1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Security plug functions 4 * 5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 8 * Copyright (C) 2016 Mellanox Technologies 9 */ 10 11 #define pr_fmt(fmt) "LSM: " fmt 12 13 #include <linux/bpf.h> 14 #include <linux/capability.h> 15 #include <linux/dcache.h> 16 #include <linux/export.h> 17 #include <linux/init.h> 18 #include <linux/kernel.h> 19 #include <linux/kernel_read_file.h> 20 #include <linux/lsm_hooks.h> 21 #include <linux/integrity.h> 22 #include <linux/ima.h> 23 #include <linux/evm.h> 24 #include <linux/fsnotify.h> 25 #include <linux/mman.h> 26 #include <linux/mount.h> 27 #include <linux/personality.h> 28 #include <linux/backing-dev.h> 29 #include <linux/string.h> 30 #include <linux/msg.h> 31 #include <net/flow.h> 32 33 #define MAX_LSM_EVM_XATTR 2 34 35 /* How many LSMs were built into the kernel? */ 36 #define LSM_COUNT (__end_lsm_info - __start_lsm_info) 37 38 /* 39 * These are descriptions of the reasons that can be passed to the 40 * security_locked_down() LSM hook. Placing this array here allows 41 * all security modules to use the same descriptions for auditing 42 * purposes. 43 */ 44 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = { 45 [LOCKDOWN_NONE] = "none", 46 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading", 47 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port", 48 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access", 49 [LOCKDOWN_KEXEC] = "kexec of unsigned images", 50 [LOCKDOWN_HIBERNATION] = "hibernation", 51 [LOCKDOWN_PCI_ACCESS] = "direct PCI access", 52 [LOCKDOWN_IOPORT] = "raw io port access", 53 [LOCKDOWN_MSR] = "raw MSR access", 54 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables", 55 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage", 56 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO", 57 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters", 58 [LOCKDOWN_MMIOTRACE] = "unsafe mmio", 59 [LOCKDOWN_DEBUGFS] = "debugfs access", 60 [LOCKDOWN_XMON_WR] = "xmon write access", 61 [LOCKDOWN_INTEGRITY_MAX] = "integrity", 62 [LOCKDOWN_KCORE] = "/proc/kcore access", 63 [LOCKDOWN_KPROBES] = "use of kprobes", 64 [LOCKDOWN_BPF_READ] = "use of bpf to read kernel RAM", 65 [LOCKDOWN_PERF] = "unsafe use of perf", 66 [LOCKDOWN_TRACEFS] = "use of tracefs", 67 [LOCKDOWN_XMON_RW] = "xmon read and write access", 68 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality", 69 }; 70 71 struct security_hook_heads security_hook_heads __lsm_ro_after_init; 72 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain); 73 74 static struct kmem_cache *lsm_file_cache; 75 static struct kmem_cache *lsm_inode_cache; 76 77 char *lsm_names; 78 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init; 79 80 /* Boot-time LSM user choice */ 81 static __initdata const char *chosen_lsm_order; 82 static __initdata const char *chosen_major_lsm; 83 84 static __initconst const char * const builtin_lsm_order = CONFIG_LSM; 85 86 /* Ordered list of LSMs to initialize. */ 87 static __initdata struct lsm_info **ordered_lsms; 88 static __initdata struct lsm_info *exclusive; 89 90 static __initdata bool debug; 91 #define init_debug(...) \ 92 do { \ 93 if (debug) \ 94 pr_info(__VA_ARGS__); \ 95 } while (0) 96 97 static bool __init is_enabled(struct lsm_info *lsm) 98 { 99 if (!lsm->enabled) 100 return false; 101 102 return *lsm->enabled; 103 } 104 105 /* Mark an LSM's enabled flag. */ 106 static int lsm_enabled_true __initdata = 1; 107 static int lsm_enabled_false __initdata = 0; 108 static void __init set_enabled(struct lsm_info *lsm, bool enabled) 109 { 110 /* 111 * When an LSM hasn't configured an enable variable, we can use 112 * a hard-coded location for storing the default enabled state. 113 */ 114 if (!lsm->enabled) { 115 if (enabled) 116 lsm->enabled = &lsm_enabled_true; 117 else 118 lsm->enabled = &lsm_enabled_false; 119 } else if (lsm->enabled == &lsm_enabled_true) { 120 if (!enabled) 121 lsm->enabled = &lsm_enabled_false; 122 } else if (lsm->enabled == &lsm_enabled_false) { 123 if (enabled) 124 lsm->enabled = &lsm_enabled_true; 125 } else { 126 *lsm->enabled = enabled; 127 } 128 } 129 130 /* Is an LSM already listed in the ordered LSMs list? */ 131 static bool __init exists_ordered_lsm(struct lsm_info *lsm) 132 { 133 struct lsm_info **check; 134 135 for (check = ordered_lsms; *check; check++) 136 if (*check == lsm) 137 return true; 138 139 return false; 140 } 141 142 /* Append an LSM to the list of ordered LSMs to initialize. */ 143 static int last_lsm __initdata; 144 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from) 145 { 146 /* Ignore duplicate selections. */ 147 if (exists_ordered_lsm(lsm)) 148 return; 149 150 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from)) 151 return; 152 153 /* Enable this LSM, if it is not already set. */ 154 if (!lsm->enabled) 155 lsm->enabled = &lsm_enabled_true; 156 ordered_lsms[last_lsm++] = lsm; 157 158 init_debug("%s ordering: %s (%sabled)\n", from, lsm->name, 159 is_enabled(lsm) ? "en" : "dis"); 160 } 161 162 /* Is an LSM allowed to be initialized? */ 163 static bool __init lsm_allowed(struct lsm_info *lsm) 164 { 165 /* Skip if the LSM is disabled. */ 166 if (!is_enabled(lsm)) 167 return false; 168 169 /* Not allowed if another exclusive LSM already initialized. */ 170 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) { 171 init_debug("exclusive disabled: %s\n", lsm->name); 172 return false; 173 } 174 175 return true; 176 } 177 178 static void __init lsm_set_blob_size(int *need, int *lbs) 179 { 180 int offset; 181 182 if (*need > 0) { 183 offset = *lbs; 184 *lbs += *need; 185 *need = offset; 186 } 187 } 188 189 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed) 190 { 191 if (!needed) 192 return; 193 194 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred); 195 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file); 196 /* 197 * The inode blob gets an rcu_head in addition to 198 * what the modules might need. 199 */ 200 if (needed->lbs_inode && blob_sizes.lbs_inode == 0) 201 blob_sizes.lbs_inode = sizeof(struct rcu_head); 202 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode); 203 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc); 204 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg); 205 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task); 206 } 207 208 /* Prepare LSM for initialization. */ 209 static void __init prepare_lsm(struct lsm_info *lsm) 210 { 211 int enabled = lsm_allowed(lsm); 212 213 /* Record enablement (to handle any following exclusive LSMs). */ 214 set_enabled(lsm, enabled); 215 216 /* If enabled, do pre-initialization work. */ 217 if (enabled) { 218 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) { 219 exclusive = lsm; 220 init_debug("exclusive chosen: %s\n", lsm->name); 221 } 222 223 lsm_set_blob_sizes(lsm->blobs); 224 } 225 } 226 227 /* Initialize a given LSM, if it is enabled. */ 228 static void __init initialize_lsm(struct lsm_info *lsm) 229 { 230 if (is_enabled(lsm)) { 231 int ret; 232 233 init_debug("initializing %s\n", lsm->name); 234 ret = lsm->init(); 235 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); 236 } 237 } 238 239 /* Populate ordered LSMs list from comma-separated LSM name list. */ 240 static void __init ordered_lsm_parse(const char *order, const char *origin) 241 { 242 struct lsm_info *lsm; 243 char *sep, *name, *next; 244 245 /* LSM_ORDER_FIRST is always first. */ 246 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 247 if (lsm->order == LSM_ORDER_FIRST) 248 append_ordered_lsm(lsm, "first"); 249 } 250 251 /* Process "security=", if given. */ 252 if (chosen_major_lsm) { 253 struct lsm_info *major; 254 255 /* 256 * To match the original "security=" behavior, this 257 * explicitly does NOT fallback to another Legacy Major 258 * if the selected one was separately disabled: disable 259 * all non-matching Legacy Major LSMs. 260 */ 261 for (major = __start_lsm_info; major < __end_lsm_info; 262 major++) { 263 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) && 264 strcmp(major->name, chosen_major_lsm) != 0) { 265 set_enabled(major, false); 266 init_debug("security=%s disabled: %s\n", 267 chosen_major_lsm, major->name); 268 } 269 } 270 } 271 272 sep = kstrdup(order, GFP_KERNEL); 273 next = sep; 274 /* Walk the list, looking for matching LSMs. */ 275 while ((name = strsep(&next, ",")) != NULL) { 276 bool found = false; 277 278 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 279 if (lsm->order == LSM_ORDER_MUTABLE && 280 strcmp(lsm->name, name) == 0) { 281 append_ordered_lsm(lsm, origin); 282 found = true; 283 } 284 } 285 286 if (!found) 287 init_debug("%s ignored: %s\n", origin, name); 288 } 289 290 /* Process "security=", if given. */ 291 if (chosen_major_lsm) { 292 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 293 if (exists_ordered_lsm(lsm)) 294 continue; 295 if (strcmp(lsm->name, chosen_major_lsm) == 0) 296 append_ordered_lsm(lsm, "security="); 297 } 298 } 299 300 /* Disable all LSMs not in the ordered list. */ 301 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 302 if (exists_ordered_lsm(lsm)) 303 continue; 304 set_enabled(lsm, false); 305 init_debug("%s disabled: %s\n", origin, lsm->name); 306 } 307 308 kfree(sep); 309 } 310 311 static void __init lsm_early_cred(struct cred *cred); 312 static void __init lsm_early_task(struct task_struct *task); 313 314 static int lsm_append(const char *new, char **result); 315 316 static void __init ordered_lsm_init(void) 317 { 318 struct lsm_info **lsm; 319 320 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms), 321 GFP_KERNEL); 322 323 if (chosen_lsm_order) { 324 if (chosen_major_lsm) { 325 pr_info("security= is ignored because it is superseded by lsm=\n"); 326 chosen_major_lsm = NULL; 327 } 328 ordered_lsm_parse(chosen_lsm_order, "cmdline"); 329 } else 330 ordered_lsm_parse(builtin_lsm_order, "builtin"); 331 332 for (lsm = ordered_lsms; *lsm; lsm++) 333 prepare_lsm(*lsm); 334 335 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred); 336 init_debug("file blob size = %d\n", blob_sizes.lbs_file); 337 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode); 338 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc); 339 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg); 340 init_debug("task blob size = %d\n", blob_sizes.lbs_task); 341 342 /* 343 * Create any kmem_caches needed for blobs 344 */ 345 if (blob_sizes.lbs_file) 346 lsm_file_cache = kmem_cache_create("lsm_file_cache", 347 blob_sizes.lbs_file, 0, 348 SLAB_PANIC, NULL); 349 if (blob_sizes.lbs_inode) 350 lsm_inode_cache = kmem_cache_create("lsm_inode_cache", 351 blob_sizes.lbs_inode, 0, 352 SLAB_PANIC, NULL); 353 354 lsm_early_cred((struct cred *) current->cred); 355 lsm_early_task(current); 356 for (lsm = ordered_lsms; *lsm; lsm++) 357 initialize_lsm(*lsm); 358 359 kfree(ordered_lsms); 360 } 361 362 int __init early_security_init(void) 363 { 364 int i; 365 struct hlist_head *list = (struct hlist_head *) &security_hook_heads; 366 struct lsm_info *lsm; 367 368 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head); 369 i++) 370 INIT_HLIST_HEAD(&list[i]); 371 372 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 373 if (!lsm->enabled) 374 lsm->enabled = &lsm_enabled_true; 375 prepare_lsm(lsm); 376 initialize_lsm(lsm); 377 } 378 379 return 0; 380 } 381 382 /** 383 * security_init - initializes the security framework 384 * 385 * This should be called early in the kernel initialization sequence. 386 */ 387 int __init security_init(void) 388 { 389 struct lsm_info *lsm; 390 391 pr_info("Security Framework initializing\n"); 392 393 /* 394 * Append the names of the early LSM modules now that kmalloc() is 395 * available 396 */ 397 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 398 if (lsm->enabled) 399 lsm_append(lsm->name, &lsm_names); 400 } 401 402 /* Load LSMs in specified order. */ 403 ordered_lsm_init(); 404 405 return 0; 406 } 407 408 /* Save user chosen LSM */ 409 static int __init choose_major_lsm(char *str) 410 { 411 chosen_major_lsm = str; 412 return 1; 413 } 414 __setup("security=", choose_major_lsm); 415 416 /* Explicitly choose LSM initialization order. */ 417 static int __init choose_lsm_order(char *str) 418 { 419 chosen_lsm_order = str; 420 return 1; 421 } 422 __setup("lsm=", choose_lsm_order); 423 424 /* Enable LSM order debugging. */ 425 static int __init enable_debug(char *str) 426 { 427 debug = true; 428 return 1; 429 } 430 __setup("lsm.debug", enable_debug); 431 432 static bool match_last_lsm(const char *list, const char *lsm) 433 { 434 const char *last; 435 436 if (WARN_ON(!list || !lsm)) 437 return false; 438 last = strrchr(list, ','); 439 if (last) 440 /* Pass the comma, strcmp() will check for '\0' */ 441 last++; 442 else 443 last = list; 444 return !strcmp(last, lsm); 445 } 446 447 static int lsm_append(const char *new, char **result) 448 { 449 char *cp; 450 451 if (*result == NULL) { 452 *result = kstrdup(new, GFP_KERNEL); 453 if (*result == NULL) 454 return -ENOMEM; 455 } else { 456 /* Check if it is the last registered name */ 457 if (match_last_lsm(*result, new)) 458 return 0; 459 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 460 if (cp == NULL) 461 return -ENOMEM; 462 kfree(*result); 463 *result = cp; 464 } 465 return 0; 466 } 467 468 /** 469 * security_add_hooks - Add a modules hooks to the hook lists. 470 * @hooks: the hooks to add 471 * @count: the number of hooks to add 472 * @lsm: the name of the security module 473 * 474 * Each LSM has to register its hooks with the infrastructure. 475 */ 476 void __init security_add_hooks(struct security_hook_list *hooks, int count, 477 char *lsm) 478 { 479 int i; 480 481 for (i = 0; i < count; i++) { 482 hooks[i].lsm = lsm; 483 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 484 } 485 486 /* 487 * Don't try to append during early_security_init(), we'll come back 488 * and fix this up afterwards. 489 */ 490 if (slab_is_available()) { 491 if (lsm_append(lsm, &lsm_names) < 0) 492 panic("%s - Cannot get early memory.\n", __func__); 493 } 494 } 495 496 int call_blocking_lsm_notifier(enum lsm_event event, void *data) 497 { 498 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain, 499 event, data); 500 } 501 EXPORT_SYMBOL(call_blocking_lsm_notifier); 502 503 int register_blocking_lsm_notifier(struct notifier_block *nb) 504 { 505 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain, 506 nb); 507 } 508 EXPORT_SYMBOL(register_blocking_lsm_notifier); 509 510 int unregister_blocking_lsm_notifier(struct notifier_block *nb) 511 { 512 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain, 513 nb); 514 } 515 EXPORT_SYMBOL(unregister_blocking_lsm_notifier); 516 517 /** 518 * lsm_cred_alloc - allocate a composite cred blob 519 * @cred: the cred that needs a blob 520 * @gfp: allocation type 521 * 522 * Allocate the cred blob for all the modules 523 * 524 * Returns 0, or -ENOMEM if memory can't be allocated. 525 */ 526 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp) 527 { 528 if (blob_sizes.lbs_cred == 0) { 529 cred->security = NULL; 530 return 0; 531 } 532 533 cred->security = kzalloc(blob_sizes.lbs_cred, gfp); 534 if (cred->security == NULL) 535 return -ENOMEM; 536 return 0; 537 } 538 539 /** 540 * lsm_early_cred - during initialization allocate a composite cred blob 541 * @cred: the cred that needs a blob 542 * 543 * Allocate the cred blob for all the modules 544 */ 545 static void __init lsm_early_cred(struct cred *cred) 546 { 547 int rc = lsm_cred_alloc(cred, GFP_KERNEL); 548 549 if (rc) 550 panic("%s: Early cred alloc failed.\n", __func__); 551 } 552 553 /** 554 * lsm_file_alloc - allocate a composite file blob 555 * @file: the file that needs a blob 556 * 557 * Allocate the file blob for all the modules 558 * 559 * Returns 0, or -ENOMEM if memory can't be allocated. 560 */ 561 static int lsm_file_alloc(struct file *file) 562 { 563 if (!lsm_file_cache) { 564 file->f_security = NULL; 565 return 0; 566 } 567 568 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL); 569 if (file->f_security == NULL) 570 return -ENOMEM; 571 return 0; 572 } 573 574 /** 575 * lsm_inode_alloc - allocate a composite inode blob 576 * @inode: the inode that needs a blob 577 * 578 * Allocate the inode blob for all the modules 579 * 580 * Returns 0, or -ENOMEM if memory can't be allocated. 581 */ 582 int lsm_inode_alloc(struct inode *inode) 583 { 584 if (!lsm_inode_cache) { 585 inode->i_security = NULL; 586 return 0; 587 } 588 589 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS); 590 if (inode->i_security == NULL) 591 return -ENOMEM; 592 return 0; 593 } 594 595 /** 596 * lsm_task_alloc - allocate a composite task blob 597 * @task: the task that needs a blob 598 * 599 * Allocate the task blob for all the modules 600 * 601 * Returns 0, or -ENOMEM if memory can't be allocated. 602 */ 603 static int lsm_task_alloc(struct task_struct *task) 604 { 605 if (blob_sizes.lbs_task == 0) { 606 task->security = NULL; 607 return 0; 608 } 609 610 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL); 611 if (task->security == NULL) 612 return -ENOMEM; 613 return 0; 614 } 615 616 /** 617 * lsm_ipc_alloc - allocate a composite ipc blob 618 * @kip: the ipc that needs a blob 619 * 620 * Allocate the ipc blob for all the modules 621 * 622 * Returns 0, or -ENOMEM if memory can't be allocated. 623 */ 624 static int lsm_ipc_alloc(struct kern_ipc_perm *kip) 625 { 626 if (blob_sizes.lbs_ipc == 0) { 627 kip->security = NULL; 628 return 0; 629 } 630 631 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL); 632 if (kip->security == NULL) 633 return -ENOMEM; 634 return 0; 635 } 636 637 /** 638 * lsm_msg_msg_alloc - allocate a composite msg_msg blob 639 * @mp: the msg_msg that needs a blob 640 * 641 * Allocate the ipc blob for all the modules 642 * 643 * Returns 0, or -ENOMEM if memory can't be allocated. 644 */ 645 static int lsm_msg_msg_alloc(struct msg_msg *mp) 646 { 647 if (blob_sizes.lbs_msg_msg == 0) { 648 mp->security = NULL; 649 return 0; 650 } 651 652 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL); 653 if (mp->security == NULL) 654 return -ENOMEM; 655 return 0; 656 } 657 658 /** 659 * lsm_early_task - during initialization allocate a composite task blob 660 * @task: the task that needs a blob 661 * 662 * Allocate the task blob for all the modules 663 */ 664 static void __init lsm_early_task(struct task_struct *task) 665 { 666 int rc = lsm_task_alloc(task); 667 668 if (rc) 669 panic("%s: Early task alloc failed.\n", __func__); 670 } 671 672 /* 673 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and 674 * can be accessed with: 675 * 676 * LSM_RET_DEFAULT(<hook_name>) 677 * 678 * The macros below define static constants for the default value of each 679 * LSM hook. 680 */ 681 #define LSM_RET_DEFAULT(NAME) (NAME##_default) 682 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME) 683 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \ 684 static const int LSM_RET_DEFAULT(NAME) = (DEFAULT); 685 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 686 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME) 687 688 #include <linux/lsm_hook_defs.h> 689 #undef LSM_HOOK 690 691 /* 692 * Hook list operation macros. 693 * 694 * call_void_hook: 695 * This is a hook that does not return a value. 696 * 697 * call_int_hook: 698 * This is a hook that returns a value. 699 */ 700 701 #define call_void_hook(FUNC, ...) \ 702 do { \ 703 struct security_hook_list *P; \ 704 \ 705 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 706 P->hook.FUNC(__VA_ARGS__); \ 707 } while (0) 708 709 #define call_int_hook(FUNC, IRC, ...) ({ \ 710 int RC = IRC; \ 711 do { \ 712 struct security_hook_list *P; \ 713 \ 714 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 715 RC = P->hook.FUNC(__VA_ARGS__); \ 716 if (RC != 0) \ 717 break; \ 718 } \ 719 } while (0); \ 720 RC; \ 721 }) 722 723 /* Security operations */ 724 725 int security_binder_set_context_mgr(struct task_struct *mgr) 726 { 727 return call_int_hook(binder_set_context_mgr, 0, mgr); 728 } 729 730 int security_binder_transaction(struct task_struct *from, 731 struct task_struct *to) 732 { 733 return call_int_hook(binder_transaction, 0, from, to); 734 } 735 736 int security_binder_transfer_binder(struct task_struct *from, 737 struct task_struct *to) 738 { 739 return call_int_hook(binder_transfer_binder, 0, from, to); 740 } 741 742 int security_binder_transfer_file(struct task_struct *from, 743 struct task_struct *to, struct file *file) 744 { 745 return call_int_hook(binder_transfer_file, 0, from, to, file); 746 } 747 748 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 749 { 750 return call_int_hook(ptrace_access_check, 0, child, mode); 751 } 752 753 int security_ptrace_traceme(struct task_struct *parent) 754 { 755 return call_int_hook(ptrace_traceme, 0, parent); 756 } 757 758 int security_capget(struct task_struct *target, 759 kernel_cap_t *effective, 760 kernel_cap_t *inheritable, 761 kernel_cap_t *permitted) 762 { 763 return call_int_hook(capget, 0, target, 764 effective, inheritable, permitted); 765 } 766 767 int security_capset(struct cred *new, const struct cred *old, 768 const kernel_cap_t *effective, 769 const kernel_cap_t *inheritable, 770 const kernel_cap_t *permitted) 771 { 772 return call_int_hook(capset, 0, new, old, 773 effective, inheritable, permitted); 774 } 775 776 int security_capable(const struct cred *cred, 777 struct user_namespace *ns, 778 int cap, 779 unsigned int opts) 780 { 781 return call_int_hook(capable, 0, cred, ns, cap, opts); 782 } 783 784 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 785 { 786 return call_int_hook(quotactl, 0, cmds, type, id, sb); 787 } 788 789 int security_quota_on(struct dentry *dentry) 790 { 791 return call_int_hook(quota_on, 0, dentry); 792 } 793 794 int security_syslog(int type) 795 { 796 return call_int_hook(syslog, 0, type); 797 } 798 799 int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 800 { 801 return call_int_hook(settime, 0, ts, tz); 802 } 803 804 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 805 { 806 struct security_hook_list *hp; 807 int cap_sys_admin = 1; 808 int rc; 809 810 /* 811 * The module will respond with a positive value if 812 * it thinks the __vm_enough_memory() call should be 813 * made with the cap_sys_admin set. If all of the modules 814 * agree that it should be set it will. If any module 815 * thinks it should not be set it won't. 816 */ 817 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 818 rc = hp->hook.vm_enough_memory(mm, pages); 819 if (rc <= 0) { 820 cap_sys_admin = 0; 821 break; 822 } 823 } 824 return __vm_enough_memory(mm, pages, cap_sys_admin); 825 } 826 827 int security_bprm_creds_for_exec(struct linux_binprm *bprm) 828 { 829 return call_int_hook(bprm_creds_for_exec, 0, bprm); 830 } 831 832 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file) 833 { 834 return call_int_hook(bprm_creds_from_file, 0, bprm, file); 835 } 836 837 int security_bprm_check(struct linux_binprm *bprm) 838 { 839 int ret; 840 841 ret = call_int_hook(bprm_check_security, 0, bprm); 842 if (ret) 843 return ret; 844 return ima_bprm_check(bprm); 845 } 846 847 void security_bprm_committing_creds(struct linux_binprm *bprm) 848 { 849 call_void_hook(bprm_committing_creds, bprm); 850 } 851 852 void security_bprm_committed_creds(struct linux_binprm *bprm) 853 { 854 call_void_hook(bprm_committed_creds, bprm); 855 } 856 857 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) 858 { 859 return call_int_hook(fs_context_dup, 0, fc, src_fc); 860 } 861 862 int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param) 863 { 864 return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param); 865 } 866 867 int security_sb_alloc(struct super_block *sb) 868 { 869 return call_int_hook(sb_alloc_security, 0, sb); 870 } 871 872 void security_sb_free(struct super_block *sb) 873 { 874 call_void_hook(sb_free_security, sb); 875 } 876 877 void security_free_mnt_opts(void **mnt_opts) 878 { 879 if (!*mnt_opts) 880 return; 881 call_void_hook(sb_free_mnt_opts, *mnt_opts); 882 *mnt_opts = NULL; 883 } 884 EXPORT_SYMBOL(security_free_mnt_opts); 885 886 int security_sb_eat_lsm_opts(char *options, void **mnt_opts) 887 { 888 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts); 889 } 890 EXPORT_SYMBOL(security_sb_eat_lsm_opts); 891 892 int security_sb_remount(struct super_block *sb, 893 void *mnt_opts) 894 { 895 return call_int_hook(sb_remount, 0, sb, mnt_opts); 896 } 897 EXPORT_SYMBOL(security_sb_remount); 898 899 int security_sb_kern_mount(struct super_block *sb) 900 { 901 return call_int_hook(sb_kern_mount, 0, sb); 902 } 903 904 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 905 { 906 return call_int_hook(sb_show_options, 0, m, sb); 907 } 908 909 int security_sb_statfs(struct dentry *dentry) 910 { 911 return call_int_hook(sb_statfs, 0, dentry); 912 } 913 914 int security_sb_mount(const char *dev_name, const struct path *path, 915 const char *type, unsigned long flags, void *data) 916 { 917 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data); 918 } 919 920 int security_sb_umount(struct vfsmount *mnt, int flags) 921 { 922 return call_int_hook(sb_umount, 0, mnt, flags); 923 } 924 925 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path) 926 { 927 return call_int_hook(sb_pivotroot, 0, old_path, new_path); 928 } 929 930 int security_sb_set_mnt_opts(struct super_block *sb, 931 void *mnt_opts, 932 unsigned long kern_flags, 933 unsigned long *set_kern_flags) 934 { 935 return call_int_hook(sb_set_mnt_opts, 936 mnt_opts ? -EOPNOTSUPP : 0, sb, 937 mnt_opts, kern_flags, set_kern_flags); 938 } 939 EXPORT_SYMBOL(security_sb_set_mnt_opts); 940 941 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 942 struct super_block *newsb, 943 unsigned long kern_flags, 944 unsigned long *set_kern_flags) 945 { 946 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb, 947 kern_flags, set_kern_flags); 948 } 949 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 950 951 int security_add_mnt_opt(const char *option, const char *val, int len, 952 void **mnt_opts) 953 { 954 return call_int_hook(sb_add_mnt_opt, -EINVAL, 955 option, val, len, mnt_opts); 956 } 957 EXPORT_SYMBOL(security_add_mnt_opt); 958 959 int security_move_mount(const struct path *from_path, const struct path *to_path) 960 { 961 return call_int_hook(move_mount, 0, from_path, to_path); 962 } 963 964 int security_path_notify(const struct path *path, u64 mask, 965 unsigned int obj_type) 966 { 967 return call_int_hook(path_notify, 0, path, mask, obj_type); 968 } 969 970 int security_inode_alloc(struct inode *inode) 971 { 972 int rc = lsm_inode_alloc(inode); 973 974 if (unlikely(rc)) 975 return rc; 976 rc = call_int_hook(inode_alloc_security, 0, inode); 977 if (unlikely(rc)) 978 security_inode_free(inode); 979 return rc; 980 } 981 982 static void inode_free_by_rcu(struct rcu_head *head) 983 { 984 /* 985 * The rcu head is at the start of the inode blob 986 */ 987 kmem_cache_free(lsm_inode_cache, head); 988 } 989 990 void security_inode_free(struct inode *inode) 991 { 992 integrity_inode_free(inode); 993 call_void_hook(inode_free_security, inode); 994 /* 995 * The inode may still be referenced in a path walk and 996 * a call to security_inode_permission() can be made 997 * after inode_free_security() is called. Ideally, the VFS 998 * wouldn't do this, but fixing that is a much harder 999 * job. For now, simply free the i_security via RCU, and 1000 * leave the current inode->i_security pointer intact. 1001 * The inode will be freed after the RCU grace period too. 1002 */ 1003 if (inode->i_security) 1004 call_rcu((struct rcu_head *)inode->i_security, 1005 inode_free_by_rcu); 1006 } 1007 1008 int security_dentry_init_security(struct dentry *dentry, int mode, 1009 const struct qstr *name, void **ctx, 1010 u32 *ctxlen) 1011 { 1012 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode, 1013 name, ctx, ctxlen); 1014 } 1015 EXPORT_SYMBOL(security_dentry_init_security); 1016 1017 int security_dentry_create_files_as(struct dentry *dentry, int mode, 1018 struct qstr *name, 1019 const struct cred *old, struct cred *new) 1020 { 1021 return call_int_hook(dentry_create_files_as, 0, dentry, mode, 1022 name, old, new); 1023 } 1024 EXPORT_SYMBOL(security_dentry_create_files_as); 1025 1026 int security_inode_init_security(struct inode *inode, struct inode *dir, 1027 const struct qstr *qstr, 1028 const initxattrs initxattrs, void *fs_data) 1029 { 1030 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 1031 struct xattr *lsm_xattr, *evm_xattr, *xattr; 1032 int ret; 1033 1034 if (unlikely(IS_PRIVATE(inode))) 1035 return 0; 1036 1037 if (!initxattrs) 1038 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, 1039 dir, qstr, NULL, NULL, NULL); 1040 memset(new_xattrs, 0, sizeof(new_xattrs)); 1041 lsm_xattr = new_xattrs; 1042 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr, 1043 &lsm_xattr->name, 1044 &lsm_xattr->value, 1045 &lsm_xattr->value_len); 1046 if (ret) 1047 goto out; 1048 1049 evm_xattr = lsm_xattr + 1; 1050 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 1051 if (ret) 1052 goto out; 1053 ret = initxattrs(inode, new_xattrs, fs_data); 1054 out: 1055 for (xattr = new_xattrs; xattr->value != NULL; xattr++) 1056 kfree(xattr->value); 1057 return (ret == -EOPNOTSUPP) ? 0 : ret; 1058 } 1059 EXPORT_SYMBOL(security_inode_init_security); 1060 1061 int security_old_inode_init_security(struct inode *inode, struct inode *dir, 1062 const struct qstr *qstr, const char **name, 1063 void **value, size_t *len) 1064 { 1065 if (unlikely(IS_PRIVATE(inode))) 1066 return -EOPNOTSUPP; 1067 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, 1068 qstr, name, value, len); 1069 } 1070 EXPORT_SYMBOL(security_old_inode_init_security); 1071 1072 #ifdef CONFIG_SECURITY_PATH 1073 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode, 1074 unsigned int dev) 1075 { 1076 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1077 return 0; 1078 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev); 1079 } 1080 EXPORT_SYMBOL(security_path_mknod); 1081 1082 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode) 1083 { 1084 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1085 return 0; 1086 return call_int_hook(path_mkdir, 0, dir, dentry, mode); 1087 } 1088 EXPORT_SYMBOL(security_path_mkdir); 1089 1090 int security_path_rmdir(const struct path *dir, struct dentry *dentry) 1091 { 1092 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1093 return 0; 1094 return call_int_hook(path_rmdir, 0, dir, dentry); 1095 } 1096 1097 int security_path_unlink(const struct path *dir, struct dentry *dentry) 1098 { 1099 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1100 return 0; 1101 return call_int_hook(path_unlink, 0, dir, dentry); 1102 } 1103 EXPORT_SYMBOL(security_path_unlink); 1104 1105 int security_path_symlink(const struct path *dir, struct dentry *dentry, 1106 const char *old_name) 1107 { 1108 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1109 return 0; 1110 return call_int_hook(path_symlink, 0, dir, dentry, old_name); 1111 } 1112 1113 int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 1114 struct dentry *new_dentry) 1115 { 1116 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1117 return 0; 1118 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry); 1119 } 1120 1121 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 1122 const struct path *new_dir, struct dentry *new_dentry, 1123 unsigned int flags) 1124 { 1125 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1126 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1127 return 0; 1128 1129 if (flags & RENAME_EXCHANGE) { 1130 int err = call_int_hook(path_rename, 0, new_dir, new_dentry, 1131 old_dir, old_dentry); 1132 if (err) 1133 return err; 1134 } 1135 1136 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir, 1137 new_dentry); 1138 } 1139 EXPORT_SYMBOL(security_path_rename); 1140 1141 int security_path_truncate(const struct path *path) 1142 { 1143 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1144 return 0; 1145 return call_int_hook(path_truncate, 0, path); 1146 } 1147 1148 int security_path_chmod(const struct path *path, umode_t mode) 1149 { 1150 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1151 return 0; 1152 return call_int_hook(path_chmod, 0, path, mode); 1153 } 1154 1155 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 1156 { 1157 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1158 return 0; 1159 return call_int_hook(path_chown, 0, path, uid, gid); 1160 } 1161 1162 int security_path_chroot(const struct path *path) 1163 { 1164 return call_int_hook(path_chroot, 0, path); 1165 } 1166 #endif 1167 1168 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 1169 { 1170 if (unlikely(IS_PRIVATE(dir))) 1171 return 0; 1172 return call_int_hook(inode_create, 0, dir, dentry, mode); 1173 } 1174 EXPORT_SYMBOL_GPL(security_inode_create); 1175 1176 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 1177 struct dentry *new_dentry) 1178 { 1179 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1180 return 0; 1181 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry); 1182 } 1183 1184 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 1185 { 1186 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1187 return 0; 1188 return call_int_hook(inode_unlink, 0, dir, dentry); 1189 } 1190 1191 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 1192 const char *old_name) 1193 { 1194 if (unlikely(IS_PRIVATE(dir))) 1195 return 0; 1196 return call_int_hook(inode_symlink, 0, dir, dentry, old_name); 1197 } 1198 1199 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1200 { 1201 if (unlikely(IS_PRIVATE(dir))) 1202 return 0; 1203 return call_int_hook(inode_mkdir, 0, dir, dentry, mode); 1204 } 1205 EXPORT_SYMBOL_GPL(security_inode_mkdir); 1206 1207 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 1208 { 1209 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1210 return 0; 1211 return call_int_hook(inode_rmdir, 0, dir, dentry); 1212 } 1213 1214 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 1215 { 1216 if (unlikely(IS_PRIVATE(dir))) 1217 return 0; 1218 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev); 1219 } 1220 1221 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 1222 struct inode *new_dir, struct dentry *new_dentry, 1223 unsigned int flags) 1224 { 1225 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1226 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1227 return 0; 1228 1229 if (flags & RENAME_EXCHANGE) { 1230 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry, 1231 old_dir, old_dentry); 1232 if (err) 1233 return err; 1234 } 1235 1236 return call_int_hook(inode_rename, 0, old_dir, old_dentry, 1237 new_dir, new_dentry); 1238 } 1239 1240 int security_inode_readlink(struct dentry *dentry) 1241 { 1242 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1243 return 0; 1244 return call_int_hook(inode_readlink, 0, dentry); 1245 } 1246 1247 int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 1248 bool rcu) 1249 { 1250 if (unlikely(IS_PRIVATE(inode))) 1251 return 0; 1252 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu); 1253 } 1254 1255 int security_inode_permission(struct inode *inode, int mask) 1256 { 1257 if (unlikely(IS_PRIVATE(inode))) 1258 return 0; 1259 return call_int_hook(inode_permission, 0, inode, mask); 1260 } 1261 1262 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 1263 { 1264 int ret; 1265 1266 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1267 return 0; 1268 ret = call_int_hook(inode_setattr, 0, dentry, attr); 1269 if (ret) 1270 return ret; 1271 return evm_inode_setattr(dentry, attr); 1272 } 1273 EXPORT_SYMBOL_GPL(security_inode_setattr); 1274 1275 int security_inode_getattr(const struct path *path) 1276 { 1277 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1278 return 0; 1279 return call_int_hook(inode_getattr, 0, path); 1280 } 1281 1282 int security_inode_setxattr(struct dentry *dentry, const char *name, 1283 const void *value, size_t size, int flags) 1284 { 1285 int ret; 1286 1287 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1288 return 0; 1289 /* 1290 * SELinux and Smack integrate the cap call, 1291 * so assume that all LSMs supplying this call do so. 1292 */ 1293 ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size, 1294 flags); 1295 1296 if (ret == 1) 1297 ret = cap_inode_setxattr(dentry, name, value, size, flags); 1298 if (ret) 1299 return ret; 1300 ret = ima_inode_setxattr(dentry, name, value, size); 1301 if (ret) 1302 return ret; 1303 return evm_inode_setxattr(dentry, name, value, size); 1304 } 1305 1306 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 1307 const void *value, size_t size, int flags) 1308 { 1309 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1310 return; 1311 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 1312 evm_inode_post_setxattr(dentry, name, value, size); 1313 } 1314 1315 int security_inode_getxattr(struct dentry *dentry, const char *name) 1316 { 1317 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1318 return 0; 1319 return call_int_hook(inode_getxattr, 0, dentry, name); 1320 } 1321 1322 int security_inode_listxattr(struct dentry *dentry) 1323 { 1324 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1325 return 0; 1326 return call_int_hook(inode_listxattr, 0, dentry); 1327 } 1328 1329 int security_inode_removexattr(struct dentry *dentry, const char *name) 1330 { 1331 int ret; 1332 1333 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1334 return 0; 1335 /* 1336 * SELinux and Smack integrate the cap call, 1337 * so assume that all LSMs supplying this call do so. 1338 */ 1339 ret = call_int_hook(inode_removexattr, 1, dentry, name); 1340 if (ret == 1) 1341 ret = cap_inode_removexattr(dentry, name); 1342 if (ret) 1343 return ret; 1344 ret = ima_inode_removexattr(dentry, name); 1345 if (ret) 1346 return ret; 1347 return evm_inode_removexattr(dentry, name); 1348 } 1349 1350 int security_inode_need_killpriv(struct dentry *dentry) 1351 { 1352 return call_int_hook(inode_need_killpriv, 0, dentry); 1353 } 1354 1355 int security_inode_killpriv(struct dentry *dentry) 1356 { 1357 return call_int_hook(inode_killpriv, 0, dentry); 1358 } 1359 1360 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc) 1361 { 1362 struct security_hook_list *hp; 1363 int rc; 1364 1365 if (unlikely(IS_PRIVATE(inode))) 1366 return LSM_RET_DEFAULT(inode_getsecurity); 1367 /* 1368 * Only one module will provide an attribute with a given name. 1369 */ 1370 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) { 1371 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc); 1372 if (rc != LSM_RET_DEFAULT(inode_getsecurity)) 1373 return rc; 1374 } 1375 return LSM_RET_DEFAULT(inode_getsecurity); 1376 } 1377 1378 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 1379 { 1380 struct security_hook_list *hp; 1381 int rc; 1382 1383 if (unlikely(IS_PRIVATE(inode))) 1384 return LSM_RET_DEFAULT(inode_setsecurity); 1385 /* 1386 * Only one module will provide an attribute with a given name. 1387 */ 1388 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) { 1389 rc = hp->hook.inode_setsecurity(inode, name, value, size, 1390 flags); 1391 if (rc != LSM_RET_DEFAULT(inode_setsecurity)) 1392 return rc; 1393 } 1394 return LSM_RET_DEFAULT(inode_setsecurity); 1395 } 1396 1397 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 1398 { 1399 if (unlikely(IS_PRIVATE(inode))) 1400 return 0; 1401 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size); 1402 } 1403 EXPORT_SYMBOL(security_inode_listsecurity); 1404 1405 void security_inode_getsecid(struct inode *inode, u32 *secid) 1406 { 1407 call_void_hook(inode_getsecid, inode, secid); 1408 } 1409 1410 int security_inode_copy_up(struct dentry *src, struct cred **new) 1411 { 1412 return call_int_hook(inode_copy_up, 0, src, new); 1413 } 1414 EXPORT_SYMBOL(security_inode_copy_up); 1415 1416 int security_inode_copy_up_xattr(const char *name) 1417 { 1418 struct security_hook_list *hp; 1419 int rc; 1420 1421 /* 1422 * The implementation can return 0 (accept the xattr), 1 (discard the 1423 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or 1424 * any other error code incase of an error. 1425 */ 1426 hlist_for_each_entry(hp, 1427 &security_hook_heads.inode_copy_up_xattr, list) { 1428 rc = hp->hook.inode_copy_up_xattr(name); 1429 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr)) 1430 return rc; 1431 } 1432 1433 return LSM_RET_DEFAULT(inode_copy_up_xattr); 1434 } 1435 EXPORT_SYMBOL(security_inode_copy_up_xattr); 1436 1437 int security_kernfs_init_security(struct kernfs_node *kn_dir, 1438 struct kernfs_node *kn) 1439 { 1440 return call_int_hook(kernfs_init_security, 0, kn_dir, kn); 1441 } 1442 1443 int security_file_permission(struct file *file, int mask) 1444 { 1445 int ret; 1446 1447 ret = call_int_hook(file_permission, 0, file, mask); 1448 if (ret) 1449 return ret; 1450 1451 return fsnotify_perm(file, mask); 1452 } 1453 1454 int security_file_alloc(struct file *file) 1455 { 1456 int rc = lsm_file_alloc(file); 1457 1458 if (rc) 1459 return rc; 1460 rc = call_int_hook(file_alloc_security, 0, file); 1461 if (unlikely(rc)) 1462 security_file_free(file); 1463 return rc; 1464 } 1465 1466 void security_file_free(struct file *file) 1467 { 1468 void *blob; 1469 1470 call_void_hook(file_free_security, file); 1471 1472 blob = file->f_security; 1473 if (blob) { 1474 file->f_security = NULL; 1475 kmem_cache_free(lsm_file_cache, blob); 1476 } 1477 } 1478 1479 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1480 { 1481 return call_int_hook(file_ioctl, 0, file, cmd, arg); 1482 } 1483 EXPORT_SYMBOL_GPL(security_file_ioctl); 1484 1485 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 1486 { 1487 /* 1488 * Does we have PROT_READ and does the application expect 1489 * it to imply PROT_EXEC? If not, nothing to talk about... 1490 */ 1491 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 1492 return prot; 1493 if (!(current->personality & READ_IMPLIES_EXEC)) 1494 return prot; 1495 /* 1496 * if that's an anonymous mapping, let it. 1497 */ 1498 if (!file) 1499 return prot | PROT_EXEC; 1500 /* 1501 * ditto if it's not on noexec mount, except that on !MMU we need 1502 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 1503 */ 1504 if (!path_noexec(&file->f_path)) { 1505 #ifndef CONFIG_MMU 1506 if (file->f_op->mmap_capabilities) { 1507 unsigned caps = file->f_op->mmap_capabilities(file); 1508 if (!(caps & NOMMU_MAP_EXEC)) 1509 return prot; 1510 } 1511 #endif 1512 return prot | PROT_EXEC; 1513 } 1514 /* anything on noexec mount won't get PROT_EXEC */ 1515 return prot; 1516 } 1517 1518 int security_mmap_file(struct file *file, unsigned long prot, 1519 unsigned long flags) 1520 { 1521 int ret; 1522 ret = call_int_hook(mmap_file, 0, file, prot, 1523 mmap_prot(file, prot), flags); 1524 if (ret) 1525 return ret; 1526 return ima_file_mmap(file, prot); 1527 } 1528 1529 int security_mmap_addr(unsigned long addr) 1530 { 1531 return call_int_hook(mmap_addr, 0, addr); 1532 } 1533 1534 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 1535 unsigned long prot) 1536 { 1537 int ret; 1538 1539 ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot); 1540 if (ret) 1541 return ret; 1542 return ima_file_mprotect(vma, prot); 1543 } 1544 1545 int security_file_lock(struct file *file, unsigned int cmd) 1546 { 1547 return call_int_hook(file_lock, 0, file, cmd); 1548 } 1549 1550 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 1551 { 1552 return call_int_hook(file_fcntl, 0, file, cmd, arg); 1553 } 1554 1555 void security_file_set_fowner(struct file *file) 1556 { 1557 call_void_hook(file_set_fowner, file); 1558 } 1559 1560 int security_file_send_sigiotask(struct task_struct *tsk, 1561 struct fown_struct *fown, int sig) 1562 { 1563 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig); 1564 } 1565 1566 int security_file_receive(struct file *file) 1567 { 1568 return call_int_hook(file_receive, 0, file); 1569 } 1570 1571 int security_file_open(struct file *file) 1572 { 1573 int ret; 1574 1575 ret = call_int_hook(file_open, 0, file); 1576 if (ret) 1577 return ret; 1578 1579 return fsnotify_perm(file, MAY_OPEN); 1580 } 1581 1582 int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 1583 { 1584 int rc = lsm_task_alloc(task); 1585 1586 if (rc) 1587 return rc; 1588 rc = call_int_hook(task_alloc, 0, task, clone_flags); 1589 if (unlikely(rc)) 1590 security_task_free(task); 1591 return rc; 1592 } 1593 1594 void security_task_free(struct task_struct *task) 1595 { 1596 call_void_hook(task_free, task); 1597 1598 kfree(task->security); 1599 task->security = NULL; 1600 } 1601 1602 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 1603 { 1604 int rc = lsm_cred_alloc(cred, gfp); 1605 1606 if (rc) 1607 return rc; 1608 1609 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp); 1610 if (unlikely(rc)) 1611 security_cred_free(cred); 1612 return rc; 1613 } 1614 1615 void security_cred_free(struct cred *cred) 1616 { 1617 /* 1618 * There is a failure case in prepare_creds() that 1619 * may result in a call here with ->security being NULL. 1620 */ 1621 if (unlikely(cred->security == NULL)) 1622 return; 1623 1624 call_void_hook(cred_free, cred); 1625 1626 kfree(cred->security); 1627 cred->security = NULL; 1628 } 1629 1630 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 1631 { 1632 int rc = lsm_cred_alloc(new, gfp); 1633 1634 if (rc) 1635 return rc; 1636 1637 rc = call_int_hook(cred_prepare, 0, new, old, gfp); 1638 if (unlikely(rc)) 1639 security_cred_free(new); 1640 return rc; 1641 } 1642 1643 void security_transfer_creds(struct cred *new, const struct cred *old) 1644 { 1645 call_void_hook(cred_transfer, new, old); 1646 } 1647 1648 void security_cred_getsecid(const struct cred *c, u32 *secid) 1649 { 1650 *secid = 0; 1651 call_void_hook(cred_getsecid, c, secid); 1652 } 1653 EXPORT_SYMBOL(security_cred_getsecid); 1654 1655 int security_kernel_act_as(struct cred *new, u32 secid) 1656 { 1657 return call_int_hook(kernel_act_as, 0, new, secid); 1658 } 1659 1660 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 1661 { 1662 return call_int_hook(kernel_create_files_as, 0, new, inode); 1663 } 1664 1665 int security_kernel_module_request(char *kmod_name) 1666 { 1667 int ret; 1668 1669 ret = call_int_hook(kernel_module_request, 0, kmod_name); 1670 if (ret) 1671 return ret; 1672 return integrity_kernel_module_request(kmod_name); 1673 } 1674 1675 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id, 1676 bool contents) 1677 { 1678 int ret; 1679 1680 ret = call_int_hook(kernel_read_file, 0, file, id, contents); 1681 if (ret) 1682 return ret; 1683 return ima_read_file(file, id, contents); 1684 } 1685 EXPORT_SYMBOL_GPL(security_kernel_read_file); 1686 1687 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 1688 enum kernel_read_file_id id) 1689 { 1690 int ret; 1691 1692 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id); 1693 if (ret) 1694 return ret; 1695 return ima_post_read_file(file, buf, size, id); 1696 } 1697 EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 1698 1699 int security_kernel_load_data(enum kernel_load_data_id id, bool contents) 1700 { 1701 int ret; 1702 1703 ret = call_int_hook(kernel_load_data, 0, id, contents); 1704 if (ret) 1705 return ret; 1706 return ima_load_data(id, contents); 1707 } 1708 EXPORT_SYMBOL_GPL(security_kernel_load_data); 1709 1710 int security_kernel_post_load_data(char *buf, loff_t size, 1711 enum kernel_load_data_id id, 1712 char *description) 1713 { 1714 int ret; 1715 1716 ret = call_int_hook(kernel_post_load_data, 0, buf, size, id, 1717 description); 1718 if (ret) 1719 return ret; 1720 return ima_post_load_data(buf, size, id, description); 1721 } 1722 EXPORT_SYMBOL_GPL(security_kernel_post_load_data); 1723 1724 int security_task_fix_setuid(struct cred *new, const struct cred *old, 1725 int flags) 1726 { 1727 return call_int_hook(task_fix_setuid, 0, new, old, flags); 1728 } 1729 1730 int security_task_fix_setgid(struct cred *new, const struct cred *old, 1731 int flags) 1732 { 1733 return call_int_hook(task_fix_setgid, 0, new, old, flags); 1734 } 1735 1736 int security_task_setpgid(struct task_struct *p, pid_t pgid) 1737 { 1738 return call_int_hook(task_setpgid, 0, p, pgid); 1739 } 1740 1741 int security_task_getpgid(struct task_struct *p) 1742 { 1743 return call_int_hook(task_getpgid, 0, p); 1744 } 1745 1746 int security_task_getsid(struct task_struct *p) 1747 { 1748 return call_int_hook(task_getsid, 0, p); 1749 } 1750 1751 void security_task_getsecid(struct task_struct *p, u32 *secid) 1752 { 1753 *secid = 0; 1754 call_void_hook(task_getsecid, p, secid); 1755 } 1756 EXPORT_SYMBOL(security_task_getsecid); 1757 1758 int security_task_setnice(struct task_struct *p, int nice) 1759 { 1760 return call_int_hook(task_setnice, 0, p, nice); 1761 } 1762 1763 int security_task_setioprio(struct task_struct *p, int ioprio) 1764 { 1765 return call_int_hook(task_setioprio, 0, p, ioprio); 1766 } 1767 1768 int security_task_getioprio(struct task_struct *p) 1769 { 1770 return call_int_hook(task_getioprio, 0, p); 1771 } 1772 1773 int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 1774 unsigned int flags) 1775 { 1776 return call_int_hook(task_prlimit, 0, cred, tcred, flags); 1777 } 1778 1779 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 1780 struct rlimit *new_rlim) 1781 { 1782 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim); 1783 } 1784 1785 int security_task_setscheduler(struct task_struct *p) 1786 { 1787 return call_int_hook(task_setscheduler, 0, p); 1788 } 1789 1790 int security_task_getscheduler(struct task_struct *p) 1791 { 1792 return call_int_hook(task_getscheduler, 0, p); 1793 } 1794 1795 int security_task_movememory(struct task_struct *p) 1796 { 1797 return call_int_hook(task_movememory, 0, p); 1798 } 1799 1800 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, 1801 int sig, const struct cred *cred) 1802 { 1803 return call_int_hook(task_kill, 0, p, info, sig, cred); 1804 } 1805 1806 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 1807 unsigned long arg4, unsigned long arg5) 1808 { 1809 int thisrc; 1810 int rc = LSM_RET_DEFAULT(task_prctl); 1811 struct security_hook_list *hp; 1812 1813 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 1814 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 1815 if (thisrc != LSM_RET_DEFAULT(task_prctl)) { 1816 rc = thisrc; 1817 if (thisrc != 0) 1818 break; 1819 } 1820 } 1821 return rc; 1822 } 1823 1824 void security_task_to_inode(struct task_struct *p, struct inode *inode) 1825 { 1826 call_void_hook(task_to_inode, p, inode); 1827 } 1828 1829 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 1830 { 1831 return call_int_hook(ipc_permission, 0, ipcp, flag); 1832 } 1833 1834 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 1835 { 1836 *secid = 0; 1837 call_void_hook(ipc_getsecid, ipcp, secid); 1838 } 1839 1840 int security_msg_msg_alloc(struct msg_msg *msg) 1841 { 1842 int rc = lsm_msg_msg_alloc(msg); 1843 1844 if (unlikely(rc)) 1845 return rc; 1846 rc = call_int_hook(msg_msg_alloc_security, 0, msg); 1847 if (unlikely(rc)) 1848 security_msg_msg_free(msg); 1849 return rc; 1850 } 1851 1852 void security_msg_msg_free(struct msg_msg *msg) 1853 { 1854 call_void_hook(msg_msg_free_security, msg); 1855 kfree(msg->security); 1856 msg->security = NULL; 1857 } 1858 1859 int security_msg_queue_alloc(struct kern_ipc_perm *msq) 1860 { 1861 int rc = lsm_ipc_alloc(msq); 1862 1863 if (unlikely(rc)) 1864 return rc; 1865 rc = call_int_hook(msg_queue_alloc_security, 0, msq); 1866 if (unlikely(rc)) 1867 security_msg_queue_free(msq); 1868 return rc; 1869 } 1870 1871 void security_msg_queue_free(struct kern_ipc_perm *msq) 1872 { 1873 call_void_hook(msg_queue_free_security, msq); 1874 kfree(msq->security); 1875 msq->security = NULL; 1876 } 1877 1878 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 1879 { 1880 return call_int_hook(msg_queue_associate, 0, msq, msqflg); 1881 } 1882 1883 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 1884 { 1885 return call_int_hook(msg_queue_msgctl, 0, msq, cmd); 1886 } 1887 1888 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 1889 struct msg_msg *msg, int msqflg) 1890 { 1891 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg); 1892 } 1893 1894 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 1895 struct task_struct *target, long type, int mode) 1896 { 1897 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode); 1898 } 1899 1900 int security_shm_alloc(struct kern_ipc_perm *shp) 1901 { 1902 int rc = lsm_ipc_alloc(shp); 1903 1904 if (unlikely(rc)) 1905 return rc; 1906 rc = call_int_hook(shm_alloc_security, 0, shp); 1907 if (unlikely(rc)) 1908 security_shm_free(shp); 1909 return rc; 1910 } 1911 1912 void security_shm_free(struct kern_ipc_perm *shp) 1913 { 1914 call_void_hook(shm_free_security, shp); 1915 kfree(shp->security); 1916 shp->security = NULL; 1917 } 1918 1919 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 1920 { 1921 return call_int_hook(shm_associate, 0, shp, shmflg); 1922 } 1923 1924 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 1925 { 1926 return call_int_hook(shm_shmctl, 0, shp, cmd); 1927 } 1928 1929 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg) 1930 { 1931 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg); 1932 } 1933 1934 int security_sem_alloc(struct kern_ipc_perm *sma) 1935 { 1936 int rc = lsm_ipc_alloc(sma); 1937 1938 if (unlikely(rc)) 1939 return rc; 1940 rc = call_int_hook(sem_alloc_security, 0, sma); 1941 if (unlikely(rc)) 1942 security_sem_free(sma); 1943 return rc; 1944 } 1945 1946 void security_sem_free(struct kern_ipc_perm *sma) 1947 { 1948 call_void_hook(sem_free_security, sma); 1949 kfree(sma->security); 1950 sma->security = NULL; 1951 } 1952 1953 int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 1954 { 1955 return call_int_hook(sem_associate, 0, sma, semflg); 1956 } 1957 1958 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 1959 { 1960 return call_int_hook(sem_semctl, 0, sma, cmd); 1961 } 1962 1963 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 1964 unsigned nsops, int alter) 1965 { 1966 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter); 1967 } 1968 1969 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 1970 { 1971 if (unlikely(inode && IS_PRIVATE(inode))) 1972 return; 1973 call_void_hook(d_instantiate, dentry, inode); 1974 } 1975 EXPORT_SYMBOL(security_d_instantiate); 1976 1977 int security_getprocattr(struct task_struct *p, const char *lsm, char *name, 1978 char **value) 1979 { 1980 struct security_hook_list *hp; 1981 1982 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) { 1983 if (lsm != NULL && strcmp(lsm, hp->lsm)) 1984 continue; 1985 return hp->hook.getprocattr(p, name, value); 1986 } 1987 return LSM_RET_DEFAULT(getprocattr); 1988 } 1989 1990 int security_setprocattr(const char *lsm, const char *name, void *value, 1991 size_t size) 1992 { 1993 struct security_hook_list *hp; 1994 1995 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) { 1996 if (lsm != NULL && strcmp(lsm, hp->lsm)) 1997 continue; 1998 return hp->hook.setprocattr(name, value, size); 1999 } 2000 return LSM_RET_DEFAULT(setprocattr); 2001 } 2002 2003 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 2004 { 2005 return call_int_hook(netlink_send, 0, sk, skb); 2006 } 2007 2008 int security_ismaclabel(const char *name) 2009 { 2010 return call_int_hook(ismaclabel, 0, name); 2011 } 2012 EXPORT_SYMBOL(security_ismaclabel); 2013 2014 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 2015 { 2016 struct security_hook_list *hp; 2017 int rc; 2018 2019 /* 2020 * Currently, only one LSM can implement secid_to_secctx (i.e this 2021 * LSM hook is not "stackable"). 2022 */ 2023 hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) { 2024 rc = hp->hook.secid_to_secctx(secid, secdata, seclen); 2025 if (rc != LSM_RET_DEFAULT(secid_to_secctx)) 2026 return rc; 2027 } 2028 2029 return LSM_RET_DEFAULT(secid_to_secctx); 2030 } 2031 EXPORT_SYMBOL(security_secid_to_secctx); 2032 2033 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 2034 { 2035 *secid = 0; 2036 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid); 2037 } 2038 EXPORT_SYMBOL(security_secctx_to_secid); 2039 2040 void security_release_secctx(char *secdata, u32 seclen) 2041 { 2042 call_void_hook(release_secctx, secdata, seclen); 2043 } 2044 EXPORT_SYMBOL(security_release_secctx); 2045 2046 void security_inode_invalidate_secctx(struct inode *inode) 2047 { 2048 call_void_hook(inode_invalidate_secctx, inode); 2049 } 2050 EXPORT_SYMBOL(security_inode_invalidate_secctx); 2051 2052 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 2053 { 2054 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen); 2055 } 2056 EXPORT_SYMBOL(security_inode_notifysecctx); 2057 2058 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 2059 { 2060 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen); 2061 } 2062 EXPORT_SYMBOL(security_inode_setsecctx); 2063 2064 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 2065 { 2066 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen); 2067 } 2068 EXPORT_SYMBOL(security_inode_getsecctx); 2069 2070 #ifdef CONFIG_WATCH_QUEUE 2071 int security_post_notification(const struct cred *w_cred, 2072 const struct cred *cred, 2073 struct watch_notification *n) 2074 { 2075 return call_int_hook(post_notification, 0, w_cred, cred, n); 2076 } 2077 #endif /* CONFIG_WATCH_QUEUE */ 2078 2079 #ifdef CONFIG_KEY_NOTIFICATIONS 2080 int security_watch_key(struct key *key) 2081 { 2082 return call_int_hook(watch_key, 0, key); 2083 } 2084 #endif 2085 2086 #ifdef CONFIG_SECURITY_NETWORK 2087 2088 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 2089 { 2090 return call_int_hook(unix_stream_connect, 0, sock, other, newsk); 2091 } 2092 EXPORT_SYMBOL(security_unix_stream_connect); 2093 2094 int security_unix_may_send(struct socket *sock, struct socket *other) 2095 { 2096 return call_int_hook(unix_may_send, 0, sock, other); 2097 } 2098 EXPORT_SYMBOL(security_unix_may_send); 2099 2100 int security_socket_create(int family, int type, int protocol, int kern) 2101 { 2102 return call_int_hook(socket_create, 0, family, type, protocol, kern); 2103 } 2104 2105 int security_socket_post_create(struct socket *sock, int family, 2106 int type, int protocol, int kern) 2107 { 2108 return call_int_hook(socket_post_create, 0, sock, family, type, 2109 protocol, kern); 2110 } 2111 2112 int security_socket_socketpair(struct socket *socka, struct socket *sockb) 2113 { 2114 return call_int_hook(socket_socketpair, 0, socka, sockb); 2115 } 2116 EXPORT_SYMBOL(security_socket_socketpair); 2117 2118 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 2119 { 2120 return call_int_hook(socket_bind, 0, sock, address, addrlen); 2121 } 2122 2123 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 2124 { 2125 return call_int_hook(socket_connect, 0, sock, address, addrlen); 2126 } 2127 2128 int security_socket_listen(struct socket *sock, int backlog) 2129 { 2130 return call_int_hook(socket_listen, 0, sock, backlog); 2131 } 2132 2133 int security_socket_accept(struct socket *sock, struct socket *newsock) 2134 { 2135 return call_int_hook(socket_accept, 0, sock, newsock); 2136 } 2137 2138 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 2139 { 2140 return call_int_hook(socket_sendmsg, 0, sock, msg, size); 2141 } 2142 2143 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 2144 int size, int flags) 2145 { 2146 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags); 2147 } 2148 2149 int security_socket_getsockname(struct socket *sock) 2150 { 2151 return call_int_hook(socket_getsockname, 0, sock); 2152 } 2153 2154 int security_socket_getpeername(struct socket *sock) 2155 { 2156 return call_int_hook(socket_getpeername, 0, sock); 2157 } 2158 2159 int security_socket_getsockopt(struct socket *sock, int level, int optname) 2160 { 2161 return call_int_hook(socket_getsockopt, 0, sock, level, optname); 2162 } 2163 2164 int security_socket_setsockopt(struct socket *sock, int level, int optname) 2165 { 2166 return call_int_hook(socket_setsockopt, 0, sock, level, optname); 2167 } 2168 2169 int security_socket_shutdown(struct socket *sock, int how) 2170 { 2171 return call_int_hook(socket_shutdown, 0, sock, how); 2172 } 2173 2174 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 2175 { 2176 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb); 2177 } 2178 EXPORT_SYMBOL(security_sock_rcv_skb); 2179 2180 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 2181 int __user *optlen, unsigned len) 2182 { 2183 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock, 2184 optval, optlen, len); 2185 } 2186 2187 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 2188 { 2189 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock, 2190 skb, secid); 2191 } 2192 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 2193 2194 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 2195 { 2196 return call_int_hook(sk_alloc_security, 0, sk, family, priority); 2197 } 2198 2199 void security_sk_free(struct sock *sk) 2200 { 2201 call_void_hook(sk_free_security, sk); 2202 } 2203 2204 void security_sk_clone(const struct sock *sk, struct sock *newsk) 2205 { 2206 call_void_hook(sk_clone_security, sk, newsk); 2207 } 2208 EXPORT_SYMBOL(security_sk_clone); 2209 2210 void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 2211 { 2212 call_void_hook(sk_getsecid, sk, &fl->flowi_secid); 2213 } 2214 EXPORT_SYMBOL(security_sk_classify_flow); 2215 2216 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 2217 { 2218 call_void_hook(req_classify_flow, req, fl); 2219 } 2220 EXPORT_SYMBOL(security_req_classify_flow); 2221 2222 void security_sock_graft(struct sock *sk, struct socket *parent) 2223 { 2224 call_void_hook(sock_graft, sk, parent); 2225 } 2226 EXPORT_SYMBOL(security_sock_graft); 2227 2228 int security_inet_conn_request(struct sock *sk, 2229 struct sk_buff *skb, struct request_sock *req) 2230 { 2231 return call_int_hook(inet_conn_request, 0, sk, skb, req); 2232 } 2233 EXPORT_SYMBOL(security_inet_conn_request); 2234 2235 void security_inet_csk_clone(struct sock *newsk, 2236 const struct request_sock *req) 2237 { 2238 call_void_hook(inet_csk_clone, newsk, req); 2239 } 2240 2241 void security_inet_conn_established(struct sock *sk, 2242 struct sk_buff *skb) 2243 { 2244 call_void_hook(inet_conn_established, sk, skb); 2245 } 2246 EXPORT_SYMBOL(security_inet_conn_established); 2247 2248 int security_secmark_relabel_packet(u32 secid) 2249 { 2250 return call_int_hook(secmark_relabel_packet, 0, secid); 2251 } 2252 EXPORT_SYMBOL(security_secmark_relabel_packet); 2253 2254 void security_secmark_refcount_inc(void) 2255 { 2256 call_void_hook(secmark_refcount_inc); 2257 } 2258 EXPORT_SYMBOL(security_secmark_refcount_inc); 2259 2260 void security_secmark_refcount_dec(void) 2261 { 2262 call_void_hook(secmark_refcount_dec); 2263 } 2264 EXPORT_SYMBOL(security_secmark_refcount_dec); 2265 2266 int security_tun_dev_alloc_security(void **security) 2267 { 2268 return call_int_hook(tun_dev_alloc_security, 0, security); 2269 } 2270 EXPORT_SYMBOL(security_tun_dev_alloc_security); 2271 2272 void security_tun_dev_free_security(void *security) 2273 { 2274 call_void_hook(tun_dev_free_security, security); 2275 } 2276 EXPORT_SYMBOL(security_tun_dev_free_security); 2277 2278 int security_tun_dev_create(void) 2279 { 2280 return call_int_hook(tun_dev_create, 0); 2281 } 2282 EXPORT_SYMBOL(security_tun_dev_create); 2283 2284 int security_tun_dev_attach_queue(void *security) 2285 { 2286 return call_int_hook(tun_dev_attach_queue, 0, security); 2287 } 2288 EXPORT_SYMBOL(security_tun_dev_attach_queue); 2289 2290 int security_tun_dev_attach(struct sock *sk, void *security) 2291 { 2292 return call_int_hook(tun_dev_attach, 0, sk, security); 2293 } 2294 EXPORT_SYMBOL(security_tun_dev_attach); 2295 2296 int security_tun_dev_open(void *security) 2297 { 2298 return call_int_hook(tun_dev_open, 0, security); 2299 } 2300 EXPORT_SYMBOL(security_tun_dev_open); 2301 2302 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb) 2303 { 2304 return call_int_hook(sctp_assoc_request, 0, ep, skb); 2305 } 2306 EXPORT_SYMBOL(security_sctp_assoc_request); 2307 2308 int security_sctp_bind_connect(struct sock *sk, int optname, 2309 struct sockaddr *address, int addrlen) 2310 { 2311 return call_int_hook(sctp_bind_connect, 0, sk, optname, 2312 address, addrlen); 2313 } 2314 EXPORT_SYMBOL(security_sctp_bind_connect); 2315 2316 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk, 2317 struct sock *newsk) 2318 { 2319 call_void_hook(sctp_sk_clone, ep, sk, newsk); 2320 } 2321 EXPORT_SYMBOL(security_sctp_sk_clone); 2322 2323 #endif /* CONFIG_SECURITY_NETWORK */ 2324 2325 #ifdef CONFIG_SECURITY_INFINIBAND 2326 2327 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 2328 { 2329 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey); 2330 } 2331 EXPORT_SYMBOL(security_ib_pkey_access); 2332 2333 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num) 2334 { 2335 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num); 2336 } 2337 EXPORT_SYMBOL(security_ib_endport_manage_subnet); 2338 2339 int security_ib_alloc_security(void **sec) 2340 { 2341 return call_int_hook(ib_alloc_security, 0, sec); 2342 } 2343 EXPORT_SYMBOL(security_ib_alloc_security); 2344 2345 void security_ib_free_security(void *sec) 2346 { 2347 call_void_hook(ib_free_security, sec); 2348 } 2349 EXPORT_SYMBOL(security_ib_free_security); 2350 #endif /* CONFIG_SECURITY_INFINIBAND */ 2351 2352 #ifdef CONFIG_SECURITY_NETWORK_XFRM 2353 2354 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 2355 struct xfrm_user_sec_ctx *sec_ctx, 2356 gfp_t gfp) 2357 { 2358 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp); 2359 } 2360 EXPORT_SYMBOL(security_xfrm_policy_alloc); 2361 2362 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 2363 struct xfrm_sec_ctx **new_ctxp) 2364 { 2365 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp); 2366 } 2367 2368 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 2369 { 2370 call_void_hook(xfrm_policy_free_security, ctx); 2371 } 2372 EXPORT_SYMBOL(security_xfrm_policy_free); 2373 2374 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 2375 { 2376 return call_int_hook(xfrm_policy_delete_security, 0, ctx); 2377 } 2378 2379 int security_xfrm_state_alloc(struct xfrm_state *x, 2380 struct xfrm_user_sec_ctx *sec_ctx) 2381 { 2382 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx); 2383 } 2384 EXPORT_SYMBOL(security_xfrm_state_alloc); 2385 2386 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 2387 struct xfrm_sec_ctx *polsec, u32 secid) 2388 { 2389 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid); 2390 } 2391 2392 int security_xfrm_state_delete(struct xfrm_state *x) 2393 { 2394 return call_int_hook(xfrm_state_delete_security, 0, x); 2395 } 2396 EXPORT_SYMBOL(security_xfrm_state_delete); 2397 2398 void security_xfrm_state_free(struct xfrm_state *x) 2399 { 2400 call_void_hook(xfrm_state_free_security, x); 2401 } 2402 2403 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 2404 { 2405 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir); 2406 } 2407 2408 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 2409 struct xfrm_policy *xp, 2410 const struct flowi *fl) 2411 { 2412 struct security_hook_list *hp; 2413 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match); 2414 2415 /* 2416 * Since this function is expected to return 0 or 1, the judgment 2417 * becomes difficult if multiple LSMs supply this call. Fortunately, 2418 * we can use the first LSM's judgment because currently only SELinux 2419 * supplies this call. 2420 * 2421 * For speed optimization, we explicitly break the loop rather than 2422 * using the macro 2423 */ 2424 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 2425 list) { 2426 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl); 2427 break; 2428 } 2429 return rc; 2430 } 2431 2432 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 2433 { 2434 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1); 2435 } 2436 2437 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 2438 { 2439 int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid, 2440 0); 2441 2442 BUG_ON(rc); 2443 } 2444 EXPORT_SYMBOL(security_skb_classify_flow); 2445 2446 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 2447 2448 #ifdef CONFIG_KEYS 2449 2450 int security_key_alloc(struct key *key, const struct cred *cred, 2451 unsigned long flags) 2452 { 2453 return call_int_hook(key_alloc, 0, key, cred, flags); 2454 } 2455 2456 void security_key_free(struct key *key) 2457 { 2458 call_void_hook(key_free, key); 2459 } 2460 2461 int security_key_permission(key_ref_t key_ref, const struct cred *cred, 2462 enum key_need_perm need_perm) 2463 { 2464 return call_int_hook(key_permission, 0, key_ref, cred, need_perm); 2465 } 2466 2467 int security_key_getsecurity(struct key *key, char **_buffer) 2468 { 2469 *_buffer = NULL; 2470 return call_int_hook(key_getsecurity, 0, key, _buffer); 2471 } 2472 2473 #endif /* CONFIG_KEYS */ 2474 2475 #ifdef CONFIG_AUDIT 2476 2477 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 2478 { 2479 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule); 2480 } 2481 2482 int security_audit_rule_known(struct audit_krule *krule) 2483 { 2484 return call_int_hook(audit_rule_known, 0, krule); 2485 } 2486 2487 void security_audit_rule_free(void *lsmrule) 2488 { 2489 call_void_hook(audit_rule_free, lsmrule); 2490 } 2491 2492 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule) 2493 { 2494 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule); 2495 } 2496 #endif /* CONFIG_AUDIT */ 2497 2498 #ifdef CONFIG_BPF_SYSCALL 2499 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 2500 { 2501 return call_int_hook(bpf, 0, cmd, attr, size); 2502 } 2503 int security_bpf_map(struct bpf_map *map, fmode_t fmode) 2504 { 2505 return call_int_hook(bpf_map, 0, map, fmode); 2506 } 2507 int security_bpf_prog(struct bpf_prog *prog) 2508 { 2509 return call_int_hook(bpf_prog, 0, prog); 2510 } 2511 int security_bpf_map_alloc(struct bpf_map *map) 2512 { 2513 return call_int_hook(bpf_map_alloc_security, 0, map); 2514 } 2515 int security_bpf_prog_alloc(struct bpf_prog_aux *aux) 2516 { 2517 return call_int_hook(bpf_prog_alloc_security, 0, aux); 2518 } 2519 void security_bpf_map_free(struct bpf_map *map) 2520 { 2521 call_void_hook(bpf_map_free_security, map); 2522 } 2523 void security_bpf_prog_free(struct bpf_prog_aux *aux) 2524 { 2525 call_void_hook(bpf_prog_free_security, aux); 2526 } 2527 #endif /* CONFIG_BPF_SYSCALL */ 2528 2529 int security_locked_down(enum lockdown_reason what) 2530 { 2531 return call_int_hook(locked_down, 0, what); 2532 } 2533 EXPORT_SYMBOL(security_locked_down); 2534 2535 #ifdef CONFIG_PERF_EVENTS 2536 int security_perf_event_open(struct perf_event_attr *attr, int type) 2537 { 2538 return call_int_hook(perf_event_open, 0, attr, type); 2539 } 2540 2541 int security_perf_event_alloc(struct perf_event *event) 2542 { 2543 return call_int_hook(perf_event_alloc, 0, event); 2544 } 2545 2546 void security_perf_event_free(struct perf_event *event) 2547 { 2548 call_void_hook(perf_event_free, event); 2549 } 2550 2551 int security_perf_event_read(struct perf_event *event) 2552 { 2553 return call_int_hook(perf_event_read, 0, event); 2554 } 2555 2556 int security_perf_event_write(struct perf_event *event) 2557 { 2558 return call_int_hook(perf_event_write, 0, event); 2559 } 2560 #endif /* CONFIG_PERF_EVENTS */ 2561