xref: /openbmc/linux/security/security.c (revision 1eb4c977)
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *	This program is free software; you can redistribute it and/or modify
9  *	it under the terms of the GNU General Public License as published by
10  *	the Free Software Foundation; either version 2 of the License, or
11  *	(at your option) any later version.
12  */
13 
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/integrity.h>
20 #include <linux/ima.h>
21 #include <linux/evm.h>
22 #include <linux/fsnotify.h>
23 #include <net/flow.h>
24 
25 #define MAX_LSM_EVM_XATTR	2
26 
27 /* Boot-time LSM user choice */
28 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
29 	CONFIG_DEFAULT_SECURITY;
30 
31 static struct security_operations *security_ops;
32 static struct security_operations default_security_ops = {
33 	.name	= "default",
34 };
35 
36 static inline int __init verify(struct security_operations *ops)
37 {
38 	/* verify the security_operations structure exists */
39 	if (!ops)
40 		return -EINVAL;
41 	security_fixup_ops(ops);
42 	return 0;
43 }
44 
45 static void __init do_security_initcalls(void)
46 {
47 	initcall_t *call;
48 	call = __security_initcall_start;
49 	while (call < __security_initcall_end) {
50 		(*call) ();
51 		call++;
52 	}
53 }
54 
55 /**
56  * security_init - initializes the security framework
57  *
58  * This should be called early in the kernel initialization sequence.
59  */
60 int __init security_init(void)
61 {
62 	printk(KERN_INFO "Security Framework initialized\n");
63 
64 	security_fixup_ops(&default_security_ops);
65 	security_ops = &default_security_ops;
66 	do_security_initcalls();
67 
68 	return 0;
69 }
70 
71 void reset_security_ops(void)
72 {
73 	security_ops = &default_security_ops;
74 }
75 
76 /* Save user chosen LSM */
77 static int __init choose_lsm(char *str)
78 {
79 	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
80 	return 1;
81 }
82 __setup("security=", choose_lsm);
83 
84 /**
85  * security_module_enable - Load given security module on boot ?
86  * @ops: a pointer to the struct security_operations that is to be checked.
87  *
88  * Each LSM must pass this method before registering its own operations
89  * to avoid security registration races. This method may also be used
90  * to check if your LSM is currently loaded during kernel initialization.
91  *
92  * Return true if:
93  *	-The passed LSM is the one chosen by user at boot time,
94  *	-or the passed LSM is configured as the default and the user did not
95  *	 choose an alternate LSM at boot time.
96  * Otherwise, return false.
97  */
98 int __init security_module_enable(struct security_operations *ops)
99 {
100 	return !strcmp(ops->name, chosen_lsm);
101 }
102 
103 /**
104  * register_security - registers a security framework with the kernel
105  * @ops: a pointer to the struct security_options that is to be registered
106  *
107  * This function allows a security module to register itself with the
108  * kernel security subsystem.  Some rudimentary checking is done on the @ops
109  * value passed to this function. You'll need to check first if your LSM
110  * is allowed to register its @ops by calling security_module_enable(@ops).
111  *
112  * If there is already a security module registered with the kernel,
113  * an error will be returned.  Otherwise %0 is returned on success.
114  */
115 int __init register_security(struct security_operations *ops)
116 {
117 	if (verify(ops)) {
118 		printk(KERN_DEBUG "%s could not verify "
119 		       "security_operations structure.\n", __func__);
120 		return -EINVAL;
121 	}
122 
123 	if (security_ops != &default_security_ops)
124 		return -EAGAIN;
125 
126 	security_ops = ops;
127 
128 	return 0;
129 }
130 
131 /* Security operations */
132 
133 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
134 {
135 	return security_ops->ptrace_access_check(child, mode);
136 }
137 
138 int security_ptrace_traceme(struct task_struct *parent)
139 {
140 	return security_ops->ptrace_traceme(parent);
141 }
142 
143 int security_capget(struct task_struct *target,
144 		     kernel_cap_t *effective,
145 		     kernel_cap_t *inheritable,
146 		     kernel_cap_t *permitted)
147 {
148 	return security_ops->capget(target, effective, inheritable, permitted);
149 }
150 
151 int security_capset(struct cred *new, const struct cred *old,
152 		    const kernel_cap_t *effective,
153 		    const kernel_cap_t *inheritable,
154 		    const kernel_cap_t *permitted)
155 {
156 	return security_ops->capset(new, old,
157 				    effective, inheritable, permitted);
158 }
159 
160 int security_capable(const struct cred *cred, struct user_namespace *ns,
161 		     int cap)
162 {
163 	return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
164 }
165 
166 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
167 			     int cap)
168 {
169 	return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
170 }
171 
172 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
173 {
174 	return security_ops->quotactl(cmds, type, id, sb);
175 }
176 
177 int security_quota_on(struct dentry *dentry)
178 {
179 	return security_ops->quota_on(dentry);
180 }
181 
182 int security_syslog(int type)
183 {
184 	return security_ops->syslog(type);
185 }
186 
187 int security_settime(const struct timespec *ts, const struct timezone *tz)
188 {
189 	return security_ops->settime(ts, tz);
190 }
191 
192 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
193 {
194 	return security_ops->vm_enough_memory(mm, pages);
195 }
196 
197 int security_bprm_set_creds(struct linux_binprm *bprm)
198 {
199 	return security_ops->bprm_set_creds(bprm);
200 }
201 
202 int security_bprm_check(struct linux_binprm *bprm)
203 {
204 	int ret;
205 
206 	ret = security_ops->bprm_check_security(bprm);
207 	if (ret)
208 		return ret;
209 	return ima_bprm_check(bprm);
210 }
211 
212 void security_bprm_committing_creds(struct linux_binprm *bprm)
213 {
214 	security_ops->bprm_committing_creds(bprm);
215 }
216 
217 void security_bprm_committed_creds(struct linux_binprm *bprm)
218 {
219 	security_ops->bprm_committed_creds(bprm);
220 }
221 
222 int security_bprm_secureexec(struct linux_binprm *bprm)
223 {
224 	return security_ops->bprm_secureexec(bprm);
225 }
226 
227 int security_sb_alloc(struct super_block *sb)
228 {
229 	return security_ops->sb_alloc_security(sb);
230 }
231 
232 void security_sb_free(struct super_block *sb)
233 {
234 	security_ops->sb_free_security(sb);
235 }
236 
237 int security_sb_copy_data(char *orig, char *copy)
238 {
239 	return security_ops->sb_copy_data(orig, copy);
240 }
241 EXPORT_SYMBOL(security_sb_copy_data);
242 
243 int security_sb_remount(struct super_block *sb, void *data)
244 {
245 	return security_ops->sb_remount(sb, data);
246 }
247 
248 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
249 {
250 	return security_ops->sb_kern_mount(sb, flags, data);
251 }
252 
253 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
254 {
255 	return security_ops->sb_show_options(m, sb);
256 }
257 
258 int security_sb_statfs(struct dentry *dentry)
259 {
260 	return security_ops->sb_statfs(dentry);
261 }
262 
263 int security_sb_mount(char *dev_name, struct path *path,
264                        char *type, unsigned long flags, void *data)
265 {
266 	return security_ops->sb_mount(dev_name, path, type, flags, data);
267 }
268 
269 int security_sb_umount(struct vfsmount *mnt, int flags)
270 {
271 	return security_ops->sb_umount(mnt, flags);
272 }
273 
274 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
275 {
276 	return security_ops->sb_pivotroot(old_path, new_path);
277 }
278 
279 int security_sb_set_mnt_opts(struct super_block *sb,
280 				struct security_mnt_opts *opts)
281 {
282 	return security_ops->sb_set_mnt_opts(sb, opts);
283 }
284 EXPORT_SYMBOL(security_sb_set_mnt_opts);
285 
286 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
287 				struct super_block *newsb)
288 {
289 	security_ops->sb_clone_mnt_opts(oldsb, newsb);
290 }
291 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
292 
293 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
294 {
295 	return security_ops->sb_parse_opts_str(options, opts);
296 }
297 EXPORT_SYMBOL(security_sb_parse_opts_str);
298 
299 int security_inode_alloc(struct inode *inode)
300 {
301 	inode->i_security = NULL;
302 	return security_ops->inode_alloc_security(inode);
303 }
304 
305 void security_inode_free(struct inode *inode)
306 {
307 	integrity_inode_free(inode);
308 	security_ops->inode_free_security(inode);
309 }
310 
311 int security_inode_init_security(struct inode *inode, struct inode *dir,
312 				 const struct qstr *qstr,
313 				 const initxattrs initxattrs, void *fs_data)
314 {
315 	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
316 	struct xattr *lsm_xattr, *evm_xattr, *xattr;
317 	int ret;
318 
319 	if (unlikely(IS_PRIVATE(inode)))
320 		return 0;
321 
322 	memset(new_xattrs, 0, sizeof new_xattrs);
323 	if (!initxattrs)
324 		return security_ops->inode_init_security(inode, dir, qstr,
325 							 NULL, NULL, NULL);
326 	lsm_xattr = new_xattrs;
327 	ret = security_ops->inode_init_security(inode, dir, qstr,
328 						&lsm_xattr->name,
329 						&lsm_xattr->value,
330 						&lsm_xattr->value_len);
331 	if (ret)
332 		goto out;
333 
334 	evm_xattr = lsm_xattr + 1;
335 	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
336 	if (ret)
337 		goto out;
338 	ret = initxattrs(inode, new_xattrs, fs_data);
339 out:
340 	for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
341 		kfree(xattr->name);
342 		kfree(xattr->value);
343 	}
344 	return (ret == -EOPNOTSUPP) ? 0 : ret;
345 }
346 EXPORT_SYMBOL(security_inode_init_security);
347 
348 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
349 				     const struct qstr *qstr, char **name,
350 				     void **value, size_t *len)
351 {
352 	if (unlikely(IS_PRIVATE(inode)))
353 		return -EOPNOTSUPP;
354 	return security_ops->inode_init_security(inode, dir, qstr, name, value,
355 						 len);
356 }
357 EXPORT_SYMBOL(security_old_inode_init_security);
358 
359 #ifdef CONFIG_SECURITY_PATH
360 int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
361 			unsigned int dev)
362 {
363 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
364 		return 0;
365 	return security_ops->path_mknod(dir, dentry, mode, dev);
366 }
367 EXPORT_SYMBOL(security_path_mknod);
368 
369 int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
370 {
371 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
372 		return 0;
373 	return security_ops->path_mkdir(dir, dentry, mode);
374 }
375 EXPORT_SYMBOL(security_path_mkdir);
376 
377 int security_path_rmdir(struct path *dir, struct dentry *dentry)
378 {
379 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
380 		return 0;
381 	return security_ops->path_rmdir(dir, dentry);
382 }
383 
384 int security_path_unlink(struct path *dir, struct dentry *dentry)
385 {
386 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
387 		return 0;
388 	return security_ops->path_unlink(dir, dentry);
389 }
390 EXPORT_SYMBOL(security_path_unlink);
391 
392 int security_path_symlink(struct path *dir, struct dentry *dentry,
393 			  const char *old_name)
394 {
395 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
396 		return 0;
397 	return security_ops->path_symlink(dir, dentry, old_name);
398 }
399 
400 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
401 		       struct dentry *new_dentry)
402 {
403 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
404 		return 0;
405 	return security_ops->path_link(old_dentry, new_dir, new_dentry);
406 }
407 
408 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
409 			 struct path *new_dir, struct dentry *new_dentry)
410 {
411 	if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
412 		     (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
413 		return 0;
414 	return security_ops->path_rename(old_dir, old_dentry, new_dir,
415 					 new_dentry);
416 }
417 EXPORT_SYMBOL(security_path_rename);
418 
419 int security_path_truncate(struct path *path)
420 {
421 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
422 		return 0;
423 	return security_ops->path_truncate(path);
424 }
425 
426 int security_path_chmod(struct path *path, umode_t mode)
427 {
428 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
429 		return 0;
430 	return security_ops->path_chmod(path, mode);
431 }
432 
433 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
434 {
435 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
436 		return 0;
437 	return security_ops->path_chown(path, uid, gid);
438 }
439 
440 int security_path_chroot(struct path *path)
441 {
442 	return security_ops->path_chroot(path);
443 }
444 #endif
445 
446 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
447 {
448 	if (unlikely(IS_PRIVATE(dir)))
449 		return 0;
450 	return security_ops->inode_create(dir, dentry, mode);
451 }
452 EXPORT_SYMBOL_GPL(security_inode_create);
453 
454 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
455 			 struct dentry *new_dentry)
456 {
457 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
458 		return 0;
459 	return security_ops->inode_link(old_dentry, dir, new_dentry);
460 }
461 
462 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
463 {
464 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
465 		return 0;
466 	return security_ops->inode_unlink(dir, dentry);
467 }
468 
469 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
470 			    const char *old_name)
471 {
472 	if (unlikely(IS_PRIVATE(dir)))
473 		return 0;
474 	return security_ops->inode_symlink(dir, dentry, old_name);
475 }
476 
477 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
478 {
479 	if (unlikely(IS_PRIVATE(dir)))
480 		return 0;
481 	return security_ops->inode_mkdir(dir, dentry, mode);
482 }
483 EXPORT_SYMBOL_GPL(security_inode_mkdir);
484 
485 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
486 {
487 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
488 		return 0;
489 	return security_ops->inode_rmdir(dir, dentry);
490 }
491 
492 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
493 {
494 	if (unlikely(IS_PRIVATE(dir)))
495 		return 0;
496 	return security_ops->inode_mknod(dir, dentry, mode, dev);
497 }
498 
499 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
500 			   struct inode *new_dir, struct dentry *new_dentry)
501 {
502         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
503             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
504 		return 0;
505 	return security_ops->inode_rename(old_dir, old_dentry,
506 					   new_dir, new_dentry);
507 }
508 
509 int security_inode_readlink(struct dentry *dentry)
510 {
511 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
512 		return 0;
513 	return security_ops->inode_readlink(dentry);
514 }
515 
516 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
517 {
518 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
519 		return 0;
520 	return security_ops->inode_follow_link(dentry, nd);
521 }
522 
523 int security_inode_permission(struct inode *inode, int mask)
524 {
525 	if (unlikely(IS_PRIVATE(inode)))
526 		return 0;
527 	return security_ops->inode_permission(inode, mask);
528 }
529 
530 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
531 {
532 	int ret;
533 
534 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
535 		return 0;
536 	ret = security_ops->inode_setattr(dentry, attr);
537 	if (ret)
538 		return ret;
539 	return evm_inode_setattr(dentry, attr);
540 }
541 EXPORT_SYMBOL_GPL(security_inode_setattr);
542 
543 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
544 {
545 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
546 		return 0;
547 	return security_ops->inode_getattr(mnt, dentry);
548 }
549 
550 int security_inode_setxattr(struct dentry *dentry, const char *name,
551 			    const void *value, size_t size, int flags)
552 {
553 	int ret;
554 
555 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
556 		return 0;
557 	ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
558 	if (ret)
559 		return ret;
560 	return evm_inode_setxattr(dentry, name, value, size);
561 }
562 
563 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
564 				  const void *value, size_t size, int flags)
565 {
566 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
567 		return;
568 	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
569 	evm_inode_post_setxattr(dentry, name, value, size);
570 }
571 
572 int security_inode_getxattr(struct dentry *dentry, const char *name)
573 {
574 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
575 		return 0;
576 	return security_ops->inode_getxattr(dentry, name);
577 }
578 
579 int security_inode_listxattr(struct dentry *dentry)
580 {
581 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
582 		return 0;
583 	return security_ops->inode_listxattr(dentry);
584 }
585 
586 int security_inode_removexattr(struct dentry *dentry, const char *name)
587 {
588 	int ret;
589 
590 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
591 		return 0;
592 	ret = security_ops->inode_removexattr(dentry, name);
593 	if (ret)
594 		return ret;
595 	return evm_inode_removexattr(dentry, name);
596 }
597 
598 int security_inode_need_killpriv(struct dentry *dentry)
599 {
600 	return security_ops->inode_need_killpriv(dentry);
601 }
602 
603 int security_inode_killpriv(struct dentry *dentry)
604 {
605 	return security_ops->inode_killpriv(dentry);
606 }
607 
608 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
609 {
610 	if (unlikely(IS_PRIVATE(inode)))
611 		return -EOPNOTSUPP;
612 	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
613 }
614 
615 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
616 {
617 	if (unlikely(IS_PRIVATE(inode)))
618 		return -EOPNOTSUPP;
619 	return security_ops->inode_setsecurity(inode, name, value, size, flags);
620 }
621 
622 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
623 {
624 	if (unlikely(IS_PRIVATE(inode)))
625 		return 0;
626 	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
627 }
628 
629 void security_inode_getsecid(const struct inode *inode, u32 *secid)
630 {
631 	security_ops->inode_getsecid(inode, secid);
632 }
633 
634 int security_file_permission(struct file *file, int mask)
635 {
636 	int ret;
637 
638 	ret = security_ops->file_permission(file, mask);
639 	if (ret)
640 		return ret;
641 
642 	return fsnotify_perm(file, mask);
643 }
644 
645 int security_file_alloc(struct file *file)
646 {
647 	return security_ops->file_alloc_security(file);
648 }
649 
650 void security_file_free(struct file *file)
651 {
652 	security_ops->file_free_security(file);
653 }
654 
655 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
656 {
657 	return security_ops->file_ioctl(file, cmd, arg);
658 }
659 
660 int security_file_mmap(struct file *file, unsigned long reqprot,
661 			unsigned long prot, unsigned long flags,
662 			unsigned long addr, unsigned long addr_only)
663 {
664 	int ret;
665 
666 	ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
667 	if (ret)
668 		return ret;
669 	return ima_file_mmap(file, prot);
670 }
671 
672 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
673 			    unsigned long prot)
674 {
675 	return security_ops->file_mprotect(vma, reqprot, prot);
676 }
677 
678 int security_file_lock(struct file *file, unsigned int cmd)
679 {
680 	return security_ops->file_lock(file, cmd);
681 }
682 
683 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
684 {
685 	return security_ops->file_fcntl(file, cmd, arg);
686 }
687 
688 int security_file_set_fowner(struct file *file)
689 {
690 	return security_ops->file_set_fowner(file);
691 }
692 
693 int security_file_send_sigiotask(struct task_struct *tsk,
694 				  struct fown_struct *fown, int sig)
695 {
696 	return security_ops->file_send_sigiotask(tsk, fown, sig);
697 }
698 
699 int security_file_receive(struct file *file)
700 {
701 	return security_ops->file_receive(file);
702 }
703 
704 int security_dentry_open(struct file *file, const struct cred *cred)
705 {
706 	int ret;
707 
708 	ret = security_ops->dentry_open(file, cred);
709 	if (ret)
710 		return ret;
711 
712 	return fsnotify_perm(file, MAY_OPEN);
713 }
714 
715 int security_task_create(unsigned long clone_flags)
716 {
717 	return security_ops->task_create(clone_flags);
718 }
719 
720 void security_task_free(struct task_struct *task)
721 {
722 	security_ops->task_free(task);
723 }
724 
725 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
726 {
727 	return security_ops->cred_alloc_blank(cred, gfp);
728 }
729 
730 void security_cred_free(struct cred *cred)
731 {
732 	security_ops->cred_free(cred);
733 }
734 
735 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
736 {
737 	return security_ops->cred_prepare(new, old, gfp);
738 }
739 
740 void security_transfer_creds(struct cred *new, const struct cred *old)
741 {
742 	security_ops->cred_transfer(new, old);
743 }
744 
745 int security_kernel_act_as(struct cred *new, u32 secid)
746 {
747 	return security_ops->kernel_act_as(new, secid);
748 }
749 
750 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
751 {
752 	return security_ops->kernel_create_files_as(new, inode);
753 }
754 
755 int security_kernel_module_request(char *kmod_name)
756 {
757 	return security_ops->kernel_module_request(kmod_name);
758 }
759 
760 int security_task_fix_setuid(struct cred *new, const struct cred *old,
761 			     int flags)
762 {
763 	return security_ops->task_fix_setuid(new, old, flags);
764 }
765 
766 int security_task_setpgid(struct task_struct *p, pid_t pgid)
767 {
768 	return security_ops->task_setpgid(p, pgid);
769 }
770 
771 int security_task_getpgid(struct task_struct *p)
772 {
773 	return security_ops->task_getpgid(p);
774 }
775 
776 int security_task_getsid(struct task_struct *p)
777 {
778 	return security_ops->task_getsid(p);
779 }
780 
781 void security_task_getsecid(struct task_struct *p, u32 *secid)
782 {
783 	security_ops->task_getsecid(p, secid);
784 }
785 EXPORT_SYMBOL(security_task_getsecid);
786 
787 int security_task_setnice(struct task_struct *p, int nice)
788 {
789 	return security_ops->task_setnice(p, nice);
790 }
791 
792 int security_task_setioprio(struct task_struct *p, int ioprio)
793 {
794 	return security_ops->task_setioprio(p, ioprio);
795 }
796 
797 int security_task_getioprio(struct task_struct *p)
798 {
799 	return security_ops->task_getioprio(p);
800 }
801 
802 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
803 		struct rlimit *new_rlim)
804 {
805 	return security_ops->task_setrlimit(p, resource, new_rlim);
806 }
807 
808 int security_task_setscheduler(struct task_struct *p)
809 {
810 	return security_ops->task_setscheduler(p);
811 }
812 
813 int security_task_getscheduler(struct task_struct *p)
814 {
815 	return security_ops->task_getscheduler(p);
816 }
817 
818 int security_task_movememory(struct task_struct *p)
819 {
820 	return security_ops->task_movememory(p);
821 }
822 
823 int security_task_kill(struct task_struct *p, struct siginfo *info,
824 			int sig, u32 secid)
825 {
826 	return security_ops->task_kill(p, info, sig, secid);
827 }
828 
829 int security_task_wait(struct task_struct *p)
830 {
831 	return security_ops->task_wait(p);
832 }
833 
834 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
835 			 unsigned long arg4, unsigned long arg5)
836 {
837 	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
838 }
839 
840 void security_task_to_inode(struct task_struct *p, struct inode *inode)
841 {
842 	security_ops->task_to_inode(p, inode);
843 }
844 
845 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
846 {
847 	return security_ops->ipc_permission(ipcp, flag);
848 }
849 
850 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
851 {
852 	security_ops->ipc_getsecid(ipcp, secid);
853 }
854 
855 int security_msg_msg_alloc(struct msg_msg *msg)
856 {
857 	return security_ops->msg_msg_alloc_security(msg);
858 }
859 
860 void security_msg_msg_free(struct msg_msg *msg)
861 {
862 	security_ops->msg_msg_free_security(msg);
863 }
864 
865 int security_msg_queue_alloc(struct msg_queue *msq)
866 {
867 	return security_ops->msg_queue_alloc_security(msq);
868 }
869 
870 void security_msg_queue_free(struct msg_queue *msq)
871 {
872 	security_ops->msg_queue_free_security(msq);
873 }
874 
875 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
876 {
877 	return security_ops->msg_queue_associate(msq, msqflg);
878 }
879 
880 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
881 {
882 	return security_ops->msg_queue_msgctl(msq, cmd);
883 }
884 
885 int security_msg_queue_msgsnd(struct msg_queue *msq,
886 			       struct msg_msg *msg, int msqflg)
887 {
888 	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
889 }
890 
891 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
892 			       struct task_struct *target, long type, int mode)
893 {
894 	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
895 }
896 
897 int security_shm_alloc(struct shmid_kernel *shp)
898 {
899 	return security_ops->shm_alloc_security(shp);
900 }
901 
902 void security_shm_free(struct shmid_kernel *shp)
903 {
904 	security_ops->shm_free_security(shp);
905 }
906 
907 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
908 {
909 	return security_ops->shm_associate(shp, shmflg);
910 }
911 
912 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
913 {
914 	return security_ops->shm_shmctl(shp, cmd);
915 }
916 
917 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
918 {
919 	return security_ops->shm_shmat(shp, shmaddr, shmflg);
920 }
921 
922 int security_sem_alloc(struct sem_array *sma)
923 {
924 	return security_ops->sem_alloc_security(sma);
925 }
926 
927 void security_sem_free(struct sem_array *sma)
928 {
929 	security_ops->sem_free_security(sma);
930 }
931 
932 int security_sem_associate(struct sem_array *sma, int semflg)
933 {
934 	return security_ops->sem_associate(sma, semflg);
935 }
936 
937 int security_sem_semctl(struct sem_array *sma, int cmd)
938 {
939 	return security_ops->sem_semctl(sma, cmd);
940 }
941 
942 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
943 			unsigned nsops, int alter)
944 {
945 	return security_ops->sem_semop(sma, sops, nsops, alter);
946 }
947 
948 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
949 {
950 	if (unlikely(inode && IS_PRIVATE(inode)))
951 		return;
952 	security_ops->d_instantiate(dentry, inode);
953 }
954 EXPORT_SYMBOL(security_d_instantiate);
955 
956 int security_getprocattr(struct task_struct *p, char *name, char **value)
957 {
958 	return security_ops->getprocattr(p, name, value);
959 }
960 
961 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
962 {
963 	return security_ops->setprocattr(p, name, value, size);
964 }
965 
966 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
967 {
968 	return security_ops->netlink_send(sk, skb);
969 }
970 
971 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
972 {
973 	return security_ops->secid_to_secctx(secid, secdata, seclen);
974 }
975 EXPORT_SYMBOL(security_secid_to_secctx);
976 
977 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
978 {
979 	return security_ops->secctx_to_secid(secdata, seclen, secid);
980 }
981 EXPORT_SYMBOL(security_secctx_to_secid);
982 
983 void security_release_secctx(char *secdata, u32 seclen)
984 {
985 	security_ops->release_secctx(secdata, seclen);
986 }
987 EXPORT_SYMBOL(security_release_secctx);
988 
989 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
990 {
991 	return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
992 }
993 EXPORT_SYMBOL(security_inode_notifysecctx);
994 
995 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
996 {
997 	return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
998 }
999 EXPORT_SYMBOL(security_inode_setsecctx);
1000 
1001 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1002 {
1003 	return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1004 }
1005 EXPORT_SYMBOL(security_inode_getsecctx);
1006 
1007 #ifdef CONFIG_SECURITY_NETWORK
1008 
1009 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1010 {
1011 	return security_ops->unix_stream_connect(sock, other, newsk);
1012 }
1013 EXPORT_SYMBOL(security_unix_stream_connect);
1014 
1015 int security_unix_may_send(struct socket *sock,  struct socket *other)
1016 {
1017 	return security_ops->unix_may_send(sock, other);
1018 }
1019 EXPORT_SYMBOL(security_unix_may_send);
1020 
1021 int security_socket_create(int family, int type, int protocol, int kern)
1022 {
1023 	return security_ops->socket_create(family, type, protocol, kern);
1024 }
1025 
1026 int security_socket_post_create(struct socket *sock, int family,
1027 				int type, int protocol, int kern)
1028 {
1029 	return security_ops->socket_post_create(sock, family, type,
1030 						protocol, kern);
1031 }
1032 
1033 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1034 {
1035 	return security_ops->socket_bind(sock, address, addrlen);
1036 }
1037 
1038 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1039 {
1040 	return security_ops->socket_connect(sock, address, addrlen);
1041 }
1042 
1043 int security_socket_listen(struct socket *sock, int backlog)
1044 {
1045 	return security_ops->socket_listen(sock, backlog);
1046 }
1047 
1048 int security_socket_accept(struct socket *sock, struct socket *newsock)
1049 {
1050 	return security_ops->socket_accept(sock, newsock);
1051 }
1052 
1053 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1054 {
1055 	return security_ops->socket_sendmsg(sock, msg, size);
1056 }
1057 
1058 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1059 			    int size, int flags)
1060 {
1061 	return security_ops->socket_recvmsg(sock, msg, size, flags);
1062 }
1063 
1064 int security_socket_getsockname(struct socket *sock)
1065 {
1066 	return security_ops->socket_getsockname(sock);
1067 }
1068 
1069 int security_socket_getpeername(struct socket *sock)
1070 {
1071 	return security_ops->socket_getpeername(sock);
1072 }
1073 
1074 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1075 {
1076 	return security_ops->socket_getsockopt(sock, level, optname);
1077 }
1078 
1079 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1080 {
1081 	return security_ops->socket_setsockopt(sock, level, optname);
1082 }
1083 
1084 int security_socket_shutdown(struct socket *sock, int how)
1085 {
1086 	return security_ops->socket_shutdown(sock, how);
1087 }
1088 
1089 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1090 {
1091 	return security_ops->socket_sock_rcv_skb(sk, skb);
1092 }
1093 EXPORT_SYMBOL(security_sock_rcv_skb);
1094 
1095 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1096 				      int __user *optlen, unsigned len)
1097 {
1098 	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1099 }
1100 
1101 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1102 {
1103 	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1104 }
1105 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1106 
1107 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1108 {
1109 	return security_ops->sk_alloc_security(sk, family, priority);
1110 }
1111 
1112 void security_sk_free(struct sock *sk)
1113 {
1114 	security_ops->sk_free_security(sk);
1115 }
1116 
1117 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1118 {
1119 	security_ops->sk_clone_security(sk, newsk);
1120 }
1121 EXPORT_SYMBOL(security_sk_clone);
1122 
1123 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1124 {
1125 	security_ops->sk_getsecid(sk, &fl->flowi_secid);
1126 }
1127 EXPORT_SYMBOL(security_sk_classify_flow);
1128 
1129 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1130 {
1131 	security_ops->req_classify_flow(req, fl);
1132 }
1133 EXPORT_SYMBOL(security_req_classify_flow);
1134 
1135 void security_sock_graft(struct sock *sk, struct socket *parent)
1136 {
1137 	security_ops->sock_graft(sk, parent);
1138 }
1139 EXPORT_SYMBOL(security_sock_graft);
1140 
1141 int security_inet_conn_request(struct sock *sk,
1142 			struct sk_buff *skb, struct request_sock *req)
1143 {
1144 	return security_ops->inet_conn_request(sk, skb, req);
1145 }
1146 EXPORT_SYMBOL(security_inet_conn_request);
1147 
1148 void security_inet_csk_clone(struct sock *newsk,
1149 			const struct request_sock *req)
1150 {
1151 	security_ops->inet_csk_clone(newsk, req);
1152 }
1153 
1154 void security_inet_conn_established(struct sock *sk,
1155 			struct sk_buff *skb)
1156 {
1157 	security_ops->inet_conn_established(sk, skb);
1158 }
1159 
1160 int security_secmark_relabel_packet(u32 secid)
1161 {
1162 	return security_ops->secmark_relabel_packet(secid);
1163 }
1164 EXPORT_SYMBOL(security_secmark_relabel_packet);
1165 
1166 void security_secmark_refcount_inc(void)
1167 {
1168 	security_ops->secmark_refcount_inc();
1169 }
1170 EXPORT_SYMBOL(security_secmark_refcount_inc);
1171 
1172 void security_secmark_refcount_dec(void)
1173 {
1174 	security_ops->secmark_refcount_dec();
1175 }
1176 EXPORT_SYMBOL(security_secmark_refcount_dec);
1177 
1178 int security_tun_dev_create(void)
1179 {
1180 	return security_ops->tun_dev_create();
1181 }
1182 EXPORT_SYMBOL(security_tun_dev_create);
1183 
1184 void security_tun_dev_post_create(struct sock *sk)
1185 {
1186 	return security_ops->tun_dev_post_create(sk);
1187 }
1188 EXPORT_SYMBOL(security_tun_dev_post_create);
1189 
1190 int security_tun_dev_attach(struct sock *sk)
1191 {
1192 	return security_ops->tun_dev_attach(sk);
1193 }
1194 EXPORT_SYMBOL(security_tun_dev_attach);
1195 
1196 #endif	/* CONFIG_SECURITY_NETWORK */
1197 
1198 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1199 
1200 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1201 {
1202 	return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1203 }
1204 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1205 
1206 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1207 			      struct xfrm_sec_ctx **new_ctxp)
1208 {
1209 	return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1210 }
1211 
1212 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1213 {
1214 	security_ops->xfrm_policy_free_security(ctx);
1215 }
1216 EXPORT_SYMBOL(security_xfrm_policy_free);
1217 
1218 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1219 {
1220 	return security_ops->xfrm_policy_delete_security(ctx);
1221 }
1222 
1223 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1224 {
1225 	return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1226 }
1227 EXPORT_SYMBOL(security_xfrm_state_alloc);
1228 
1229 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1230 				      struct xfrm_sec_ctx *polsec, u32 secid)
1231 {
1232 	if (!polsec)
1233 		return 0;
1234 	/*
1235 	 * We want the context to be taken from secid which is usually
1236 	 * from the sock.
1237 	 */
1238 	return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1239 }
1240 
1241 int security_xfrm_state_delete(struct xfrm_state *x)
1242 {
1243 	return security_ops->xfrm_state_delete_security(x);
1244 }
1245 EXPORT_SYMBOL(security_xfrm_state_delete);
1246 
1247 void security_xfrm_state_free(struct xfrm_state *x)
1248 {
1249 	security_ops->xfrm_state_free_security(x);
1250 }
1251 
1252 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1253 {
1254 	return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1255 }
1256 
1257 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1258 				       struct xfrm_policy *xp,
1259 				       const struct flowi *fl)
1260 {
1261 	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1262 }
1263 
1264 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1265 {
1266 	return security_ops->xfrm_decode_session(skb, secid, 1);
1267 }
1268 
1269 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1270 {
1271 	int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1272 
1273 	BUG_ON(rc);
1274 }
1275 EXPORT_SYMBOL(security_skb_classify_flow);
1276 
1277 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1278 
1279 #ifdef CONFIG_KEYS
1280 
1281 int security_key_alloc(struct key *key, const struct cred *cred,
1282 		       unsigned long flags)
1283 {
1284 	return security_ops->key_alloc(key, cred, flags);
1285 }
1286 
1287 void security_key_free(struct key *key)
1288 {
1289 	security_ops->key_free(key);
1290 }
1291 
1292 int security_key_permission(key_ref_t key_ref,
1293 			    const struct cred *cred, key_perm_t perm)
1294 {
1295 	return security_ops->key_permission(key_ref, cred, perm);
1296 }
1297 
1298 int security_key_getsecurity(struct key *key, char **_buffer)
1299 {
1300 	return security_ops->key_getsecurity(key, _buffer);
1301 }
1302 
1303 #endif	/* CONFIG_KEYS */
1304 
1305 #ifdef CONFIG_AUDIT
1306 
1307 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1308 {
1309 	return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1310 }
1311 
1312 int security_audit_rule_known(struct audit_krule *krule)
1313 {
1314 	return security_ops->audit_rule_known(krule);
1315 }
1316 
1317 void security_audit_rule_free(void *lsmrule)
1318 {
1319 	security_ops->audit_rule_free(lsmrule);
1320 }
1321 
1322 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1323 			      struct audit_context *actx)
1324 {
1325 	return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1326 }
1327 
1328 #endif /* CONFIG_AUDIT */
1329