xref: /openbmc/linux/security/security.c (revision 22d55f02)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8  * Copyright (C) 2016 Mellanox Technologies
9  */
10 
11 #define pr_fmt(fmt) "LSM: " fmt
12 
13 #include <linux/bpf.h>
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/lsm_hooks.h>
20 #include <linux/integrity.h>
21 #include <linux/ima.h>
22 #include <linux/evm.h>
23 #include <linux/fsnotify.h>
24 #include <linux/mman.h>
25 #include <linux/mount.h>
26 #include <linux/personality.h>
27 #include <linux/backing-dev.h>
28 #include <linux/string.h>
29 #include <linux/msg.h>
30 #include <net/flow.h>
31 
32 #define MAX_LSM_EVM_XATTR	2
33 
34 /* How many LSMs were built into the kernel? */
35 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
36 
37 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
38 static ATOMIC_NOTIFIER_HEAD(lsm_notifier_chain);
39 
40 static struct kmem_cache *lsm_file_cache;
41 static struct kmem_cache *lsm_inode_cache;
42 
43 char *lsm_names;
44 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
45 
46 /* Boot-time LSM user choice */
47 static __initdata const char *chosen_lsm_order;
48 static __initdata const char *chosen_major_lsm;
49 
50 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
51 
52 /* Ordered list of LSMs to initialize. */
53 static __initdata struct lsm_info **ordered_lsms;
54 static __initdata struct lsm_info *exclusive;
55 
56 static __initdata bool debug;
57 #define init_debug(...)						\
58 	do {							\
59 		if (debug)					\
60 			pr_info(__VA_ARGS__);			\
61 	} while (0)
62 
63 static bool __init is_enabled(struct lsm_info *lsm)
64 {
65 	if (!lsm->enabled)
66 		return false;
67 
68 	return *lsm->enabled;
69 }
70 
71 /* Mark an LSM's enabled flag. */
72 static int lsm_enabled_true __initdata = 1;
73 static int lsm_enabled_false __initdata = 0;
74 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
75 {
76 	/*
77 	 * When an LSM hasn't configured an enable variable, we can use
78 	 * a hard-coded location for storing the default enabled state.
79 	 */
80 	if (!lsm->enabled) {
81 		if (enabled)
82 			lsm->enabled = &lsm_enabled_true;
83 		else
84 			lsm->enabled = &lsm_enabled_false;
85 	} else if (lsm->enabled == &lsm_enabled_true) {
86 		if (!enabled)
87 			lsm->enabled = &lsm_enabled_false;
88 	} else if (lsm->enabled == &lsm_enabled_false) {
89 		if (enabled)
90 			lsm->enabled = &lsm_enabled_true;
91 	} else {
92 		*lsm->enabled = enabled;
93 	}
94 }
95 
96 /* Is an LSM already listed in the ordered LSMs list? */
97 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
98 {
99 	struct lsm_info **check;
100 
101 	for (check = ordered_lsms; *check; check++)
102 		if (*check == lsm)
103 			return true;
104 
105 	return false;
106 }
107 
108 /* Append an LSM to the list of ordered LSMs to initialize. */
109 static int last_lsm __initdata;
110 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
111 {
112 	/* Ignore duplicate selections. */
113 	if (exists_ordered_lsm(lsm))
114 		return;
115 
116 	if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
117 		return;
118 
119 	/* Enable this LSM, if it is not already set. */
120 	if (!lsm->enabled)
121 		lsm->enabled = &lsm_enabled_true;
122 	ordered_lsms[last_lsm++] = lsm;
123 
124 	init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
125 		   is_enabled(lsm) ? "en" : "dis");
126 }
127 
128 /* Is an LSM allowed to be initialized? */
129 static bool __init lsm_allowed(struct lsm_info *lsm)
130 {
131 	/* Skip if the LSM is disabled. */
132 	if (!is_enabled(lsm))
133 		return false;
134 
135 	/* Not allowed if another exclusive LSM already initialized. */
136 	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
137 		init_debug("exclusive disabled: %s\n", lsm->name);
138 		return false;
139 	}
140 
141 	return true;
142 }
143 
144 static void __init lsm_set_blob_size(int *need, int *lbs)
145 {
146 	int offset;
147 
148 	if (*need > 0) {
149 		offset = *lbs;
150 		*lbs += *need;
151 		*need = offset;
152 	}
153 }
154 
155 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
156 {
157 	if (!needed)
158 		return;
159 
160 	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
161 	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
162 	/*
163 	 * The inode blob gets an rcu_head in addition to
164 	 * what the modules might need.
165 	 */
166 	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
167 		blob_sizes.lbs_inode = sizeof(struct rcu_head);
168 	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
169 	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
170 	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
171 	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
172 }
173 
174 /* Prepare LSM for initialization. */
175 static void __init prepare_lsm(struct lsm_info *lsm)
176 {
177 	int enabled = lsm_allowed(lsm);
178 
179 	/* Record enablement (to handle any following exclusive LSMs). */
180 	set_enabled(lsm, enabled);
181 
182 	/* If enabled, do pre-initialization work. */
183 	if (enabled) {
184 		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
185 			exclusive = lsm;
186 			init_debug("exclusive chosen: %s\n", lsm->name);
187 		}
188 
189 		lsm_set_blob_sizes(lsm->blobs);
190 	}
191 }
192 
193 /* Initialize a given LSM, if it is enabled. */
194 static void __init initialize_lsm(struct lsm_info *lsm)
195 {
196 	if (is_enabled(lsm)) {
197 		int ret;
198 
199 		init_debug("initializing %s\n", lsm->name);
200 		ret = lsm->init();
201 		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
202 	}
203 }
204 
205 /* Populate ordered LSMs list from comma-separated LSM name list. */
206 static void __init ordered_lsm_parse(const char *order, const char *origin)
207 {
208 	struct lsm_info *lsm;
209 	char *sep, *name, *next;
210 
211 	/* LSM_ORDER_FIRST is always first. */
212 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
213 		if (lsm->order == LSM_ORDER_FIRST)
214 			append_ordered_lsm(lsm, "first");
215 	}
216 
217 	/* Process "security=", if given. */
218 	if (chosen_major_lsm) {
219 		struct lsm_info *major;
220 
221 		/*
222 		 * To match the original "security=" behavior, this
223 		 * explicitly does NOT fallback to another Legacy Major
224 		 * if the selected one was separately disabled: disable
225 		 * all non-matching Legacy Major LSMs.
226 		 */
227 		for (major = __start_lsm_info; major < __end_lsm_info;
228 		     major++) {
229 			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
230 			    strcmp(major->name, chosen_major_lsm) != 0) {
231 				set_enabled(major, false);
232 				init_debug("security=%s disabled: %s\n",
233 					   chosen_major_lsm, major->name);
234 			}
235 		}
236 	}
237 
238 	sep = kstrdup(order, GFP_KERNEL);
239 	next = sep;
240 	/* Walk the list, looking for matching LSMs. */
241 	while ((name = strsep(&next, ",")) != NULL) {
242 		bool found = false;
243 
244 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
245 			if (lsm->order == LSM_ORDER_MUTABLE &&
246 			    strcmp(lsm->name, name) == 0) {
247 				append_ordered_lsm(lsm, origin);
248 				found = true;
249 			}
250 		}
251 
252 		if (!found)
253 			init_debug("%s ignored: %s\n", origin, name);
254 	}
255 
256 	/* Process "security=", if given. */
257 	if (chosen_major_lsm) {
258 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
259 			if (exists_ordered_lsm(lsm))
260 				continue;
261 			if (strcmp(lsm->name, chosen_major_lsm) == 0)
262 				append_ordered_lsm(lsm, "security=");
263 		}
264 	}
265 
266 	/* Disable all LSMs not in the ordered list. */
267 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
268 		if (exists_ordered_lsm(lsm))
269 			continue;
270 		set_enabled(lsm, false);
271 		init_debug("%s disabled: %s\n", origin, lsm->name);
272 	}
273 
274 	kfree(sep);
275 }
276 
277 static void __init lsm_early_cred(struct cred *cred);
278 static void __init lsm_early_task(struct task_struct *task);
279 
280 static void __init ordered_lsm_init(void)
281 {
282 	struct lsm_info **lsm;
283 
284 	ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
285 				GFP_KERNEL);
286 
287 	if (chosen_lsm_order) {
288 		if (chosen_major_lsm) {
289 			pr_info("security= is ignored because it is superseded by lsm=\n");
290 			chosen_major_lsm = NULL;
291 		}
292 		ordered_lsm_parse(chosen_lsm_order, "cmdline");
293 	} else
294 		ordered_lsm_parse(builtin_lsm_order, "builtin");
295 
296 	for (lsm = ordered_lsms; *lsm; lsm++)
297 		prepare_lsm(*lsm);
298 
299 	init_debug("cred blob size     = %d\n", blob_sizes.lbs_cred);
300 	init_debug("file blob size     = %d\n", blob_sizes.lbs_file);
301 	init_debug("inode blob size    = %d\n", blob_sizes.lbs_inode);
302 	init_debug("ipc blob size      = %d\n", blob_sizes.lbs_ipc);
303 	init_debug("msg_msg blob size  = %d\n", blob_sizes.lbs_msg_msg);
304 	init_debug("task blob size     = %d\n", blob_sizes.lbs_task);
305 
306 	/*
307 	 * Create any kmem_caches needed for blobs
308 	 */
309 	if (blob_sizes.lbs_file)
310 		lsm_file_cache = kmem_cache_create("lsm_file_cache",
311 						   blob_sizes.lbs_file, 0,
312 						   SLAB_PANIC, NULL);
313 	if (blob_sizes.lbs_inode)
314 		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
315 						    blob_sizes.lbs_inode, 0,
316 						    SLAB_PANIC, NULL);
317 
318 	lsm_early_cred((struct cred *) current->cred);
319 	lsm_early_task(current);
320 	for (lsm = ordered_lsms; *lsm; lsm++)
321 		initialize_lsm(*lsm);
322 
323 	kfree(ordered_lsms);
324 }
325 
326 /**
327  * security_init - initializes the security framework
328  *
329  * This should be called early in the kernel initialization sequence.
330  */
331 int __init security_init(void)
332 {
333 	int i;
334 	struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
335 
336 	pr_info("Security Framework initializing\n");
337 
338 	for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
339 	     i++)
340 		INIT_HLIST_HEAD(&list[i]);
341 
342 	/* Load LSMs in specified order. */
343 	ordered_lsm_init();
344 
345 	return 0;
346 }
347 
348 /* Save user chosen LSM */
349 static int __init choose_major_lsm(char *str)
350 {
351 	chosen_major_lsm = str;
352 	return 1;
353 }
354 __setup("security=", choose_major_lsm);
355 
356 /* Explicitly choose LSM initialization order. */
357 static int __init choose_lsm_order(char *str)
358 {
359 	chosen_lsm_order = str;
360 	return 1;
361 }
362 __setup("lsm=", choose_lsm_order);
363 
364 /* Enable LSM order debugging. */
365 static int __init enable_debug(char *str)
366 {
367 	debug = true;
368 	return 1;
369 }
370 __setup("lsm.debug", enable_debug);
371 
372 static bool match_last_lsm(const char *list, const char *lsm)
373 {
374 	const char *last;
375 
376 	if (WARN_ON(!list || !lsm))
377 		return false;
378 	last = strrchr(list, ',');
379 	if (last)
380 		/* Pass the comma, strcmp() will check for '\0' */
381 		last++;
382 	else
383 		last = list;
384 	return !strcmp(last, lsm);
385 }
386 
387 static int lsm_append(char *new, char **result)
388 {
389 	char *cp;
390 
391 	if (*result == NULL) {
392 		*result = kstrdup(new, GFP_KERNEL);
393 		if (*result == NULL)
394 			return -ENOMEM;
395 	} else {
396 		/* Check if it is the last registered name */
397 		if (match_last_lsm(*result, new))
398 			return 0;
399 		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
400 		if (cp == NULL)
401 			return -ENOMEM;
402 		kfree(*result);
403 		*result = cp;
404 	}
405 	return 0;
406 }
407 
408 /**
409  * security_add_hooks - Add a modules hooks to the hook lists.
410  * @hooks: the hooks to add
411  * @count: the number of hooks to add
412  * @lsm: the name of the security module
413  *
414  * Each LSM has to register its hooks with the infrastructure.
415  */
416 void __init security_add_hooks(struct security_hook_list *hooks, int count,
417 				char *lsm)
418 {
419 	int i;
420 
421 	for (i = 0; i < count; i++) {
422 		hooks[i].lsm = lsm;
423 		hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
424 	}
425 	if (lsm_append(lsm, &lsm_names) < 0)
426 		panic("%s - Cannot get early memory.\n", __func__);
427 }
428 
429 int call_lsm_notifier(enum lsm_event event, void *data)
430 {
431 	return atomic_notifier_call_chain(&lsm_notifier_chain, event, data);
432 }
433 EXPORT_SYMBOL(call_lsm_notifier);
434 
435 int register_lsm_notifier(struct notifier_block *nb)
436 {
437 	return atomic_notifier_chain_register(&lsm_notifier_chain, nb);
438 }
439 EXPORT_SYMBOL(register_lsm_notifier);
440 
441 int unregister_lsm_notifier(struct notifier_block *nb)
442 {
443 	return atomic_notifier_chain_unregister(&lsm_notifier_chain, nb);
444 }
445 EXPORT_SYMBOL(unregister_lsm_notifier);
446 
447 /**
448  * lsm_cred_alloc - allocate a composite cred blob
449  * @cred: the cred that needs a blob
450  * @gfp: allocation type
451  *
452  * Allocate the cred blob for all the modules
453  *
454  * Returns 0, or -ENOMEM if memory can't be allocated.
455  */
456 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
457 {
458 	if (blob_sizes.lbs_cred == 0) {
459 		cred->security = NULL;
460 		return 0;
461 	}
462 
463 	cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
464 	if (cred->security == NULL)
465 		return -ENOMEM;
466 	return 0;
467 }
468 
469 /**
470  * lsm_early_cred - during initialization allocate a composite cred blob
471  * @cred: the cred that needs a blob
472  *
473  * Allocate the cred blob for all the modules
474  */
475 static void __init lsm_early_cred(struct cred *cred)
476 {
477 	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
478 
479 	if (rc)
480 		panic("%s: Early cred alloc failed.\n", __func__);
481 }
482 
483 /**
484  * lsm_file_alloc - allocate a composite file blob
485  * @file: the file that needs a blob
486  *
487  * Allocate the file blob for all the modules
488  *
489  * Returns 0, or -ENOMEM if memory can't be allocated.
490  */
491 static int lsm_file_alloc(struct file *file)
492 {
493 	if (!lsm_file_cache) {
494 		file->f_security = NULL;
495 		return 0;
496 	}
497 
498 	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
499 	if (file->f_security == NULL)
500 		return -ENOMEM;
501 	return 0;
502 }
503 
504 /**
505  * lsm_inode_alloc - allocate a composite inode blob
506  * @inode: the inode that needs a blob
507  *
508  * Allocate the inode blob for all the modules
509  *
510  * Returns 0, or -ENOMEM if memory can't be allocated.
511  */
512 int lsm_inode_alloc(struct inode *inode)
513 {
514 	if (!lsm_inode_cache) {
515 		inode->i_security = NULL;
516 		return 0;
517 	}
518 
519 	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
520 	if (inode->i_security == NULL)
521 		return -ENOMEM;
522 	return 0;
523 }
524 
525 /**
526  * lsm_task_alloc - allocate a composite task blob
527  * @task: the task that needs a blob
528  *
529  * Allocate the task blob for all the modules
530  *
531  * Returns 0, or -ENOMEM if memory can't be allocated.
532  */
533 static int lsm_task_alloc(struct task_struct *task)
534 {
535 	if (blob_sizes.lbs_task == 0) {
536 		task->security = NULL;
537 		return 0;
538 	}
539 
540 	task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
541 	if (task->security == NULL)
542 		return -ENOMEM;
543 	return 0;
544 }
545 
546 /**
547  * lsm_ipc_alloc - allocate a composite ipc blob
548  * @kip: the ipc that needs a blob
549  *
550  * Allocate the ipc blob for all the modules
551  *
552  * Returns 0, or -ENOMEM if memory can't be allocated.
553  */
554 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
555 {
556 	if (blob_sizes.lbs_ipc == 0) {
557 		kip->security = NULL;
558 		return 0;
559 	}
560 
561 	kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
562 	if (kip->security == NULL)
563 		return -ENOMEM;
564 	return 0;
565 }
566 
567 /**
568  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
569  * @mp: the msg_msg that needs a blob
570  *
571  * Allocate the ipc blob for all the modules
572  *
573  * Returns 0, or -ENOMEM if memory can't be allocated.
574  */
575 static int lsm_msg_msg_alloc(struct msg_msg *mp)
576 {
577 	if (blob_sizes.lbs_msg_msg == 0) {
578 		mp->security = NULL;
579 		return 0;
580 	}
581 
582 	mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
583 	if (mp->security == NULL)
584 		return -ENOMEM;
585 	return 0;
586 }
587 
588 /**
589  * lsm_early_task - during initialization allocate a composite task blob
590  * @task: the task that needs a blob
591  *
592  * Allocate the task blob for all the modules
593  */
594 static void __init lsm_early_task(struct task_struct *task)
595 {
596 	int rc = lsm_task_alloc(task);
597 
598 	if (rc)
599 		panic("%s: Early task alloc failed.\n", __func__);
600 }
601 
602 /*
603  * Hook list operation macros.
604  *
605  * call_void_hook:
606  *	This is a hook that does not return a value.
607  *
608  * call_int_hook:
609  *	This is a hook that returns a value.
610  */
611 
612 #define call_void_hook(FUNC, ...)				\
613 	do {							\
614 		struct security_hook_list *P;			\
615 								\
616 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
617 			P->hook.FUNC(__VA_ARGS__);		\
618 	} while (0)
619 
620 #define call_int_hook(FUNC, IRC, ...) ({			\
621 	int RC = IRC;						\
622 	do {							\
623 		struct security_hook_list *P;			\
624 								\
625 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
626 			RC = P->hook.FUNC(__VA_ARGS__);		\
627 			if (RC != 0)				\
628 				break;				\
629 		}						\
630 	} while (0);						\
631 	RC;							\
632 })
633 
634 /* Security operations */
635 
636 int security_binder_set_context_mgr(struct task_struct *mgr)
637 {
638 	return call_int_hook(binder_set_context_mgr, 0, mgr);
639 }
640 
641 int security_binder_transaction(struct task_struct *from,
642 				struct task_struct *to)
643 {
644 	return call_int_hook(binder_transaction, 0, from, to);
645 }
646 
647 int security_binder_transfer_binder(struct task_struct *from,
648 				    struct task_struct *to)
649 {
650 	return call_int_hook(binder_transfer_binder, 0, from, to);
651 }
652 
653 int security_binder_transfer_file(struct task_struct *from,
654 				  struct task_struct *to, struct file *file)
655 {
656 	return call_int_hook(binder_transfer_file, 0, from, to, file);
657 }
658 
659 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
660 {
661 	return call_int_hook(ptrace_access_check, 0, child, mode);
662 }
663 
664 int security_ptrace_traceme(struct task_struct *parent)
665 {
666 	return call_int_hook(ptrace_traceme, 0, parent);
667 }
668 
669 int security_capget(struct task_struct *target,
670 		     kernel_cap_t *effective,
671 		     kernel_cap_t *inheritable,
672 		     kernel_cap_t *permitted)
673 {
674 	return call_int_hook(capget, 0, target,
675 				effective, inheritable, permitted);
676 }
677 
678 int security_capset(struct cred *new, const struct cred *old,
679 		    const kernel_cap_t *effective,
680 		    const kernel_cap_t *inheritable,
681 		    const kernel_cap_t *permitted)
682 {
683 	return call_int_hook(capset, 0, new, old,
684 				effective, inheritable, permitted);
685 }
686 
687 int security_capable(const struct cred *cred,
688 		     struct user_namespace *ns,
689 		     int cap,
690 		     unsigned int opts)
691 {
692 	return call_int_hook(capable, 0, cred, ns, cap, opts);
693 }
694 
695 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
696 {
697 	return call_int_hook(quotactl, 0, cmds, type, id, sb);
698 }
699 
700 int security_quota_on(struct dentry *dentry)
701 {
702 	return call_int_hook(quota_on, 0, dentry);
703 }
704 
705 int security_syslog(int type)
706 {
707 	return call_int_hook(syslog, 0, type);
708 }
709 
710 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
711 {
712 	return call_int_hook(settime, 0, ts, tz);
713 }
714 
715 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
716 {
717 	struct security_hook_list *hp;
718 	int cap_sys_admin = 1;
719 	int rc;
720 
721 	/*
722 	 * The module will respond with a positive value if
723 	 * it thinks the __vm_enough_memory() call should be
724 	 * made with the cap_sys_admin set. If all of the modules
725 	 * agree that it should be set it will. If any module
726 	 * thinks it should not be set it won't.
727 	 */
728 	hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
729 		rc = hp->hook.vm_enough_memory(mm, pages);
730 		if (rc <= 0) {
731 			cap_sys_admin = 0;
732 			break;
733 		}
734 	}
735 	return __vm_enough_memory(mm, pages, cap_sys_admin);
736 }
737 
738 int security_bprm_set_creds(struct linux_binprm *bprm)
739 {
740 	return call_int_hook(bprm_set_creds, 0, bprm);
741 }
742 
743 int security_bprm_check(struct linux_binprm *bprm)
744 {
745 	int ret;
746 
747 	ret = call_int_hook(bprm_check_security, 0, bprm);
748 	if (ret)
749 		return ret;
750 	return ima_bprm_check(bprm);
751 }
752 
753 void security_bprm_committing_creds(struct linux_binprm *bprm)
754 {
755 	call_void_hook(bprm_committing_creds, bprm);
756 }
757 
758 void security_bprm_committed_creds(struct linux_binprm *bprm)
759 {
760 	call_void_hook(bprm_committed_creds, bprm);
761 }
762 
763 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
764 {
765 	return call_int_hook(fs_context_dup, 0, fc, src_fc);
766 }
767 
768 int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
769 {
770 	return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
771 }
772 
773 int security_sb_alloc(struct super_block *sb)
774 {
775 	return call_int_hook(sb_alloc_security, 0, sb);
776 }
777 
778 void security_sb_free(struct super_block *sb)
779 {
780 	call_void_hook(sb_free_security, sb);
781 }
782 
783 void security_free_mnt_opts(void **mnt_opts)
784 {
785 	if (!*mnt_opts)
786 		return;
787 	call_void_hook(sb_free_mnt_opts, *mnt_opts);
788 	*mnt_opts = NULL;
789 }
790 EXPORT_SYMBOL(security_free_mnt_opts);
791 
792 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
793 {
794 	return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
795 }
796 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
797 
798 int security_sb_remount(struct super_block *sb,
799 			void *mnt_opts)
800 {
801 	return call_int_hook(sb_remount, 0, sb, mnt_opts);
802 }
803 EXPORT_SYMBOL(security_sb_remount);
804 
805 int security_sb_kern_mount(struct super_block *sb)
806 {
807 	return call_int_hook(sb_kern_mount, 0, sb);
808 }
809 
810 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
811 {
812 	return call_int_hook(sb_show_options, 0, m, sb);
813 }
814 
815 int security_sb_statfs(struct dentry *dentry)
816 {
817 	return call_int_hook(sb_statfs, 0, dentry);
818 }
819 
820 int security_sb_mount(const char *dev_name, const struct path *path,
821                        const char *type, unsigned long flags, void *data)
822 {
823 	return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
824 }
825 
826 int security_sb_umount(struct vfsmount *mnt, int flags)
827 {
828 	return call_int_hook(sb_umount, 0, mnt, flags);
829 }
830 
831 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
832 {
833 	return call_int_hook(sb_pivotroot, 0, old_path, new_path);
834 }
835 
836 int security_sb_set_mnt_opts(struct super_block *sb,
837 				void *mnt_opts,
838 				unsigned long kern_flags,
839 				unsigned long *set_kern_flags)
840 {
841 	return call_int_hook(sb_set_mnt_opts,
842 				mnt_opts ? -EOPNOTSUPP : 0, sb,
843 				mnt_opts, kern_flags, set_kern_flags);
844 }
845 EXPORT_SYMBOL(security_sb_set_mnt_opts);
846 
847 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
848 				struct super_block *newsb,
849 				unsigned long kern_flags,
850 				unsigned long *set_kern_flags)
851 {
852 	return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
853 				kern_flags, set_kern_flags);
854 }
855 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
856 
857 int security_add_mnt_opt(const char *option, const char *val, int len,
858 			 void **mnt_opts)
859 {
860 	return call_int_hook(sb_add_mnt_opt, -EINVAL,
861 					option, val, len, mnt_opts);
862 }
863 EXPORT_SYMBOL(security_add_mnt_opt);
864 
865 int security_move_mount(const struct path *from_path, const struct path *to_path)
866 {
867 	return call_int_hook(move_mount, 0, from_path, to_path);
868 }
869 
870 int security_inode_alloc(struct inode *inode)
871 {
872 	int rc = lsm_inode_alloc(inode);
873 
874 	if (unlikely(rc))
875 		return rc;
876 	rc = call_int_hook(inode_alloc_security, 0, inode);
877 	if (unlikely(rc))
878 		security_inode_free(inode);
879 	return rc;
880 }
881 
882 static void inode_free_by_rcu(struct rcu_head *head)
883 {
884 	/*
885 	 * The rcu head is at the start of the inode blob
886 	 */
887 	kmem_cache_free(lsm_inode_cache, head);
888 }
889 
890 void security_inode_free(struct inode *inode)
891 {
892 	integrity_inode_free(inode);
893 	call_void_hook(inode_free_security, inode);
894 	/*
895 	 * The inode may still be referenced in a path walk and
896 	 * a call to security_inode_permission() can be made
897 	 * after inode_free_security() is called. Ideally, the VFS
898 	 * wouldn't do this, but fixing that is a much harder
899 	 * job. For now, simply free the i_security via RCU, and
900 	 * leave the current inode->i_security pointer intact.
901 	 * The inode will be freed after the RCU grace period too.
902 	 */
903 	if (inode->i_security)
904 		call_rcu((struct rcu_head *)inode->i_security,
905 				inode_free_by_rcu);
906 }
907 
908 int security_dentry_init_security(struct dentry *dentry, int mode,
909 					const struct qstr *name, void **ctx,
910 					u32 *ctxlen)
911 {
912 	return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
913 				name, ctx, ctxlen);
914 }
915 EXPORT_SYMBOL(security_dentry_init_security);
916 
917 int security_dentry_create_files_as(struct dentry *dentry, int mode,
918 				    struct qstr *name,
919 				    const struct cred *old, struct cred *new)
920 {
921 	return call_int_hook(dentry_create_files_as, 0, dentry, mode,
922 				name, old, new);
923 }
924 EXPORT_SYMBOL(security_dentry_create_files_as);
925 
926 int security_inode_init_security(struct inode *inode, struct inode *dir,
927 				 const struct qstr *qstr,
928 				 const initxattrs initxattrs, void *fs_data)
929 {
930 	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
931 	struct xattr *lsm_xattr, *evm_xattr, *xattr;
932 	int ret;
933 
934 	if (unlikely(IS_PRIVATE(inode)))
935 		return 0;
936 
937 	if (!initxattrs)
938 		return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
939 				     dir, qstr, NULL, NULL, NULL);
940 	memset(new_xattrs, 0, sizeof(new_xattrs));
941 	lsm_xattr = new_xattrs;
942 	ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
943 						&lsm_xattr->name,
944 						&lsm_xattr->value,
945 						&lsm_xattr->value_len);
946 	if (ret)
947 		goto out;
948 
949 	evm_xattr = lsm_xattr + 1;
950 	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
951 	if (ret)
952 		goto out;
953 	ret = initxattrs(inode, new_xattrs, fs_data);
954 out:
955 	for (xattr = new_xattrs; xattr->value != NULL; xattr++)
956 		kfree(xattr->value);
957 	return (ret == -EOPNOTSUPP) ? 0 : ret;
958 }
959 EXPORT_SYMBOL(security_inode_init_security);
960 
961 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
962 				     const struct qstr *qstr, const char **name,
963 				     void **value, size_t *len)
964 {
965 	if (unlikely(IS_PRIVATE(inode)))
966 		return -EOPNOTSUPP;
967 	return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
968 			     qstr, name, value, len);
969 }
970 EXPORT_SYMBOL(security_old_inode_init_security);
971 
972 #ifdef CONFIG_SECURITY_PATH
973 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
974 			unsigned int dev)
975 {
976 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
977 		return 0;
978 	return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
979 }
980 EXPORT_SYMBOL(security_path_mknod);
981 
982 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
983 {
984 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
985 		return 0;
986 	return call_int_hook(path_mkdir, 0, dir, dentry, mode);
987 }
988 EXPORT_SYMBOL(security_path_mkdir);
989 
990 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
991 {
992 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
993 		return 0;
994 	return call_int_hook(path_rmdir, 0, dir, dentry);
995 }
996 
997 int security_path_unlink(const struct path *dir, struct dentry *dentry)
998 {
999 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1000 		return 0;
1001 	return call_int_hook(path_unlink, 0, dir, dentry);
1002 }
1003 EXPORT_SYMBOL(security_path_unlink);
1004 
1005 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1006 			  const char *old_name)
1007 {
1008 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1009 		return 0;
1010 	return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1011 }
1012 
1013 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1014 		       struct dentry *new_dentry)
1015 {
1016 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1017 		return 0;
1018 	return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1019 }
1020 
1021 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1022 			 const struct path *new_dir, struct dentry *new_dentry,
1023 			 unsigned int flags)
1024 {
1025 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1026 		     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1027 		return 0;
1028 
1029 	if (flags & RENAME_EXCHANGE) {
1030 		int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1031 					old_dir, old_dentry);
1032 		if (err)
1033 			return err;
1034 	}
1035 
1036 	return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1037 				new_dentry);
1038 }
1039 EXPORT_SYMBOL(security_path_rename);
1040 
1041 int security_path_truncate(const struct path *path)
1042 {
1043 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1044 		return 0;
1045 	return call_int_hook(path_truncate, 0, path);
1046 }
1047 
1048 int security_path_chmod(const struct path *path, umode_t mode)
1049 {
1050 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1051 		return 0;
1052 	return call_int_hook(path_chmod, 0, path, mode);
1053 }
1054 
1055 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1056 {
1057 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1058 		return 0;
1059 	return call_int_hook(path_chown, 0, path, uid, gid);
1060 }
1061 
1062 int security_path_chroot(const struct path *path)
1063 {
1064 	return call_int_hook(path_chroot, 0, path);
1065 }
1066 #endif
1067 
1068 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1069 {
1070 	if (unlikely(IS_PRIVATE(dir)))
1071 		return 0;
1072 	return call_int_hook(inode_create, 0, dir, dentry, mode);
1073 }
1074 EXPORT_SYMBOL_GPL(security_inode_create);
1075 
1076 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1077 			 struct dentry *new_dentry)
1078 {
1079 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1080 		return 0;
1081 	return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1082 }
1083 
1084 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1085 {
1086 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1087 		return 0;
1088 	return call_int_hook(inode_unlink, 0, dir, dentry);
1089 }
1090 
1091 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1092 			    const char *old_name)
1093 {
1094 	if (unlikely(IS_PRIVATE(dir)))
1095 		return 0;
1096 	return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1097 }
1098 
1099 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1100 {
1101 	if (unlikely(IS_PRIVATE(dir)))
1102 		return 0;
1103 	return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1104 }
1105 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1106 
1107 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1108 {
1109 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1110 		return 0;
1111 	return call_int_hook(inode_rmdir, 0, dir, dentry);
1112 }
1113 
1114 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1115 {
1116 	if (unlikely(IS_PRIVATE(dir)))
1117 		return 0;
1118 	return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1119 }
1120 
1121 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1122 			   struct inode *new_dir, struct dentry *new_dentry,
1123 			   unsigned int flags)
1124 {
1125         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1126             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1127 		return 0;
1128 
1129 	if (flags & RENAME_EXCHANGE) {
1130 		int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1131 						     old_dir, old_dentry);
1132 		if (err)
1133 			return err;
1134 	}
1135 
1136 	return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1137 					   new_dir, new_dentry);
1138 }
1139 
1140 int security_inode_readlink(struct dentry *dentry)
1141 {
1142 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1143 		return 0;
1144 	return call_int_hook(inode_readlink, 0, dentry);
1145 }
1146 
1147 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1148 			       bool rcu)
1149 {
1150 	if (unlikely(IS_PRIVATE(inode)))
1151 		return 0;
1152 	return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1153 }
1154 
1155 int security_inode_permission(struct inode *inode, int mask)
1156 {
1157 	if (unlikely(IS_PRIVATE(inode)))
1158 		return 0;
1159 	return call_int_hook(inode_permission, 0, inode, mask);
1160 }
1161 
1162 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1163 {
1164 	int ret;
1165 
1166 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1167 		return 0;
1168 	ret = call_int_hook(inode_setattr, 0, dentry, attr);
1169 	if (ret)
1170 		return ret;
1171 	return evm_inode_setattr(dentry, attr);
1172 }
1173 EXPORT_SYMBOL_GPL(security_inode_setattr);
1174 
1175 int security_inode_getattr(const struct path *path)
1176 {
1177 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1178 		return 0;
1179 	return call_int_hook(inode_getattr, 0, path);
1180 }
1181 
1182 int security_inode_setxattr(struct dentry *dentry, const char *name,
1183 			    const void *value, size_t size, int flags)
1184 {
1185 	int ret;
1186 
1187 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1188 		return 0;
1189 	/*
1190 	 * SELinux and Smack integrate the cap call,
1191 	 * so assume that all LSMs supplying this call do so.
1192 	 */
1193 	ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
1194 				flags);
1195 
1196 	if (ret == 1)
1197 		ret = cap_inode_setxattr(dentry, name, value, size, flags);
1198 	if (ret)
1199 		return ret;
1200 	ret = ima_inode_setxattr(dentry, name, value, size);
1201 	if (ret)
1202 		return ret;
1203 	return evm_inode_setxattr(dentry, name, value, size);
1204 }
1205 
1206 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1207 				  const void *value, size_t size, int flags)
1208 {
1209 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1210 		return;
1211 	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1212 	evm_inode_post_setxattr(dentry, name, value, size);
1213 }
1214 
1215 int security_inode_getxattr(struct dentry *dentry, const char *name)
1216 {
1217 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1218 		return 0;
1219 	return call_int_hook(inode_getxattr, 0, dentry, name);
1220 }
1221 
1222 int security_inode_listxattr(struct dentry *dentry)
1223 {
1224 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1225 		return 0;
1226 	return call_int_hook(inode_listxattr, 0, dentry);
1227 }
1228 
1229 int security_inode_removexattr(struct dentry *dentry, const char *name)
1230 {
1231 	int ret;
1232 
1233 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1234 		return 0;
1235 	/*
1236 	 * SELinux and Smack integrate the cap call,
1237 	 * so assume that all LSMs supplying this call do so.
1238 	 */
1239 	ret = call_int_hook(inode_removexattr, 1, dentry, name);
1240 	if (ret == 1)
1241 		ret = cap_inode_removexattr(dentry, name);
1242 	if (ret)
1243 		return ret;
1244 	ret = ima_inode_removexattr(dentry, name);
1245 	if (ret)
1246 		return ret;
1247 	return evm_inode_removexattr(dentry, name);
1248 }
1249 
1250 int security_inode_need_killpriv(struct dentry *dentry)
1251 {
1252 	return call_int_hook(inode_need_killpriv, 0, dentry);
1253 }
1254 
1255 int security_inode_killpriv(struct dentry *dentry)
1256 {
1257 	return call_int_hook(inode_killpriv, 0, dentry);
1258 }
1259 
1260 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1261 {
1262 	struct security_hook_list *hp;
1263 	int rc;
1264 
1265 	if (unlikely(IS_PRIVATE(inode)))
1266 		return -EOPNOTSUPP;
1267 	/*
1268 	 * Only one module will provide an attribute with a given name.
1269 	 */
1270 	hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1271 		rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1272 		if (rc != -EOPNOTSUPP)
1273 			return rc;
1274 	}
1275 	return -EOPNOTSUPP;
1276 }
1277 
1278 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1279 {
1280 	struct security_hook_list *hp;
1281 	int rc;
1282 
1283 	if (unlikely(IS_PRIVATE(inode)))
1284 		return -EOPNOTSUPP;
1285 	/*
1286 	 * Only one module will provide an attribute with a given name.
1287 	 */
1288 	hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1289 		rc = hp->hook.inode_setsecurity(inode, name, value, size,
1290 								flags);
1291 		if (rc != -EOPNOTSUPP)
1292 			return rc;
1293 	}
1294 	return -EOPNOTSUPP;
1295 }
1296 
1297 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1298 {
1299 	if (unlikely(IS_PRIVATE(inode)))
1300 		return 0;
1301 	return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1302 }
1303 EXPORT_SYMBOL(security_inode_listsecurity);
1304 
1305 void security_inode_getsecid(struct inode *inode, u32 *secid)
1306 {
1307 	call_void_hook(inode_getsecid, inode, secid);
1308 }
1309 
1310 int security_inode_copy_up(struct dentry *src, struct cred **new)
1311 {
1312 	return call_int_hook(inode_copy_up, 0, src, new);
1313 }
1314 EXPORT_SYMBOL(security_inode_copy_up);
1315 
1316 int security_inode_copy_up_xattr(const char *name)
1317 {
1318 	return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
1319 }
1320 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1321 
1322 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1323 				  struct kernfs_node *kn)
1324 {
1325 	return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1326 }
1327 
1328 int security_file_permission(struct file *file, int mask)
1329 {
1330 	int ret;
1331 
1332 	ret = call_int_hook(file_permission, 0, file, mask);
1333 	if (ret)
1334 		return ret;
1335 
1336 	return fsnotify_perm(file, mask);
1337 }
1338 
1339 int security_file_alloc(struct file *file)
1340 {
1341 	int rc = lsm_file_alloc(file);
1342 
1343 	if (rc)
1344 		return rc;
1345 	rc = call_int_hook(file_alloc_security, 0, file);
1346 	if (unlikely(rc))
1347 		security_file_free(file);
1348 	return rc;
1349 }
1350 
1351 void security_file_free(struct file *file)
1352 {
1353 	void *blob;
1354 
1355 	call_void_hook(file_free_security, file);
1356 
1357 	blob = file->f_security;
1358 	if (blob) {
1359 		file->f_security = NULL;
1360 		kmem_cache_free(lsm_file_cache, blob);
1361 	}
1362 }
1363 
1364 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1365 {
1366 	return call_int_hook(file_ioctl, 0, file, cmd, arg);
1367 }
1368 
1369 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1370 {
1371 	/*
1372 	 * Does we have PROT_READ and does the application expect
1373 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
1374 	 */
1375 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1376 		return prot;
1377 	if (!(current->personality & READ_IMPLIES_EXEC))
1378 		return prot;
1379 	/*
1380 	 * if that's an anonymous mapping, let it.
1381 	 */
1382 	if (!file)
1383 		return prot | PROT_EXEC;
1384 	/*
1385 	 * ditto if it's not on noexec mount, except that on !MMU we need
1386 	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1387 	 */
1388 	if (!path_noexec(&file->f_path)) {
1389 #ifndef CONFIG_MMU
1390 		if (file->f_op->mmap_capabilities) {
1391 			unsigned caps = file->f_op->mmap_capabilities(file);
1392 			if (!(caps & NOMMU_MAP_EXEC))
1393 				return prot;
1394 		}
1395 #endif
1396 		return prot | PROT_EXEC;
1397 	}
1398 	/* anything on noexec mount won't get PROT_EXEC */
1399 	return prot;
1400 }
1401 
1402 int security_mmap_file(struct file *file, unsigned long prot,
1403 			unsigned long flags)
1404 {
1405 	int ret;
1406 	ret = call_int_hook(mmap_file, 0, file, prot,
1407 					mmap_prot(file, prot), flags);
1408 	if (ret)
1409 		return ret;
1410 	return ima_file_mmap(file, prot);
1411 }
1412 
1413 int security_mmap_addr(unsigned long addr)
1414 {
1415 	return call_int_hook(mmap_addr, 0, addr);
1416 }
1417 
1418 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1419 			    unsigned long prot)
1420 {
1421 	return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1422 }
1423 
1424 int security_file_lock(struct file *file, unsigned int cmd)
1425 {
1426 	return call_int_hook(file_lock, 0, file, cmd);
1427 }
1428 
1429 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1430 {
1431 	return call_int_hook(file_fcntl, 0, file, cmd, arg);
1432 }
1433 
1434 void security_file_set_fowner(struct file *file)
1435 {
1436 	call_void_hook(file_set_fowner, file);
1437 }
1438 
1439 int security_file_send_sigiotask(struct task_struct *tsk,
1440 				  struct fown_struct *fown, int sig)
1441 {
1442 	return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1443 }
1444 
1445 int security_file_receive(struct file *file)
1446 {
1447 	return call_int_hook(file_receive, 0, file);
1448 }
1449 
1450 int security_file_open(struct file *file)
1451 {
1452 	int ret;
1453 
1454 	ret = call_int_hook(file_open, 0, file);
1455 	if (ret)
1456 		return ret;
1457 
1458 	return fsnotify_perm(file, MAY_OPEN);
1459 }
1460 
1461 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1462 {
1463 	int rc = lsm_task_alloc(task);
1464 
1465 	if (rc)
1466 		return rc;
1467 	rc = call_int_hook(task_alloc, 0, task, clone_flags);
1468 	if (unlikely(rc))
1469 		security_task_free(task);
1470 	return rc;
1471 }
1472 
1473 void security_task_free(struct task_struct *task)
1474 {
1475 	call_void_hook(task_free, task);
1476 
1477 	kfree(task->security);
1478 	task->security = NULL;
1479 }
1480 
1481 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1482 {
1483 	int rc = lsm_cred_alloc(cred, gfp);
1484 
1485 	if (rc)
1486 		return rc;
1487 
1488 	rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1489 	if (unlikely(rc))
1490 		security_cred_free(cred);
1491 	return rc;
1492 }
1493 
1494 void security_cred_free(struct cred *cred)
1495 {
1496 	/*
1497 	 * There is a failure case in prepare_creds() that
1498 	 * may result in a call here with ->security being NULL.
1499 	 */
1500 	if (unlikely(cred->security == NULL))
1501 		return;
1502 
1503 	call_void_hook(cred_free, cred);
1504 
1505 	kfree(cred->security);
1506 	cred->security = NULL;
1507 }
1508 
1509 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1510 {
1511 	int rc = lsm_cred_alloc(new, gfp);
1512 
1513 	if (rc)
1514 		return rc;
1515 
1516 	rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1517 	if (unlikely(rc))
1518 		security_cred_free(new);
1519 	return rc;
1520 }
1521 
1522 void security_transfer_creds(struct cred *new, const struct cred *old)
1523 {
1524 	call_void_hook(cred_transfer, new, old);
1525 }
1526 
1527 void security_cred_getsecid(const struct cred *c, u32 *secid)
1528 {
1529 	*secid = 0;
1530 	call_void_hook(cred_getsecid, c, secid);
1531 }
1532 EXPORT_SYMBOL(security_cred_getsecid);
1533 
1534 int security_kernel_act_as(struct cred *new, u32 secid)
1535 {
1536 	return call_int_hook(kernel_act_as, 0, new, secid);
1537 }
1538 
1539 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1540 {
1541 	return call_int_hook(kernel_create_files_as, 0, new, inode);
1542 }
1543 
1544 int security_kernel_module_request(char *kmod_name)
1545 {
1546 	int ret;
1547 
1548 	ret = call_int_hook(kernel_module_request, 0, kmod_name);
1549 	if (ret)
1550 		return ret;
1551 	return integrity_kernel_module_request(kmod_name);
1552 }
1553 
1554 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1555 {
1556 	int ret;
1557 
1558 	ret = call_int_hook(kernel_read_file, 0, file, id);
1559 	if (ret)
1560 		return ret;
1561 	return ima_read_file(file, id);
1562 }
1563 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1564 
1565 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1566 				   enum kernel_read_file_id id)
1567 {
1568 	int ret;
1569 
1570 	ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1571 	if (ret)
1572 		return ret;
1573 	return ima_post_read_file(file, buf, size, id);
1574 }
1575 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1576 
1577 int security_kernel_load_data(enum kernel_load_data_id id)
1578 {
1579 	int ret;
1580 
1581 	ret = call_int_hook(kernel_load_data, 0, id);
1582 	if (ret)
1583 		return ret;
1584 	return ima_load_data(id);
1585 }
1586 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1587 
1588 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1589 			     int flags)
1590 {
1591 	return call_int_hook(task_fix_setuid, 0, new, old, flags);
1592 }
1593 
1594 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1595 {
1596 	return call_int_hook(task_setpgid, 0, p, pgid);
1597 }
1598 
1599 int security_task_getpgid(struct task_struct *p)
1600 {
1601 	return call_int_hook(task_getpgid, 0, p);
1602 }
1603 
1604 int security_task_getsid(struct task_struct *p)
1605 {
1606 	return call_int_hook(task_getsid, 0, p);
1607 }
1608 
1609 void security_task_getsecid(struct task_struct *p, u32 *secid)
1610 {
1611 	*secid = 0;
1612 	call_void_hook(task_getsecid, p, secid);
1613 }
1614 EXPORT_SYMBOL(security_task_getsecid);
1615 
1616 int security_task_setnice(struct task_struct *p, int nice)
1617 {
1618 	return call_int_hook(task_setnice, 0, p, nice);
1619 }
1620 
1621 int security_task_setioprio(struct task_struct *p, int ioprio)
1622 {
1623 	return call_int_hook(task_setioprio, 0, p, ioprio);
1624 }
1625 
1626 int security_task_getioprio(struct task_struct *p)
1627 {
1628 	return call_int_hook(task_getioprio, 0, p);
1629 }
1630 
1631 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1632 			  unsigned int flags)
1633 {
1634 	return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1635 }
1636 
1637 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1638 		struct rlimit *new_rlim)
1639 {
1640 	return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1641 }
1642 
1643 int security_task_setscheduler(struct task_struct *p)
1644 {
1645 	return call_int_hook(task_setscheduler, 0, p);
1646 }
1647 
1648 int security_task_getscheduler(struct task_struct *p)
1649 {
1650 	return call_int_hook(task_getscheduler, 0, p);
1651 }
1652 
1653 int security_task_movememory(struct task_struct *p)
1654 {
1655 	return call_int_hook(task_movememory, 0, p);
1656 }
1657 
1658 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1659 			int sig, const struct cred *cred)
1660 {
1661 	return call_int_hook(task_kill, 0, p, info, sig, cred);
1662 }
1663 
1664 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1665 			 unsigned long arg4, unsigned long arg5)
1666 {
1667 	int thisrc;
1668 	int rc = -ENOSYS;
1669 	struct security_hook_list *hp;
1670 
1671 	hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1672 		thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1673 		if (thisrc != -ENOSYS) {
1674 			rc = thisrc;
1675 			if (thisrc != 0)
1676 				break;
1677 		}
1678 	}
1679 	return rc;
1680 }
1681 
1682 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1683 {
1684 	call_void_hook(task_to_inode, p, inode);
1685 }
1686 
1687 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1688 {
1689 	return call_int_hook(ipc_permission, 0, ipcp, flag);
1690 }
1691 
1692 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1693 {
1694 	*secid = 0;
1695 	call_void_hook(ipc_getsecid, ipcp, secid);
1696 }
1697 
1698 int security_msg_msg_alloc(struct msg_msg *msg)
1699 {
1700 	int rc = lsm_msg_msg_alloc(msg);
1701 
1702 	if (unlikely(rc))
1703 		return rc;
1704 	rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1705 	if (unlikely(rc))
1706 		security_msg_msg_free(msg);
1707 	return rc;
1708 }
1709 
1710 void security_msg_msg_free(struct msg_msg *msg)
1711 {
1712 	call_void_hook(msg_msg_free_security, msg);
1713 	kfree(msg->security);
1714 	msg->security = NULL;
1715 }
1716 
1717 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1718 {
1719 	int rc = lsm_ipc_alloc(msq);
1720 
1721 	if (unlikely(rc))
1722 		return rc;
1723 	rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1724 	if (unlikely(rc))
1725 		security_msg_queue_free(msq);
1726 	return rc;
1727 }
1728 
1729 void security_msg_queue_free(struct kern_ipc_perm *msq)
1730 {
1731 	call_void_hook(msg_queue_free_security, msq);
1732 	kfree(msq->security);
1733 	msq->security = NULL;
1734 }
1735 
1736 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1737 {
1738 	return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1739 }
1740 
1741 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1742 {
1743 	return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1744 }
1745 
1746 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1747 			       struct msg_msg *msg, int msqflg)
1748 {
1749 	return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1750 }
1751 
1752 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1753 			       struct task_struct *target, long type, int mode)
1754 {
1755 	return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1756 }
1757 
1758 int security_shm_alloc(struct kern_ipc_perm *shp)
1759 {
1760 	int rc = lsm_ipc_alloc(shp);
1761 
1762 	if (unlikely(rc))
1763 		return rc;
1764 	rc = call_int_hook(shm_alloc_security, 0, shp);
1765 	if (unlikely(rc))
1766 		security_shm_free(shp);
1767 	return rc;
1768 }
1769 
1770 void security_shm_free(struct kern_ipc_perm *shp)
1771 {
1772 	call_void_hook(shm_free_security, shp);
1773 	kfree(shp->security);
1774 	shp->security = NULL;
1775 }
1776 
1777 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1778 {
1779 	return call_int_hook(shm_associate, 0, shp, shmflg);
1780 }
1781 
1782 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1783 {
1784 	return call_int_hook(shm_shmctl, 0, shp, cmd);
1785 }
1786 
1787 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1788 {
1789 	return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1790 }
1791 
1792 int security_sem_alloc(struct kern_ipc_perm *sma)
1793 {
1794 	int rc = lsm_ipc_alloc(sma);
1795 
1796 	if (unlikely(rc))
1797 		return rc;
1798 	rc = call_int_hook(sem_alloc_security, 0, sma);
1799 	if (unlikely(rc))
1800 		security_sem_free(sma);
1801 	return rc;
1802 }
1803 
1804 void security_sem_free(struct kern_ipc_perm *sma)
1805 {
1806 	call_void_hook(sem_free_security, sma);
1807 	kfree(sma->security);
1808 	sma->security = NULL;
1809 }
1810 
1811 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1812 {
1813 	return call_int_hook(sem_associate, 0, sma, semflg);
1814 }
1815 
1816 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1817 {
1818 	return call_int_hook(sem_semctl, 0, sma, cmd);
1819 }
1820 
1821 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1822 			unsigned nsops, int alter)
1823 {
1824 	return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1825 }
1826 
1827 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1828 {
1829 	if (unlikely(inode && IS_PRIVATE(inode)))
1830 		return;
1831 	call_void_hook(d_instantiate, dentry, inode);
1832 }
1833 EXPORT_SYMBOL(security_d_instantiate);
1834 
1835 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
1836 				char **value)
1837 {
1838 	struct security_hook_list *hp;
1839 
1840 	hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
1841 		if (lsm != NULL && strcmp(lsm, hp->lsm))
1842 			continue;
1843 		return hp->hook.getprocattr(p, name, value);
1844 	}
1845 	return -EINVAL;
1846 }
1847 
1848 int security_setprocattr(const char *lsm, const char *name, void *value,
1849 			 size_t size)
1850 {
1851 	struct security_hook_list *hp;
1852 
1853 	hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
1854 		if (lsm != NULL && strcmp(lsm, hp->lsm))
1855 			continue;
1856 		return hp->hook.setprocattr(name, value, size);
1857 	}
1858 	return -EINVAL;
1859 }
1860 
1861 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1862 {
1863 	return call_int_hook(netlink_send, 0, sk, skb);
1864 }
1865 
1866 int security_ismaclabel(const char *name)
1867 {
1868 	return call_int_hook(ismaclabel, 0, name);
1869 }
1870 EXPORT_SYMBOL(security_ismaclabel);
1871 
1872 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1873 {
1874 	return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1875 				seclen);
1876 }
1877 EXPORT_SYMBOL(security_secid_to_secctx);
1878 
1879 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1880 {
1881 	*secid = 0;
1882 	return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1883 }
1884 EXPORT_SYMBOL(security_secctx_to_secid);
1885 
1886 void security_release_secctx(char *secdata, u32 seclen)
1887 {
1888 	call_void_hook(release_secctx, secdata, seclen);
1889 }
1890 EXPORT_SYMBOL(security_release_secctx);
1891 
1892 void security_inode_invalidate_secctx(struct inode *inode)
1893 {
1894 	call_void_hook(inode_invalidate_secctx, inode);
1895 }
1896 EXPORT_SYMBOL(security_inode_invalidate_secctx);
1897 
1898 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1899 {
1900 	return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1901 }
1902 EXPORT_SYMBOL(security_inode_notifysecctx);
1903 
1904 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1905 {
1906 	return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
1907 }
1908 EXPORT_SYMBOL(security_inode_setsecctx);
1909 
1910 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1911 {
1912 	return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
1913 }
1914 EXPORT_SYMBOL(security_inode_getsecctx);
1915 
1916 #ifdef CONFIG_SECURITY_NETWORK
1917 
1918 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1919 {
1920 	return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
1921 }
1922 EXPORT_SYMBOL(security_unix_stream_connect);
1923 
1924 int security_unix_may_send(struct socket *sock,  struct socket *other)
1925 {
1926 	return call_int_hook(unix_may_send, 0, sock, other);
1927 }
1928 EXPORT_SYMBOL(security_unix_may_send);
1929 
1930 int security_socket_create(int family, int type, int protocol, int kern)
1931 {
1932 	return call_int_hook(socket_create, 0, family, type, protocol, kern);
1933 }
1934 
1935 int security_socket_post_create(struct socket *sock, int family,
1936 				int type, int protocol, int kern)
1937 {
1938 	return call_int_hook(socket_post_create, 0, sock, family, type,
1939 						protocol, kern);
1940 }
1941 
1942 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
1943 {
1944 	return call_int_hook(socket_socketpair, 0, socka, sockb);
1945 }
1946 EXPORT_SYMBOL(security_socket_socketpair);
1947 
1948 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1949 {
1950 	return call_int_hook(socket_bind, 0, sock, address, addrlen);
1951 }
1952 
1953 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1954 {
1955 	return call_int_hook(socket_connect, 0, sock, address, addrlen);
1956 }
1957 
1958 int security_socket_listen(struct socket *sock, int backlog)
1959 {
1960 	return call_int_hook(socket_listen, 0, sock, backlog);
1961 }
1962 
1963 int security_socket_accept(struct socket *sock, struct socket *newsock)
1964 {
1965 	return call_int_hook(socket_accept, 0, sock, newsock);
1966 }
1967 
1968 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1969 {
1970 	return call_int_hook(socket_sendmsg, 0, sock, msg, size);
1971 }
1972 
1973 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1974 			    int size, int flags)
1975 {
1976 	return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
1977 }
1978 
1979 int security_socket_getsockname(struct socket *sock)
1980 {
1981 	return call_int_hook(socket_getsockname, 0, sock);
1982 }
1983 
1984 int security_socket_getpeername(struct socket *sock)
1985 {
1986 	return call_int_hook(socket_getpeername, 0, sock);
1987 }
1988 
1989 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1990 {
1991 	return call_int_hook(socket_getsockopt, 0, sock, level, optname);
1992 }
1993 
1994 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1995 {
1996 	return call_int_hook(socket_setsockopt, 0, sock, level, optname);
1997 }
1998 
1999 int security_socket_shutdown(struct socket *sock, int how)
2000 {
2001 	return call_int_hook(socket_shutdown, 0, sock, how);
2002 }
2003 
2004 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2005 {
2006 	return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2007 }
2008 EXPORT_SYMBOL(security_sock_rcv_skb);
2009 
2010 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2011 				      int __user *optlen, unsigned len)
2012 {
2013 	return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2014 				optval, optlen, len);
2015 }
2016 
2017 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2018 {
2019 	return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2020 			     skb, secid);
2021 }
2022 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2023 
2024 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2025 {
2026 	return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2027 }
2028 
2029 void security_sk_free(struct sock *sk)
2030 {
2031 	call_void_hook(sk_free_security, sk);
2032 }
2033 
2034 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2035 {
2036 	call_void_hook(sk_clone_security, sk, newsk);
2037 }
2038 EXPORT_SYMBOL(security_sk_clone);
2039 
2040 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2041 {
2042 	call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
2043 }
2044 EXPORT_SYMBOL(security_sk_classify_flow);
2045 
2046 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2047 {
2048 	call_void_hook(req_classify_flow, req, fl);
2049 }
2050 EXPORT_SYMBOL(security_req_classify_flow);
2051 
2052 void security_sock_graft(struct sock *sk, struct socket *parent)
2053 {
2054 	call_void_hook(sock_graft, sk, parent);
2055 }
2056 EXPORT_SYMBOL(security_sock_graft);
2057 
2058 int security_inet_conn_request(struct sock *sk,
2059 			struct sk_buff *skb, struct request_sock *req)
2060 {
2061 	return call_int_hook(inet_conn_request, 0, sk, skb, req);
2062 }
2063 EXPORT_SYMBOL(security_inet_conn_request);
2064 
2065 void security_inet_csk_clone(struct sock *newsk,
2066 			const struct request_sock *req)
2067 {
2068 	call_void_hook(inet_csk_clone, newsk, req);
2069 }
2070 
2071 void security_inet_conn_established(struct sock *sk,
2072 			struct sk_buff *skb)
2073 {
2074 	call_void_hook(inet_conn_established, sk, skb);
2075 }
2076 EXPORT_SYMBOL(security_inet_conn_established);
2077 
2078 int security_secmark_relabel_packet(u32 secid)
2079 {
2080 	return call_int_hook(secmark_relabel_packet, 0, secid);
2081 }
2082 EXPORT_SYMBOL(security_secmark_relabel_packet);
2083 
2084 void security_secmark_refcount_inc(void)
2085 {
2086 	call_void_hook(secmark_refcount_inc);
2087 }
2088 EXPORT_SYMBOL(security_secmark_refcount_inc);
2089 
2090 void security_secmark_refcount_dec(void)
2091 {
2092 	call_void_hook(secmark_refcount_dec);
2093 }
2094 EXPORT_SYMBOL(security_secmark_refcount_dec);
2095 
2096 int security_tun_dev_alloc_security(void **security)
2097 {
2098 	return call_int_hook(tun_dev_alloc_security, 0, security);
2099 }
2100 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2101 
2102 void security_tun_dev_free_security(void *security)
2103 {
2104 	call_void_hook(tun_dev_free_security, security);
2105 }
2106 EXPORT_SYMBOL(security_tun_dev_free_security);
2107 
2108 int security_tun_dev_create(void)
2109 {
2110 	return call_int_hook(tun_dev_create, 0);
2111 }
2112 EXPORT_SYMBOL(security_tun_dev_create);
2113 
2114 int security_tun_dev_attach_queue(void *security)
2115 {
2116 	return call_int_hook(tun_dev_attach_queue, 0, security);
2117 }
2118 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2119 
2120 int security_tun_dev_attach(struct sock *sk, void *security)
2121 {
2122 	return call_int_hook(tun_dev_attach, 0, sk, security);
2123 }
2124 EXPORT_SYMBOL(security_tun_dev_attach);
2125 
2126 int security_tun_dev_open(void *security)
2127 {
2128 	return call_int_hook(tun_dev_open, 0, security);
2129 }
2130 EXPORT_SYMBOL(security_tun_dev_open);
2131 
2132 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2133 {
2134 	return call_int_hook(sctp_assoc_request, 0, ep, skb);
2135 }
2136 EXPORT_SYMBOL(security_sctp_assoc_request);
2137 
2138 int security_sctp_bind_connect(struct sock *sk, int optname,
2139 			       struct sockaddr *address, int addrlen)
2140 {
2141 	return call_int_hook(sctp_bind_connect, 0, sk, optname,
2142 			     address, addrlen);
2143 }
2144 EXPORT_SYMBOL(security_sctp_bind_connect);
2145 
2146 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2147 			    struct sock *newsk)
2148 {
2149 	call_void_hook(sctp_sk_clone, ep, sk, newsk);
2150 }
2151 EXPORT_SYMBOL(security_sctp_sk_clone);
2152 
2153 #endif	/* CONFIG_SECURITY_NETWORK */
2154 
2155 #ifdef CONFIG_SECURITY_INFINIBAND
2156 
2157 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2158 {
2159 	return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2160 }
2161 EXPORT_SYMBOL(security_ib_pkey_access);
2162 
2163 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2164 {
2165 	return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2166 }
2167 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2168 
2169 int security_ib_alloc_security(void **sec)
2170 {
2171 	return call_int_hook(ib_alloc_security, 0, sec);
2172 }
2173 EXPORT_SYMBOL(security_ib_alloc_security);
2174 
2175 void security_ib_free_security(void *sec)
2176 {
2177 	call_void_hook(ib_free_security, sec);
2178 }
2179 EXPORT_SYMBOL(security_ib_free_security);
2180 #endif	/* CONFIG_SECURITY_INFINIBAND */
2181 
2182 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2183 
2184 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2185 			       struct xfrm_user_sec_ctx *sec_ctx,
2186 			       gfp_t gfp)
2187 {
2188 	return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2189 }
2190 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2191 
2192 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2193 			      struct xfrm_sec_ctx **new_ctxp)
2194 {
2195 	return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2196 }
2197 
2198 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2199 {
2200 	call_void_hook(xfrm_policy_free_security, ctx);
2201 }
2202 EXPORT_SYMBOL(security_xfrm_policy_free);
2203 
2204 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2205 {
2206 	return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2207 }
2208 
2209 int security_xfrm_state_alloc(struct xfrm_state *x,
2210 			      struct xfrm_user_sec_ctx *sec_ctx)
2211 {
2212 	return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2213 }
2214 EXPORT_SYMBOL(security_xfrm_state_alloc);
2215 
2216 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2217 				      struct xfrm_sec_ctx *polsec, u32 secid)
2218 {
2219 	return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2220 }
2221 
2222 int security_xfrm_state_delete(struct xfrm_state *x)
2223 {
2224 	return call_int_hook(xfrm_state_delete_security, 0, x);
2225 }
2226 EXPORT_SYMBOL(security_xfrm_state_delete);
2227 
2228 void security_xfrm_state_free(struct xfrm_state *x)
2229 {
2230 	call_void_hook(xfrm_state_free_security, x);
2231 }
2232 
2233 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2234 {
2235 	return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2236 }
2237 
2238 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2239 				       struct xfrm_policy *xp,
2240 				       const struct flowi *fl)
2241 {
2242 	struct security_hook_list *hp;
2243 	int rc = 1;
2244 
2245 	/*
2246 	 * Since this function is expected to return 0 or 1, the judgment
2247 	 * becomes difficult if multiple LSMs supply this call. Fortunately,
2248 	 * we can use the first LSM's judgment because currently only SELinux
2249 	 * supplies this call.
2250 	 *
2251 	 * For speed optimization, we explicitly break the loop rather than
2252 	 * using the macro
2253 	 */
2254 	hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2255 				list) {
2256 		rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
2257 		break;
2258 	}
2259 	return rc;
2260 }
2261 
2262 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2263 {
2264 	return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2265 }
2266 
2267 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
2268 {
2269 	int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
2270 				0);
2271 
2272 	BUG_ON(rc);
2273 }
2274 EXPORT_SYMBOL(security_skb_classify_flow);
2275 
2276 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
2277 
2278 #ifdef CONFIG_KEYS
2279 
2280 int security_key_alloc(struct key *key, const struct cred *cred,
2281 		       unsigned long flags)
2282 {
2283 	return call_int_hook(key_alloc, 0, key, cred, flags);
2284 }
2285 
2286 void security_key_free(struct key *key)
2287 {
2288 	call_void_hook(key_free, key);
2289 }
2290 
2291 int security_key_permission(key_ref_t key_ref,
2292 			    const struct cred *cred, unsigned perm)
2293 {
2294 	return call_int_hook(key_permission, 0, key_ref, cred, perm);
2295 }
2296 
2297 int security_key_getsecurity(struct key *key, char **_buffer)
2298 {
2299 	*_buffer = NULL;
2300 	return call_int_hook(key_getsecurity, 0, key, _buffer);
2301 }
2302 
2303 #endif	/* CONFIG_KEYS */
2304 
2305 #ifdef CONFIG_AUDIT
2306 
2307 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2308 {
2309 	return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2310 }
2311 
2312 int security_audit_rule_known(struct audit_krule *krule)
2313 {
2314 	return call_int_hook(audit_rule_known, 0, krule);
2315 }
2316 
2317 void security_audit_rule_free(void *lsmrule)
2318 {
2319 	call_void_hook(audit_rule_free, lsmrule);
2320 }
2321 
2322 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2323 {
2324 	return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2325 }
2326 #endif /* CONFIG_AUDIT */
2327 
2328 #ifdef CONFIG_BPF_SYSCALL
2329 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2330 {
2331 	return call_int_hook(bpf, 0, cmd, attr, size);
2332 }
2333 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2334 {
2335 	return call_int_hook(bpf_map, 0, map, fmode);
2336 }
2337 int security_bpf_prog(struct bpf_prog *prog)
2338 {
2339 	return call_int_hook(bpf_prog, 0, prog);
2340 }
2341 int security_bpf_map_alloc(struct bpf_map *map)
2342 {
2343 	return call_int_hook(bpf_map_alloc_security, 0, map);
2344 }
2345 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2346 {
2347 	return call_int_hook(bpf_prog_alloc_security, 0, aux);
2348 }
2349 void security_bpf_map_free(struct bpf_map *map)
2350 {
2351 	call_void_hook(bpf_map_free_security, map);
2352 }
2353 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2354 {
2355 	call_void_hook(bpf_prog_free_security, aux);
2356 }
2357 #endif /* CONFIG_BPF_SYSCALL */
2358