1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Security plug functions 4 * 5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 8 * Copyright (C) 2016 Mellanox Technologies 9 */ 10 11 #define pr_fmt(fmt) "LSM: " fmt 12 13 #include <linux/bpf.h> 14 #include <linux/capability.h> 15 #include <linux/dcache.h> 16 #include <linux/export.h> 17 #include <linux/init.h> 18 #include <linux/kernel.h> 19 #include <linux/kernel_read_file.h> 20 #include <linux/lsm_hooks.h> 21 #include <linux/integrity.h> 22 #include <linux/ima.h> 23 #include <linux/evm.h> 24 #include <linux/fsnotify.h> 25 #include <linux/mman.h> 26 #include <linux/mount.h> 27 #include <linux/personality.h> 28 #include <linux/backing-dev.h> 29 #include <linux/string.h> 30 #include <linux/msg.h> 31 #include <net/flow.h> 32 33 #define MAX_LSM_EVM_XATTR 2 34 35 /* How many LSMs were built into the kernel? */ 36 #define LSM_COUNT (__end_lsm_info - __start_lsm_info) 37 38 /* 39 * These are descriptions of the reasons that can be passed to the 40 * security_locked_down() LSM hook. Placing this array here allows 41 * all security modules to use the same descriptions for auditing 42 * purposes. 43 */ 44 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = { 45 [LOCKDOWN_NONE] = "none", 46 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading", 47 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port", 48 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access", 49 [LOCKDOWN_KEXEC] = "kexec of unsigned images", 50 [LOCKDOWN_HIBERNATION] = "hibernation", 51 [LOCKDOWN_PCI_ACCESS] = "direct PCI access", 52 [LOCKDOWN_IOPORT] = "raw io port access", 53 [LOCKDOWN_MSR] = "raw MSR access", 54 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables", 55 [LOCKDOWN_DEVICE_TREE] = "modifying device tree contents", 56 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage", 57 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO", 58 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters", 59 [LOCKDOWN_MMIOTRACE] = "unsafe mmio", 60 [LOCKDOWN_DEBUGFS] = "debugfs access", 61 [LOCKDOWN_XMON_WR] = "xmon write access", 62 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM", 63 [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM", 64 [LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection", 65 [LOCKDOWN_INTEGRITY_MAX] = "integrity", 66 [LOCKDOWN_KCORE] = "/proc/kcore access", 67 [LOCKDOWN_KPROBES] = "use of kprobes", 68 [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM", 69 [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM", 70 [LOCKDOWN_PERF] = "unsafe use of perf", 71 [LOCKDOWN_TRACEFS] = "use of tracefs", 72 [LOCKDOWN_XMON_RW] = "xmon read and write access", 73 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret", 74 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality", 75 }; 76 77 struct security_hook_heads security_hook_heads __lsm_ro_after_init; 78 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain); 79 80 static struct kmem_cache *lsm_file_cache; 81 static struct kmem_cache *lsm_inode_cache; 82 83 char *lsm_names; 84 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init; 85 86 /* Boot-time LSM user choice */ 87 static __initdata const char *chosen_lsm_order; 88 static __initdata const char *chosen_major_lsm; 89 90 static __initconst const char * const builtin_lsm_order = CONFIG_LSM; 91 92 /* Ordered list of LSMs to initialize. */ 93 static __initdata struct lsm_info **ordered_lsms; 94 static __initdata struct lsm_info *exclusive; 95 96 static __initdata bool debug; 97 #define init_debug(...) \ 98 do { \ 99 if (debug) \ 100 pr_info(__VA_ARGS__); \ 101 } while (0) 102 103 static bool __init is_enabled(struct lsm_info *lsm) 104 { 105 if (!lsm->enabled) 106 return false; 107 108 return *lsm->enabled; 109 } 110 111 /* Mark an LSM's enabled flag. */ 112 static int lsm_enabled_true __initdata = 1; 113 static int lsm_enabled_false __initdata = 0; 114 static void __init set_enabled(struct lsm_info *lsm, bool enabled) 115 { 116 /* 117 * When an LSM hasn't configured an enable variable, we can use 118 * a hard-coded location for storing the default enabled state. 119 */ 120 if (!lsm->enabled) { 121 if (enabled) 122 lsm->enabled = &lsm_enabled_true; 123 else 124 lsm->enabled = &lsm_enabled_false; 125 } else if (lsm->enabled == &lsm_enabled_true) { 126 if (!enabled) 127 lsm->enabled = &lsm_enabled_false; 128 } else if (lsm->enabled == &lsm_enabled_false) { 129 if (enabled) 130 lsm->enabled = &lsm_enabled_true; 131 } else { 132 *lsm->enabled = enabled; 133 } 134 } 135 136 /* Is an LSM already listed in the ordered LSMs list? */ 137 static bool __init exists_ordered_lsm(struct lsm_info *lsm) 138 { 139 struct lsm_info **check; 140 141 for (check = ordered_lsms; *check; check++) 142 if (*check == lsm) 143 return true; 144 145 return false; 146 } 147 148 /* Append an LSM to the list of ordered LSMs to initialize. */ 149 static int last_lsm __initdata; 150 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from) 151 { 152 /* Ignore duplicate selections. */ 153 if (exists_ordered_lsm(lsm)) 154 return; 155 156 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from)) 157 return; 158 159 /* Enable this LSM, if it is not already set. */ 160 if (!lsm->enabled) 161 lsm->enabled = &lsm_enabled_true; 162 ordered_lsms[last_lsm++] = lsm; 163 164 init_debug("%s ordered: %s (%s)\n", from, lsm->name, 165 is_enabled(lsm) ? "enabled" : "disabled"); 166 } 167 168 /* Is an LSM allowed to be initialized? */ 169 static bool __init lsm_allowed(struct lsm_info *lsm) 170 { 171 /* Skip if the LSM is disabled. */ 172 if (!is_enabled(lsm)) 173 return false; 174 175 /* Not allowed if another exclusive LSM already initialized. */ 176 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) { 177 init_debug("exclusive disabled: %s\n", lsm->name); 178 return false; 179 } 180 181 return true; 182 } 183 184 static void __init lsm_set_blob_size(int *need, int *lbs) 185 { 186 int offset; 187 188 if (*need <= 0) 189 return; 190 191 offset = ALIGN(*lbs, sizeof(void *)); 192 *lbs = offset + *need; 193 *need = offset; 194 } 195 196 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed) 197 { 198 if (!needed) 199 return; 200 201 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred); 202 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file); 203 /* 204 * The inode blob gets an rcu_head in addition to 205 * what the modules might need. 206 */ 207 if (needed->lbs_inode && blob_sizes.lbs_inode == 0) 208 blob_sizes.lbs_inode = sizeof(struct rcu_head); 209 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode); 210 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc); 211 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg); 212 lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock); 213 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task); 214 } 215 216 /* Prepare LSM for initialization. */ 217 static void __init prepare_lsm(struct lsm_info *lsm) 218 { 219 int enabled = lsm_allowed(lsm); 220 221 /* Record enablement (to handle any following exclusive LSMs). */ 222 set_enabled(lsm, enabled); 223 224 /* If enabled, do pre-initialization work. */ 225 if (enabled) { 226 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) { 227 exclusive = lsm; 228 init_debug("exclusive chosen: %s\n", lsm->name); 229 } 230 231 lsm_set_blob_sizes(lsm->blobs); 232 } 233 } 234 235 /* Initialize a given LSM, if it is enabled. */ 236 static void __init initialize_lsm(struct lsm_info *lsm) 237 { 238 if (is_enabled(lsm)) { 239 int ret; 240 241 init_debug("initializing %s\n", lsm->name); 242 ret = lsm->init(); 243 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); 244 } 245 } 246 247 /* Populate ordered LSMs list from comma-separated LSM name list. */ 248 static void __init ordered_lsm_parse(const char *order, const char *origin) 249 { 250 struct lsm_info *lsm; 251 char *sep, *name, *next; 252 253 /* LSM_ORDER_FIRST is always first. */ 254 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 255 if (lsm->order == LSM_ORDER_FIRST) 256 append_ordered_lsm(lsm, " first"); 257 } 258 259 /* Process "security=", if given. */ 260 if (chosen_major_lsm) { 261 struct lsm_info *major; 262 263 /* 264 * To match the original "security=" behavior, this 265 * explicitly does NOT fallback to another Legacy Major 266 * if the selected one was separately disabled: disable 267 * all non-matching Legacy Major LSMs. 268 */ 269 for (major = __start_lsm_info; major < __end_lsm_info; 270 major++) { 271 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) && 272 strcmp(major->name, chosen_major_lsm) != 0) { 273 set_enabled(major, false); 274 init_debug("security=%s disabled: %s (only one legacy major LSM)\n", 275 chosen_major_lsm, major->name); 276 } 277 } 278 } 279 280 sep = kstrdup(order, GFP_KERNEL); 281 next = sep; 282 /* Walk the list, looking for matching LSMs. */ 283 while ((name = strsep(&next, ",")) != NULL) { 284 bool found = false; 285 286 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 287 if (lsm->order == LSM_ORDER_MUTABLE && 288 strcmp(lsm->name, name) == 0) { 289 append_ordered_lsm(lsm, origin); 290 found = true; 291 } 292 } 293 294 if (!found) 295 init_debug("%s ignored: %s (not built into kernel)\n", 296 origin, name); 297 } 298 299 /* Process "security=", if given. */ 300 if (chosen_major_lsm) { 301 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 302 if (exists_ordered_lsm(lsm)) 303 continue; 304 if (strcmp(lsm->name, chosen_major_lsm) == 0) 305 append_ordered_lsm(lsm, "security="); 306 } 307 } 308 309 /* Disable all LSMs not in the ordered list. */ 310 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 311 if (exists_ordered_lsm(lsm)) 312 continue; 313 set_enabled(lsm, false); 314 init_debug("%s skipped: %s (not in requested order)\n", 315 origin, lsm->name); 316 } 317 318 kfree(sep); 319 } 320 321 static void __init lsm_early_cred(struct cred *cred); 322 static void __init lsm_early_task(struct task_struct *task); 323 324 static int lsm_append(const char *new, char **result); 325 326 static void __init report_lsm_order(void) 327 { 328 struct lsm_info **lsm, *early; 329 int first = 0; 330 331 pr_info("initializing lsm="); 332 333 /* Report each enabled LSM name, comma separated. */ 334 for (early = __start_early_lsm_info; early < __end_early_lsm_info; early++) 335 if (is_enabled(early)) 336 pr_cont("%s%s", first++ == 0 ? "" : ",", early->name); 337 for (lsm = ordered_lsms; *lsm; lsm++) 338 if (is_enabled(*lsm)) 339 pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name); 340 341 pr_cont("\n"); 342 } 343 344 static void __init ordered_lsm_init(void) 345 { 346 struct lsm_info **lsm; 347 348 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms), 349 GFP_KERNEL); 350 351 if (chosen_lsm_order) { 352 if (chosen_major_lsm) { 353 pr_warn("security=%s is ignored because it is superseded by lsm=%s\n", 354 chosen_major_lsm, chosen_lsm_order); 355 chosen_major_lsm = NULL; 356 } 357 ordered_lsm_parse(chosen_lsm_order, "cmdline"); 358 } else 359 ordered_lsm_parse(builtin_lsm_order, "builtin"); 360 361 for (lsm = ordered_lsms; *lsm; lsm++) 362 prepare_lsm(*lsm); 363 364 report_lsm_order(); 365 366 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred); 367 init_debug("file blob size = %d\n", blob_sizes.lbs_file); 368 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode); 369 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc); 370 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg); 371 init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock); 372 init_debug("task blob size = %d\n", blob_sizes.lbs_task); 373 374 /* 375 * Create any kmem_caches needed for blobs 376 */ 377 if (blob_sizes.lbs_file) 378 lsm_file_cache = kmem_cache_create("lsm_file_cache", 379 blob_sizes.lbs_file, 0, 380 SLAB_PANIC, NULL); 381 if (blob_sizes.lbs_inode) 382 lsm_inode_cache = kmem_cache_create("lsm_inode_cache", 383 blob_sizes.lbs_inode, 0, 384 SLAB_PANIC, NULL); 385 386 lsm_early_cred((struct cred *) current->cred); 387 lsm_early_task(current); 388 for (lsm = ordered_lsms; *lsm; lsm++) 389 initialize_lsm(*lsm); 390 391 kfree(ordered_lsms); 392 } 393 394 int __init early_security_init(void) 395 { 396 struct lsm_info *lsm; 397 398 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 399 INIT_HLIST_HEAD(&security_hook_heads.NAME); 400 #include "linux/lsm_hook_defs.h" 401 #undef LSM_HOOK 402 403 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 404 if (!lsm->enabled) 405 lsm->enabled = &lsm_enabled_true; 406 prepare_lsm(lsm); 407 initialize_lsm(lsm); 408 } 409 410 return 0; 411 } 412 413 /** 414 * security_init - initializes the security framework 415 * 416 * This should be called early in the kernel initialization sequence. 417 */ 418 int __init security_init(void) 419 { 420 struct lsm_info *lsm; 421 422 init_debug("legacy security=%s\n", chosen_major_lsm ?: " *unspecified*"); 423 init_debug(" CONFIG_LSM=%s\n", builtin_lsm_order); 424 init_debug("boot arg lsm=%s\n", chosen_lsm_order ?: " *unspecified*"); 425 426 /* 427 * Append the names of the early LSM modules now that kmalloc() is 428 * available 429 */ 430 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 431 init_debug(" early started: %s (%s)\n", lsm->name, 432 is_enabled(lsm) ? "enabled" : "disabled"); 433 if (lsm->enabled) 434 lsm_append(lsm->name, &lsm_names); 435 } 436 437 /* Load LSMs in specified order. */ 438 ordered_lsm_init(); 439 440 return 0; 441 } 442 443 /* Save user chosen LSM */ 444 static int __init choose_major_lsm(char *str) 445 { 446 chosen_major_lsm = str; 447 return 1; 448 } 449 __setup("security=", choose_major_lsm); 450 451 /* Explicitly choose LSM initialization order. */ 452 static int __init choose_lsm_order(char *str) 453 { 454 chosen_lsm_order = str; 455 return 1; 456 } 457 __setup("lsm=", choose_lsm_order); 458 459 /* Enable LSM order debugging. */ 460 static int __init enable_debug(char *str) 461 { 462 debug = true; 463 return 1; 464 } 465 __setup("lsm.debug", enable_debug); 466 467 static bool match_last_lsm(const char *list, const char *lsm) 468 { 469 const char *last; 470 471 if (WARN_ON(!list || !lsm)) 472 return false; 473 last = strrchr(list, ','); 474 if (last) 475 /* Pass the comma, strcmp() will check for '\0' */ 476 last++; 477 else 478 last = list; 479 return !strcmp(last, lsm); 480 } 481 482 static int lsm_append(const char *new, char **result) 483 { 484 char *cp; 485 486 if (*result == NULL) { 487 *result = kstrdup(new, GFP_KERNEL); 488 if (*result == NULL) 489 return -ENOMEM; 490 } else { 491 /* Check if it is the last registered name */ 492 if (match_last_lsm(*result, new)) 493 return 0; 494 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 495 if (cp == NULL) 496 return -ENOMEM; 497 kfree(*result); 498 *result = cp; 499 } 500 return 0; 501 } 502 503 /** 504 * security_add_hooks - Add a modules hooks to the hook lists. 505 * @hooks: the hooks to add 506 * @count: the number of hooks to add 507 * @lsm: the name of the security module 508 * 509 * Each LSM has to register its hooks with the infrastructure. 510 */ 511 void __init security_add_hooks(struct security_hook_list *hooks, int count, 512 const char *lsm) 513 { 514 int i; 515 516 for (i = 0; i < count; i++) { 517 hooks[i].lsm = lsm; 518 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 519 } 520 521 /* 522 * Don't try to append during early_security_init(), we'll come back 523 * and fix this up afterwards. 524 */ 525 if (slab_is_available()) { 526 if (lsm_append(lsm, &lsm_names) < 0) 527 panic("%s - Cannot get early memory.\n", __func__); 528 } 529 } 530 531 int call_blocking_lsm_notifier(enum lsm_event event, void *data) 532 { 533 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain, 534 event, data); 535 } 536 EXPORT_SYMBOL(call_blocking_lsm_notifier); 537 538 int register_blocking_lsm_notifier(struct notifier_block *nb) 539 { 540 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain, 541 nb); 542 } 543 EXPORT_SYMBOL(register_blocking_lsm_notifier); 544 545 int unregister_blocking_lsm_notifier(struct notifier_block *nb) 546 { 547 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain, 548 nb); 549 } 550 EXPORT_SYMBOL(unregister_blocking_lsm_notifier); 551 552 /** 553 * lsm_cred_alloc - allocate a composite cred blob 554 * @cred: the cred that needs a blob 555 * @gfp: allocation type 556 * 557 * Allocate the cred blob for all the modules 558 * 559 * Returns 0, or -ENOMEM if memory can't be allocated. 560 */ 561 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp) 562 { 563 if (blob_sizes.lbs_cred == 0) { 564 cred->security = NULL; 565 return 0; 566 } 567 568 cred->security = kzalloc(blob_sizes.lbs_cred, gfp); 569 if (cred->security == NULL) 570 return -ENOMEM; 571 return 0; 572 } 573 574 /** 575 * lsm_early_cred - during initialization allocate a composite cred blob 576 * @cred: the cred that needs a blob 577 * 578 * Allocate the cred blob for all the modules 579 */ 580 static void __init lsm_early_cred(struct cred *cred) 581 { 582 int rc = lsm_cred_alloc(cred, GFP_KERNEL); 583 584 if (rc) 585 panic("%s: Early cred alloc failed.\n", __func__); 586 } 587 588 /** 589 * lsm_file_alloc - allocate a composite file blob 590 * @file: the file that needs a blob 591 * 592 * Allocate the file blob for all the modules 593 * 594 * Returns 0, or -ENOMEM if memory can't be allocated. 595 */ 596 static int lsm_file_alloc(struct file *file) 597 { 598 if (!lsm_file_cache) { 599 file->f_security = NULL; 600 return 0; 601 } 602 603 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL); 604 if (file->f_security == NULL) 605 return -ENOMEM; 606 return 0; 607 } 608 609 /** 610 * lsm_inode_alloc - allocate a composite inode blob 611 * @inode: the inode that needs a blob 612 * 613 * Allocate the inode blob for all the modules 614 * 615 * Returns 0, or -ENOMEM if memory can't be allocated. 616 */ 617 int lsm_inode_alloc(struct inode *inode) 618 { 619 if (!lsm_inode_cache) { 620 inode->i_security = NULL; 621 return 0; 622 } 623 624 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS); 625 if (inode->i_security == NULL) 626 return -ENOMEM; 627 return 0; 628 } 629 630 /** 631 * lsm_task_alloc - allocate a composite task blob 632 * @task: the task that needs a blob 633 * 634 * Allocate the task blob for all the modules 635 * 636 * Returns 0, or -ENOMEM if memory can't be allocated. 637 */ 638 static int lsm_task_alloc(struct task_struct *task) 639 { 640 if (blob_sizes.lbs_task == 0) { 641 task->security = NULL; 642 return 0; 643 } 644 645 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL); 646 if (task->security == NULL) 647 return -ENOMEM; 648 return 0; 649 } 650 651 /** 652 * lsm_ipc_alloc - allocate a composite ipc blob 653 * @kip: the ipc that needs a blob 654 * 655 * Allocate the ipc blob for all the modules 656 * 657 * Returns 0, or -ENOMEM if memory can't be allocated. 658 */ 659 static int lsm_ipc_alloc(struct kern_ipc_perm *kip) 660 { 661 if (blob_sizes.lbs_ipc == 0) { 662 kip->security = NULL; 663 return 0; 664 } 665 666 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL); 667 if (kip->security == NULL) 668 return -ENOMEM; 669 return 0; 670 } 671 672 /** 673 * lsm_msg_msg_alloc - allocate a composite msg_msg blob 674 * @mp: the msg_msg that needs a blob 675 * 676 * Allocate the ipc blob for all the modules 677 * 678 * Returns 0, or -ENOMEM if memory can't be allocated. 679 */ 680 static int lsm_msg_msg_alloc(struct msg_msg *mp) 681 { 682 if (blob_sizes.lbs_msg_msg == 0) { 683 mp->security = NULL; 684 return 0; 685 } 686 687 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL); 688 if (mp->security == NULL) 689 return -ENOMEM; 690 return 0; 691 } 692 693 /** 694 * lsm_early_task - during initialization allocate a composite task blob 695 * @task: the task that needs a blob 696 * 697 * Allocate the task blob for all the modules 698 */ 699 static void __init lsm_early_task(struct task_struct *task) 700 { 701 int rc = lsm_task_alloc(task); 702 703 if (rc) 704 panic("%s: Early task alloc failed.\n", __func__); 705 } 706 707 /** 708 * lsm_superblock_alloc - allocate a composite superblock blob 709 * @sb: the superblock that needs a blob 710 * 711 * Allocate the superblock blob for all the modules 712 * 713 * Returns 0, or -ENOMEM if memory can't be allocated. 714 */ 715 static int lsm_superblock_alloc(struct super_block *sb) 716 { 717 if (blob_sizes.lbs_superblock == 0) { 718 sb->s_security = NULL; 719 return 0; 720 } 721 722 sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL); 723 if (sb->s_security == NULL) 724 return -ENOMEM; 725 return 0; 726 } 727 728 /* 729 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and 730 * can be accessed with: 731 * 732 * LSM_RET_DEFAULT(<hook_name>) 733 * 734 * The macros below define static constants for the default value of each 735 * LSM hook. 736 */ 737 #define LSM_RET_DEFAULT(NAME) (NAME##_default) 738 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME) 739 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \ 740 static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT); 741 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 742 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME) 743 744 #include <linux/lsm_hook_defs.h> 745 #undef LSM_HOOK 746 747 /* 748 * Hook list operation macros. 749 * 750 * call_void_hook: 751 * This is a hook that does not return a value. 752 * 753 * call_int_hook: 754 * This is a hook that returns a value. 755 */ 756 757 #define call_void_hook(FUNC, ...) \ 758 do { \ 759 struct security_hook_list *P; \ 760 \ 761 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 762 P->hook.FUNC(__VA_ARGS__); \ 763 } while (0) 764 765 #define call_int_hook(FUNC, IRC, ...) ({ \ 766 int RC = IRC; \ 767 do { \ 768 struct security_hook_list *P; \ 769 \ 770 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 771 RC = P->hook.FUNC(__VA_ARGS__); \ 772 if (RC != 0) \ 773 break; \ 774 } \ 775 } while (0); \ 776 RC; \ 777 }) 778 779 /* Security operations */ 780 781 int security_binder_set_context_mgr(const struct cred *mgr) 782 { 783 return call_int_hook(binder_set_context_mgr, 0, mgr); 784 } 785 786 int security_binder_transaction(const struct cred *from, 787 const struct cred *to) 788 { 789 return call_int_hook(binder_transaction, 0, from, to); 790 } 791 792 int security_binder_transfer_binder(const struct cred *from, 793 const struct cred *to) 794 { 795 return call_int_hook(binder_transfer_binder, 0, from, to); 796 } 797 798 int security_binder_transfer_file(const struct cred *from, 799 const struct cred *to, struct file *file) 800 { 801 return call_int_hook(binder_transfer_file, 0, from, to, file); 802 } 803 804 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 805 { 806 return call_int_hook(ptrace_access_check, 0, child, mode); 807 } 808 809 int security_ptrace_traceme(struct task_struct *parent) 810 { 811 return call_int_hook(ptrace_traceme, 0, parent); 812 } 813 814 int security_capget(struct task_struct *target, 815 kernel_cap_t *effective, 816 kernel_cap_t *inheritable, 817 kernel_cap_t *permitted) 818 { 819 return call_int_hook(capget, 0, target, 820 effective, inheritable, permitted); 821 } 822 823 int security_capset(struct cred *new, const struct cred *old, 824 const kernel_cap_t *effective, 825 const kernel_cap_t *inheritable, 826 const kernel_cap_t *permitted) 827 { 828 return call_int_hook(capset, 0, new, old, 829 effective, inheritable, permitted); 830 } 831 832 int security_capable(const struct cred *cred, 833 struct user_namespace *ns, 834 int cap, 835 unsigned int opts) 836 { 837 return call_int_hook(capable, 0, cred, ns, cap, opts); 838 } 839 840 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 841 { 842 return call_int_hook(quotactl, 0, cmds, type, id, sb); 843 } 844 845 int security_quota_on(struct dentry *dentry) 846 { 847 return call_int_hook(quota_on, 0, dentry); 848 } 849 850 int security_syslog(int type) 851 { 852 return call_int_hook(syslog, 0, type); 853 } 854 855 int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 856 { 857 return call_int_hook(settime, 0, ts, tz); 858 } 859 860 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 861 { 862 struct security_hook_list *hp; 863 int cap_sys_admin = 1; 864 int rc; 865 866 /* 867 * The module will respond with a positive value if 868 * it thinks the __vm_enough_memory() call should be 869 * made with the cap_sys_admin set. If all of the modules 870 * agree that it should be set it will. If any module 871 * thinks it should not be set it won't. 872 */ 873 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 874 rc = hp->hook.vm_enough_memory(mm, pages); 875 if (rc <= 0) { 876 cap_sys_admin = 0; 877 break; 878 } 879 } 880 return __vm_enough_memory(mm, pages, cap_sys_admin); 881 } 882 883 int security_bprm_creds_for_exec(struct linux_binprm *bprm) 884 { 885 return call_int_hook(bprm_creds_for_exec, 0, bprm); 886 } 887 888 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file) 889 { 890 return call_int_hook(bprm_creds_from_file, 0, bprm, file); 891 } 892 893 int security_bprm_check(struct linux_binprm *bprm) 894 { 895 int ret; 896 897 ret = call_int_hook(bprm_check_security, 0, bprm); 898 if (ret) 899 return ret; 900 return ima_bprm_check(bprm); 901 } 902 903 void security_bprm_committing_creds(struct linux_binprm *bprm) 904 { 905 call_void_hook(bprm_committing_creds, bprm); 906 } 907 908 void security_bprm_committed_creds(struct linux_binprm *bprm) 909 { 910 call_void_hook(bprm_committed_creds, bprm); 911 } 912 913 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) 914 { 915 return call_int_hook(fs_context_dup, 0, fc, src_fc); 916 } 917 918 int security_fs_context_parse_param(struct fs_context *fc, 919 struct fs_parameter *param) 920 { 921 struct security_hook_list *hp; 922 int trc; 923 int rc = -ENOPARAM; 924 925 hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param, 926 list) { 927 trc = hp->hook.fs_context_parse_param(fc, param); 928 if (trc == 0) 929 rc = 0; 930 else if (trc != -ENOPARAM) 931 return trc; 932 } 933 return rc; 934 } 935 936 int security_sb_alloc(struct super_block *sb) 937 { 938 int rc = lsm_superblock_alloc(sb); 939 940 if (unlikely(rc)) 941 return rc; 942 rc = call_int_hook(sb_alloc_security, 0, sb); 943 if (unlikely(rc)) 944 security_sb_free(sb); 945 return rc; 946 } 947 948 void security_sb_delete(struct super_block *sb) 949 { 950 call_void_hook(sb_delete, sb); 951 } 952 953 void security_sb_free(struct super_block *sb) 954 { 955 call_void_hook(sb_free_security, sb); 956 kfree(sb->s_security); 957 sb->s_security = NULL; 958 } 959 960 void security_free_mnt_opts(void **mnt_opts) 961 { 962 if (!*mnt_opts) 963 return; 964 call_void_hook(sb_free_mnt_opts, *mnt_opts); 965 *mnt_opts = NULL; 966 } 967 EXPORT_SYMBOL(security_free_mnt_opts); 968 969 int security_sb_eat_lsm_opts(char *options, void **mnt_opts) 970 { 971 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts); 972 } 973 EXPORT_SYMBOL(security_sb_eat_lsm_opts); 974 975 int security_sb_mnt_opts_compat(struct super_block *sb, 976 void *mnt_opts) 977 { 978 return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts); 979 } 980 EXPORT_SYMBOL(security_sb_mnt_opts_compat); 981 982 int security_sb_remount(struct super_block *sb, 983 void *mnt_opts) 984 { 985 return call_int_hook(sb_remount, 0, sb, mnt_opts); 986 } 987 EXPORT_SYMBOL(security_sb_remount); 988 989 int security_sb_kern_mount(struct super_block *sb) 990 { 991 return call_int_hook(sb_kern_mount, 0, sb); 992 } 993 994 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 995 { 996 return call_int_hook(sb_show_options, 0, m, sb); 997 } 998 999 int security_sb_statfs(struct dentry *dentry) 1000 { 1001 return call_int_hook(sb_statfs, 0, dentry); 1002 } 1003 1004 int security_sb_mount(const char *dev_name, const struct path *path, 1005 const char *type, unsigned long flags, void *data) 1006 { 1007 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data); 1008 } 1009 1010 int security_sb_umount(struct vfsmount *mnt, int flags) 1011 { 1012 return call_int_hook(sb_umount, 0, mnt, flags); 1013 } 1014 1015 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path) 1016 { 1017 return call_int_hook(sb_pivotroot, 0, old_path, new_path); 1018 } 1019 1020 int security_sb_set_mnt_opts(struct super_block *sb, 1021 void *mnt_opts, 1022 unsigned long kern_flags, 1023 unsigned long *set_kern_flags) 1024 { 1025 return call_int_hook(sb_set_mnt_opts, 1026 mnt_opts ? -EOPNOTSUPP : 0, sb, 1027 mnt_opts, kern_flags, set_kern_flags); 1028 } 1029 EXPORT_SYMBOL(security_sb_set_mnt_opts); 1030 1031 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 1032 struct super_block *newsb, 1033 unsigned long kern_flags, 1034 unsigned long *set_kern_flags) 1035 { 1036 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb, 1037 kern_flags, set_kern_flags); 1038 } 1039 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 1040 1041 int security_move_mount(const struct path *from_path, const struct path *to_path) 1042 { 1043 return call_int_hook(move_mount, 0, from_path, to_path); 1044 } 1045 1046 int security_path_notify(const struct path *path, u64 mask, 1047 unsigned int obj_type) 1048 { 1049 return call_int_hook(path_notify, 0, path, mask, obj_type); 1050 } 1051 1052 int security_inode_alloc(struct inode *inode) 1053 { 1054 int rc = lsm_inode_alloc(inode); 1055 1056 if (unlikely(rc)) 1057 return rc; 1058 rc = call_int_hook(inode_alloc_security, 0, inode); 1059 if (unlikely(rc)) 1060 security_inode_free(inode); 1061 return rc; 1062 } 1063 1064 static void inode_free_by_rcu(struct rcu_head *head) 1065 { 1066 /* 1067 * The rcu head is at the start of the inode blob 1068 */ 1069 kmem_cache_free(lsm_inode_cache, head); 1070 } 1071 1072 void security_inode_free(struct inode *inode) 1073 { 1074 integrity_inode_free(inode); 1075 call_void_hook(inode_free_security, inode); 1076 /* 1077 * The inode may still be referenced in a path walk and 1078 * a call to security_inode_permission() can be made 1079 * after inode_free_security() is called. Ideally, the VFS 1080 * wouldn't do this, but fixing that is a much harder 1081 * job. For now, simply free the i_security via RCU, and 1082 * leave the current inode->i_security pointer intact. 1083 * The inode will be freed after the RCU grace period too. 1084 */ 1085 if (inode->i_security) 1086 call_rcu((struct rcu_head *)inode->i_security, 1087 inode_free_by_rcu); 1088 } 1089 1090 int security_dentry_init_security(struct dentry *dentry, int mode, 1091 const struct qstr *name, 1092 const char **xattr_name, void **ctx, 1093 u32 *ctxlen) 1094 { 1095 struct security_hook_list *hp; 1096 int rc; 1097 1098 /* 1099 * Only one module will provide a security context. 1100 */ 1101 hlist_for_each_entry(hp, &security_hook_heads.dentry_init_security, list) { 1102 rc = hp->hook.dentry_init_security(dentry, mode, name, 1103 xattr_name, ctx, ctxlen); 1104 if (rc != LSM_RET_DEFAULT(dentry_init_security)) 1105 return rc; 1106 } 1107 return LSM_RET_DEFAULT(dentry_init_security); 1108 } 1109 EXPORT_SYMBOL(security_dentry_init_security); 1110 1111 int security_dentry_create_files_as(struct dentry *dentry, int mode, 1112 struct qstr *name, 1113 const struct cred *old, struct cred *new) 1114 { 1115 return call_int_hook(dentry_create_files_as, 0, dentry, mode, 1116 name, old, new); 1117 } 1118 EXPORT_SYMBOL(security_dentry_create_files_as); 1119 1120 int security_inode_init_security(struct inode *inode, struct inode *dir, 1121 const struct qstr *qstr, 1122 const initxattrs initxattrs, void *fs_data) 1123 { 1124 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 1125 struct xattr *lsm_xattr, *evm_xattr, *xattr; 1126 int ret; 1127 1128 if (unlikely(IS_PRIVATE(inode))) 1129 return 0; 1130 1131 if (!initxattrs) 1132 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, 1133 dir, qstr, NULL, NULL, NULL); 1134 memset(new_xattrs, 0, sizeof(new_xattrs)); 1135 lsm_xattr = new_xattrs; 1136 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr, 1137 &lsm_xattr->name, 1138 &lsm_xattr->value, 1139 &lsm_xattr->value_len); 1140 if (ret) 1141 goto out; 1142 1143 evm_xattr = lsm_xattr + 1; 1144 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 1145 if (ret) 1146 goto out; 1147 ret = initxattrs(inode, new_xattrs, fs_data); 1148 out: 1149 for (xattr = new_xattrs; xattr->value != NULL; xattr++) 1150 kfree(xattr->value); 1151 return (ret == -EOPNOTSUPP) ? 0 : ret; 1152 } 1153 EXPORT_SYMBOL(security_inode_init_security); 1154 1155 int security_inode_init_security_anon(struct inode *inode, 1156 const struct qstr *name, 1157 const struct inode *context_inode) 1158 { 1159 return call_int_hook(inode_init_security_anon, 0, inode, name, 1160 context_inode); 1161 } 1162 1163 int security_old_inode_init_security(struct inode *inode, struct inode *dir, 1164 const struct qstr *qstr, const char **name, 1165 void **value, size_t *len) 1166 { 1167 if (unlikely(IS_PRIVATE(inode))) 1168 return -EOPNOTSUPP; 1169 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, 1170 qstr, name, value, len); 1171 } 1172 EXPORT_SYMBOL(security_old_inode_init_security); 1173 1174 #ifdef CONFIG_SECURITY_PATH 1175 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode, 1176 unsigned int dev) 1177 { 1178 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1179 return 0; 1180 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev); 1181 } 1182 EXPORT_SYMBOL(security_path_mknod); 1183 1184 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode) 1185 { 1186 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1187 return 0; 1188 return call_int_hook(path_mkdir, 0, dir, dentry, mode); 1189 } 1190 EXPORT_SYMBOL(security_path_mkdir); 1191 1192 int security_path_rmdir(const struct path *dir, struct dentry *dentry) 1193 { 1194 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1195 return 0; 1196 return call_int_hook(path_rmdir, 0, dir, dentry); 1197 } 1198 1199 int security_path_unlink(const struct path *dir, struct dentry *dentry) 1200 { 1201 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1202 return 0; 1203 return call_int_hook(path_unlink, 0, dir, dentry); 1204 } 1205 EXPORT_SYMBOL(security_path_unlink); 1206 1207 int security_path_symlink(const struct path *dir, struct dentry *dentry, 1208 const char *old_name) 1209 { 1210 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1211 return 0; 1212 return call_int_hook(path_symlink, 0, dir, dentry, old_name); 1213 } 1214 1215 int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 1216 struct dentry *new_dentry) 1217 { 1218 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1219 return 0; 1220 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry); 1221 } 1222 1223 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 1224 const struct path *new_dir, struct dentry *new_dentry, 1225 unsigned int flags) 1226 { 1227 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1228 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1229 return 0; 1230 1231 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir, 1232 new_dentry, flags); 1233 } 1234 EXPORT_SYMBOL(security_path_rename); 1235 1236 int security_path_truncate(const struct path *path) 1237 { 1238 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1239 return 0; 1240 return call_int_hook(path_truncate, 0, path); 1241 } 1242 1243 int security_path_chmod(const struct path *path, umode_t mode) 1244 { 1245 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1246 return 0; 1247 return call_int_hook(path_chmod, 0, path, mode); 1248 } 1249 1250 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 1251 { 1252 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1253 return 0; 1254 return call_int_hook(path_chown, 0, path, uid, gid); 1255 } 1256 1257 int security_path_chroot(const struct path *path) 1258 { 1259 return call_int_hook(path_chroot, 0, path); 1260 } 1261 #endif 1262 1263 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 1264 { 1265 if (unlikely(IS_PRIVATE(dir))) 1266 return 0; 1267 return call_int_hook(inode_create, 0, dir, dentry, mode); 1268 } 1269 EXPORT_SYMBOL_GPL(security_inode_create); 1270 1271 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 1272 struct dentry *new_dentry) 1273 { 1274 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1275 return 0; 1276 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry); 1277 } 1278 1279 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 1280 { 1281 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1282 return 0; 1283 return call_int_hook(inode_unlink, 0, dir, dentry); 1284 } 1285 1286 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 1287 const char *old_name) 1288 { 1289 if (unlikely(IS_PRIVATE(dir))) 1290 return 0; 1291 return call_int_hook(inode_symlink, 0, dir, dentry, old_name); 1292 } 1293 1294 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1295 { 1296 if (unlikely(IS_PRIVATE(dir))) 1297 return 0; 1298 return call_int_hook(inode_mkdir, 0, dir, dentry, mode); 1299 } 1300 EXPORT_SYMBOL_GPL(security_inode_mkdir); 1301 1302 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 1303 { 1304 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1305 return 0; 1306 return call_int_hook(inode_rmdir, 0, dir, dentry); 1307 } 1308 1309 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 1310 { 1311 if (unlikely(IS_PRIVATE(dir))) 1312 return 0; 1313 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev); 1314 } 1315 1316 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 1317 struct inode *new_dir, struct dentry *new_dentry, 1318 unsigned int flags) 1319 { 1320 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1321 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1322 return 0; 1323 1324 if (flags & RENAME_EXCHANGE) { 1325 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry, 1326 old_dir, old_dentry); 1327 if (err) 1328 return err; 1329 } 1330 1331 return call_int_hook(inode_rename, 0, old_dir, old_dentry, 1332 new_dir, new_dentry); 1333 } 1334 1335 int security_inode_readlink(struct dentry *dentry) 1336 { 1337 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1338 return 0; 1339 return call_int_hook(inode_readlink, 0, dentry); 1340 } 1341 1342 int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 1343 bool rcu) 1344 { 1345 if (unlikely(IS_PRIVATE(inode))) 1346 return 0; 1347 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu); 1348 } 1349 1350 int security_inode_permission(struct inode *inode, int mask) 1351 { 1352 if (unlikely(IS_PRIVATE(inode))) 1353 return 0; 1354 return call_int_hook(inode_permission, 0, inode, mask); 1355 } 1356 1357 int security_inode_setattr(struct mnt_idmap *idmap, 1358 struct dentry *dentry, struct iattr *attr) 1359 { 1360 int ret; 1361 1362 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1363 return 0; 1364 ret = call_int_hook(inode_setattr, 0, dentry, attr); 1365 if (ret) 1366 return ret; 1367 return evm_inode_setattr(idmap, dentry, attr); 1368 } 1369 EXPORT_SYMBOL_GPL(security_inode_setattr); 1370 1371 int security_inode_getattr(const struct path *path) 1372 { 1373 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1374 return 0; 1375 return call_int_hook(inode_getattr, 0, path); 1376 } 1377 1378 int security_inode_setxattr(struct mnt_idmap *idmap, 1379 struct dentry *dentry, const char *name, 1380 const void *value, size_t size, int flags) 1381 { 1382 int ret; 1383 1384 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1385 return 0; 1386 /* 1387 * SELinux and Smack integrate the cap call, 1388 * so assume that all LSMs supplying this call do so. 1389 */ 1390 ret = call_int_hook(inode_setxattr, 1, idmap, dentry, name, value, 1391 size, flags); 1392 1393 if (ret == 1) 1394 ret = cap_inode_setxattr(dentry, name, value, size, flags); 1395 if (ret) 1396 return ret; 1397 ret = ima_inode_setxattr(dentry, name, value, size); 1398 if (ret) 1399 return ret; 1400 return evm_inode_setxattr(idmap, dentry, name, value, size); 1401 } 1402 1403 int security_inode_set_acl(struct mnt_idmap *idmap, 1404 struct dentry *dentry, const char *acl_name, 1405 struct posix_acl *kacl) 1406 { 1407 int ret; 1408 1409 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1410 return 0; 1411 ret = call_int_hook(inode_set_acl, 0, idmap, dentry, acl_name, 1412 kacl); 1413 if (ret) 1414 return ret; 1415 ret = ima_inode_set_acl(idmap, dentry, acl_name, kacl); 1416 if (ret) 1417 return ret; 1418 return evm_inode_set_acl(idmap, dentry, acl_name, kacl); 1419 } 1420 1421 int security_inode_get_acl(struct mnt_idmap *idmap, 1422 struct dentry *dentry, const char *acl_name) 1423 { 1424 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1425 return 0; 1426 return call_int_hook(inode_get_acl, 0, idmap, dentry, acl_name); 1427 } 1428 1429 int security_inode_remove_acl(struct mnt_idmap *idmap, 1430 struct dentry *dentry, const char *acl_name) 1431 { 1432 int ret; 1433 1434 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1435 return 0; 1436 ret = call_int_hook(inode_remove_acl, 0, idmap, dentry, acl_name); 1437 if (ret) 1438 return ret; 1439 ret = ima_inode_remove_acl(idmap, dentry, acl_name); 1440 if (ret) 1441 return ret; 1442 return evm_inode_remove_acl(idmap, dentry, acl_name); 1443 } 1444 1445 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 1446 const void *value, size_t size, int flags) 1447 { 1448 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1449 return; 1450 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 1451 evm_inode_post_setxattr(dentry, name, value, size); 1452 } 1453 1454 int security_inode_getxattr(struct dentry *dentry, const char *name) 1455 { 1456 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1457 return 0; 1458 return call_int_hook(inode_getxattr, 0, dentry, name); 1459 } 1460 1461 int security_inode_listxattr(struct dentry *dentry) 1462 { 1463 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1464 return 0; 1465 return call_int_hook(inode_listxattr, 0, dentry); 1466 } 1467 1468 int security_inode_removexattr(struct mnt_idmap *idmap, 1469 struct dentry *dentry, const char *name) 1470 { 1471 int ret; 1472 1473 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1474 return 0; 1475 /* 1476 * SELinux and Smack integrate the cap call, 1477 * so assume that all LSMs supplying this call do so. 1478 */ 1479 ret = call_int_hook(inode_removexattr, 1, idmap, dentry, name); 1480 if (ret == 1) 1481 ret = cap_inode_removexattr(idmap, dentry, name); 1482 if (ret) 1483 return ret; 1484 ret = ima_inode_removexattr(dentry, name); 1485 if (ret) 1486 return ret; 1487 return evm_inode_removexattr(idmap, dentry, name); 1488 } 1489 1490 int security_inode_need_killpriv(struct dentry *dentry) 1491 { 1492 return call_int_hook(inode_need_killpriv, 0, dentry); 1493 } 1494 1495 int security_inode_killpriv(struct mnt_idmap *idmap, 1496 struct dentry *dentry) 1497 { 1498 return call_int_hook(inode_killpriv, 0, idmap, dentry); 1499 } 1500 1501 int security_inode_getsecurity(struct mnt_idmap *idmap, 1502 struct inode *inode, const char *name, 1503 void **buffer, bool alloc) 1504 { 1505 struct security_hook_list *hp; 1506 int rc; 1507 1508 if (unlikely(IS_PRIVATE(inode))) 1509 return LSM_RET_DEFAULT(inode_getsecurity); 1510 /* 1511 * Only one module will provide an attribute with a given name. 1512 */ 1513 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) { 1514 rc = hp->hook.inode_getsecurity(idmap, inode, name, buffer, alloc); 1515 if (rc != LSM_RET_DEFAULT(inode_getsecurity)) 1516 return rc; 1517 } 1518 return LSM_RET_DEFAULT(inode_getsecurity); 1519 } 1520 1521 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 1522 { 1523 struct security_hook_list *hp; 1524 int rc; 1525 1526 if (unlikely(IS_PRIVATE(inode))) 1527 return LSM_RET_DEFAULT(inode_setsecurity); 1528 /* 1529 * Only one module will provide an attribute with a given name. 1530 */ 1531 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) { 1532 rc = hp->hook.inode_setsecurity(inode, name, value, size, 1533 flags); 1534 if (rc != LSM_RET_DEFAULT(inode_setsecurity)) 1535 return rc; 1536 } 1537 return LSM_RET_DEFAULT(inode_setsecurity); 1538 } 1539 1540 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 1541 { 1542 if (unlikely(IS_PRIVATE(inode))) 1543 return 0; 1544 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size); 1545 } 1546 EXPORT_SYMBOL(security_inode_listsecurity); 1547 1548 void security_inode_getsecid(struct inode *inode, u32 *secid) 1549 { 1550 call_void_hook(inode_getsecid, inode, secid); 1551 } 1552 1553 int security_inode_copy_up(struct dentry *src, struct cred **new) 1554 { 1555 return call_int_hook(inode_copy_up, 0, src, new); 1556 } 1557 EXPORT_SYMBOL(security_inode_copy_up); 1558 1559 int security_inode_copy_up_xattr(const char *name) 1560 { 1561 struct security_hook_list *hp; 1562 int rc; 1563 1564 /* 1565 * The implementation can return 0 (accept the xattr), 1 (discard the 1566 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or 1567 * any other error code incase of an error. 1568 */ 1569 hlist_for_each_entry(hp, 1570 &security_hook_heads.inode_copy_up_xattr, list) { 1571 rc = hp->hook.inode_copy_up_xattr(name); 1572 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr)) 1573 return rc; 1574 } 1575 1576 return LSM_RET_DEFAULT(inode_copy_up_xattr); 1577 } 1578 EXPORT_SYMBOL(security_inode_copy_up_xattr); 1579 1580 int security_kernfs_init_security(struct kernfs_node *kn_dir, 1581 struct kernfs_node *kn) 1582 { 1583 return call_int_hook(kernfs_init_security, 0, kn_dir, kn); 1584 } 1585 1586 int security_file_permission(struct file *file, int mask) 1587 { 1588 int ret; 1589 1590 ret = call_int_hook(file_permission, 0, file, mask); 1591 if (ret) 1592 return ret; 1593 1594 return fsnotify_perm(file, mask); 1595 } 1596 1597 int security_file_alloc(struct file *file) 1598 { 1599 int rc = lsm_file_alloc(file); 1600 1601 if (rc) 1602 return rc; 1603 rc = call_int_hook(file_alloc_security, 0, file); 1604 if (unlikely(rc)) 1605 security_file_free(file); 1606 return rc; 1607 } 1608 1609 void security_file_free(struct file *file) 1610 { 1611 void *blob; 1612 1613 call_void_hook(file_free_security, file); 1614 1615 blob = file->f_security; 1616 if (blob) { 1617 file->f_security = NULL; 1618 kmem_cache_free(lsm_file_cache, blob); 1619 } 1620 } 1621 1622 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1623 { 1624 return call_int_hook(file_ioctl, 0, file, cmd, arg); 1625 } 1626 EXPORT_SYMBOL_GPL(security_file_ioctl); 1627 1628 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 1629 { 1630 /* 1631 * Does we have PROT_READ and does the application expect 1632 * it to imply PROT_EXEC? If not, nothing to talk about... 1633 */ 1634 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 1635 return prot; 1636 if (!(current->personality & READ_IMPLIES_EXEC)) 1637 return prot; 1638 /* 1639 * if that's an anonymous mapping, let it. 1640 */ 1641 if (!file) 1642 return prot | PROT_EXEC; 1643 /* 1644 * ditto if it's not on noexec mount, except that on !MMU we need 1645 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 1646 */ 1647 if (!path_noexec(&file->f_path)) { 1648 #ifndef CONFIG_MMU 1649 if (file->f_op->mmap_capabilities) { 1650 unsigned caps = file->f_op->mmap_capabilities(file); 1651 if (!(caps & NOMMU_MAP_EXEC)) 1652 return prot; 1653 } 1654 #endif 1655 return prot | PROT_EXEC; 1656 } 1657 /* anything on noexec mount won't get PROT_EXEC */ 1658 return prot; 1659 } 1660 1661 int security_mmap_file(struct file *file, unsigned long prot, 1662 unsigned long flags) 1663 { 1664 unsigned long prot_adj = mmap_prot(file, prot); 1665 int ret; 1666 1667 ret = call_int_hook(mmap_file, 0, file, prot, prot_adj, flags); 1668 if (ret) 1669 return ret; 1670 return ima_file_mmap(file, prot, prot_adj, flags); 1671 } 1672 1673 int security_mmap_addr(unsigned long addr) 1674 { 1675 return call_int_hook(mmap_addr, 0, addr); 1676 } 1677 1678 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 1679 unsigned long prot) 1680 { 1681 int ret; 1682 1683 ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot); 1684 if (ret) 1685 return ret; 1686 return ima_file_mprotect(vma, prot); 1687 } 1688 1689 int security_file_lock(struct file *file, unsigned int cmd) 1690 { 1691 return call_int_hook(file_lock, 0, file, cmd); 1692 } 1693 1694 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 1695 { 1696 return call_int_hook(file_fcntl, 0, file, cmd, arg); 1697 } 1698 1699 void security_file_set_fowner(struct file *file) 1700 { 1701 call_void_hook(file_set_fowner, file); 1702 } 1703 1704 int security_file_send_sigiotask(struct task_struct *tsk, 1705 struct fown_struct *fown, int sig) 1706 { 1707 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig); 1708 } 1709 1710 int security_file_receive(struct file *file) 1711 { 1712 return call_int_hook(file_receive, 0, file); 1713 } 1714 1715 int security_file_open(struct file *file) 1716 { 1717 int ret; 1718 1719 ret = call_int_hook(file_open, 0, file); 1720 if (ret) 1721 return ret; 1722 1723 return fsnotify_perm(file, MAY_OPEN); 1724 } 1725 1726 int security_file_truncate(struct file *file) 1727 { 1728 return call_int_hook(file_truncate, 0, file); 1729 } 1730 1731 int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 1732 { 1733 int rc = lsm_task_alloc(task); 1734 1735 if (rc) 1736 return rc; 1737 rc = call_int_hook(task_alloc, 0, task, clone_flags); 1738 if (unlikely(rc)) 1739 security_task_free(task); 1740 return rc; 1741 } 1742 1743 void security_task_free(struct task_struct *task) 1744 { 1745 call_void_hook(task_free, task); 1746 1747 kfree(task->security); 1748 task->security = NULL; 1749 } 1750 1751 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 1752 { 1753 int rc = lsm_cred_alloc(cred, gfp); 1754 1755 if (rc) 1756 return rc; 1757 1758 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp); 1759 if (unlikely(rc)) 1760 security_cred_free(cred); 1761 return rc; 1762 } 1763 1764 void security_cred_free(struct cred *cred) 1765 { 1766 /* 1767 * There is a failure case in prepare_creds() that 1768 * may result in a call here with ->security being NULL. 1769 */ 1770 if (unlikely(cred->security == NULL)) 1771 return; 1772 1773 call_void_hook(cred_free, cred); 1774 1775 kfree(cred->security); 1776 cred->security = NULL; 1777 } 1778 1779 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 1780 { 1781 int rc = lsm_cred_alloc(new, gfp); 1782 1783 if (rc) 1784 return rc; 1785 1786 rc = call_int_hook(cred_prepare, 0, new, old, gfp); 1787 if (unlikely(rc)) 1788 security_cred_free(new); 1789 return rc; 1790 } 1791 1792 void security_transfer_creds(struct cred *new, const struct cred *old) 1793 { 1794 call_void_hook(cred_transfer, new, old); 1795 } 1796 1797 void security_cred_getsecid(const struct cred *c, u32 *secid) 1798 { 1799 *secid = 0; 1800 call_void_hook(cred_getsecid, c, secid); 1801 } 1802 EXPORT_SYMBOL(security_cred_getsecid); 1803 1804 int security_kernel_act_as(struct cred *new, u32 secid) 1805 { 1806 return call_int_hook(kernel_act_as, 0, new, secid); 1807 } 1808 1809 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 1810 { 1811 return call_int_hook(kernel_create_files_as, 0, new, inode); 1812 } 1813 1814 int security_kernel_module_request(char *kmod_name) 1815 { 1816 int ret; 1817 1818 ret = call_int_hook(kernel_module_request, 0, kmod_name); 1819 if (ret) 1820 return ret; 1821 return integrity_kernel_module_request(kmod_name); 1822 } 1823 1824 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id, 1825 bool contents) 1826 { 1827 int ret; 1828 1829 ret = call_int_hook(kernel_read_file, 0, file, id, contents); 1830 if (ret) 1831 return ret; 1832 return ima_read_file(file, id, contents); 1833 } 1834 EXPORT_SYMBOL_GPL(security_kernel_read_file); 1835 1836 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 1837 enum kernel_read_file_id id) 1838 { 1839 int ret; 1840 1841 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id); 1842 if (ret) 1843 return ret; 1844 return ima_post_read_file(file, buf, size, id); 1845 } 1846 EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 1847 1848 int security_kernel_load_data(enum kernel_load_data_id id, bool contents) 1849 { 1850 int ret; 1851 1852 ret = call_int_hook(kernel_load_data, 0, id, contents); 1853 if (ret) 1854 return ret; 1855 return ima_load_data(id, contents); 1856 } 1857 EXPORT_SYMBOL_GPL(security_kernel_load_data); 1858 1859 int security_kernel_post_load_data(char *buf, loff_t size, 1860 enum kernel_load_data_id id, 1861 char *description) 1862 { 1863 int ret; 1864 1865 ret = call_int_hook(kernel_post_load_data, 0, buf, size, id, 1866 description); 1867 if (ret) 1868 return ret; 1869 return ima_post_load_data(buf, size, id, description); 1870 } 1871 EXPORT_SYMBOL_GPL(security_kernel_post_load_data); 1872 1873 int security_task_fix_setuid(struct cred *new, const struct cred *old, 1874 int flags) 1875 { 1876 return call_int_hook(task_fix_setuid, 0, new, old, flags); 1877 } 1878 1879 int security_task_fix_setgid(struct cred *new, const struct cred *old, 1880 int flags) 1881 { 1882 return call_int_hook(task_fix_setgid, 0, new, old, flags); 1883 } 1884 1885 int security_task_fix_setgroups(struct cred *new, const struct cred *old) 1886 { 1887 return call_int_hook(task_fix_setgroups, 0, new, old); 1888 } 1889 1890 int security_task_setpgid(struct task_struct *p, pid_t pgid) 1891 { 1892 return call_int_hook(task_setpgid, 0, p, pgid); 1893 } 1894 1895 int security_task_getpgid(struct task_struct *p) 1896 { 1897 return call_int_hook(task_getpgid, 0, p); 1898 } 1899 1900 int security_task_getsid(struct task_struct *p) 1901 { 1902 return call_int_hook(task_getsid, 0, p); 1903 } 1904 1905 void security_current_getsecid_subj(u32 *secid) 1906 { 1907 *secid = 0; 1908 call_void_hook(current_getsecid_subj, secid); 1909 } 1910 EXPORT_SYMBOL(security_current_getsecid_subj); 1911 1912 void security_task_getsecid_obj(struct task_struct *p, u32 *secid) 1913 { 1914 *secid = 0; 1915 call_void_hook(task_getsecid_obj, p, secid); 1916 } 1917 EXPORT_SYMBOL(security_task_getsecid_obj); 1918 1919 int security_task_setnice(struct task_struct *p, int nice) 1920 { 1921 return call_int_hook(task_setnice, 0, p, nice); 1922 } 1923 1924 int security_task_setioprio(struct task_struct *p, int ioprio) 1925 { 1926 return call_int_hook(task_setioprio, 0, p, ioprio); 1927 } 1928 1929 int security_task_getioprio(struct task_struct *p) 1930 { 1931 return call_int_hook(task_getioprio, 0, p); 1932 } 1933 1934 int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 1935 unsigned int flags) 1936 { 1937 return call_int_hook(task_prlimit, 0, cred, tcred, flags); 1938 } 1939 1940 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 1941 struct rlimit *new_rlim) 1942 { 1943 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim); 1944 } 1945 1946 int security_task_setscheduler(struct task_struct *p) 1947 { 1948 return call_int_hook(task_setscheduler, 0, p); 1949 } 1950 1951 int security_task_getscheduler(struct task_struct *p) 1952 { 1953 return call_int_hook(task_getscheduler, 0, p); 1954 } 1955 1956 int security_task_movememory(struct task_struct *p) 1957 { 1958 return call_int_hook(task_movememory, 0, p); 1959 } 1960 1961 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, 1962 int sig, const struct cred *cred) 1963 { 1964 return call_int_hook(task_kill, 0, p, info, sig, cred); 1965 } 1966 1967 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 1968 unsigned long arg4, unsigned long arg5) 1969 { 1970 int thisrc; 1971 int rc = LSM_RET_DEFAULT(task_prctl); 1972 struct security_hook_list *hp; 1973 1974 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 1975 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 1976 if (thisrc != LSM_RET_DEFAULT(task_prctl)) { 1977 rc = thisrc; 1978 if (thisrc != 0) 1979 break; 1980 } 1981 } 1982 return rc; 1983 } 1984 1985 void security_task_to_inode(struct task_struct *p, struct inode *inode) 1986 { 1987 call_void_hook(task_to_inode, p, inode); 1988 } 1989 1990 int security_create_user_ns(const struct cred *cred) 1991 { 1992 return call_int_hook(userns_create, 0, cred); 1993 } 1994 1995 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 1996 { 1997 return call_int_hook(ipc_permission, 0, ipcp, flag); 1998 } 1999 2000 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 2001 { 2002 *secid = 0; 2003 call_void_hook(ipc_getsecid, ipcp, secid); 2004 } 2005 2006 int security_msg_msg_alloc(struct msg_msg *msg) 2007 { 2008 int rc = lsm_msg_msg_alloc(msg); 2009 2010 if (unlikely(rc)) 2011 return rc; 2012 rc = call_int_hook(msg_msg_alloc_security, 0, msg); 2013 if (unlikely(rc)) 2014 security_msg_msg_free(msg); 2015 return rc; 2016 } 2017 2018 void security_msg_msg_free(struct msg_msg *msg) 2019 { 2020 call_void_hook(msg_msg_free_security, msg); 2021 kfree(msg->security); 2022 msg->security = NULL; 2023 } 2024 2025 int security_msg_queue_alloc(struct kern_ipc_perm *msq) 2026 { 2027 int rc = lsm_ipc_alloc(msq); 2028 2029 if (unlikely(rc)) 2030 return rc; 2031 rc = call_int_hook(msg_queue_alloc_security, 0, msq); 2032 if (unlikely(rc)) 2033 security_msg_queue_free(msq); 2034 return rc; 2035 } 2036 2037 void security_msg_queue_free(struct kern_ipc_perm *msq) 2038 { 2039 call_void_hook(msg_queue_free_security, msq); 2040 kfree(msq->security); 2041 msq->security = NULL; 2042 } 2043 2044 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 2045 { 2046 return call_int_hook(msg_queue_associate, 0, msq, msqflg); 2047 } 2048 2049 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 2050 { 2051 return call_int_hook(msg_queue_msgctl, 0, msq, cmd); 2052 } 2053 2054 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 2055 struct msg_msg *msg, int msqflg) 2056 { 2057 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg); 2058 } 2059 2060 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 2061 struct task_struct *target, long type, int mode) 2062 { 2063 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode); 2064 } 2065 2066 int security_shm_alloc(struct kern_ipc_perm *shp) 2067 { 2068 int rc = lsm_ipc_alloc(shp); 2069 2070 if (unlikely(rc)) 2071 return rc; 2072 rc = call_int_hook(shm_alloc_security, 0, shp); 2073 if (unlikely(rc)) 2074 security_shm_free(shp); 2075 return rc; 2076 } 2077 2078 void security_shm_free(struct kern_ipc_perm *shp) 2079 { 2080 call_void_hook(shm_free_security, shp); 2081 kfree(shp->security); 2082 shp->security = NULL; 2083 } 2084 2085 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 2086 { 2087 return call_int_hook(shm_associate, 0, shp, shmflg); 2088 } 2089 2090 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 2091 { 2092 return call_int_hook(shm_shmctl, 0, shp, cmd); 2093 } 2094 2095 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg) 2096 { 2097 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg); 2098 } 2099 2100 int security_sem_alloc(struct kern_ipc_perm *sma) 2101 { 2102 int rc = lsm_ipc_alloc(sma); 2103 2104 if (unlikely(rc)) 2105 return rc; 2106 rc = call_int_hook(sem_alloc_security, 0, sma); 2107 if (unlikely(rc)) 2108 security_sem_free(sma); 2109 return rc; 2110 } 2111 2112 void security_sem_free(struct kern_ipc_perm *sma) 2113 { 2114 call_void_hook(sem_free_security, sma); 2115 kfree(sma->security); 2116 sma->security = NULL; 2117 } 2118 2119 int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 2120 { 2121 return call_int_hook(sem_associate, 0, sma, semflg); 2122 } 2123 2124 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 2125 { 2126 return call_int_hook(sem_semctl, 0, sma, cmd); 2127 } 2128 2129 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 2130 unsigned nsops, int alter) 2131 { 2132 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter); 2133 } 2134 2135 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 2136 { 2137 if (unlikely(inode && IS_PRIVATE(inode))) 2138 return; 2139 call_void_hook(d_instantiate, dentry, inode); 2140 } 2141 EXPORT_SYMBOL(security_d_instantiate); 2142 2143 int security_getprocattr(struct task_struct *p, const char *lsm, 2144 const char *name, char **value) 2145 { 2146 struct security_hook_list *hp; 2147 2148 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) { 2149 if (lsm != NULL && strcmp(lsm, hp->lsm)) 2150 continue; 2151 return hp->hook.getprocattr(p, name, value); 2152 } 2153 return LSM_RET_DEFAULT(getprocattr); 2154 } 2155 2156 int security_setprocattr(const char *lsm, const char *name, void *value, 2157 size_t size) 2158 { 2159 struct security_hook_list *hp; 2160 2161 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) { 2162 if (lsm != NULL && strcmp(lsm, hp->lsm)) 2163 continue; 2164 return hp->hook.setprocattr(name, value, size); 2165 } 2166 return LSM_RET_DEFAULT(setprocattr); 2167 } 2168 2169 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 2170 { 2171 return call_int_hook(netlink_send, 0, sk, skb); 2172 } 2173 2174 int security_ismaclabel(const char *name) 2175 { 2176 return call_int_hook(ismaclabel, 0, name); 2177 } 2178 EXPORT_SYMBOL(security_ismaclabel); 2179 2180 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 2181 { 2182 struct security_hook_list *hp; 2183 int rc; 2184 2185 /* 2186 * Currently, only one LSM can implement secid_to_secctx (i.e this 2187 * LSM hook is not "stackable"). 2188 */ 2189 hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) { 2190 rc = hp->hook.secid_to_secctx(secid, secdata, seclen); 2191 if (rc != LSM_RET_DEFAULT(secid_to_secctx)) 2192 return rc; 2193 } 2194 2195 return LSM_RET_DEFAULT(secid_to_secctx); 2196 } 2197 EXPORT_SYMBOL(security_secid_to_secctx); 2198 2199 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 2200 { 2201 *secid = 0; 2202 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid); 2203 } 2204 EXPORT_SYMBOL(security_secctx_to_secid); 2205 2206 void security_release_secctx(char *secdata, u32 seclen) 2207 { 2208 call_void_hook(release_secctx, secdata, seclen); 2209 } 2210 EXPORT_SYMBOL(security_release_secctx); 2211 2212 void security_inode_invalidate_secctx(struct inode *inode) 2213 { 2214 call_void_hook(inode_invalidate_secctx, inode); 2215 } 2216 EXPORT_SYMBOL(security_inode_invalidate_secctx); 2217 2218 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 2219 { 2220 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen); 2221 } 2222 EXPORT_SYMBOL(security_inode_notifysecctx); 2223 2224 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 2225 { 2226 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen); 2227 } 2228 EXPORT_SYMBOL(security_inode_setsecctx); 2229 2230 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 2231 { 2232 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen); 2233 } 2234 EXPORT_SYMBOL(security_inode_getsecctx); 2235 2236 #ifdef CONFIG_WATCH_QUEUE 2237 int security_post_notification(const struct cred *w_cred, 2238 const struct cred *cred, 2239 struct watch_notification *n) 2240 { 2241 return call_int_hook(post_notification, 0, w_cred, cred, n); 2242 } 2243 #endif /* CONFIG_WATCH_QUEUE */ 2244 2245 #ifdef CONFIG_KEY_NOTIFICATIONS 2246 int security_watch_key(struct key *key) 2247 { 2248 return call_int_hook(watch_key, 0, key); 2249 } 2250 #endif 2251 2252 #ifdef CONFIG_SECURITY_NETWORK 2253 2254 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 2255 { 2256 return call_int_hook(unix_stream_connect, 0, sock, other, newsk); 2257 } 2258 EXPORT_SYMBOL(security_unix_stream_connect); 2259 2260 int security_unix_may_send(struct socket *sock, struct socket *other) 2261 { 2262 return call_int_hook(unix_may_send, 0, sock, other); 2263 } 2264 EXPORT_SYMBOL(security_unix_may_send); 2265 2266 int security_socket_create(int family, int type, int protocol, int kern) 2267 { 2268 return call_int_hook(socket_create, 0, family, type, protocol, kern); 2269 } 2270 2271 int security_socket_post_create(struct socket *sock, int family, 2272 int type, int protocol, int kern) 2273 { 2274 return call_int_hook(socket_post_create, 0, sock, family, type, 2275 protocol, kern); 2276 } 2277 2278 int security_socket_socketpair(struct socket *socka, struct socket *sockb) 2279 { 2280 return call_int_hook(socket_socketpair, 0, socka, sockb); 2281 } 2282 EXPORT_SYMBOL(security_socket_socketpair); 2283 2284 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 2285 { 2286 return call_int_hook(socket_bind, 0, sock, address, addrlen); 2287 } 2288 2289 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 2290 { 2291 return call_int_hook(socket_connect, 0, sock, address, addrlen); 2292 } 2293 2294 int security_socket_listen(struct socket *sock, int backlog) 2295 { 2296 return call_int_hook(socket_listen, 0, sock, backlog); 2297 } 2298 2299 int security_socket_accept(struct socket *sock, struct socket *newsock) 2300 { 2301 return call_int_hook(socket_accept, 0, sock, newsock); 2302 } 2303 2304 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 2305 { 2306 return call_int_hook(socket_sendmsg, 0, sock, msg, size); 2307 } 2308 2309 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 2310 int size, int flags) 2311 { 2312 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags); 2313 } 2314 2315 int security_socket_getsockname(struct socket *sock) 2316 { 2317 return call_int_hook(socket_getsockname, 0, sock); 2318 } 2319 2320 int security_socket_getpeername(struct socket *sock) 2321 { 2322 return call_int_hook(socket_getpeername, 0, sock); 2323 } 2324 2325 int security_socket_getsockopt(struct socket *sock, int level, int optname) 2326 { 2327 return call_int_hook(socket_getsockopt, 0, sock, level, optname); 2328 } 2329 2330 int security_socket_setsockopt(struct socket *sock, int level, int optname) 2331 { 2332 return call_int_hook(socket_setsockopt, 0, sock, level, optname); 2333 } 2334 2335 int security_socket_shutdown(struct socket *sock, int how) 2336 { 2337 return call_int_hook(socket_shutdown, 0, sock, how); 2338 } 2339 2340 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 2341 { 2342 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb); 2343 } 2344 EXPORT_SYMBOL(security_sock_rcv_skb); 2345 2346 int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval, 2347 sockptr_t optlen, unsigned int len) 2348 { 2349 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock, 2350 optval, optlen, len); 2351 } 2352 2353 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 2354 { 2355 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock, 2356 skb, secid); 2357 } 2358 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 2359 2360 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 2361 { 2362 return call_int_hook(sk_alloc_security, 0, sk, family, priority); 2363 } 2364 2365 void security_sk_free(struct sock *sk) 2366 { 2367 call_void_hook(sk_free_security, sk); 2368 } 2369 2370 void security_sk_clone(const struct sock *sk, struct sock *newsk) 2371 { 2372 call_void_hook(sk_clone_security, sk, newsk); 2373 } 2374 EXPORT_SYMBOL(security_sk_clone); 2375 2376 void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic) 2377 { 2378 call_void_hook(sk_getsecid, sk, &flic->flowic_secid); 2379 } 2380 EXPORT_SYMBOL(security_sk_classify_flow); 2381 2382 void security_req_classify_flow(const struct request_sock *req, 2383 struct flowi_common *flic) 2384 { 2385 call_void_hook(req_classify_flow, req, flic); 2386 } 2387 EXPORT_SYMBOL(security_req_classify_flow); 2388 2389 void security_sock_graft(struct sock *sk, struct socket *parent) 2390 { 2391 call_void_hook(sock_graft, sk, parent); 2392 } 2393 EXPORT_SYMBOL(security_sock_graft); 2394 2395 int security_inet_conn_request(const struct sock *sk, 2396 struct sk_buff *skb, struct request_sock *req) 2397 { 2398 return call_int_hook(inet_conn_request, 0, sk, skb, req); 2399 } 2400 EXPORT_SYMBOL(security_inet_conn_request); 2401 2402 void security_inet_csk_clone(struct sock *newsk, 2403 const struct request_sock *req) 2404 { 2405 call_void_hook(inet_csk_clone, newsk, req); 2406 } 2407 2408 void security_inet_conn_established(struct sock *sk, 2409 struct sk_buff *skb) 2410 { 2411 call_void_hook(inet_conn_established, sk, skb); 2412 } 2413 EXPORT_SYMBOL(security_inet_conn_established); 2414 2415 int security_secmark_relabel_packet(u32 secid) 2416 { 2417 return call_int_hook(secmark_relabel_packet, 0, secid); 2418 } 2419 EXPORT_SYMBOL(security_secmark_relabel_packet); 2420 2421 void security_secmark_refcount_inc(void) 2422 { 2423 call_void_hook(secmark_refcount_inc); 2424 } 2425 EXPORT_SYMBOL(security_secmark_refcount_inc); 2426 2427 void security_secmark_refcount_dec(void) 2428 { 2429 call_void_hook(secmark_refcount_dec); 2430 } 2431 EXPORT_SYMBOL(security_secmark_refcount_dec); 2432 2433 int security_tun_dev_alloc_security(void **security) 2434 { 2435 return call_int_hook(tun_dev_alloc_security, 0, security); 2436 } 2437 EXPORT_SYMBOL(security_tun_dev_alloc_security); 2438 2439 void security_tun_dev_free_security(void *security) 2440 { 2441 call_void_hook(tun_dev_free_security, security); 2442 } 2443 EXPORT_SYMBOL(security_tun_dev_free_security); 2444 2445 int security_tun_dev_create(void) 2446 { 2447 return call_int_hook(tun_dev_create, 0); 2448 } 2449 EXPORT_SYMBOL(security_tun_dev_create); 2450 2451 int security_tun_dev_attach_queue(void *security) 2452 { 2453 return call_int_hook(tun_dev_attach_queue, 0, security); 2454 } 2455 EXPORT_SYMBOL(security_tun_dev_attach_queue); 2456 2457 int security_tun_dev_attach(struct sock *sk, void *security) 2458 { 2459 return call_int_hook(tun_dev_attach, 0, sk, security); 2460 } 2461 EXPORT_SYMBOL(security_tun_dev_attach); 2462 2463 int security_tun_dev_open(void *security) 2464 { 2465 return call_int_hook(tun_dev_open, 0, security); 2466 } 2467 EXPORT_SYMBOL(security_tun_dev_open); 2468 2469 int security_sctp_assoc_request(struct sctp_association *asoc, struct sk_buff *skb) 2470 { 2471 return call_int_hook(sctp_assoc_request, 0, asoc, skb); 2472 } 2473 EXPORT_SYMBOL(security_sctp_assoc_request); 2474 2475 int security_sctp_bind_connect(struct sock *sk, int optname, 2476 struct sockaddr *address, int addrlen) 2477 { 2478 return call_int_hook(sctp_bind_connect, 0, sk, optname, 2479 address, addrlen); 2480 } 2481 EXPORT_SYMBOL(security_sctp_bind_connect); 2482 2483 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk, 2484 struct sock *newsk) 2485 { 2486 call_void_hook(sctp_sk_clone, asoc, sk, newsk); 2487 } 2488 EXPORT_SYMBOL(security_sctp_sk_clone); 2489 2490 int security_sctp_assoc_established(struct sctp_association *asoc, 2491 struct sk_buff *skb) 2492 { 2493 return call_int_hook(sctp_assoc_established, 0, asoc, skb); 2494 } 2495 EXPORT_SYMBOL(security_sctp_assoc_established); 2496 2497 #endif /* CONFIG_SECURITY_NETWORK */ 2498 2499 #ifdef CONFIG_SECURITY_INFINIBAND 2500 2501 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 2502 { 2503 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey); 2504 } 2505 EXPORT_SYMBOL(security_ib_pkey_access); 2506 2507 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num) 2508 { 2509 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num); 2510 } 2511 EXPORT_SYMBOL(security_ib_endport_manage_subnet); 2512 2513 int security_ib_alloc_security(void **sec) 2514 { 2515 return call_int_hook(ib_alloc_security, 0, sec); 2516 } 2517 EXPORT_SYMBOL(security_ib_alloc_security); 2518 2519 void security_ib_free_security(void *sec) 2520 { 2521 call_void_hook(ib_free_security, sec); 2522 } 2523 EXPORT_SYMBOL(security_ib_free_security); 2524 #endif /* CONFIG_SECURITY_INFINIBAND */ 2525 2526 #ifdef CONFIG_SECURITY_NETWORK_XFRM 2527 2528 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 2529 struct xfrm_user_sec_ctx *sec_ctx, 2530 gfp_t gfp) 2531 { 2532 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp); 2533 } 2534 EXPORT_SYMBOL(security_xfrm_policy_alloc); 2535 2536 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 2537 struct xfrm_sec_ctx **new_ctxp) 2538 { 2539 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp); 2540 } 2541 2542 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 2543 { 2544 call_void_hook(xfrm_policy_free_security, ctx); 2545 } 2546 EXPORT_SYMBOL(security_xfrm_policy_free); 2547 2548 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 2549 { 2550 return call_int_hook(xfrm_policy_delete_security, 0, ctx); 2551 } 2552 2553 int security_xfrm_state_alloc(struct xfrm_state *x, 2554 struct xfrm_user_sec_ctx *sec_ctx) 2555 { 2556 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx); 2557 } 2558 EXPORT_SYMBOL(security_xfrm_state_alloc); 2559 2560 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 2561 struct xfrm_sec_ctx *polsec, u32 secid) 2562 { 2563 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid); 2564 } 2565 2566 int security_xfrm_state_delete(struct xfrm_state *x) 2567 { 2568 return call_int_hook(xfrm_state_delete_security, 0, x); 2569 } 2570 EXPORT_SYMBOL(security_xfrm_state_delete); 2571 2572 void security_xfrm_state_free(struct xfrm_state *x) 2573 { 2574 call_void_hook(xfrm_state_free_security, x); 2575 } 2576 2577 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid) 2578 { 2579 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid); 2580 } 2581 2582 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 2583 struct xfrm_policy *xp, 2584 const struct flowi_common *flic) 2585 { 2586 struct security_hook_list *hp; 2587 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match); 2588 2589 /* 2590 * Since this function is expected to return 0 or 1, the judgment 2591 * becomes difficult if multiple LSMs supply this call. Fortunately, 2592 * we can use the first LSM's judgment because currently only SELinux 2593 * supplies this call. 2594 * 2595 * For speed optimization, we explicitly break the loop rather than 2596 * using the macro 2597 */ 2598 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 2599 list) { 2600 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic); 2601 break; 2602 } 2603 return rc; 2604 } 2605 2606 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 2607 { 2608 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1); 2609 } 2610 2611 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic) 2612 { 2613 int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid, 2614 0); 2615 2616 BUG_ON(rc); 2617 } 2618 EXPORT_SYMBOL(security_skb_classify_flow); 2619 2620 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 2621 2622 #ifdef CONFIG_KEYS 2623 2624 int security_key_alloc(struct key *key, const struct cred *cred, 2625 unsigned long flags) 2626 { 2627 return call_int_hook(key_alloc, 0, key, cred, flags); 2628 } 2629 2630 void security_key_free(struct key *key) 2631 { 2632 call_void_hook(key_free, key); 2633 } 2634 2635 int security_key_permission(key_ref_t key_ref, const struct cred *cred, 2636 enum key_need_perm need_perm) 2637 { 2638 return call_int_hook(key_permission, 0, key_ref, cred, need_perm); 2639 } 2640 2641 int security_key_getsecurity(struct key *key, char **_buffer) 2642 { 2643 *_buffer = NULL; 2644 return call_int_hook(key_getsecurity, 0, key, _buffer); 2645 } 2646 2647 #endif /* CONFIG_KEYS */ 2648 2649 #ifdef CONFIG_AUDIT 2650 2651 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 2652 { 2653 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule); 2654 } 2655 2656 int security_audit_rule_known(struct audit_krule *krule) 2657 { 2658 return call_int_hook(audit_rule_known, 0, krule); 2659 } 2660 2661 void security_audit_rule_free(void *lsmrule) 2662 { 2663 call_void_hook(audit_rule_free, lsmrule); 2664 } 2665 2666 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule) 2667 { 2668 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule); 2669 } 2670 #endif /* CONFIG_AUDIT */ 2671 2672 #ifdef CONFIG_BPF_SYSCALL 2673 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 2674 { 2675 return call_int_hook(bpf, 0, cmd, attr, size); 2676 } 2677 int security_bpf_map(struct bpf_map *map, fmode_t fmode) 2678 { 2679 return call_int_hook(bpf_map, 0, map, fmode); 2680 } 2681 int security_bpf_prog(struct bpf_prog *prog) 2682 { 2683 return call_int_hook(bpf_prog, 0, prog); 2684 } 2685 int security_bpf_map_alloc(struct bpf_map *map) 2686 { 2687 return call_int_hook(bpf_map_alloc_security, 0, map); 2688 } 2689 int security_bpf_prog_alloc(struct bpf_prog_aux *aux) 2690 { 2691 return call_int_hook(bpf_prog_alloc_security, 0, aux); 2692 } 2693 void security_bpf_map_free(struct bpf_map *map) 2694 { 2695 call_void_hook(bpf_map_free_security, map); 2696 } 2697 void security_bpf_prog_free(struct bpf_prog_aux *aux) 2698 { 2699 call_void_hook(bpf_prog_free_security, aux); 2700 } 2701 #endif /* CONFIG_BPF_SYSCALL */ 2702 2703 int security_locked_down(enum lockdown_reason what) 2704 { 2705 return call_int_hook(locked_down, 0, what); 2706 } 2707 EXPORT_SYMBOL(security_locked_down); 2708 2709 #ifdef CONFIG_PERF_EVENTS 2710 int security_perf_event_open(struct perf_event_attr *attr, int type) 2711 { 2712 return call_int_hook(perf_event_open, 0, attr, type); 2713 } 2714 2715 int security_perf_event_alloc(struct perf_event *event) 2716 { 2717 return call_int_hook(perf_event_alloc, 0, event); 2718 } 2719 2720 void security_perf_event_free(struct perf_event *event) 2721 { 2722 call_void_hook(perf_event_free, event); 2723 } 2724 2725 int security_perf_event_read(struct perf_event *event) 2726 { 2727 return call_int_hook(perf_event_read, 0, event); 2728 } 2729 2730 int security_perf_event_write(struct perf_event *event) 2731 { 2732 return call_int_hook(perf_event_write, 0, event); 2733 } 2734 #endif /* CONFIG_PERF_EVENTS */ 2735 2736 #ifdef CONFIG_IO_URING 2737 int security_uring_override_creds(const struct cred *new) 2738 { 2739 return call_int_hook(uring_override_creds, 0, new); 2740 } 2741 2742 int security_uring_sqpoll(void) 2743 { 2744 return call_int_hook(uring_sqpoll, 0); 2745 } 2746 int security_uring_cmd(struct io_uring_cmd *ioucmd) 2747 { 2748 return call_int_hook(uring_cmd, 0, ioucmd); 2749 } 2750 #endif /* CONFIG_IO_URING */ 2751