an inode is allowed 2056 * @inode: inode 2057 * @mask: access mask 2058 * 2059 * Check permission before accessing an inode. This hook is called by the 2060 * existing Linux permission function, so a security module can use it to 2061 * provide additional checking for existing Linux permission checks. Notice 2062 * that this hook is called when a file is opened (as well as many other 2063 * operations), whereas the file_security_ops permission hook is called when 2064 * the actual read/write operations are performed. 2065 * 2066 * Return: Returns 0 if permission is granted. 2067 */ 2068 int security_inode_permission(struct inode *inode, int mask) 2069 { 2070 if (unlikely(IS_PRIVATE(inode))) 2071 return 0; 2072 return call_int_hook(inode_permission, 0, inode, mask); 2073 } 2074 2075 /** 2076 * security_inode_setattr() - Check if setting file attributes is allowed 2077 * @idmap: idmap of the mount 2078 * @dentry: file 2079 * @attr: new attributes 2080 * 2081 * Check permission before setting file attributes. Note that the kernel call 2082 * to notify_change is performed from several locations, whenever file 2083 * attributes change (such as when a file is truncated, chown/chmod operations, 2084 * transferring disk quotas, etc). 2085 * 2086 * Return: Returns 0 if permission is granted. 2087 */ 2088 int security_inode_setattr(struct mnt_idmap *idmap, 2089 struct dentry *dentry, struct iattr *attr) 2090 { 2091 int ret; 2092 2093 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2094 return 0; 2095 ret = call_int_hook(inode_setattr, 0, dentry, attr); 2096 if (ret) 2097 return ret; 2098 return evm_inode_setattr(idmap, dentry, attr); 2099 } 2100 EXPORT_SYMBOL_GPL(security_inode_setattr); 2101 2102 /** 2103 * security_inode_getattr() - Check if getting file attributes is allowed 2104 * @path: file 2105 * 2106 * Check permission before obtaining file attributes. 2107 * 2108 * Return: Returns 0 if permission is granted. 2109 */ 2110 int security_inode_getattr(const struct path *path) 2111 { 2112 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 2113 return 0; 2114 return call_int_hook(inode_getattr, 0, path); 2115 } 2116 2117 /** 2118 * security_inode_setxattr() - Check if setting file xattrs is allowed 2119 * @idmap: idmap of the mount 2120 * @dentry: file 2121 * @name: xattr name 2122 * @value: xattr value 2123 * @size: size of xattr value 2124 * @flags: flags 2125 * 2126 * Check permission before setting the extended attributes. 2127 * 2128 * Return: Returns 0 if permission is granted. 2129 */ 2130 int security_inode_setxattr(struct mnt_idmap *idmap, 2131 struct dentry *dentry, const char *name, 2132 const void *value, size_t size, int flags) 2133 { 2134 int ret; 2135 2136 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2137 return 0; 2138 /* 2139 * SELinux and Smack integrate the cap call, 2140 * so assume that all LSMs supplying this call do so. 2141 */ 2142 ret = call_int_hook(inode_setxattr, 1, idmap, dentry, name, value, 2143 size, flags); 2144 2145 if (ret == 1) 2146 ret = cap_inode_setxattr(dentry, name, value, size, flags); 2147 if (ret) 2148 return ret; 2149 ret = ima_inode_setxattr(dentry, name, value, size); 2150 if (ret) 2151 return ret; 2152 return evm_inode_setxattr(idmap, dentry, name, value, size); 2153 } 2154 2155 /** 2156 * security_inode_set_acl() - Check if setting posix acls is allowed 2157 * @idmap: idmap of the mount 2158 * @dentry: file 2159 * @acl_name: acl name 2160 * @kacl: acl struct 2161 * 2162 * Check permission before setting posix acls, the posix acls in @kacl are 2163 * identified by @acl_name. 2164 * 2165 * Return: Returns 0 if permission is granted. 2166 */ 2167 int security_inode_set_acl(struct mnt_idmap *idmap, 2168 struct dentry *dentry, const char *acl_name, 2169 struct posix_acl *kacl) 2170 { 2171 int ret; 2172 2173 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2174 return 0; 2175 ret = call_int_hook(inode_set_acl, 0, idmap, dentry, acl_name, 2176 kacl); 2177 if (ret) 2178 return ret; 2179 ret = ima_inode_set_acl(idmap, dentry, acl_name, kacl); 2180 if (ret) 2181 return ret; 2182 return evm_inode_set_acl(idmap, dentry, acl_name, kacl); 2183 } 2184 2185 /** 2186 * security_inode_get_acl() - Check if reading posix acls is allowed 2187 * @idmap: idmap of the mount 2188 * @dentry: file 2189 * @acl_name: acl name 2190 * 2191 * Check permission before getting osix acls, the posix acls are identified by 2192 * @acl_name. 2193 * 2194 * Return: Returns 0 if permission is granted. 2195 */ 2196 int security_inode_get_acl(struct mnt_idmap *idmap, 2197 struct dentry *dentry, const char *acl_name) 2198 { 2199 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2200 return 0; 2201 return call_int_hook(inode_get_acl, 0, idmap, dentry, acl_name); 2202 } 2203 2204 /** 2205 * security_inode_remove_acl() - Check if removing a posix acl is allowed 2206 * @idmap: idmap of the mount 2207 * @dentry: file 2208 * @acl_name: acl name 2209 * 2210 * Check permission before removing posix acls, the posix acls are identified 2211 * by @acl_name. 2212 * 2213 * Return: Returns 0 if permission is granted. 2214 */ 2215 int security_inode_remove_acl(struct mnt_idmap *idmap, 2216 struct dentry *dentry, const char *acl_name) 2217 { 2218 int ret; 2219 2220 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2221 return 0; 2222 ret = call_int_hook(inode_remove_acl, 0, idmap, dentry, acl_name); 2223 if (ret) 2224 return ret; 2225 ret = ima_inode_remove_acl(idmap, dentry, acl_name); 2226 if (ret) 2227 return ret; 2228 return evm_inode_remove_acl(idmap, dentry, acl_name); 2229 } 2230 2231 /** 2232 * security_inode_post_setxattr() - Update the inode after a setxattr operation 2233 * @dentry: file 2234 * @name: xattr name 2235 * @value: xattr value 2236 * @size: xattr value size 2237 * @flags: flags 2238 * 2239 * Update inode security field after successful setxattr operation. 2240 */ 2241 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 2242 const void *value, size_t size, int flags) 2243 { 2244 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2245 return; 2246 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 2247 evm_inode_post_setxattr(dentry, name, value, size); 2248 } 2249 2250 /** 2251 * security_inode_getxattr() - Check if xattr access is allowed 2252 * @dentry: file 2253 * @name: xattr name 2254 * 2255 * Check permission before obtaining the extended attributes identified by 2256 * @name for @dentry. 2257 * 2258 * Return: Returns 0 if permission is granted. 2259 */ 2260 int security_inode_getxattr(struct dentry *dentry, const char *name) 2261 { 2262 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2263 return 0; 2264 return call_int_hook(inode_getxattr, 0, dentry, name); 2265 } 2266 2267 /** 2268 * security_inode_listxattr() - Check if listing xattrs is allowed 2269 * @dentry: file 2270 * 2271 * Check permission before obtaining the list of extended attribute names for 2272 * @dentry. 2273 * 2274 * Return: Returns 0 if permission is granted. 2275 */ 2276 int security_inode_listxattr(struct dentry *dentry) 2277 { 2278 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2279 return 0; 2280 return call_int_hook(inode_listxattr, 0, dentry); 2281 } 2282 2283 /** 2284 * security_inode_removexattr() - Check if removing an xattr is allowed 2285 * @idmap: idmap of the mount 2286 * @dentry: file 2287 * @name: xattr name 2288 * 2289 * Check permission before removing the extended attribute identified by @name 2290 * for @dentry. 2291 * 2292 * Return: Returns 0 if permission is granted. 2293 */ 2294 int security_inode_removexattr(struct mnt_idmap *idmap, 2295 struct dentry *dentry, const char *name) 2296 { 2297 int ret; 2298 2299 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2300 return 0; 2301 /* 2302 * SELinux and Smack integrate the cap call, 2303 * so assume that all LSMs supplying this call do so. 2304 */ 2305 ret = call_int_hook(inode_removexattr, 1, idmap, dentry, name); 2306 if (ret == 1) 2307 ret = cap_inode_removexattr(idmap, dentry, name); 2308 if (ret) 2309 return ret; 2310 ret = ima_inode_removexattr(dentry, name); 2311 if (ret) 2312 return ret; 2313 return evm_inode_removexattr(idmap, dentry, name); 2314 } 2315 2316 /** 2317 * security_inode_need_killpriv() - Check if security_inode_killpriv() required 2318 * @dentry: associated dentry 2319 * 2320 * Called when an inode has been changed to determine if 2321 * security_inode_killpriv() should be called. 2322 * 2323 * Return: Return <0 on error to abort the inode change operation, return 0 if 2324 * security_inode_killpriv() does not need to be called, return >0 if 2325 * security_inode_killpriv() does need to be called. 2326 */ 2327 int security_inode_need_killpriv(struct dentry *dentry) 2328 { 2329 return call_int_hook(inode_need_killpriv, 0, dentry); 2330 } 2331 2332 /** 2333 * security_inode_killpriv() - The setuid bit is removed, update LSM state 2334 * @idmap: idmap of the mount 2335 * @dentry: associated dentry 2336 * 2337 * The @dentry's setuid bit is being removed. Remove similar security labels. 2338 * Called with the dentry->d_inode->i_mutex held. 2339 * 2340 * Return: Return 0 on success. If error is returned, then the operation 2341 * causing setuid bit removal is failed. 2342 */ 2343 int security_inode_killpriv(struct mnt_idmap *idmap, 2344 struct dentry *dentry) 2345 { 2346 return call_int_hook(inode_killpriv, 0, idmap, dentry); 2347 } 2348 2349 /** 2350 * security_inode_getsecurity() - Get the xattr security label of an inode 2351 * @idmap: idmap of the mount 2352 * @inode: inode 2353 * @name: xattr name 2354 * @buffer: security label buffer 2355 * @alloc: allocation flag 2356 * 2357 * Retrieve a copy of the extended attribute representation of the security 2358 * label associated with @name for @inode via @buffer. Note that @name is the 2359 * remainder of the attribute name after the security prefix has been removed. 2360 * @alloc is used to specify if the call should return a value via the buffer 2361 * or just the value length. 2362 * 2363 * Return: Returns size of buffer on success. 2364 */ 2365 int security_inode_getsecurity(struct mnt_idmap *idmap, 2366 struct inode *inode, const char *name, 2367 void **buffer, bool alloc) 2368 { 2369 struct security_hook_list *hp; 2370 int rc; 2371 2372 if (unlikely(IS_PRIVATE(inode))) 2373 return LSM_RET_DEFAULT(inode_getsecurity); 2374 /* 2375 * Only one module will provide an attribute with a given name. 2376 */ 2377 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) { 2378 rc = hp->hook.inode_getsecurity(idmap, inode, name, buffer, 2379 alloc); 2380 if (rc != LSM_RET_DEFAULT(inode_getsecurity)) 2381 return rc; 2382 } 2383 return LSM_RET_DEFAULT(inode_getsecurity); 2384 } 2385 2386 /** 2387 * security_inode_setsecurity() - Set the xattr security label of an inode 2388 * @inode: inode 2389 * @name: xattr name 2390 * @value: security label 2391 * @size: length of security label 2392 * @flags: flags 2393 * 2394 * Set the security label associated with @name for @inode from the extended 2395 * attribute value @value. @size indicates the size of the @value in bytes. 2396 * @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. Note that @name is the 2397 * remainder of the attribute name after the security. prefix has been removed. 2398 * 2399 * Return: Returns 0 on success. 2400 */ 2401 int security_inode_setsecurity(struct inode *inode, const char *name, 2402 const void *value, size_t size, int flags) 2403 { 2404 struct security_hook_list *hp; 2405 int rc; 2406 2407 if (unlikely(IS_PRIVATE(inode))) 2408 return LSM_RET_DEFAULT(inode_setsecurity); 2409 /* 2410 * Only one module will provide an attribute with a given name. 2411 */ 2412 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) { 2413 rc = hp->hook.inode_setsecurity(inode, name, value, size, 2414 flags); 2415 if (rc != LSM_RET_DEFAULT(inode_setsecurity)) 2416 return rc; 2417 } 2418 return LSM_RET_DEFAULT(inode_setsecurity); 2419 } 2420 2421 /** 2422 * security_inode_listsecurity() - List the xattr security label names 2423 * @inode: inode 2424 * @buffer: buffer 2425 * @buffer_size: size of buffer 2426 * 2427 * Copy the extended attribute names for the security labels associated with 2428 * @inode into @buffer. The maximum size of @buffer is specified by 2429 * @buffer_size. @buffer may be NULL to request the size of the buffer 2430 * required. 2431 * 2432 * Return: Returns number of bytes used/required on success. 2433 */ 2434 int security_inode_listsecurity(struct inode *inode, 2435 char *buffer, size_t buffer_size) 2436 { 2437 if (unlikely(IS_PRIVATE(inode))) 2438 return 0; 2439 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size); 2440 } 2441 EXPORT_SYMBOL(security_inode_listsecurity); 2442 2443 /** 2444 * security_inode_getsecid() - Get an inode's secid 2445 * @inode: inode 2446 * @secid: secid to return 2447 * 2448 * Get the secid associated with the node. In case of failure, @secid will be 2449 * set to zero. 2450 */ 2451 void security_inode_getsecid(struct inode *inode, u32 *secid) 2452 { 2453 call_void_hook(inode_getsecid, inode, secid); 2454 } 2455 2456 /** 2457 * security_inode_copy_up() - Create new creds for an overlayfs copy-up op 2458 * @src: union dentry of copy-up file 2459 * @new: newly created creds 2460 * 2461 * A file is about to be copied up from lower layer to upper layer of overlay 2462 * filesystem. Security module can prepare a set of new creds and modify as 2463 * need be and return new creds. Caller will switch to new creds temporarily to 2464 * create new file and release newly allocated creds. 2465 * 2466 * Return: Returns 0 on success or a negative error code on error. 2467 */ 2468 int security_inode_copy_up(struct dentry *src, struct cred **new) 2469 { 2470 return call_int_hook(inode_copy_up, 0, src, new); 2471 } 2472 EXPORT_SYMBOL(security_inode_copy_up); 2473 2474 /** 2475 * security_inode_copy_up_xattr() - Filter xattrs in an overlayfs copy-up op 2476 * @name: xattr name 2477 * 2478 * Filter the xattrs being copied up when a unioned file is copied up from a 2479 * lower layer to the union/overlay layer. The caller is responsible for 2480 * reading and writing the xattrs, this hook is merely a filter. 2481 * 2482 * Return: Returns 0 to accept the xattr, 1 to discard the xattr, -EOPNOTSUPP 2483 * if the security module does not know about attribute, or a negative 2484 * error code to abort the copy up. 2485 */ 2486 int security_inode_copy_up_xattr(const char *name) 2487 { 2488 struct security_hook_list *hp; 2489 int rc; 2490 2491 /* 2492 * The implementation can return 0 (accept the xattr), 1 (discard the 2493 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or 2494 * any other error code in case of an error. 2495 */ 2496 hlist_for_each_entry(hp, 2497 &security_hook_heads.inode_copy_up_xattr, list) { 2498 rc = hp->hook.inode_copy_up_xattr(name); 2499 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr)) 2500 return rc; 2501 } 2502 2503 return LSM_RET_DEFAULT(inode_copy_up_xattr); 2504 } 2505 EXPORT_SYMBOL(security_inode_copy_up_xattr); 2506 2507 /** 2508 * security_kernfs_init_security() - Init LSM context for a kernfs node 2509 * @kn_dir: parent kernfs node 2510 * @kn: the kernfs node to initialize 2511 * 2512 * Initialize the security context of a newly created kernfs node based on its 2513 * own and its parent's attributes. 2514 * 2515 * Return: Returns 0 if permission is granted. 2516 */ 2517 int security_kernfs_init_security(struct kernfs_node *kn_dir, 2518 struct kernfs_node *kn) 2519 { 2520 return call_int_hook(kernfs_init_security, 0, kn_dir, kn); 2521 } 2522 2523 /** 2524 * security_file_permission() - Check file permissions 2525 * @file: file 2526 * @mask: requested permissions 2527 * 2528 * Check file permissions before accessing an open file. This hook is called 2529 * by various operations that read or write files. A security module can use 2530 * this hook to perform additional checking on these operations, e.g. to 2531 * revalidate permissions on use to support privilege bracketing or policy 2532 * changes. Notice that this hook is used when the actual read/write 2533 * operations are performed, whereas the inode_security_ops hook is called when 2534 * a file is opened (as well as many other operations). Although this hook can 2535 * be used to revalidate permissions for various system call operations that 2536 * read or write files, it does not address the revalidation of permissions for 2537 * memory-mapped files. Security modules must handle this separately if they 2538 * need such revalidation. 2539 * 2540 * Return: Returns 0 if permission is granted. 2541 */ 2542 int security_file_permission(struct file *file, int mask) 2543 { 2544 int ret; 2545 2546 ret = call_int_hook(file_permission, 0, file, mask); 2547 if (ret) 2548 return ret; 2549 2550 return fsnotify_perm(file, mask); 2551 } 2552 2553 /** 2554 * security_file_alloc() - Allocate and init a file's LSM blob 2555 * @file: the file 2556 * 2557 * Allocate and attach a security structure to the file->f_security field. The 2558 * security field is initialized to NULL when the structure is first created. 2559 * 2560 * Return: Return 0 if the hook is successful and permission is granted. 2561 */ 2562 int security_file_alloc(struct file *file) 2563 { 2564 int rc = lsm_file_alloc(file); 2565 2566 if (rc) 2567 return rc; 2568 rc = call_int_hook(file_alloc_security, 0, file); 2569 if (unlikely(rc)) 2570 security_file_free(file); 2571 return rc; 2572 } 2573 2574 /** 2575 * security_file_free() - Free a file's LSM blob 2576 * @file: the file 2577 * 2578 * Deallocate and free any security structures stored in file->f_security. 2579 */ 2580 void security_file_free(struct file *file) 2581 { 2582 void *blob; 2583 2584 call_void_hook(file_free_security, file); 2585 2586 blob = file->f_security; 2587 if (blob) { 2588 file->f_security = NULL; 2589 kmem_cache_free(lsm_file_cache, blob); 2590 } 2591 } 2592 2593 /** 2594 * security_file_ioctl() - Check if an ioctl is allowed 2595 * @file: associated file 2596 * @cmd: ioctl cmd 2597 * @arg: ioctl arguments 2598 * 2599 * Check permission for an ioctl operation on @file. Note that @arg sometimes 2600 * represents a user space pointer; in other cases, it may be a simple integer 2601 * value. When @arg represents a user space pointer, it should never be used 2602 * by the security module. 2603 * 2604 * Return: Returns 0 if permission is granted. 2605 */ 2606 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2607 { 2608 return call_int_hook(file_ioctl, 0, file, cmd, arg); 2609 } 2610 EXPORT_SYMBOL_GPL(security_file_ioctl); 2611 2612 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 2613 { 2614 /* 2615 * Does we have PROT_READ and does the application expect 2616 * it to imply PROT_EXEC? If not, nothing to talk about... 2617 */ 2618 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 2619 return prot; 2620 if (!(current->personality & READ_IMPLIES_EXEC)) 2621 return prot; 2622 /* 2623 * if that's an anonymous mapping, let it. 2624 */ 2625 if (!file) 2626 return prot | PROT_EXEC; 2627 /* 2628 * ditto if it's not on noexec mount, except that on !MMU we need 2629 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 2630 */ 2631 if (!path_noexec(&file->f_path)) { 2632 #ifndef CONFIG_MMU 2633 if (file->f_op->mmap_capabilities) { 2634 unsigned caps = file->f_op->mmap_capabilities(file); 2635 if (!(caps & NOMMU_MAP_EXEC)) 2636 return prot; 2637 } 2638 #endif 2639 return prot | PROT_EXEC; 2640 } 2641 /* anything on noexec mount won't get PROT_EXEC */ 2642 return prot; 2643 } 2644 2645 /** 2646 * security_mmap_file() - Check if mmap'ing a file is allowed 2647 * @file: file 2648 * @prot: protection applied by the kernel 2649 * @flags: flags 2650 * 2651 * Check permissions for a mmap operation. The @file may be NULL, e.g. if 2652 * mapping anonymous memory. 2653 * 2654 * Return: Returns 0 if permission is granted. 2655 */ 2656 int security_mmap_file(struct file *file, unsigned long prot, 2657 unsigned long flags) 2658 { 2659 unsigned long prot_adj = mmap_prot(file, prot); 2660 int ret; 2661 2662 ret = call_int_hook(mmap_file, 0, file, prot, prot_adj, flags); 2663 if (ret) 2664 return ret; 2665 return ima_file_mmap(file, prot, prot_adj, flags); 2666 } 2667 2668 /** 2669 * security_mmap_addr() - Check if mmap'ing an address is allowed 2670 * @addr: address 2671 * 2672 * Check permissions for a mmap operation at @addr. 2673 * 2674 * Return: Returns 0 if permission is granted. 2675 */ 2676 int security_mmap_addr(unsigned long addr) 2677 { 2678 return call_int_hook(mmap_addr, 0, addr); 2679 } 2680 2681 /** 2682 * security_file_mprotect() - Check if changing memory protections is allowed 2683 * @vma: memory region 2684 * @reqprot: application requested protection 2685 * @prot: protection applied by the kernel 2686 * 2687 * Check permissions before changing memory access permissions. 2688 * 2689 * Return: Returns 0 if permission is granted. 2690 */ 2691 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 2692 unsigned long prot) 2693 { 2694 int ret; 2695 2696 ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot); 2697 if (ret) 2698 return ret; 2699 return ima_file_mprotect(vma, prot); 2700 } 2701 2702 /** 2703 * security_file_lock() - Check if a file lock is allowed 2704 * @file: file 2705 * @cmd: lock operation (e.g. F_RDLCK, F_WRLCK) 2706 * 2707 * Check permission before performing file locking operations. Note the hook 2708 * mediates both flock and fcntl style locks. 2709 * 2710 * Return: Returns 0 if permission is granted. 2711 */ 2712 int security_file_lock(struct file *file, unsigned int cmd) 2713 { 2714 return call_int_hook(file_lock, 0, file, cmd); 2715 } 2716 2717 /** 2718 * security_file_fcntl() - Check if fcntl() op is allowed 2719 * @file: file 2720 * @cmd: fnctl command 2721 * @arg: command argument 2722 * 2723 * Check permission before allowing the file operation specified by @cmd from 2724 * being performed on the file @file. Note that @arg sometimes represents a 2725 * user space pointer; in other cases, it may be a simple integer value. When 2726 * @arg represents a user space pointer, it should never be used by the 2727 * security module. 2728 * 2729 * Return: Returns 0 if permission is granted. 2730 */ 2731 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 2732 { 2733 return call_int_hook(file_fcntl, 0, file, cmd, arg); 2734 } 2735 2736 /** 2737 * security_file_set_fowner() - Set the file owner info in the LSM blob 2738 * @file: the file 2739 * 2740 * Save owner security information (typically from current->security) in 2741 * file->f_security for later use by the send_sigiotask hook. 2742 * 2743 * Return: Returns 0 on success. 2744 */ 2745 void security_file_set_fowner(struct file *file) 2746 { 2747 call_void_hook(file_set_fowner, file); 2748 } 2749 2750 /** 2751 * security_file_send_sigiotask() - Check if sending SIGIO/SIGURG is allowed 2752 * @tsk: target task 2753 * @fown: signal sender 2754 * @sig: signal to be sent, SIGIO is sent if 0 2755 * 2756 * Check permission for the file owner @fown to send SIGIO or SIGURG to the 2757 * process @tsk. Note that this hook is sometimes called from interrupt. Note 2758 * that the fown_struct, @fown, is never outside the context of a struct file, 2759 * so the file structure (and associated security information) can always be 2760 * obtained: container_of(fown, struct file, f_owner). 2761 * 2762 * Return: Returns 0 if permission is granted. 2763 */ 2764 int security_file_send_sigiotask(struct task_struct *tsk, 2765 struct fown_struct *fown, int sig) 2766 { 2767 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig); 2768 } 2769 2770 /** 2771 * security_file_receive() - Check is receiving a file via IPC is allowed 2772 * @file: file being received 2773 * 2774 * This hook allows security modules to control the ability of a process to 2775 * receive an open file descriptor via socket IPC. 2776 * 2777 * Return: Returns 0 if permission is granted. 2778 */ 2779 int security_file_receive(struct file *file) 2780 { 2781 return call_int_hook(file_receive, 0, file); 2782 } 2783 2784 /** 2785 * security_file_open() - Save open() time state for late use by the LSM 2786 * @file: 2787 * 2788 * Save open-time permission checking state for later use upon file_permission, 2789 * and recheck access if anything has changed since inode_permission. 2790 * 2791 * Return: Returns 0 if permission is granted. 2792 */ 2793 int security_file_open(struct file *file) 2794 { 2795 int ret; 2796 2797 ret = call_int_hook(file_open, 0, file); 2798 if (ret) 2799 return ret; 2800 2801 return fsnotify_perm(file, MAY_OPEN); 2802 } 2803 2804 /** 2805 * security_file_truncate() - Check if truncating a file is allowed 2806 * @file: file 2807 * 2808 * Check permission before truncating a file, i.e. using ftruncate. Note that 2809 * truncation permission may also be checked based on the path, using the 2810 * @path_truncate hook. 2811 * 2812 * Return: Returns 0 if permission is granted. 2813 */ 2814 int security_file_truncate(struct file *file) 2815 { 2816 return call_int_hook(file_truncate, 0, file); 2817 } 2818 2819 /** 2820 * security_task_alloc() - Allocate a task's LSM blob 2821 * @task: the task 2822 * @clone_flags: flags indicating what is being shared 2823 * 2824 * Handle allocation of task-related resources. 2825 * 2826 * Return: Returns a zero on success, negative values on failure. 2827 */ 2828 int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 2829 { 2830 int rc = lsm_task_alloc(task); 2831 2832 if (rc) 2833 return rc; 2834 rc = call_int_hook(task_alloc, 0, task, clone_flags); 2835 if (unlikely(rc)) 2836 security_task_free(task); 2837 return rc; 2838 } 2839 2840 /** 2841 * security_task_free() - Free a task's LSM blob and related resources 2842 * @task: task 2843 * 2844 * Handle release of task-related resources. Note that this can be called from 2845 * interrupt context. 2846 */ 2847 void security_task_free(struct task_struct *task) 2848 { 2849 call_void_hook(task_free, task); 2850 2851 kfree(task->security); 2852 task->security = NULL; 2853 } 2854 2855 /** 2856 * security_cred_alloc_blank() - Allocate the min memory to allow cred_transfer 2857 * @cred: credentials 2858 * @gfp: gfp flags 2859 * 2860 * Only allocate sufficient memory and attach to @cred such that 2861 * cred_transfer() will not get ENOMEM. 2862 * 2863 * Return: Returns 0 on success, negative values on failure. 2864 */ 2865 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 2866 { 2867 int rc = lsm_cred_alloc(cred, gfp); 2868 2869 if (rc) 2870 return rc; 2871 2872 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp); 2873 if (unlikely(rc)) 2874 security_cred_free(cred); 2875 return rc; 2876 } 2877 2878 /** 2879 * security_cred_free() - Free the cred's LSM blob and associated resources 2880 * @cred: credentials 2881 * 2882 * Deallocate and clear the cred->security field in a set of credentials. 2883 */ 2884 void security_cred_free(struct cred *cred) 2885 { 2886 /* 2887 * There is a failure case in prepare_creds() that 2888 * may result in a call here with ->security being NULL. 2889 */ 2890 if (unlikely(cred->security == NULL)) 2891 return; 2892 2893 call_void_hook(cred_free, cred); 2894 2895 kfree(cred->security); 2896 cred->security = NULL; 2897 } 2898 2899 /** 2900 * security_prepare_creds() - Prepare a new set of credentials 2901 * @new: new credentials 2902 * @old: original credentials 2903 * @gfp: gfp flags 2904 * 2905 * Prepare a new set of credentials by copying the data from the old set. 2906 * 2907 * Return: Returns 0 on success, negative values on failure. 2908 */ 2909 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 2910 { 2911 int rc = lsm_cred_alloc(new, gfp); 2912 2913 if (rc) 2914 return rc; 2915 2916 rc = call_int_hook(cred_prepare, 0, new, old, gfp); 2917 if (unlikely(rc)) 2918 security_cred_free(new); 2919 return rc; 2920 } 2921 2922 /** 2923 * security_transfer_creds() - Transfer creds 2924 * @new: target credentials 2925 * @old: original credentials 2926 * 2927 * Transfer data from original creds to new creds. 2928 */ 2929 void security_transfer_creds(struct cred *new, const struct cred *old) 2930 { 2931 call_void_hook(cred_transfer, new, old); 2932 } 2933 2934 /** 2935 * security_cred_getsecid() - Get the secid from a set of credentials 2936 * @c: credentials 2937 * @secid: secid value 2938 * 2939 * Retrieve the security identifier of the cred structure @c. In case of 2940 * failure, @secid will be set to zero. 2941 */ 2942 void security_cred_getsecid(const struct cred *c, u32 *secid) 2943 { 2944 *secid = 0; 2945 call_void_hook(cred_getsecid, c, secid); 2946 } 2947 EXPORT_SYMBOL(security_cred_getsecid); 2948 2949 /** 2950 * security_kernel_act_as() - Set the kernel credentials to act as secid 2951 * @new: credentials 2952 * @secid: secid 2953 * 2954 * Set the credentials for a kernel service to act as (subjective context). 2955 * The current task must be the one that nominated @secid. 2956 * 2957 * Return: Returns 0 if successful. 2958 */ 2959 int security_kernel_act_as(struct cred *new, u32 secid) 2960 { 2961 return call_int_hook(kernel_act_as, 0, new, secid); 2962 } 2963 2964 /** 2965 * security_kernel_create_files_as() - Set file creation context using an inode 2966 * @new: target credentials 2967 * @inode: reference inode 2968 * 2969 * Set the file creation context in a set of credentials to be the same as the 2970 * objective context of the specified inode. The current task must be the one 2971 * that nominated @inode. 2972 * 2973 * Return: Returns 0 if successful. 2974 */ 2975 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 2976 { 2977 return call_int_hook(kernel_create_files_as, 0, new, inode); 2978 } 2979 2980 /** 2981 * security_kernel_module_request() - Check is loading a module is allowed 2982 * @kmod_name: module name 2983 * 2984 * Ability to trigger the kernel to automatically upcall to userspace for 2985 * userspace to load a kernel module with the given name. 2986 * 2987 * Return: Returns 0 if successful. 2988 */ 2989 int security_kernel_module_request(char *kmod_name) 2990 { 2991 int ret; 2992 2993 ret = call_int_hook(kernel_module_request, 0, kmod_name); 2994 if (ret) 2995 return ret; 2996 return integrity_kernel_module_request(kmod_name); 2997 } 2998 2999 /** 3000 * security_kernel_read_file() - Read a file specified by userspace 3001 * @file: file 3002 * @id: file identifier 3003 * @contents: trust if security_kernel_post_read_file() will be called 3004 * 3005 * Read a file specified by userspace. 3006 * 3007 * Return: Returns 0 if permission is granted. 3008 */ 3009 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id, 3010 bool contents) 3011 { 3012 int ret; 3013 3014 ret = call_int_hook(kernel_read_file, 0, file, id, contents); 3015 if (ret) 3016 return ret; 3017 return ima_read_file(file, id, contents); 3018 } 3019 EXPORT_SYMBOL_GPL(security_kernel_read_file); 3020 3021 /** 3022 * security_kernel_post_read_file() - Read a file specified by userspace 3023 * @file: file 3024 * @buf: file contents 3025 * @size: size of file contents 3026 * @id: file identifier 3027 * 3028 * Read a file specified by userspace. This must be paired with a prior call 3029 * to security_kernel_read_file() call that indicated this hook would also be 3030 * called, see security_kernel_read_file() for more information. 3031 * 3032 * Return: Returns 0 if permission is granted. 3033 */ 3034 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 3035 enum kernel_read_file_id id) 3036 { 3037 int ret; 3038 3039 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id); 3040 if (ret) 3041 return ret; 3042 return ima_post_read_file(file, buf, size, id); 3043 } 3044 EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 3045 3046 /** 3047 * security_kernel_load_data() - Load data provided by userspace 3048 * @id: data identifier 3049 * @contents: true if security_kernel_post_load_data() will be called 3050 * 3051 * Load data provided by userspace. 3052 * 3053 * Return: Returns 0 if permission is granted. 3054 */ 3055 int security_kernel_load_data(enum kernel_load_data_id id, bool contents) 3056 { 3057 int ret; 3058 3059 ret = call_int_hook(kernel_load_data, 0, id, contents); 3060 if (ret) 3061 return ret; 3062 return ima_load_data(id, contents); 3063 } 3064 EXPORT_SYMBOL_GPL(security_kernel_load_data); 3065 3066 /** 3067 * security_kernel_post_load_data() - Load userspace data from a non-file source 3068 * @buf: data 3069 * @size: size of data 3070 * @id: data identifier 3071 * @description: text description of data, specific to the id value 3072 * 3073 * Load data provided by a non-file source (usually userspace buffer). This 3074 * must be paired with a prior security_kernel_load_data() call that indicated 3075 * this hook would also be called, see security_kernel_load_data() for more 3076 * information. 3077 * 3078 * Return: Returns 0 if permission is granted. 3079 */ 3080 int security_kernel_post_load_data(char *buf, loff_t size, 3081 enum kernel_load_data_id id, 3082 char *description) 3083 { 3084 int ret; 3085 3086 ret = call_int_hook(kernel_post_load_data, 0, buf, size, id, 3087 description); 3088 if (ret) 3089 return ret; 3090 return ima_post_load_data(buf, size, id, description); 3091 } 3092 EXPORT_SYMBOL_GPL(security_kernel_post_load_data); 3093 3094 /** 3095 * security_task_fix_setuid() - Update LSM with new user id attributes 3096 * @new: updated credentials 3097 * @old: credentials being replaced 3098 * @flags: LSM_SETID_* flag values 3099 * 3100 * Update the module's state after setting one or more of the user identity 3101 * attributes of the current process. The @flags parameter indicates which of 3102 * the set*uid system calls invoked this hook. If @new is the set of 3103 * credentials that will be installed. Modifications should be made to this 3104 * rather than to @current->cred. 3105 * 3106 * Return: Returns 0 on success. 3107 */ 3108 int security_task_fix_setuid(struct cred *new, const struct cred *old, 3109 int flags) 3110 { 3111 return call_int_hook(task_fix_setuid, 0, new, old, flags); 3112 } 3113 3114 /** 3115 * security_task_fix_setgid() - Update LSM with new group id attributes 3116 * @new: updated credentials 3117 * @old: credentials being replaced 3118 * @flags: LSM_SETID_* flag value 3119 * 3120 * Update the module's state after setting one or more of the group identity 3121 * attributes of the current process. The @flags parameter indicates which of 3122 * the set*gid system calls invoked this hook. @new is the set of credentials 3123 * that will be installed. Modifications should be made to this rather than to 3124 * @current->cred. 3125 * 3126 * Return: Returns 0 on success. 3127 */ 3128 int security_task_fix_setgid(struct cred *new, const struct cred *old, 3129 int flags) 3130 { 3131 return call_int_hook(task_fix_setgid, 0, new, old, flags); 3132 } 3133 3134 /** 3135 * security_task_fix_setgroups() - Update LSM with new supplementary groups 3136 * @new: updated credentials 3137 * @old: credentials being replaced 3138 * 3139 * Update the module's state after setting the supplementary group identity 3140 * attributes of the current process. @new is the set of credentials that will 3141 * be installed. Modifications should be made to this rather than to 3142 * @current->cred. 3143 * 3144 * Return: Returns 0 on success. 3145 */ 3146 int security_task_fix_setgroups(struct cred *new, const struct cred *old) 3147 { 3148 return call_int_hook(task_fix_setgroups, 0, new, old); 3149 } 3150 3151 /** 3152 * security_task_setpgid() - Check if setting the pgid is allowed 3153 * @p: task being modified 3154 * @pgid: new pgid 3155 * 3156 * Check permission before setting the process group identifier of the process 3157 * @p to @pgid. 3158 * 3159 * Return: Returns 0 if permission is granted. 3160 */ 3161 int security_task_setpgid(struct task_struct *p, pid_t pgid) 3162 { 3163 return call_int_hook(task_setpgid, 0, p, pgid); 3164 } 3165 3166 /** 3167 * security_task_getpgid() - Check if getting the pgid is allowed 3168 * @p: task 3169 * 3170 * Check permission before getting the process group identifier of the process 3171 * @p. 3172 * 3173 * Return: Returns 0 if permission is granted. 3174 */ 3175 int security_task_getpgid(struct task_struct *p) 3176 { 3177 return call_int_hook(task_getpgid, 0, p); 3178 } 3179 3180 /** 3181 * security_task_getsid() - Check if getting the session id is allowed 3182 * @p: task 3183 * 3184 * Check permission before getting the session identifier of the process @p. 3185 * 3186 * Return: Returns 0 if permission is granted. 3187 */ 3188 int security_task_getsid(struct task_struct *p) 3189 { 3190 return call_int_hook(task_getsid, 0, p); 3191 } 3192 3193 /** 3194 * security_current_getsecid_subj() - Get the current task's subjective secid 3195 * @secid: secid value 3196 * 3197 * Retrieve the subjective security identifier of the current task and return 3198 * it in @secid. In case of failure, @secid will be set to zero. 3199 */ 3200 void security_current_getsecid_subj(u32 *secid) 3201 { 3202 *secid = 0; 3203 call_void_hook(current_getsecid_subj, secid); 3204 } 3205 EXPORT_SYMBOL(security_current_getsecid_subj); 3206 3207 /** 3208 * security_task_getsecid_obj() - Get a task's objective secid 3209 * @p: target task 3210 * @secid: secid value 3211 * 3212 * Retrieve the objective security identifier of the task_struct in @p and 3213 * return it in @secid. In case of failure, @secid will be set to zero. 3214 */ 3215 void security_task_getsecid_obj(struct task_struct *p, u32 *secid) 3216 { 3217 *secid = 0; 3218 call_void_hook(task_getsecid_obj, p, secid); 3219 } 3220 EXPORT_SYMBOL(security_task_getsecid_obj); 3221 3222 /** 3223 * security_task_setnice() - Check if setting a task's nice value is allowed 3224 * @p: target task 3225 * @nice: nice value 3226 * 3227 * Check permission before setting the nice value of @p to @nice. 3228 * 3229 * Return: Returns 0 if permission is granted. 3230 */ 3231 int security_task_setnice(struct task_struct *p, int nice) 3232 { 3233 return call_int_hook(task_setnice, 0, p, nice); 3234 } 3235 3236 /** 3237 * security_task_setioprio() - Check if setting a task's ioprio is allowed 3238 * @p: target task 3239 * @ioprio: ioprio value 3240 * 3241 * Check permission before setting the ioprio value of @p to @ioprio. 3242 * 3243 * Return: Returns 0 if permission is granted. 3244 */ 3245 int security_task_setioprio(struct task_struct *p, int ioprio) 3246 { 3247 return call_int_hook(task_setioprio, 0, p, ioprio); 3248 } 3249 3250 /** 3251 * security_task_getioprio() - Check if getting a task's ioprio is allowed 3252 * @p: task 3253 * 3254 * Check permission before getting the ioprio value of @p. 3255 * 3256 * Return: Returns 0 if permission is granted. 3257 */ 3258 int security_task_getioprio(struct task_struct *p) 3259 { 3260 return call_int_hook(task_getioprio, 0, p); 3261 } 3262 3263 /** 3264 * security_task_prlimit() - Check if get/setting resources limits is allowed 3265 * @cred: current task credentials 3266 * @tcred: target task credentials 3267 * @flags: LSM_PRLIMIT_* flag bits indicating a get/set/both 3268 * 3269 * Check permission before getting and/or setting the resource limits of 3270 * another task. 3271 * 3272 * Return: Returns 0 if permission is granted. 3273 */ 3274 int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 3275 unsigned int flags) 3276 { 3277 return call_int_hook(task_prlimit, 0, cred, tcred, flags); 3278 } 3279 3280 /** 3281 * security_task_setrlimit() - Check if setting a new rlimit value is allowed 3282 * @p: target task's group leader 3283 * @resource: resource whose limit is being set 3284 * @new_rlim: new resource limit 3285 * 3286 * Check permission before setting the resource limits of process @p for 3287 * @resource to @new_rlim. The old resource limit values can be examined by 3288 * dereferencing (p->signal->rlim + resource). 3289 * 3290 * Return: Returns 0 if permission is granted. 3291 */ 3292 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 3293 struct rlimit *new_rlim) 3294 { 3295 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim); 3296 } 3297 3298 /** 3299 * security_task_setscheduler() - Check if setting sched policy/param is allowed 3300 * @p: target task 3301 * 3302 * Check permission before setting scheduling policy and/or parameters of 3303 * process @p. 3304 * 3305 * Return: Returns 0 if permission is granted. 3306 */ 3307 int security_task_setscheduler(struct task_struct *p) 3308 { 3309 return call_int_hook(task_setscheduler, 0, p); 3310 } 3311 3312 /** 3313 * security_task_getscheduler() - Check if getting scheduling info is allowed 3314 * @p: target task 3315 * 3316 * Check permission before obtaining scheduling information for process @p. 3317 * 3318 * Return: Returns 0 if permission is granted. 3319 */ 3320 int security_task_getscheduler(struct task_struct *p) 3321 { 3322 return call_int_hook(task_getscheduler, 0, p); 3323 } 3324 3325 /** 3326 * security_task_movememory() - Check if moving memory is allowed 3327 * @p: task 3328 * 3329 * Check permission before moving memory owned by process @p. 3330 * 3331 * Return: Returns 0 if permission is granted. 3332 */ 3333 int security_task_movememory(struct task_struct *p) 3334 { 3335 return call_int_hook(task_movememory, 0, p); 3336 } 3337 3338 /** 3339 * security_task_kill() - Check if sending a signal is allowed 3340 * @p: target process 3341 * @info: signal information 3342 * @sig: signal value 3343 * @cred: credentials of the signal sender, NULL if @current 3344 * 3345 * Check permission before sending signal @sig to @p. @info can be NULL, the 3346 * constant 1, or a pointer to a kernel_siginfo structure. If @info is 1 or 3347 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming from 3348 * the kernel and should typically be permitted. SIGIO signals are handled 3349 * separately by the send_sigiotask hook in file_security_ops. 3350 * 3351 * Return: Returns 0 if permission is granted. 3352 */ 3353 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, 3354 int sig, const struct cred *cred) 3355 { 3356 return call_int_hook(task_kill, 0, p, info, sig, cred); 3357 } 3358 3359 /** 3360 * security_task_prctl() - Check if a prctl op is allowed 3361 * @option: operation 3362 * @arg2: argument 3363 * @arg3: argument 3364 * @arg4: argument 3365 * @arg5: argument 3366 * 3367 * Check permission before performing a process control operation on the 3368 * current process. 3369 * 3370 * Return: Return -ENOSYS if no-one wanted to handle this op, any other value 3371 * to cause prctl() to return immediately with that value. 3372 */ 3373 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 3374 unsigned long arg4, unsigned long arg5) 3375 { 3376 int thisrc; 3377 int rc = LSM_RET_DEFAULT(task_prctl); 3378 struct security_hook_list *hp; 3379 3380 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 3381 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 3382 if (thisrc != LSM_RET_DEFAULT(task_prctl)) { 3383 rc = thisrc; 3384 if (thisrc != 0) 3385 break; 3386 } 3387 } 3388 return rc; 3389 } 3390 3391 /** 3392 * security_task_to_inode() - Set the security attributes of a task's inode 3393 * @p: task 3394 * @inode: inode 3395 * 3396 * Set the security attributes for an inode based on an associated task's 3397 * security attributes, e.g. for /proc/pid inodes. 3398 */ 3399 void security_task_to_inode(struct task_struct *p, struct inode *inode) 3400 { 3401 call_void_hook(task_to_inode, p, inode); 3402 } 3403 3404 /** 3405 * security_create_user_ns() - Check if creating a new userns is allowed 3406 * @cred: prepared creds 3407 * 3408 * Check permission prior to creating a new user namespace. 3409 * 3410 * Return: Returns 0 if successful, otherwise < 0 error code. 3411 */ 3412 int security_create_user_ns(const struct cred *cred) 3413 { 3414 return call_int_hook(userns_create, 0, cred); 3415 } 3416 3417 /** 3418 * security_ipc_permission() - Check if sysv ipc access is allowed 3419 * @ipcp: ipc permission structure 3420 * @flag: requested permissions 3421 * 3422 * Check permissions for access to IPC. 3423 * 3424 * Return: Returns 0 if permission is granted. 3425 */ 3426 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 3427 { 3428 return call_int_hook(ipc_permission, 0, ipcp, flag); 3429 } 3430 3431 /** 3432 * security_ipc_getsecid() - Get the sysv ipc object's secid 3433 * @ipcp: ipc permission structure 3434 * @secid: secid pointer 3435 * 3436 * Get the secid associated with the ipc object. In case of failure, @secid 3437 * will be set to zero. 3438 */ 3439 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 3440 { 3441 *secid = 0; 3442 call_void_hook(ipc_getsecid, ipcp, secid); 3443 } 3444 3445 /** 3446 * security_msg_msg_alloc() - Allocate a sysv ipc message LSM blob 3447 * @msg: message structure 3448 * 3449 * Allocate and attach a security structure to the msg->security field. The 3450 * security field is initialized to NULL when the structure is first created. 3451 * 3452 * Return: Return 0 if operation was successful and permission is granted. 3453 */ 3454 int security_msg_msg_alloc(struct msg_msg *msg) 3455 { 3456 int rc = lsm_msg_msg_alloc(msg); 3457 3458 if (unlikely(rc)) 3459 return rc; 3460 rc = call_int_hook(msg_msg_alloc_security, 0, msg); 3461 if (unlikely(rc)) 3462 security_msg_msg_free(msg); 3463 return rc; 3464 } 3465 3466 /** 3467 * security_msg_msg_free() - Free a sysv ipc message LSM blob 3468 * @msg: message structure 3469 * 3470 * Deallocate the security structure for this message. 3471 */ 3472 void security_msg_msg_free(struct msg_msg *msg) 3473 { 3474 call_void_hook(msg_msg_free_security, msg); 3475 kfree(msg->security); 3476 msg->security = NULL; 3477 } 3478 3479 /** 3480 * security_msg_queue_alloc() - Allocate a sysv ipc msg queue LSM blob 3481 * @msq: sysv ipc permission structure 3482 * 3483 * Allocate and attach a security structure to @msg. The security field is 3484 * initialized to NULL when the structure is first created. 3485 * 3486 * Return: Returns 0 if operation was successful and permission is granted. 3487 */ 3488 int security_msg_queue_alloc(struct kern_ipc_perm *msq) 3489 { 3490 int rc = lsm_ipc_alloc(msq); 3491 3492 if (unlikely(rc)) 3493 return rc; 3494 rc = call_int_hook(msg_queue_alloc_security, 0, msq); 3495 if (unlikely(rc)) 3496 security_msg_queue_free(msq); 3497 return rc; 3498 } 3499 3500 /** 3501 * security_msg_queue_free() - Free a sysv ipc msg queue LSM blob 3502 * @msq: sysv ipc permission structure 3503 * 3504 * Deallocate security field @perm->security for the message queue. 3505 */ 3506 void security_msg_queue_free(struct kern_ipc_perm *msq) 3507 { 3508 call_void_hook(msg_queue_free_security, msq); 3509 kfree(msq->security); 3510 msq->security = NULL; 3511 } 3512 3513 /** 3514 * security_msg_queue_associate() - Check if a msg queue operation is allowed 3515 * @msq: sysv ipc permission structure 3516 * @msqflg: operation flags 3517 * 3518 * Check permission when a message queue is requested through the msgget system 3519 * call. This hook is only called when returning the message queue identifier 3520 * for an existing message queue, not when a new message queue is created. 3521 * 3522 * Return: Return 0 if permission is granted. 3523 */ 3524 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 3525 { 3526 return call_int_hook(msg_queue_associate, 0, msq, msqflg); 3527 } 3528 3529 /** 3530 * security_msg_queue_msgctl() - Check if a msg queue operation is allowed 3531 * @msq: sysv ipc permission structure 3532 * @cmd: operation 3533 * 3534 * Check permission when a message control operation specified by @cmd is to be 3535 * performed on the message queue with permissions. 3536 * 3537 * Return: Returns 0 if permission is granted. 3538 */ 3539 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 3540 { 3541 return call_int_hook(msg_queue_msgctl, 0, msq, cmd); 3542 } 3543 3544 /** 3545 * security_msg_queue_msgsnd() - Check if sending a sysv ipc message is allowed 3546 * @msq: sysv ipc permission structure 3547 * @msg: message 3548 * @msqflg: operation flags 3549 * 3550 * Check permission before a message, @msg, is enqueued on the message queue 3551 * with permissions specified in @msq. 3552 * 3553 * Return: Returns 0 if permission is granted. 3554 */ 3555 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 3556 struct msg_msg *msg, int msqflg) 3557 { 3558 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg); 3559 } 3560 3561 /** 3562 * security_msg_queue_msgrcv() - Check if receiving a sysv ipc msg is allowed 3563 * @msq: sysv ipc permission structure 3564 * @msg: message 3565 * @target: target task 3566 * @type: type of message requested 3567 * @mode: operation flags 3568 * 3569 * Check permission before a message, @msg, is removed from the message queue. 3570 * The @target task structure contains a pointer to the process that will be 3571 * receiving the message (not equal to the current process when inline receives 3572 * are being performed). 3573 * 3574 * Return: Returns 0 if permission is granted. 3575 */ 3576 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 3577 struct task_struct *target, long type, int mode) 3578 { 3579 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode); 3580 } 3581 3582 /** 3583 * security_shm_alloc() - Allocate a sysv shm LSM blob 3584 * @shp: sysv ipc permission structure 3585 * 3586 * Allocate and attach a security structure to the @shp security field. The 3587 * security field is initialized to NULL when the structure is first created. 3588 * 3589 * Return: Returns 0 if operation was successful and permission is granted. 3590 */ 3591 int security_shm_alloc(struct kern_ipc_perm *shp) 3592 { 3593 int rc = lsm_ipc_alloc(shp); 3594 3595 if (unlikely(rc)) 3596 return rc; 3597 rc = call_int_hook(shm_alloc_security, 0, shp); 3598 if (unlikely(rc)) 3599 security_shm_free(shp); 3600 return rc; 3601 } 3602 3603 /** 3604 * security_shm_free() - Free a sysv shm LSM blob 3605 * @shp: sysv ipc permission structure 3606 * 3607 * Deallocate the security structure @perm->security for the memory segment. 3608 */ 3609 void security_shm_free(struct kern_ipc_perm *shp) 3610 { 3611 call_void_hook(shm_free_security, shp); 3612 kfree(shp->security); 3613 shp->security = NULL; 3614 } 3615 3616 /** 3617 * security_shm_associate() - Check if a sysv shm operation is allowed 3618 * @shp: sysv ipc permission structure 3619 * @shmflg: operation flags 3620 * 3621 * Check permission when a shared memory region is requested through the shmget 3622 * system call. This hook is only called when returning the shared memory 3623 * region identifier for an existing region, not when a new shared memory 3624 * region is created. 3625 * 3626 * Return: Returns 0 if permission is granted. 3627 */ 3628 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 3629 { 3630 return call_int_hook(shm_associate, 0, shp, shmflg); 3631 } 3632 3633 /** 3634 * security_shm_shmctl() - Check if a sysv shm operation is allowed 3635 * @shp: sysv ipc permission structure 3636 * @cmd: operation 3637 * 3638 * Check permission when a shared memory control operation specified by @cmd is 3639 * to be performed on the shared memory region with permissions in @shp. 3640 * 3641 * Return: Return 0 if permission is granted. 3642 */ 3643 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 3644 { 3645 return call_int_hook(shm_shmctl, 0, shp, cmd); 3646 } 3647 3648 /** 3649 * security_shm_shmat() - Check if a sysv shm attach operation is allowed 3650 * @shp: sysv ipc permission structure 3651 * @shmaddr: address of memory region to attach 3652 * @shmflg: operation flags 3653 * 3654 * Check permissions prior to allowing the shmat system call to attach the 3655 * shared memory segment with permissions @shp to the data segment of the 3656 * calling process. The attaching address is specified by @shmaddr. 3657 * 3658 * Return: Returns 0 if permission is granted. 3659 */ 3660 int security_shm_shmat(struct kern_ipc_perm *shp, 3661 char __user *shmaddr, int shmflg) 3662 { 3663 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg); 3664 } 3665 3666 /** 3667 * security_sem_alloc() - Allocate a sysv semaphore LSM blob 3668 * @sma: sysv ipc permission structure 3669 * 3670 * Allocate and attach a security structure to the @sma security field. The 3671 * security field is initialized to NULL when the structure is first created. 3672 * 3673 * Return: Returns 0 if operation was successful and permission is granted. 3674 */ 3675 int security_sem_alloc(struct kern_ipc_perm *sma) 3676 { 3677 int rc = lsm_ipc_alloc(sma); 3678 3679 if (unlikely(rc)) 3680 return rc; 3681 rc = call_int_hook(sem_alloc_security, 0, sma); 3682 if (unlikely(rc)) 3683 security_sem_free(sma); 3684 return rc; 3685 } 3686 3687 /** 3688 * security_sem_free() - Free a sysv semaphore LSM blob 3689 * @sma: sysv ipc permission structure 3690 * 3691 * Deallocate security structure @sma->security for the semaphore. 3692 */ 3693 void security_sem_free(struct kern_ipc_perm *sma) 3694 { 3695 call_void_hook(sem_free_security, sma); 3696 kfree(sma->security); 3697 sma->security = NULL; 3698 } 3699 3700 /** 3701 * security_sem_associate() - Check if a sysv semaphore operation is allowed 3702 * @sma: sysv ipc permission structure 3703 * @semflg: operation flags 3704 * 3705 * Check permission when a semaphore is requested through the semget system 3706 * call. This hook is only called when returning the semaphore identifier for 3707 * an existing semaphore, not when a new one must be created. 3708 * 3709 * Return: Returns 0 if permission is granted. 3710 */ 3711 int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 3712 { 3713 return call_int_hook(sem_associate, 0, sma, semflg); 3714 } 3715 3716 /** 3717 * security_sem_semctl() - Check if a sysv semaphore operation is allowed 3718 * @sma: sysv ipc permission structure 3719 * @cmd: operation 3720 * 3721 * Check permission when a semaphore operation specified by @cmd is to be 3722 * performed on the semaphore. 3723 * 3724 * Return: Returns 0 if permission is granted. 3725 */ 3726 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 3727 { 3728 return call_int_hook(sem_semctl, 0, sma, cmd); 3729 } 3730 3731 /** 3732 * security_sem_semop() - Check if a sysv semaphore operation is allowed 3733 * @sma: sysv ipc permission structure 3734 * @sops: operations to perform 3735 * @nsops: number of operations 3736 * @alter: flag indicating changes will be made 3737 * 3738 * Check permissions before performing operations on members of the semaphore 3739 * set. If the @alter flag is nonzero, the semaphore set may be modified. 3740 * 3741 * Return: Returns 0 if permission is granted. 3742 */ 3743 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 3744 unsigned nsops, int alter) 3745 { 3746 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter); 3747 } 3748 3749 /** 3750 * security_d_instantiate() - Populate an inode's LSM state based on a dentry 3751 * @dentry: dentry 3752 * @inode: inode 3753 * 3754 * Fill in @inode security information for a @dentry if allowed. 3755 */ 3756 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 3757 { 3758 if (unlikely(inode && IS_PRIVATE(inode))) 3759 return; 3760 call_void_hook(d_instantiate, dentry, inode); 3761 } 3762 EXPORT_SYMBOL(security_d_instantiate); 3763 3764 /** 3765 * security_getprocattr() - Read an attribute for a task 3766 * @p: the task 3767 * @lsm: LSM name 3768 * @name: attribute name 3769 * @value: attribute value 3770 * 3771 * Read attribute @name for task @p and store it into @value if allowed. 3772 * 3773 * Return: Returns the length of @value on success, a negative value otherwise. 3774 */ 3775 int security_getprocattr(struct task_struct *p, const char *lsm, 3776 const char *name, char **value) 3777 { 3778 struct security_hook_list *hp; 3779 3780 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) { 3781 if (lsm != NULL && strcmp(lsm, hp->lsm)) 3782 continue; 3783 return hp->hook.getprocattr(p, name, value); 3784 } 3785 return LSM_RET_DEFAULT(getprocattr); 3786 } 3787 3788 /** 3789 * security_setprocattr() - Set an attribute for a task 3790 * @lsm: LSM name 3791 * @name: attribute name 3792 * @value: attribute value 3793 * @size: attribute value size 3794 * 3795 * Write (set) the current task's attribute @name to @value, size @size if 3796 * allowed. 3797 * 3798 * Return: Returns bytes written on success, a negative value otherwise. 3799 */ 3800 int security_setprocattr(const char *lsm, const char *name, void *value, 3801 size_t size) 3802 { 3803 struct security_hook_list *hp; 3804 3805 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) { 3806 if (lsm != NULL && strcmp(lsm, hp->lsm)) 3807 continue; 3808 return hp->hook.setprocattr(name, value, size); 3809 } 3810 return LSM_RET_DEFAULT(setprocattr); 3811 } 3812 3813 /** 3814 * security_netlink_send() - Save info and check if netlink sending is allowed 3815 * @sk: sending socket 3816 * @skb: netlink message 3817 * 3818 * Save security information for a netlink message so that permission checking 3819 * can be performed when the message is processed. The security information 3820 * can be saved using the eff_cap field of the netlink_skb_parms structure. 3821 * Also may be used to provide fine grained control over message transmission. 3822 * 3823 * Return: Returns 0 if the information was successfully saved and message is 3824 * allowed to be transmitted. 3825 */ 3826 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 3827 { 3828 return call_int_hook(netlink_send, 0, sk, skb); 3829 } 3830 3831 /** 3832 * security_ismaclabel() - Check is the named attribute is a MAC label 3833 * @name: full extended attribute name 3834 * 3835 * Check if the extended attribute specified by @name represents a MAC label. 3836 * 3837 * Return: Returns 1 if name is a MAC attribute otherwise returns 0. 3838 */ 3839 int security_ismaclabel(const char *name) 3840 { 3841 return call_int_hook(ismaclabel, 0, name); 3842 } 3843 EXPORT_SYMBOL(security_ismaclabel); 3844 3845 /** 3846 * security_secid_to_secctx() - Convert a secid to a secctx 3847 * @secid: secid 3848 * @secdata: secctx 3849 * @seclen: secctx length 3850 * 3851 * Convert secid to security context. If @secdata is NULL the length of the 3852 * result will be returned in @seclen, but no @secdata will be returned. This 3853 * does mean that the length could change between calls to check the length and 3854 * the next call which actually allocates and returns the @secdata. 3855 * 3856 * Return: Return 0 on success, error on failure. 3857 */ 3858 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 3859 { 3860 struct security_hook_list *hp; 3861 int rc; 3862 3863 /* 3864 * Currently, only one LSM can implement secid_to_secctx (i.e this 3865 * LSM hook is not "stackable"). 3866 */ 3867 hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) { 3868 rc = hp->hook.secid_to_secctx(secid, secdata, seclen); 3869 if (rc != LSM_RET_DEFAULT(secid_to_secctx)) 3870 return rc; 3871 } 3872 3873 return LSM_RET_DEFAULT(secid_to_secctx); 3874 } 3875 EXPORT_SYMBOL(security_secid_to_secctx); 3876 3877 /** 3878 * security_secctx_to_secid() - Convert a secctx to a secid 3879 * @secdata: secctx 3880 * @seclen: length of secctx 3881 * @secid: secid 3882 * 3883 * Convert security context to secid. 3884 * 3885 * Return: Returns 0 on success, error on failure. 3886 */ 3887 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 3888 { 3889 *secid = 0; 3890 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid); 3891 } 3892 EXPORT_SYMBOL(security_secctx_to_secid); 3893 3894 /** 3895 * security_release_secctx() - Free a secctx buffer 3896 * @secdata: secctx 3897 * @seclen: length of secctx 3898 * 3899 * Release the security context. 3900 */ 3901 void security_release_secctx(char *secdata, u32 seclen) 3902 { 3903 call_void_hook(release_secctx, secdata, seclen); 3904 } 3905 EXPORT_SYMBOL(security_release_secctx); 3906 3907 /** 3908 * security_inode_invalidate_secctx() - Invalidate an inode's security label 3909 * @inode: inode 3910 * 3911 * Notify the security module that it must revalidate the security context of 3912 * an inode. 3913 */ 3914 void security_inode_invalidate_secctx(struct inode *inode) 3915 { 3916 call_void_hook(inode_invalidate_secctx, inode); 3917 } 3918 EXPORT_SYMBOL(security_inode_invalidate_secctx); 3919 3920 /** 3921 * security_inode_notifysecctx() - Nofify the LSM of an inode's security label 3922 * @inode: inode 3923 * @ctx: secctx 3924 * @ctxlen: length of secctx 3925 * 3926 * Notify the security module of what the security context of an inode should 3927 * be. Initializes the incore security context managed by the security module 3928 * for this inode. Example usage: NFS client invokes this hook to initialize 3929 * the security context in its incore inode to the value provided by the server 3930 * for the file when the server returned the file's attributes to the client. 3931 * Must be called with inode->i_mutex locked. 3932 * 3933 * Return: Returns 0 on success, error on failure. 3934 */ 3935 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 3936 { 3937 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen); 3938 } 3939 EXPORT_SYMBOL(security_inode_notifysecctx); 3940 3941 /** 3942 * security_inode_setsecctx() - Change the security label of an inode 3943 * @dentry: inode 3944 * @ctx: secctx 3945 * @ctxlen: length of secctx 3946 * 3947 * Change the security context of an inode. Updates the incore security 3948 * context managed by the security module and invokes the fs code as needed 3949 * (via __vfs_setxattr_noperm) to update any backing xattrs that represent the 3950 * context. Example usage: NFS server invokes this hook to change the security 3951 * context in its incore inode and on the backing filesystem to a value 3952 * provided by the client on a SETATTR operation. Must be called with 3953 * inode->i_mutex locked. 3954 * 3955 * Return: Returns 0 on success, error on failure. 3956 */ 3957 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 3958 { 3959 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen); 3960 } 3961 EXPORT_SYMBOL(security_inode_setsecctx); 3962 3963 /** 3964 * security_inode_getsecctx() - Get the security label of an inode 3965 * @inode: inode 3966 * @ctx: secctx 3967 * @ctxlen: length of secctx 3968 * 3969 * On success, returns 0 and fills out @ctx and @ctxlen with the security 3970 * context for the given @inode. 3971 * 3972 * Return: Returns 0 on success, error on failure. 3973 */ 3974 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 3975 { 3976 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen); 3977 } 3978 EXPORT_SYMBOL(security_inode_getsecctx); 3979 3980 #ifdef CONFIG_WATCH_QUEUE 3981 /** 3982 * security_post_notification() - Check if a watch notification can be posted 3983 * @w_cred: credentials of the task that set the watch 3984 * @cred: credentials of the task which triggered the watch 3985 * @n: the notification 3986 * 3987 * Check to see if a watch notification can be posted to a particular queue. 3988 * 3989 * Return: Returns 0 if permission is granted. 3990 */ 3991 int security_post_notification(const struct cred *w_cred, 3992 const struct cred *cred, 3993 struct watch_notification *n) 3994 { 3995 return call_int_hook(post_notification, 0, w_cred, cred, n); 3996 } 3997 #endif /* CONFIG_WATCH_QUEUE */ 3998 3999 #ifdef CONFIG_KEY_NOTIFICATIONS 4000 /** 4001 * security_watch_key() - Check if a task is allowed to watch for key events 4002 * @key: the key to watch 4003 * 4004 * Check to see if a process is allowed to watch for event notifications from 4005 * a key or keyring. 4006 * 4007 * Return: Returns 0 if permission is granted. 4008 */ 4009 int security_watch_key(struct key *key) 4010 { 4011 return call_int_hook(watch_key, 0, key); 4012 } 4013 #endif /* CONFIG_KEY_NOTIFICATIONS */ 4014 4015 #ifdef CONFIG_SECURITY_NETWORK 4016 /** 4017 * security_unix_stream_connect() - Check if a AF_UNIX stream is allowed 4018 * @sock: originating sock 4019 * @other: peer sock 4020 * @newsk: new sock 4021 * 4022 * Check permissions before establishing a Unix domain stream connection 4023 * between @sock and @other. 4024 * 4025 * The @unix_stream_connect and @unix_may_send hooks were necessary because 4026 * Linux provides an alternative to the conventional file name space for Unix 4027 * domain sockets. Whereas binding and connecting to sockets in the file name 4028 * space is mediated by the typical file permissions (and caught by the mknod 4029 * and permission hooks in inode_security_ops), binding and connecting to 4030 * sockets in the abstract name space is completely unmediated. Sufficient 4031 * control of Unix domain sockets in the abstract name space isn't possible 4032 * using only the socket layer hooks, since we need to know the actual target 4033 * socket, which is not looked up until we are inside the af_unix code. 4034 * 4035 * Return: Returns 0 if permission is granted. 4036 */ 4037 int security_unix_stream_connect(struct sock *sock, struct sock *other, 4038 struct sock *newsk) 4039 { 4040 return call_int_hook(unix_stream_connect, 0, sock, other, newsk); 4041 } 4042 EXPORT_SYMBOL(security_unix_stream_connect); 4043 4044 /** 4045 * security_unix_may_send() - Check if AF_UNIX socket can send datagrams 4046 * @sock: originating sock 4047 * @other: peer sock 4048 * 4049 * Check permissions before connecting or sending datagrams from @sock to 4050 * @other. 4051 * 4052 * The @unix_stream_connect and @unix_may_send hooks were necessary because 4053 * Linux provides an alternative to the conventional file name space for Unix 4054 * domain sockets. Whereas binding and connecting to sockets in the file name 4055 * space is mediated by the typical file permissions (and caught by the mknod 4056 * and permission hooks in inode_security_ops), binding and connecting to 4057 * sockets in the abstract name space is completely unmediated. Sufficient 4058 * control of Unix domain sockets in the abstract name space isn't possible 4059 * using only the socket layer hooks, since we need to know the actual target 4060 * socket, which is not looked up until we are inside the af_unix code. 4061 * 4062 * Return: Returns 0 if permission is granted. 4063 */ 4064 int security_unix_may_send(struct socket *sock, struct socket *other) 4065 { 4066 return call_int_hook(unix_may_send, 0, sock, other); 4067 } 4068 EXPORT_SYMBOL(security_unix_may_send); 4069 4070 /** 4071 * security_socket_create() - Check if creating a new socket is allowed 4072 * @family: protocol family 4073 * @type: communications type 4074 * @protocol: requested protocol 4075 * @kern: set to 1 if a kernel socket is requested 4076 * 4077 * Check permissions prior to creating a new socket. 4078 * 4079 * Return: Returns 0 if permission is granted. 4080 */ 4081 int security_socket_create(int family, int type, int protocol, int kern) 4082 { 4083 return call_int_hook(socket_create, 0, family, type, protocol, kern); 4084 } 4085 4086 /** 4087 * security_socket_post_create() - Initialize a newly created socket 4088 * @sock: socket 4089 * @family: protocol family 4090 * @type: communications type 4091 * @protocol: requested protocol 4092 * @kern: set to 1 if a kernel socket is requested 4093 * 4094 * This hook allows a module to update or allocate a per-socket security 4095 * structure. Note that the security field was not added directly to the socket 4096 * structure, but rather, the socket security information is stored in the 4097 * associated inode. Typically, the inode alloc_security hook will allocate 4098 * and attach security information to SOCK_INODE(sock)->i_security. This hook 4099 * may be used to update the SOCK_INODE(sock)->i_security field with additional 4100 * information that wasn't available when the inode was allocated. 4101 * 4102 * Return: Returns 0 if permission is granted. 4103 */ 4104 int security_socket_post_create(struct socket *sock, int family, 4105 int type, int protocol, int kern) 4106 { 4107 return call_int_hook(socket_post_create, 0, sock, family, type, 4108 protocol, kern); 4109 } 4110 4111 /** 4112 * security_socket_socketpair() - Check if creating a socketpair is allowed 4113 * @socka: first socket 4114 * @sockb: second socket 4115 * 4116 * Check permissions before creating a fresh pair of sockets. 4117 * 4118 * Return: Returns 0 if permission is granted and the connection was 4119 * established. 4120 */ 4121 int security_socket_socketpair(struct socket *socka, struct socket *sockb) 4122 { 4123 return call_int_hook(socket_socketpair, 0, socka, sockb); 4124 } 4125 EXPORT_SYMBOL(security_socket_socketpair); 4126 4127 /** 4128 * security_socket_bind() - Check if a socket bind operation is allowed 4129 * @sock: socket 4130 * @address: requested bind address 4131 * @addrlen: length of address 4132 * 4133 * Check permission before socket protocol layer bind operation is performed 4134 * and the socket @sock is bound to the address specified in the @address 4135 * parameter. 4136 * 4137 * Return: Returns 0 if permission is granted. 4138 */ 4139 int security_socket_bind(struct socket *sock, 4140 struct sockaddr *address, int addrlen) 4141 { 4142 return call_int_hook(socket_bind, 0, sock, address, addrlen); 4143 } 4144 4145 /** 4146 * security_socket_connect() - Check if a socket connect operation is allowed 4147 * @sock: socket 4148 * @address: address of remote connection point 4149 * @addrlen: length of address 4150 * 4151 * Check permission before socket protocol layer connect operation attempts to 4152 * connect socket @sock to a remote address, @address. 4153 * 4154 * Return: Returns 0 if permission is granted. 4155 */ 4156 int security_socket_connect(struct socket *sock, 4157 struct sockaddr *address, int addrlen) 4158 { 4159 return call_int_hook(socket_connect, 0, sock, address, addrlen); 4160 } 4161 4162 /** 4163 * security_socket_listen() - Check if a socket is allowed to listen 4164 * @sock: socket 4165 * @backlog: connection queue size 4166 * 4167 * Check permission before socket protocol layer listen operation. 4168 * 4169 * Return: Returns 0 if permission is granted. 4170 */ 4171 int security_socket_listen(struct socket *sock, int backlog) 4172 { 4173 return call_int_hook(socket_listen, 0, sock, backlog); 4174 } 4175 4176 /** 4177 * security_socket_accept() - Check if a socket is allowed to accept connections 4178 * @sock: listening socket 4179 * @newsock: newly creation connection socket 4180 * 4181 * Check permission before accepting a new connection. Note that the new 4182 * socket, @newsock, has been created and some information copied to it, but 4183 * the accept operation has not actually been performed. 4184 * 4185 * Return: Returns 0 if permission is granted. 4186 */ 4187 int security_socket_accept(struct socket *sock, struct socket *newsock) 4188 { 4189 return call_int_hook(socket_accept, 0, sock, newsock); 4190 } 4191 4192 /** 4193 * security_socket_sendmsg() - Check is sending a message is allowed 4194 * @sock: sending socket 4195 * @msg: message to send 4196 * @size: size of message 4197 * 4198 * Check permission before transmitting a message to another socket. 4199 * 4200 * Return: Returns 0 if permission is granted. 4201 */ 4202 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 4203 { 4204 return call_int_hook(socket_sendmsg, 0, sock, msg, size); 4205 } 4206 4207 /** 4208 * security_socket_recvmsg() - Check if receiving a message is allowed 4209 * @sock: receiving socket 4210 * @msg: message to receive 4211 * @size: size of message 4212 * @flags: operational flags 4213 * 4214 * Check permission before receiving a message from a socket. 4215 * 4216 * Return: Returns 0 if permission is granted. 4217 */ 4218 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 4219 int size, int flags) 4220 { 4221 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags); 4222 } 4223 4224 /** 4225 * security_socket_getsockname() - Check if reading the socket addr is allowed 4226 * @sock: socket 4227 * 4228 * Check permission before reading the local address (name) of the socket 4229 * object. 4230 * 4231 * Return: Returns 0 if permission is granted. 4232 */ 4233 int security_socket_getsockname(struct socket *sock) 4234 { 4235 return call_int_hook(socket_getsockname, 0, sock); 4236 } 4237 4238 /** 4239 * security_socket_getpeername() - Check if reading the peer's addr is allowed 4240 * @sock: socket 4241 * 4242 * Check permission before the remote address (name) of a socket object. 4243 * 4244 * Return: Returns 0 if permission is granted. 4245 */ 4246 int security_socket_getpeername(struct socket *sock) 4247 { 4248 return call_int_hook(socket_getpeername, 0, sock); 4249 } 4250 4251 /** 4252 * security_socket_getsockopt() - Check if reading a socket option is allowed 4253 * @sock: socket 4254 * @level: option's protocol level 4255 * @optname: option name 4256 * 4257 * Check permissions before retrieving the options associated with socket 4258 * @sock. 4259 * 4260 * Return: Returns 0 if permission is granted. 4261 */ 4262 int security_socket_getsockopt(struct socket *sock, int level, int optname) 4263 { 4264 return call_int_hook(socket_getsockopt, 0, sock, level, optname); 4265 } 4266 4267 /** 4268 * security_socket_setsockopt() - Check if setting a socket option is allowed 4269 * @sock: socket 4270 * @level: option's protocol level 4271 * @optname: option name 4272 * 4273 * Check permissions before setting the options associated with socket @sock. 4274 * 4275 * Return: Returns 0 if permission is granted. 4276 */ 4277 int security_socket_setsockopt(struct socket *sock, int level, int optname) 4278 { 4279 return call_int_hook(socket_setsockopt, 0, sock, level, optname); 4280 } 4281 4282 /** 4283 * security_socket_shutdown() - Checks if shutting down the socket is allowed 4284 * @sock: socket 4285 * @how: flag indicating how sends and receives are handled 4286 * 4287 * Checks permission before all or part of a connection on the socket @sock is 4288 * shut down. 4289 * 4290 * Return: Returns 0 if permission is granted. 4291 */ 4292 int security_socket_shutdown(struct socket *sock, int how) 4293 { 4294 return call_int_hook(socket_shutdown, 0, sock, how); 4295 } 4296 4297 /** 4298 * security_sock_rcv_skb() - Check if an incoming network packet is allowed 4299 * @sk: destination sock 4300 * @skb: incoming packet 4301 * 4302 * Check permissions on incoming network packets. This hook is distinct from 4303 * Netfilter's IP input hooks since it is the first time that the incoming 4304 * sk_buff @skb has been associated with a particular socket, @sk. Must not 4305 * sleep inside this hook because some callers hold spinlocks. 4306 * 4307 * Return: Returns 0 if permission is granted. 4308 */ 4309 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 4310 { 4311 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb); 4312 } 4313 EXPORT_SYMBOL(security_sock_rcv_skb); 4314 4315 /** 4316 * security_socket_getpeersec_stream() - Get the remote peer label 4317 * @sock: socket 4318 * @optval: destination buffer 4319 * @optlen: size of peer label copied into the buffer 4320 * @len: maximum size of the destination buffer 4321 * 4322 * This hook allows the security module to provide peer socket security state 4323 * for unix or connected tcp sockets to userspace via getsockopt SO_GETPEERSEC. 4324 * For tcp sockets this can be meaningful if the socket is associated with an 4325 * ipsec SA. 4326 * 4327 * Return: Returns 0 if all is well, otherwise, typical getsockopt return 4328 * values. 4329 */ 4330 int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval, 4331 sockptr_t optlen, unsigned int len) 4332 { 4333 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock, 4334 optval, optlen, len); 4335 } 4336 4337 /** 4338 * security_socket_getpeersec_dgram() - Get the remote peer label 4339 * @sock: socket 4340 * @skb: datagram packet 4341 * @secid: remote peer label secid 4342 * 4343 * This hook allows the security module to provide peer socket security state 4344 * for udp sockets on a per-packet basis to userspace via getsockopt 4345 * SO_GETPEERSEC. The application must first have indicated the IP_PASSSEC 4346 * option via getsockopt. It can then retrieve the security state returned by 4347 * this hook for a packet via the SCM_SECURITY ancillary message type. 4348 * 4349 * Return: Returns 0 on success, error on failure. 4350 */ 4351 int security_socket_getpeersec_dgram(struct socket *sock, 4352 struct sk_buff *skb, u32 *secid) 4353 { 4354 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock, 4355 skb, secid); 4356 } 4357 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 4358 4359 /** 4360 * security_sk_alloc() - Allocate and initialize a sock's LSM blob 4361 * @sk: sock 4362 * @family: protocol family 4363 * @priority: gfp flags 4364 * 4365 * Allocate and attach a security structure to the sk->sk_security field, which 4366 * is used to copy security attributes between local stream sockets. 4367 * 4368 * Return: Returns 0 on success, error on failure. 4369 */ 4370 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 4371 { 4372 return call_int_hook(sk_alloc_security, 0, sk, family, priority); 4373 } 4374 4375 /** 4376 * security_sk_free() - Free the sock's LSM blob 4377 * @sk: sock 4378 * 4379 * Deallocate security structure. 4380 */ 4381 void security_sk_free(struct sock *sk) 4382 { 4383 call_void_hook(sk_free_security, sk); 4384 } 4385 4386 /** 4387 * security_sk_clone() - Clone a sock's LSM state 4388 * @sk: original sock 4389 * @newsk: target sock 4390 * 4391 * Clone/copy security structure. 4392 */ 4393 void security_sk_clone(const struct sock *sk, struct sock *newsk) 4394 { 4395 call_void_hook(sk_clone_security, sk, newsk); 4396 } 4397 EXPORT_SYMBOL(security_sk_clone); 4398 4399 void security_sk_classify_flow(const struct sock *sk, struct flowi_common *flic) 4400 { 4401 call_void_hook(sk_getsecid, sk, &flic->flowic_secid); 4402 } 4403 EXPORT_SYMBOL(security_sk_classify_flow); 4404 4405 /** 4406 * security_req_classify_flow() - Set a flow's secid based on request_sock 4407 * @req: request_sock 4408 * @flic: target flow 4409 * 4410 * Sets @flic's secid to @req's secid. 4411 */ 4412 void security_req_classify_flow(const struct request_sock *req, 4413 struct flowi_common *flic) 4414 { 4415 call_void_hook(req_classify_flow, req, flic); 4416 } 4417 EXPORT_SYMBOL(security_req_classify_flow); 4418 4419 /** 4420 * security_sock_graft() - Reconcile LSM state when grafting a sock on a socket 4421 * @sk: sock being grafted 4422 * @parent: target parent socket 4423 * 4424 * Sets @parent's inode secid to @sk's secid and update @sk with any necessary 4425 * LSM state from @parent. 4426 */ 4427 void security_sock_graft(struct sock *sk, struct socket *parent) 4428 { 4429 call_void_hook(sock_graft, sk, parent); 4430 } 4431 EXPORT_SYMBOL(security_sock_graft); 4432 4433 /** 4434 * security_inet_conn_request() - Set request_sock state using incoming connect 4435 * @sk: parent listening sock 4436 * @skb: incoming connection 4437 * @req: new request_sock 4438 * 4439 * Initialize the @req LSM state based on @sk and the incoming connect in @skb. 4440 * 4441 * Return: Returns 0 if permission is granted. 4442 */ 4443 int security_inet_conn_request(const struct sock *sk, 4444 struct sk_buff *skb, struct request_sock *req) 4445 { 4446 return call_int_hook(inet_conn_request, 0, sk, skb, req); 4447 } 4448 EXPORT_SYMBOL(security_inet_conn_request); 4449 4450 /** 4451 * security_inet_csk_clone() - Set new sock LSM state based on request_sock 4452 * @newsk: new sock 4453 * @req: connection request_sock 4454 * 4455 * Set that LSM state of @sock using the LSM state from @req. 4456 */ 4457 void security_inet_csk_clone(struct sock *newsk, 4458 const struct request_sock *req) 4459 { 4460 call_void_hook(inet_csk_clone, newsk, req); 4461 } 4462 4463 /** 4464 * security_inet_conn_established() - Update sock's LSM state with connection 4465 * @sk: sock 4466 * @skb: connection packet 4467 * 4468 * Update @sock's LSM state to represent a new connection from @skb. 4469 */ 4470 void security_inet_conn_established(struct sock *sk, 4471 struct sk_buff *skb) 4472 { 4473 call_void_hook(inet_conn_established, sk, skb); 4474 } 4475 EXPORT_SYMBOL(security_inet_conn_established); 4476 4477 /** 4478 * security_secmark_relabel_packet() - Check if setting a secmark is allowed 4479 * @secid: new secmark value 4480 * 4481 * Check if the process should be allowed to relabel packets to @secid. 4482 * 4483 * Return: Returns 0 if permission is granted. 4484 */ 4485 int security_secmark_relabel_packet(u32 secid) 4486 { 4487 return call_int_hook(secmark_relabel_packet, 0, secid); 4488 } 4489 EXPORT_SYMBOL(security_secmark_relabel_packet); 4490 4491 /** 4492 * security_secmark_refcount_inc() - Increment the secmark labeling rule count 4493 * 4494 * Tells the LSM to increment the number of secmark labeling rules loaded. 4495 */ 4496 void security_secmark_refcount_inc(void) 4497 { 4498 call_void_hook(secmark_refcount_inc); 4499 } 4500 EXPORT_SYMBOL(security_secmark_refcount_inc); 4501 4502 /** 4503 * security_secmark_refcount_dec() - Decrement the secmark labeling rule count 4504 * 4505 * Tells the LSM to decrement the number of secmark labeling rules loaded. 4506 */ 4507 void security_secmark_refcount_dec(void) 4508 { 4509 call_void_hook(secmark_refcount_dec); 4510 } 4511 EXPORT_SYMBOL(security_secmark_refcount_dec); 4512 4513 /** 4514 * security_tun_dev_alloc_security() - Allocate a LSM blob for a TUN device 4515 * @security: pointer to the LSM blob 4516 * 4517 * This hook allows a module to allocate a security structure for a TUN device, 4518 * returning the pointer in @security. 4519 * 4520 * Return: Returns a zero on success, negative values on failure. 4521 */ 4522 int security_tun_dev_alloc_security(void **security) 4523 { 4524 return call_int_hook(tun_dev_alloc_security, 0, security); 4525 } 4526 EXPORT_SYMBOL(security_tun_dev_alloc_security); 4527 4528 /** 4529 * security_tun_dev_free_security() - Free a TUN device LSM blob 4530 * @security: LSM blob 4531 * 4532 * This hook allows a module to free the security structure for a TUN device. 4533 */ 4534 void security_tun_dev_free_security(void *security) 4535 { 4536 call_void_hook(tun_dev_free_security, security); 4537 } 4538 EXPORT_SYMBOL(security_tun_dev_free_security); 4539 4540 /** 4541 * security_tun_dev_create() - Check if creating a TUN device is allowed 4542 * 4543 * Check permissions prior to creating a new TUN device. 4544 * 4545 * Return: Returns 0 if permission is granted. 4546 */ 4547 int security_tun_dev_create(void) 4548 { 4549 return call_int_hook(tun_dev_create, 0); 4550 } 4551 EXPORT_SYMBOL(security_tun_dev_create); 4552 4553 /** 4554 * security_tun_dev_attach_queue() - Check if attaching a TUN queue is allowed 4555 * @security: TUN device LSM blob 4556 * 4557 * Check permissions prior to attaching to a TUN device queue. 4558 * 4559 * Return: Returns 0 if permission is granted. 4560 */ 4561 int security_tun_dev_attach_queue(void *security) 4562 { 4563 return call_int_hook(tun_dev_attach_queue, 0, security); 4564 } 4565 EXPORT_SYMBOL(security_tun_dev_attach_queue); 4566 4567 /** 4568 * security_tun_dev_attach() - Update TUN device LSM state on attach 4569 * @sk: associated sock 4570 * @security: TUN device LSM blob 4571 * 4572 * This hook can be used by the module to update any security state associated 4573 * with the TUN device's sock structure. 4574 * 4575 * Return: Returns 0 if permission is granted. 4576 */ 4577 int security_tun_dev_attach(struct sock *sk, void *security) 4578 { 4579 return call_int_hook(tun_dev_attach, 0, sk, security); 4580 } 4581 EXPORT_SYMBOL(security_tun_dev_attach); 4582 4583 /** 4584 * security_tun_dev_open() - Update TUN device LSM state on open 4585 * @security: TUN device LSM blob 4586 * 4587 * This hook can be used by the module to update any security state associated 4588 * with the TUN device's security structure. 4589 * 4590 * Return: Returns 0 if permission is granted. 4591 */ 4592 int security_tun_dev_open(void *security) 4593 { 4594 return call_int_hook(tun_dev_open, 0, security); 4595 } 4596 EXPORT_SYMBOL(security_tun_dev_open); 4597 4598 /** 4599 * security_sctp_assoc_request() - Update the LSM on a SCTP association req 4600 * @asoc: SCTP association 4601 * @skb: packet requesting the association 4602 * 4603 * Passes the @asoc and @chunk->skb of the association INIT packet to the LSM. 4604 * 4605 * Return: Returns 0 on success, error on failure. 4606 */ 4607 int security_sctp_assoc_request(struct sctp_association *asoc, 4608 struct sk_buff *skb) 4609 { 4610 return call_int_hook(sctp_assoc_request, 0, asoc, skb); 4611 } 4612 EXPORT_SYMBOL(security_sctp_assoc_request); 4613 4614 /** 4615 * security_sctp_bind_connect() - Validate a list of addrs for a SCTP option 4616 * @sk: socket 4617 * @optname: SCTP option to validate 4618 * @address: list of IP addresses to validate 4619 * @addrlen: length of the address list 4620 * 4621 * Validiate permissions required for each address associated with sock @sk. 4622 * Depending on @optname, the addresses will be treated as either a connect or 4623 * bind service. The @addrlen is calculated on each IPv4 and IPv6 address using 4624 * sizeof(struct sockaddr_in) or sizeof(struct sockaddr_in6). 4625 * 4626 * Return: Returns 0 on success, error on failure. 4627 */ 4628 int security_sctp_bind_connect(struct sock *sk, int optname, 4629 struct sockaddr *address, int addrlen) 4630 { 4631 return call_int_hook(sctp_bind_connect, 0, sk, optname, 4632 address, addrlen); 4633 } 4634 EXPORT_SYMBOL(security_sctp_bind_connect); 4635 4636 /** 4637 * security_sctp_sk_clone() - Clone a SCTP sock's LSM state 4638 * @asoc: SCTP association 4639 * @sk: original sock 4640 * @newsk: target sock 4641 * 4642 * Called whenever a new socket is created by accept(2) (i.e. a TCP style 4643 * socket) or when a socket is 'peeled off' e.g userspace calls 4644 * sctp_peeloff(3). 4645 */ 4646 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk, 4647 struct sock *newsk) 4648 { 4649 call_void_hook(sctp_sk_clone, asoc, sk, newsk); 4650 } 4651 EXPORT_SYMBOL(security_sctp_sk_clone); 4652 4653 /** 4654 * security_sctp_assoc_established() - Update LSM state when assoc established 4655 * @asoc: SCTP association 4656 * @skb: packet establishing the association 4657 * 4658 * Passes the @asoc and @chunk->skb of the association COOKIE_ACK packet to the 4659 * security module. 4660 * 4661 * Return: Returns 0 if permission is granted. 4662 */ 4663 int security_sctp_assoc_established(struct sctp_association *asoc, 4664 struct sk_buff *skb) 4665 { 4666 return call_int_hook(sctp_assoc_established, 0, asoc, skb); 4667 } 4668 EXPORT_SYMBOL(security_sctp_assoc_established); 4669 4670 /** 4671 * security_mptcp_add_subflow() - Inherit the LSM label from the MPTCP socket 4672 * @sk: the owning MPTCP socket 4673 * @ssk: the new subflow 4674 * 4675 * Update the labeling for the given MPTCP subflow, to match the one of the 4676 * owning MPTCP socket. This hook has to be called after the socket creation and 4677 * initialization via the security_socket_create() and 4678 * security_socket_post_create() LSM hooks. 4679 * 4680 * Return: Returns 0 on success or a negative error code on failure. 4681 */ 4682 int security_mptcp_add_subflow(struct sock *sk, struct sock *ssk) 4683 { 4684 return call_int_hook(mptcp_add_subflow, 0, sk, ssk); 4685 } 4686 4687 #endif /* CONFIG_SECURITY_NETWORK */ 4688 4689 #ifdef CONFIG_SECURITY_INFINIBAND 4690 /** 4691 * security_ib_pkey_access() - Check if access to an IB pkey is allowed 4692 * @sec: LSM blob 4693 * @subnet_prefix: subnet prefix of the port 4694 * @pkey: IB pkey 4695 * 4696 * Check permission to access a pkey when modifying a QP. 4697 * 4698 * Return: Returns 0 if permission is granted. 4699 */ 4700 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 4701 { 4702 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey); 4703 } 4704 EXPORT_SYMBOL(security_ib_pkey_access); 4705 4706 /** 4707 * security_ib_endport_manage_subnet() - Check if SMPs traffic is allowed 4708 * @sec: LSM blob 4709 * @dev_name: IB device name 4710 * @port_num: port number 4711 * 4712 * Check permissions to send and receive SMPs on a end port. 4713 * 4714 * Return: Returns 0 if permission is granted. 4715 */ 4716 int security_ib_endport_manage_subnet(void *sec, 4717 const char *dev_name, u8 port_num) 4718 { 4719 return call_int_hook(ib_endport_manage_subnet, 0, sec, 4720 dev_name, port_num); 4721 } 4722 EXPORT_SYMBOL(security_ib_endport_manage_subnet); 4723 4724 /** 4725 * security_ib_alloc_security() - Allocate an Infiniband LSM blob 4726 * @sec: LSM blob 4727 * 4728 * Allocate a security structure for Infiniband objects. 4729 * 4730 * Return: Returns 0 on success, non-zero on failure. 4731 */ 4732 int security_ib_alloc_security(void **sec) 4733 { 4734 return call_int_hook(ib_alloc_security, 0, sec); 4735 } 4736 EXPORT_SYMBOL(security_ib_alloc_security); 4737 4738 /** 4739 * security_ib_free_security() - Free an Infiniband LSM blob 4740 * @sec: LSM blob 4741 * 4742 * Deallocate an Infiniband security structure. 4743 */ 4744 void security_ib_free_security(void *sec) 4745 { 4746 call_void_hook(ib_free_security, sec); 4747 } 4748 EXPORT_SYMBOL(security_ib_free_security); 4749 #endif /* CONFIG_SECURITY_INFINIBAND */ 4750 4751 #ifdef CONFIG_SECURITY_NETWORK_XFRM 4752 /** 4753 * security_xfrm_policy_alloc() - Allocate a xfrm policy LSM blob 4754 * @ctxp: xfrm security context being added to the SPD 4755 * @sec_ctx: security label provided by userspace 4756 * @gfp: gfp flags 4757 * 4758 * Allocate a security structure to the xp->security field; the security field 4759 * is initialized to NULL when the xfrm_policy is allocated. 4760 * 4761 * Return: Return 0 if operation was successful. 4762 */ 4763 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 4764 struct xfrm_user_sec_ctx *sec_ctx, 4765 gfp_t gfp) 4766 { 4767 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp); 4768 } 4769 EXPORT_SYMBOL(security_xfrm_policy_alloc); 4770 4771 /** 4772 * security_xfrm_policy_clone() - Clone xfrm policy LSM state 4773 * @old_ctx: xfrm security context 4774 * @new_ctxp: target xfrm security context 4775 * 4776 * Allocate a security structure in new_ctxp that contains the information from 4777 * the old_ctx structure. 4778 * 4779 * Return: Return 0 if operation was successful. 4780 */ 4781 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 4782 struct xfrm_sec_ctx **new_ctxp) 4783 { 4784 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp); 4785 } 4786 4787 /** 4788 * security_xfrm_policy_free() - Free a xfrm security context 4789 * @ctx: xfrm security context 4790 * 4791 * Free LSM resources associated with @ctx. 4792 */ 4793 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 4794 { 4795 call_void_hook(xfrm_policy_free_security, ctx); 4796 } 4797 EXPORT_SYMBOL(security_xfrm_policy_free); 4798 4799 /** 4800 * security_xfrm_policy_delete() - Check if deleting a xfrm policy is allowed 4801 * @ctx: xfrm security context 4802 * 4803 * Authorize deletion of a SPD entry. 4804 * 4805 * Return: Returns 0 if permission is granted. 4806 */ 4807 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 4808 { 4809 return call_int_hook(xfrm_policy_delete_security, 0, ctx); 4810 } 4811 4812 /** 4813 * security_xfrm_state_alloc() - Allocate a xfrm state LSM blob 4814 * @x: xfrm state being added to the SAD 4815 * @sec_ctx: security label provided by userspace 4816 * 4817 * Allocate a security structure to the @x->security field; the security field 4818 * is initialized to NULL when the xfrm_state is allocated. Set the context to 4819 * correspond to @sec_ctx. 4820 * 4821 * Return: Return 0 if operation was successful. 4822 */ 4823 int security_xfrm_state_alloc(struct xfrm_state *x, 4824 struct xfrm_user_sec_ctx *sec_ctx) 4825 { 4826 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx); 4827 } 4828 EXPORT_SYMBOL(security_xfrm_state_alloc); 4829 4830 /** 4831 * security_xfrm_state_alloc_acquire() - Allocate a xfrm state LSM blob 4832 * @x: xfrm state being added to the SAD 4833 * @polsec: associated policy's security context 4834 * @secid: secid from the flow 4835 * 4836 * Allocate a security structure to the x->security field; the security field 4837 * is initialized to NULL when the xfrm_state is allocated. Set the context to 4838 * correspond to secid. 4839 * 4840 * Return: Returns 0 if operation was successful. 4841 */ 4842 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 4843 struct xfrm_sec_ctx *polsec, u32 secid) 4844 { 4845 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid); 4846 } 4847 4848 /** 4849 * security_xfrm_state_delete() - Check if deleting a xfrm state is allowed 4850 * @x: xfrm state 4851 * 4852 * Authorize deletion of x->security. 4853 * 4854 * Return: Returns 0 if permission is granted. 4855 */ 4856 int security_xfrm_state_delete(struct xfrm_state *x) 4857 { 4858 return call_int_hook(xfrm_state_delete_security, 0, x); 4859 } 4860 EXPORT_SYMBOL(security_xfrm_state_delete); 4861 4862 /** 4863 * security_xfrm_state_free() - Free a xfrm state 4864 * @x: xfrm state 4865 * 4866 * Deallocate x->security. 4867 */ 4868 void security_xfrm_state_free(struct xfrm_state *x) 4869 { 4870 call_void_hook(xfrm_state_free_security, x); 4871 } 4872 4873 /** 4874 * security_xfrm_policy_lookup() - Check if using a xfrm policy is allowed 4875 * @ctx: target xfrm security context 4876 * @fl_secid: flow secid used to authorize access 4877 * 4878 * Check permission when a flow selects a xfrm_policy for processing XFRMs on a 4879 * packet. The hook is called when selecting either a per-socket policy or a 4880 * generic xfrm policy. 4881 * 4882 * Return: Return 0 if permission is granted, -ESRCH otherwise, or -errno on 4883 * other errors. 4884 */ 4885 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid) 4886 { 4887 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid); 4888 } 4889 4890 /** 4891 * security_xfrm_state_pol_flow_match() - Check for a xfrm match 4892 * @x: xfrm state to match 4893 * @xp: xfrm policy to check for a match 4894 * @flic: flow to check for a match. 4895 * 4896 * Check @xp and @flic for a match with @x. 4897 * 4898 * Return: Returns 1 if there is a match. 4899 */ 4900 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 4901 struct xfrm_policy *xp, 4902 const struct flowi_common *flic) 4903 { 4904 struct security_hook_list *hp; 4905 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match); 4906 4907 /* 4908 * Since this function is expected to return 0 or 1, the judgment 4909 * becomes difficult if multiple LSMs supply this call. Fortunately, 4910 * we can use the first LSM's judgment because currently only SELinux 4911 * supplies this call. 4912 * 4913 * For speed optimization, we explicitly break the loop rather than 4914 * using the macro 4915 */ 4916 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 4917 list) { 4918 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic); 4919 break; 4920 } 4921 return rc; 4922 } 4923 4924 /** 4925 * security_xfrm_decode_session() - Determine the xfrm secid for a packet 4926 * @skb: xfrm packet 4927 * @secid: secid 4928 * 4929 * Decode the packet in @skb and return the security label in @secid. 4930 * 4931 * Return: Return 0 if all xfrms used have the same secid. 4932 */ 4933 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 4934 { 4935 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1); 4936 } 4937 4938 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic) 4939 { 4940 int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid, 4941 0); 4942 4943 BUG_ON(rc); 4944 } 4945 EXPORT_SYMBOL(security_skb_classify_flow); 4946 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 4947 4948 #ifdef CONFIG_KEYS 4949 /** 4950 * security_key_alloc() - Allocate and initialize a kernel key LSM blob 4951 * @key: key 4952 * @cred: credentials 4953 * @flags: allocation flags 4954 * 4955 * Permit allocation of a key and assign security data. Note that key does not 4956 * have a serial number assigned at this point. 4957 * 4958 * Return: Return 0 if permission is granted, -ve error otherwise. 4959 */ 4960 int security_key_alloc(struct key *key, const struct cred *cred, 4961 unsigned long flags) 4962 { 4963 return call_int_hook(key_alloc, 0, key, cred, flags); 4964 } 4965 4966 /** 4967 * security_key_free() - Free a kernel key LSM blob 4968 * @key: key 4969 * 4970 * Notification of destruction; free security data. 4971 */ 4972 void security_key_free(struct key *key) 4973 { 4974 call_void_hook(key_free, key); 4975 } 4976 4977 /** 4978 * security_key_permission() - Check if a kernel key operation is allowed 4979 * @key_ref: key reference 4980 * @cred: credentials of actor requesting access 4981 * @need_perm: requested permissions 4982 * 4983 * See whether a specific operational right is granted to a process on a key. 4984 * 4985 * Return: Return 0 if permission is granted, -ve error otherwise. 4986 */ 4987 int security_key_permission(key_ref_t key_ref, const struct cred *cred, 4988 enum key_need_perm need_perm) 4989 { 4990 return call_int_hook(key_permission, 0, key_ref, cred, need_perm); 4991 } 4992 4993 /** 4994 * security_key_getsecurity() - Get the key's security label 4995 * @key: key 4996 * @buffer: security label buffer 4997 * 4998 * Get a textual representation of the security context attached to a key for 4999 * the purposes of honouring KEYCTL_GETSECURITY. This function allocates the 5000 * storage for the NUL-terminated string and the caller should free it. 5001 * 5002 * Return: Returns the length of @buffer (including terminating NUL) or -ve if 5003 * an error occurs. May also return 0 (and a NULL buffer pointer) if 5004 * there is no security label assigned to the key. 5005 */ 5006 int security_key_getsecurity(struct key *key, char **buffer) 5007 { 5008 *buffer = NULL; 5009 return call_int_hook(key_getsecurity, 0, key, buffer); 5010 } 5011 #endif /* CONFIG_KEYS */ 5012 5013 #ifdef CONFIG_AUDIT 5014 /** 5015 * security_audit_rule_init() - Allocate and init an LSM audit rule struct 5016 * @field: audit action 5017 * @op: rule operator 5018 * @rulestr: rule context 5019 * @lsmrule: receive buffer for audit rule struct 5020 * 5021 * Allocate and initialize an LSM audit rule structure. 5022 * 5023 * Return: Return 0 if @lsmrule has been successfully set, -EINVAL in case of 5024 * an invalid rule. 5025 */ 5026 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 5027 { 5028 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule); 5029 } 5030 5031 /** 5032 * security_audit_rule_known() - Check if an audit rule contains LSM fields 5033 * @krule: audit rule 5034 * 5035 * Specifies whether given @krule contains any fields related to the current 5036 * LSM. 5037 * 5038 * Return: Returns 1 in case of relation found, 0 otherwise. 5039 */ 5040 int security_audit_rule_known(struct audit_krule *krule) 5041 { 5042 return call_int_hook(audit_rule_known, 0, krule); 5043 } 5044 5045 /** 5046 * security_audit_rule_free() - Free an LSM audit rule struct 5047 * @lsmrule: audit rule struct 5048 * 5049 * Deallocate the LSM audit rule structure previously allocated by 5050 * audit_rule_init(). 5051 */ 5052 void security_audit_rule_free(void *lsmrule) 5053 { 5054 call_void_hook(audit_rule_free, lsmrule); 5055 } 5056 5057 /** 5058 * security_audit_rule_match() - Check if a label matches an audit rule 5059 * @secid: security label 5060 * @field: LSM audit field 5061 * @op: matching operator 5062 * @lsmrule: audit rule 5063 * 5064 * Determine if given @secid matches a rule previously approved by 5065 * security_audit_rule_known(). 5066 * 5067 * Return: Returns 1 if secid matches the rule, 0 if it does not, -ERRNO on 5068 * failure. 5069 */ 5070 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule) 5071 { 5072 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule); 5073 } 5074 #endif /* CONFIG_AUDIT */ 5075 5076 #ifdef CONFIG_BPF_SYSCALL 5077 /** 5078 * security_bpf() - Check if the bpf syscall operation is allowed 5079 * @cmd: command 5080 * @attr: bpf attribute 5081 * @size: size 5082 * 5083 * Do a initial check for all bpf syscalls after the attribute is copied into 5084 * the kernel. The actual security module can implement their own rules to 5085 * check the specific cmd they need. 5086 * 5087 * Return: Returns 0 if permission is granted. 5088 */ 5089 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 5090 { 5091 return call_int_hook(bpf, 0, cmd, attr, size); 5092 } 5093 5094 /** 5095 * security_bpf_map() - Check if access to a bpf map is allowed 5096 * @map: bpf map 5097 * @fmode: mode 5098 * 5099 * Do a check when the kernel generates and returns a file descriptor for eBPF 5100 * maps. 5101 * 5102 * Return: Returns 0 if permission is granted. 5103 */ 5104 int security_bpf_map(struct bpf_map *map, fmode_t fmode) 5105 { 5106 return call_int_hook(bpf_map, 0, map, fmode); 5107 } 5108 5109 /** 5110 * security_bpf_prog() - Check if access to a bpf program is allowed 5111 * @prog: bpf program 5112 * 5113 * Do a check when the kernel generates and returns a file descriptor for eBPF 5114 * programs. 5115 * 5116 * Return: Returns 0 if permission is granted. 5117 */ 5118 int security_bpf_prog(struct bpf_prog *prog) 5119 { 5120 return call_int_hook(bpf_prog, 0, prog); 5121 } 5122 5123 /** 5124 * security_bpf_map_alloc() - Allocate a bpf map LSM blob 5125 * @map: bpf map 5126 * 5127 * Initialize the security field inside bpf map. 5128 * 5129 * Return: Returns 0 on success, error on failure. 5130 */ 5131 int security_bpf_map_alloc(struct bpf_map *map) 5132 { 5133 return call_int_hook(bpf_map_alloc_security, 0, map); 5134 } 5135 5136 /** 5137 * security_bpf_prog_alloc() - Allocate a bpf program LSM blob 5138 * @aux: bpf program aux info struct 5139 * 5140 * Initialize the security field inside bpf program. 5141 * 5142 * Return: Returns 0 on success, error on failure. 5143 */ 5144 int security_bpf_prog_alloc(struct bpf_prog_aux *aux) 5145 { 5146 return call_int_hook(bpf_prog_alloc_security, 0, aux); 5147 } 5148 5149 /** 5150 * security_bpf_map_free() - Free a bpf map's LSM blob 5151 * @map: bpf map 5152 * 5153 * Clean up the security information stored inside bpf map. 5154 */ 5155 void security_bpf_map_free(struct bpf_map *map) 5156 { 5157 call_void_hook(bpf_map_free_security, map); 5158 } 5159 5160 /** 5161 * security_bpf_prog_free() - Free a bpf program's LSM blob 5162 * @aux: bpf program aux info struct 5163 * 5164 * Clean up the security information stored inside bpf prog. 5165 */ 5166 void security_bpf_prog_free(struct bpf_prog_aux *aux) 5167 { 5168 call_void_hook(bpf_prog_free_security, aux); 5169 } 5170 #endif /* CONFIG_BPF_SYSCALL */ 5171 5172 /** 5173 * security_locked_down() - Check if a kernel feature is allowed 5174 * @what: requested kernel feature 5175 * 5176 * Determine whether a kernel feature that potentially enables arbitrary code 5177 * execution in kernel space should be permitted. 5178 * 5179 * Return: Returns 0 if permission is granted. 5180 */ 5181 int security_locked_down(enum lockdown_reason what) 5182 { 5183 return call_int_hook(locked_down, 0, what); 5184 } 5185 EXPORT_SYMBOL(security_locked_down); 5186 5187 #ifdef CONFIG_PERF_EVENTS 5188 /** 5189 * security_perf_event_open() - Check if a perf event open is allowed 5190 * @attr: perf event attribute 5191 * @type: type of event 5192 * 5193 * Check whether the @type of perf_event_open syscall is allowed. 5194 * 5195 * Return: Returns 0 if permission is granted. 5196 */ 5197 int security_perf_event_open(struct perf_event_attr *attr, int type) 5198 { 5199 return call_int_hook(perf_event_open, 0, attr, type); 5200 } 5201 5202 /** 5203 * security_perf_event_alloc() - Allocate a perf event LSM blob 5204 * @event: perf event 5205 * 5206 * Allocate and save perf_event security info. 5207 * 5208 * Return: Returns 0 on success, error on failure. 5209 */ 5210 int security_perf_event_alloc(struct perf_event *event) 5211 { 5212 return call_int_hook(perf_event_alloc, 0, event); 5213 } 5214 5215 /** 5216 * security_perf_event_free() - Free a perf event LSM blob 5217 * @event: perf event 5218 * 5219 * Release (free) perf_event security info. 5220 */ 5221 void security_perf_event_free(struct perf_event *event) 5222 { 5223 call_void_hook(perf_event_free, event); 5224 } 5225 5226 /** 5227 * security_perf_event_read() - Check if reading a perf event label is allowed 5228 * @event: perf event 5229 * 5230 * Read perf_event security info if allowed. 5231 * 5232 * Return: Returns 0 if permission is granted. 5233 */ 5234 int security_perf_event_read(struct perf_event *event) 5235 { 5236 return call_int_hook(perf_event_read, 0, event); 5237 } 5238 5239 /** 5240 * security_perf_event_write() - Check if writing a perf event label is allowed 5241 * @event: perf event 5242 * 5243 * Write perf_event security info if allowed. 5244 * 5245 * Return: Returns 0 if permission is granted. 5246 */ 5247 int security_perf_event_write(struct perf_event *event) 5248 { 5249 return call_int_hook(perf_event_write, 0, event); 5250 } 5251 #endif /* CONFIG_PERF_EVENTS */ 5252 5253 #ifdef CONFIG_IO_URING 5254 /** 5255 * security_uring_override_creds() - Check if overriding creds is allowed 5256 * @new: new credentials 5257 * 5258 * Check if the current task, executing an io_uring operation, is allowed to 5259 * override it's credentials with @new. 5260 * 5261 * Return: Returns 0 if permission is granted. 5262 */ 5263 int security_uring_override_creds(const struct cred *new) 5264 { 5265 return call_int_hook(uring_override_creds, 0, new); 5266 } 5267 5268 /** 5269 * security_uring_sqpoll() - Check if IORING_SETUP_SQPOLL is allowed 5270 * 5271 * Check whether the current task is allowed to spawn a io_uring polling thread 5272 * (IORING_SETUP_SQPOLL). 5273 * 5274 * Return: Returns 0 if permission is granted. 5275 */ 5276 int security_uring_sqpoll(void) 5277 { 5278 return call_int_hook(uring_sqpoll, 0); 5279 } 5280 5281 /** 5282 * security_uring_cmd() - Check if a io_uring passthrough command is allowed 5283 * @ioucmd: command 5284 * 5285 * Check whether the file_operations uring_cmd is allowed to run. 5286 * 5287 * Return: Returns 0 if permission is granted. 5288 */ 5289 int security_uring_cmd(struct io_uring_cmd *ioucmd) 5290 { 5291 return call_int_hook(uring_cmd, 0, ioucmd); 5292 } 5293 #endif /* CONFIG_IO_URING */ 5294