1 /* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/capability.h> 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/kernel.h> 18 #include <linux/security.h> 19 #include <linux/integrity.h> 20 #include <linux/ima.h> 21 #include <linux/evm.h> 22 #include <linux/fsnotify.h> 23 #include <net/flow.h> 24 25 #define MAX_LSM_EVM_XATTR 2 26 27 /* Boot-time LSM user choice */ 28 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] = 29 CONFIG_DEFAULT_SECURITY; 30 31 static struct security_operations *security_ops; 32 static struct security_operations default_security_ops = { 33 .name = "default", 34 }; 35 36 static inline int __init verify(struct security_operations *ops) 37 { 38 /* verify the security_operations structure exists */ 39 if (!ops) 40 return -EINVAL; 41 security_fixup_ops(ops); 42 return 0; 43 } 44 45 static void __init do_security_initcalls(void) 46 { 47 initcall_t *call; 48 call = __security_initcall_start; 49 while (call < __security_initcall_end) { 50 (*call) (); 51 call++; 52 } 53 } 54 55 /** 56 * security_init - initializes the security framework 57 * 58 * This should be called early in the kernel initialization sequence. 59 */ 60 int __init security_init(void) 61 { 62 printk(KERN_INFO "Security Framework initialized\n"); 63 64 security_fixup_ops(&default_security_ops); 65 security_ops = &default_security_ops; 66 do_security_initcalls(); 67 68 return 0; 69 } 70 71 void reset_security_ops(void) 72 { 73 security_ops = &default_security_ops; 74 } 75 76 /* Save user chosen LSM */ 77 static int __init choose_lsm(char *str) 78 { 79 strncpy(chosen_lsm, str, SECURITY_NAME_MAX); 80 return 1; 81 } 82 __setup("security=", choose_lsm); 83 84 /** 85 * security_module_enable - Load given security module on boot ? 86 * @ops: a pointer to the struct security_operations that is to be checked. 87 * 88 * Each LSM must pass this method before registering its own operations 89 * to avoid security registration races. This method may also be used 90 * to check if your LSM is currently loaded during kernel initialization. 91 * 92 * Return true if: 93 * -The passed LSM is the one chosen by user at boot time, 94 * -or the passed LSM is configured as the default and the user did not 95 * choose an alternate LSM at boot time. 96 * Otherwise, return false. 97 */ 98 int __init security_module_enable(struct security_operations *ops) 99 { 100 return !strcmp(ops->name, chosen_lsm); 101 } 102 103 /** 104 * register_security - registers a security framework with the kernel 105 * @ops: a pointer to the struct security_options that is to be registered 106 * 107 * This function allows a security module to register itself with the 108 * kernel security subsystem. Some rudimentary checking is done on the @ops 109 * value passed to this function. You'll need to check first if your LSM 110 * is allowed to register its @ops by calling security_module_enable(@ops). 111 * 112 * If there is already a security module registered with the kernel, 113 * an error will be returned. Otherwise %0 is returned on success. 114 */ 115 int __init register_security(struct security_operations *ops) 116 { 117 if (verify(ops)) { 118 printk(KERN_DEBUG "%s could not verify " 119 "security_operations structure.\n", __func__); 120 return -EINVAL; 121 } 122 123 if (security_ops != &default_security_ops) 124 return -EAGAIN; 125 126 security_ops = ops; 127 128 return 0; 129 } 130 131 /* Security operations */ 132 133 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 134 { 135 return security_ops->ptrace_access_check(child, mode); 136 } 137 138 int security_ptrace_traceme(struct task_struct *parent) 139 { 140 return security_ops->ptrace_traceme(parent); 141 } 142 143 int security_capget(struct task_struct *target, 144 kernel_cap_t *effective, 145 kernel_cap_t *inheritable, 146 kernel_cap_t *permitted) 147 { 148 return security_ops->capget(target, effective, inheritable, permitted); 149 } 150 151 int security_capset(struct cred *new, const struct cred *old, 152 const kernel_cap_t *effective, 153 const kernel_cap_t *inheritable, 154 const kernel_cap_t *permitted) 155 { 156 return security_ops->capset(new, old, 157 effective, inheritable, permitted); 158 } 159 160 int security_capable(const struct cred *cred, struct user_namespace *ns, 161 int cap) 162 { 163 return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT); 164 } 165 166 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns, 167 int cap) 168 { 169 return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT); 170 } 171 172 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 173 { 174 return security_ops->quotactl(cmds, type, id, sb); 175 } 176 177 int security_quota_on(struct dentry *dentry) 178 { 179 return security_ops->quota_on(dentry); 180 } 181 182 int security_syslog(int type) 183 { 184 return security_ops->syslog(type); 185 } 186 187 int security_settime(const struct timespec *ts, const struct timezone *tz) 188 { 189 return security_ops->settime(ts, tz); 190 } 191 192 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 193 { 194 return security_ops->vm_enough_memory(mm, pages); 195 } 196 197 int security_bprm_set_creds(struct linux_binprm *bprm) 198 { 199 return security_ops->bprm_set_creds(bprm); 200 } 201 202 int security_bprm_check(struct linux_binprm *bprm) 203 { 204 int ret; 205 206 ret = security_ops->bprm_check_security(bprm); 207 if (ret) 208 return ret; 209 return ima_bprm_check(bprm); 210 } 211 212 void security_bprm_committing_creds(struct linux_binprm *bprm) 213 { 214 security_ops->bprm_committing_creds(bprm); 215 } 216 217 void security_bprm_committed_creds(struct linux_binprm *bprm) 218 { 219 security_ops->bprm_committed_creds(bprm); 220 } 221 222 int security_bprm_secureexec(struct linux_binprm *bprm) 223 { 224 return security_ops->bprm_secureexec(bprm); 225 } 226 227 int security_sb_alloc(struct super_block *sb) 228 { 229 return security_ops->sb_alloc_security(sb); 230 } 231 232 void security_sb_free(struct super_block *sb) 233 { 234 security_ops->sb_free_security(sb); 235 } 236 237 int security_sb_copy_data(char *orig, char *copy) 238 { 239 return security_ops->sb_copy_data(orig, copy); 240 } 241 EXPORT_SYMBOL(security_sb_copy_data); 242 243 int security_sb_remount(struct super_block *sb, void *data) 244 { 245 return security_ops->sb_remount(sb, data); 246 } 247 248 int security_sb_kern_mount(struct super_block *sb, int flags, void *data) 249 { 250 return security_ops->sb_kern_mount(sb, flags, data); 251 } 252 253 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 254 { 255 return security_ops->sb_show_options(m, sb); 256 } 257 258 int security_sb_statfs(struct dentry *dentry) 259 { 260 return security_ops->sb_statfs(dentry); 261 } 262 263 int security_sb_mount(char *dev_name, struct path *path, 264 char *type, unsigned long flags, void *data) 265 { 266 return security_ops->sb_mount(dev_name, path, type, flags, data); 267 } 268 269 int security_sb_umount(struct vfsmount *mnt, int flags) 270 { 271 return security_ops->sb_umount(mnt, flags); 272 } 273 274 int security_sb_pivotroot(struct path *old_path, struct path *new_path) 275 { 276 return security_ops->sb_pivotroot(old_path, new_path); 277 } 278 279 int security_sb_set_mnt_opts(struct super_block *sb, 280 struct security_mnt_opts *opts) 281 { 282 return security_ops->sb_set_mnt_opts(sb, opts); 283 } 284 EXPORT_SYMBOL(security_sb_set_mnt_opts); 285 286 void security_sb_clone_mnt_opts(const struct super_block *oldsb, 287 struct super_block *newsb) 288 { 289 security_ops->sb_clone_mnt_opts(oldsb, newsb); 290 } 291 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 292 293 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) 294 { 295 return security_ops->sb_parse_opts_str(options, opts); 296 } 297 EXPORT_SYMBOL(security_sb_parse_opts_str); 298 299 int security_inode_alloc(struct inode *inode) 300 { 301 inode->i_security = NULL; 302 return security_ops->inode_alloc_security(inode); 303 } 304 305 void security_inode_free(struct inode *inode) 306 { 307 integrity_inode_free(inode); 308 security_ops->inode_free_security(inode); 309 } 310 311 int security_inode_init_security(struct inode *inode, struct inode *dir, 312 const struct qstr *qstr, 313 const initxattrs initxattrs, void *fs_data) 314 { 315 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 316 struct xattr *lsm_xattr, *evm_xattr, *xattr; 317 int ret; 318 319 if (unlikely(IS_PRIVATE(inode))) 320 return 0; 321 322 memset(new_xattrs, 0, sizeof new_xattrs); 323 if (!initxattrs) 324 return security_ops->inode_init_security(inode, dir, qstr, 325 NULL, NULL, NULL); 326 lsm_xattr = new_xattrs; 327 ret = security_ops->inode_init_security(inode, dir, qstr, 328 &lsm_xattr->name, 329 &lsm_xattr->value, 330 &lsm_xattr->value_len); 331 if (ret) 332 goto out; 333 334 evm_xattr = lsm_xattr + 1; 335 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 336 if (ret) 337 goto out; 338 ret = initxattrs(inode, new_xattrs, fs_data); 339 out: 340 for (xattr = new_xattrs; xattr->name != NULL; xattr++) { 341 kfree(xattr->name); 342 kfree(xattr->value); 343 } 344 return (ret == -EOPNOTSUPP) ? 0 : ret; 345 } 346 EXPORT_SYMBOL(security_inode_init_security); 347 348 int security_old_inode_init_security(struct inode *inode, struct inode *dir, 349 const struct qstr *qstr, char **name, 350 void **value, size_t *len) 351 { 352 if (unlikely(IS_PRIVATE(inode))) 353 return -EOPNOTSUPP; 354 return security_ops->inode_init_security(inode, dir, qstr, name, value, 355 len); 356 } 357 EXPORT_SYMBOL(security_old_inode_init_security); 358 359 #ifdef CONFIG_SECURITY_PATH 360 int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode, 361 unsigned int dev) 362 { 363 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 364 return 0; 365 return security_ops->path_mknod(dir, dentry, mode, dev); 366 } 367 EXPORT_SYMBOL(security_path_mknod); 368 369 int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode) 370 { 371 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 372 return 0; 373 return security_ops->path_mkdir(dir, dentry, mode); 374 } 375 EXPORT_SYMBOL(security_path_mkdir); 376 377 int security_path_rmdir(struct path *dir, struct dentry *dentry) 378 { 379 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 380 return 0; 381 return security_ops->path_rmdir(dir, dentry); 382 } 383 384 int security_path_unlink(struct path *dir, struct dentry *dentry) 385 { 386 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 387 return 0; 388 return security_ops->path_unlink(dir, dentry); 389 } 390 EXPORT_SYMBOL(security_path_unlink); 391 392 int security_path_symlink(struct path *dir, struct dentry *dentry, 393 const char *old_name) 394 { 395 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 396 return 0; 397 return security_ops->path_symlink(dir, dentry, old_name); 398 } 399 400 int security_path_link(struct dentry *old_dentry, struct path *new_dir, 401 struct dentry *new_dentry) 402 { 403 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 404 return 0; 405 return security_ops->path_link(old_dentry, new_dir, new_dentry); 406 } 407 408 int security_path_rename(struct path *old_dir, struct dentry *old_dentry, 409 struct path *new_dir, struct dentry *new_dentry) 410 { 411 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 412 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 413 return 0; 414 return security_ops->path_rename(old_dir, old_dentry, new_dir, 415 new_dentry); 416 } 417 EXPORT_SYMBOL(security_path_rename); 418 419 int security_path_truncate(struct path *path) 420 { 421 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 422 return 0; 423 return security_ops->path_truncate(path); 424 } 425 426 int security_path_chmod(struct path *path, umode_t mode) 427 { 428 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 429 return 0; 430 return security_ops->path_chmod(path, mode); 431 } 432 433 int security_path_chown(struct path *path, uid_t uid, gid_t gid) 434 { 435 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 436 return 0; 437 return security_ops->path_chown(path, uid, gid); 438 } 439 440 int security_path_chroot(struct path *path) 441 { 442 return security_ops->path_chroot(path); 443 } 444 #endif 445 446 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 447 { 448 if (unlikely(IS_PRIVATE(dir))) 449 return 0; 450 return security_ops->inode_create(dir, dentry, mode); 451 } 452 EXPORT_SYMBOL_GPL(security_inode_create); 453 454 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 455 struct dentry *new_dentry) 456 { 457 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 458 return 0; 459 return security_ops->inode_link(old_dentry, dir, new_dentry); 460 } 461 462 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 463 { 464 if (unlikely(IS_PRIVATE(dentry->d_inode))) 465 return 0; 466 return security_ops->inode_unlink(dir, dentry); 467 } 468 469 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 470 const char *old_name) 471 { 472 if (unlikely(IS_PRIVATE(dir))) 473 return 0; 474 return security_ops->inode_symlink(dir, dentry, old_name); 475 } 476 477 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 478 { 479 if (unlikely(IS_PRIVATE(dir))) 480 return 0; 481 return security_ops->inode_mkdir(dir, dentry, mode); 482 } 483 EXPORT_SYMBOL_GPL(security_inode_mkdir); 484 485 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 486 { 487 if (unlikely(IS_PRIVATE(dentry->d_inode))) 488 return 0; 489 return security_ops->inode_rmdir(dir, dentry); 490 } 491 492 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 493 { 494 if (unlikely(IS_PRIVATE(dir))) 495 return 0; 496 return security_ops->inode_mknod(dir, dentry, mode, dev); 497 } 498 499 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 500 struct inode *new_dir, struct dentry *new_dentry) 501 { 502 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 503 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 504 return 0; 505 return security_ops->inode_rename(old_dir, old_dentry, 506 new_dir, new_dentry); 507 } 508 509 int security_inode_readlink(struct dentry *dentry) 510 { 511 if (unlikely(IS_PRIVATE(dentry->d_inode))) 512 return 0; 513 return security_ops->inode_readlink(dentry); 514 } 515 516 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd) 517 { 518 if (unlikely(IS_PRIVATE(dentry->d_inode))) 519 return 0; 520 return security_ops->inode_follow_link(dentry, nd); 521 } 522 523 int security_inode_permission(struct inode *inode, int mask) 524 { 525 if (unlikely(IS_PRIVATE(inode))) 526 return 0; 527 return security_ops->inode_permission(inode, mask); 528 } 529 530 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 531 { 532 int ret; 533 534 if (unlikely(IS_PRIVATE(dentry->d_inode))) 535 return 0; 536 ret = security_ops->inode_setattr(dentry, attr); 537 if (ret) 538 return ret; 539 return evm_inode_setattr(dentry, attr); 540 } 541 EXPORT_SYMBOL_GPL(security_inode_setattr); 542 543 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 544 { 545 if (unlikely(IS_PRIVATE(dentry->d_inode))) 546 return 0; 547 return security_ops->inode_getattr(mnt, dentry); 548 } 549 550 int security_inode_setxattr(struct dentry *dentry, const char *name, 551 const void *value, size_t size, int flags) 552 { 553 int ret; 554 555 if (unlikely(IS_PRIVATE(dentry->d_inode))) 556 return 0; 557 ret = security_ops->inode_setxattr(dentry, name, value, size, flags); 558 if (ret) 559 return ret; 560 return evm_inode_setxattr(dentry, name, value, size); 561 } 562 563 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 564 const void *value, size_t size, int flags) 565 { 566 if (unlikely(IS_PRIVATE(dentry->d_inode))) 567 return; 568 security_ops->inode_post_setxattr(dentry, name, value, size, flags); 569 evm_inode_post_setxattr(dentry, name, value, size); 570 } 571 572 int security_inode_getxattr(struct dentry *dentry, const char *name) 573 { 574 if (unlikely(IS_PRIVATE(dentry->d_inode))) 575 return 0; 576 return security_ops->inode_getxattr(dentry, name); 577 } 578 579 int security_inode_listxattr(struct dentry *dentry) 580 { 581 if (unlikely(IS_PRIVATE(dentry->d_inode))) 582 return 0; 583 return security_ops->inode_listxattr(dentry); 584 } 585 586 int security_inode_removexattr(struct dentry *dentry, const char *name) 587 { 588 int ret; 589 590 if (unlikely(IS_PRIVATE(dentry->d_inode))) 591 return 0; 592 ret = security_ops->inode_removexattr(dentry, name); 593 if (ret) 594 return ret; 595 return evm_inode_removexattr(dentry, name); 596 } 597 598 int security_inode_need_killpriv(struct dentry *dentry) 599 { 600 return security_ops->inode_need_killpriv(dentry); 601 } 602 603 int security_inode_killpriv(struct dentry *dentry) 604 { 605 return security_ops->inode_killpriv(dentry); 606 } 607 608 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 609 { 610 if (unlikely(IS_PRIVATE(inode))) 611 return -EOPNOTSUPP; 612 return security_ops->inode_getsecurity(inode, name, buffer, alloc); 613 } 614 615 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 616 { 617 if (unlikely(IS_PRIVATE(inode))) 618 return -EOPNOTSUPP; 619 return security_ops->inode_setsecurity(inode, name, value, size, flags); 620 } 621 622 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 623 { 624 if (unlikely(IS_PRIVATE(inode))) 625 return 0; 626 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 627 } 628 629 void security_inode_getsecid(const struct inode *inode, u32 *secid) 630 { 631 security_ops->inode_getsecid(inode, secid); 632 } 633 634 int security_file_permission(struct file *file, int mask) 635 { 636 int ret; 637 638 ret = security_ops->file_permission(file, mask); 639 if (ret) 640 return ret; 641 642 return fsnotify_perm(file, mask); 643 } 644 645 int security_file_alloc(struct file *file) 646 { 647 return security_ops->file_alloc_security(file); 648 } 649 650 void security_file_free(struct file *file) 651 { 652 security_ops->file_free_security(file); 653 } 654 655 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 656 { 657 return security_ops->file_ioctl(file, cmd, arg); 658 } 659 660 int security_file_mmap(struct file *file, unsigned long reqprot, 661 unsigned long prot, unsigned long flags, 662 unsigned long addr, unsigned long addr_only) 663 { 664 int ret; 665 666 ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only); 667 if (ret) 668 return ret; 669 return ima_file_mmap(file, prot); 670 } 671 672 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 673 unsigned long prot) 674 { 675 return security_ops->file_mprotect(vma, reqprot, prot); 676 } 677 678 int security_file_lock(struct file *file, unsigned int cmd) 679 { 680 return security_ops->file_lock(file, cmd); 681 } 682 683 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 684 { 685 return security_ops->file_fcntl(file, cmd, arg); 686 } 687 688 int security_file_set_fowner(struct file *file) 689 { 690 return security_ops->file_set_fowner(file); 691 } 692 693 int security_file_send_sigiotask(struct task_struct *tsk, 694 struct fown_struct *fown, int sig) 695 { 696 return security_ops->file_send_sigiotask(tsk, fown, sig); 697 } 698 699 int security_file_receive(struct file *file) 700 { 701 return security_ops->file_receive(file); 702 } 703 704 int security_dentry_open(struct file *file, const struct cred *cred) 705 { 706 int ret; 707 708 ret = security_ops->dentry_open(file, cred); 709 if (ret) 710 return ret; 711 712 return fsnotify_perm(file, MAY_OPEN); 713 } 714 715 int security_task_create(unsigned long clone_flags) 716 { 717 return security_ops->task_create(clone_flags); 718 } 719 720 void security_task_free(struct task_struct *task) 721 { 722 security_ops->task_free(task); 723 } 724 725 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 726 { 727 return security_ops->cred_alloc_blank(cred, gfp); 728 } 729 730 void security_cred_free(struct cred *cred) 731 { 732 security_ops->cred_free(cred); 733 } 734 735 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 736 { 737 return security_ops->cred_prepare(new, old, gfp); 738 } 739 740 void security_transfer_creds(struct cred *new, const struct cred *old) 741 { 742 security_ops->cred_transfer(new, old); 743 } 744 745 int security_kernel_act_as(struct cred *new, u32 secid) 746 { 747 return security_ops->kernel_act_as(new, secid); 748 } 749 750 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 751 { 752 return security_ops->kernel_create_files_as(new, inode); 753 } 754 755 int security_kernel_module_request(char *kmod_name) 756 { 757 return security_ops->kernel_module_request(kmod_name); 758 } 759 760 int security_task_fix_setuid(struct cred *new, const struct cred *old, 761 int flags) 762 { 763 return security_ops->task_fix_setuid(new, old, flags); 764 } 765 766 int security_task_setpgid(struct task_struct *p, pid_t pgid) 767 { 768 return security_ops->task_setpgid(p, pgid); 769 } 770 771 int security_task_getpgid(struct task_struct *p) 772 { 773 return security_ops->task_getpgid(p); 774 } 775 776 int security_task_getsid(struct task_struct *p) 777 { 778 return security_ops->task_getsid(p); 779 } 780 781 void security_task_getsecid(struct task_struct *p, u32 *secid) 782 { 783 security_ops->task_getsecid(p, secid); 784 } 785 EXPORT_SYMBOL(security_task_getsecid); 786 787 int security_task_setnice(struct task_struct *p, int nice) 788 { 789 return security_ops->task_setnice(p, nice); 790 } 791 792 int security_task_setioprio(struct task_struct *p, int ioprio) 793 { 794 return security_ops->task_setioprio(p, ioprio); 795 } 796 797 int security_task_getioprio(struct task_struct *p) 798 { 799 return security_ops->task_getioprio(p); 800 } 801 802 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 803 struct rlimit *new_rlim) 804 { 805 return security_ops->task_setrlimit(p, resource, new_rlim); 806 } 807 808 int security_task_setscheduler(struct task_struct *p) 809 { 810 return security_ops->task_setscheduler(p); 811 } 812 813 int security_task_getscheduler(struct task_struct *p) 814 { 815 return security_ops->task_getscheduler(p); 816 } 817 818 int security_task_movememory(struct task_struct *p) 819 { 820 return security_ops->task_movememory(p); 821 } 822 823 int security_task_kill(struct task_struct *p, struct siginfo *info, 824 int sig, u32 secid) 825 { 826 return security_ops->task_kill(p, info, sig, secid); 827 } 828 829 int security_task_wait(struct task_struct *p) 830 { 831 return security_ops->task_wait(p); 832 } 833 834 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 835 unsigned long arg4, unsigned long arg5) 836 { 837 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5); 838 } 839 840 void security_task_to_inode(struct task_struct *p, struct inode *inode) 841 { 842 security_ops->task_to_inode(p, inode); 843 } 844 845 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 846 { 847 return security_ops->ipc_permission(ipcp, flag); 848 } 849 850 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 851 { 852 security_ops->ipc_getsecid(ipcp, secid); 853 } 854 855 int security_msg_msg_alloc(struct msg_msg *msg) 856 { 857 return security_ops->msg_msg_alloc_security(msg); 858 } 859 860 void security_msg_msg_free(struct msg_msg *msg) 861 { 862 security_ops->msg_msg_free_security(msg); 863 } 864 865 int security_msg_queue_alloc(struct msg_queue *msq) 866 { 867 return security_ops->msg_queue_alloc_security(msq); 868 } 869 870 void security_msg_queue_free(struct msg_queue *msq) 871 { 872 security_ops->msg_queue_free_security(msq); 873 } 874 875 int security_msg_queue_associate(struct msg_queue *msq, int msqflg) 876 { 877 return security_ops->msg_queue_associate(msq, msqflg); 878 } 879 880 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) 881 { 882 return security_ops->msg_queue_msgctl(msq, cmd); 883 } 884 885 int security_msg_queue_msgsnd(struct msg_queue *msq, 886 struct msg_msg *msg, int msqflg) 887 { 888 return security_ops->msg_queue_msgsnd(msq, msg, msqflg); 889 } 890 891 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 892 struct task_struct *target, long type, int mode) 893 { 894 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode); 895 } 896 897 int security_shm_alloc(struct shmid_kernel *shp) 898 { 899 return security_ops->shm_alloc_security(shp); 900 } 901 902 void security_shm_free(struct shmid_kernel *shp) 903 { 904 security_ops->shm_free_security(shp); 905 } 906 907 int security_shm_associate(struct shmid_kernel *shp, int shmflg) 908 { 909 return security_ops->shm_associate(shp, shmflg); 910 } 911 912 int security_shm_shmctl(struct shmid_kernel *shp, int cmd) 913 { 914 return security_ops->shm_shmctl(shp, cmd); 915 } 916 917 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg) 918 { 919 return security_ops->shm_shmat(shp, shmaddr, shmflg); 920 } 921 922 int security_sem_alloc(struct sem_array *sma) 923 { 924 return security_ops->sem_alloc_security(sma); 925 } 926 927 void security_sem_free(struct sem_array *sma) 928 { 929 security_ops->sem_free_security(sma); 930 } 931 932 int security_sem_associate(struct sem_array *sma, int semflg) 933 { 934 return security_ops->sem_associate(sma, semflg); 935 } 936 937 int security_sem_semctl(struct sem_array *sma, int cmd) 938 { 939 return security_ops->sem_semctl(sma, cmd); 940 } 941 942 int security_sem_semop(struct sem_array *sma, struct sembuf *sops, 943 unsigned nsops, int alter) 944 { 945 return security_ops->sem_semop(sma, sops, nsops, alter); 946 } 947 948 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 949 { 950 if (unlikely(inode && IS_PRIVATE(inode))) 951 return; 952 security_ops->d_instantiate(dentry, inode); 953 } 954 EXPORT_SYMBOL(security_d_instantiate); 955 956 int security_getprocattr(struct task_struct *p, char *name, char **value) 957 { 958 return security_ops->getprocattr(p, name, value); 959 } 960 961 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 962 { 963 return security_ops->setprocattr(p, name, value, size); 964 } 965 966 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 967 { 968 return security_ops->netlink_send(sk, skb); 969 } 970 971 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 972 { 973 return security_ops->secid_to_secctx(secid, secdata, seclen); 974 } 975 EXPORT_SYMBOL(security_secid_to_secctx); 976 977 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 978 { 979 return security_ops->secctx_to_secid(secdata, seclen, secid); 980 } 981 EXPORT_SYMBOL(security_secctx_to_secid); 982 983 void security_release_secctx(char *secdata, u32 seclen) 984 { 985 security_ops->release_secctx(secdata, seclen); 986 } 987 EXPORT_SYMBOL(security_release_secctx); 988 989 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 990 { 991 return security_ops->inode_notifysecctx(inode, ctx, ctxlen); 992 } 993 EXPORT_SYMBOL(security_inode_notifysecctx); 994 995 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 996 { 997 return security_ops->inode_setsecctx(dentry, ctx, ctxlen); 998 } 999 EXPORT_SYMBOL(security_inode_setsecctx); 1000 1001 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 1002 { 1003 return security_ops->inode_getsecctx(inode, ctx, ctxlen); 1004 } 1005 EXPORT_SYMBOL(security_inode_getsecctx); 1006 1007 #ifdef CONFIG_SECURITY_NETWORK 1008 1009 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 1010 { 1011 return security_ops->unix_stream_connect(sock, other, newsk); 1012 } 1013 EXPORT_SYMBOL(security_unix_stream_connect); 1014 1015 int security_unix_may_send(struct socket *sock, struct socket *other) 1016 { 1017 return security_ops->unix_may_send(sock, other); 1018 } 1019 EXPORT_SYMBOL(security_unix_may_send); 1020 1021 int security_socket_create(int family, int type, int protocol, int kern) 1022 { 1023 return security_ops->socket_create(family, type, protocol, kern); 1024 } 1025 1026 int security_socket_post_create(struct socket *sock, int family, 1027 int type, int protocol, int kern) 1028 { 1029 return security_ops->socket_post_create(sock, family, type, 1030 protocol, kern); 1031 } 1032 1033 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 1034 { 1035 return security_ops->socket_bind(sock, address, addrlen); 1036 } 1037 1038 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 1039 { 1040 return security_ops->socket_connect(sock, address, addrlen); 1041 } 1042 1043 int security_socket_listen(struct socket *sock, int backlog) 1044 { 1045 return security_ops->socket_listen(sock, backlog); 1046 } 1047 1048 int security_socket_accept(struct socket *sock, struct socket *newsock) 1049 { 1050 return security_ops->socket_accept(sock, newsock); 1051 } 1052 1053 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 1054 { 1055 return security_ops->socket_sendmsg(sock, msg, size); 1056 } 1057 1058 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 1059 int size, int flags) 1060 { 1061 return security_ops->socket_recvmsg(sock, msg, size, flags); 1062 } 1063 1064 int security_socket_getsockname(struct socket *sock) 1065 { 1066 return security_ops->socket_getsockname(sock); 1067 } 1068 1069 int security_socket_getpeername(struct socket *sock) 1070 { 1071 return security_ops->socket_getpeername(sock); 1072 } 1073 1074 int security_socket_getsockopt(struct socket *sock, int level, int optname) 1075 { 1076 return security_ops->socket_getsockopt(sock, level, optname); 1077 } 1078 1079 int security_socket_setsockopt(struct socket *sock, int level, int optname) 1080 { 1081 return security_ops->socket_setsockopt(sock, level, optname); 1082 } 1083 1084 int security_socket_shutdown(struct socket *sock, int how) 1085 { 1086 return security_ops->socket_shutdown(sock, how); 1087 } 1088 1089 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 1090 { 1091 return security_ops->socket_sock_rcv_skb(sk, skb); 1092 } 1093 EXPORT_SYMBOL(security_sock_rcv_skb); 1094 1095 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 1096 int __user *optlen, unsigned len) 1097 { 1098 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 1099 } 1100 1101 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 1102 { 1103 return security_ops->socket_getpeersec_dgram(sock, skb, secid); 1104 } 1105 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 1106 1107 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 1108 { 1109 return security_ops->sk_alloc_security(sk, family, priority); 1110 } 1111 1112 void security_sk_free(struct sock *sk) 1113 { 1114 security_ops->sk_free_security(sk); 1115 } 1116 1117 void security_sk_clone(const struct sock *sk, struct sock *newsk) 1118 { 1119 security_ops->sk_clone_security(sk, newsk); 1120 } 1121 EXPORT_SYMBOL(security_sk_clone); 1122 1123 void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 1124 { 1125 security_ops->sk_getsecid(sk, &fl->flowi_secid); 1126 } 1127 EXPORT_SYMBOL(security_sk_classify_flow); 1128 1129 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 1130 { 1131 security_ops->req_classify_flow(req, fl); 1132 } 1133 EXPORT_SYMBOL(security_req_classify_flow); 1134 1135 void security_sock_graft(struct sock *sk, struct socket *parent) 1136 { 1137 security_ops->sock_graft(sk, parent); 1138 } 1139 EXPORT_SYMBOL(security_sock_graft); 1140 1141 int security_inet_conn_request(struct sock *sk, 1142 struct sk_buff *skb, struct request_sock *req) 1143 { 1144 return security_ops->inet_conn_request(sk, skb, req); 1145 } 1146 EXPORT_SYMBOL(security_inet_conn_request); 1147 1148 void security_inet_csk_clone(struct sock *newsk, 1149 const struct request_sock *req) 1150 { 1151 security_ops->inet_csk_clone(newsk, req); 1152 } 1153 1154 void security_inet_conn_established(struct sock *sk, 1155 struct sk_buff *skb) 1156 { 1157 security_ops->inet_conn_established(sk, skb); 1158 } 1159 1160 int security_secmark_relabel_packet(u32 secid) 1161 { 1162 return security_ops->secmark_relabel_packet(secid); 1163 } 1164 EXPORT_SYMBOL(security_secmark_relabel_packet); 1165 1166 void security_secmark_refcount_inc(void) 1167 { 1168 security_ops->secmark_refcount_inc(); 1169 } 1170 EXPORT_SYMBOL(security_secmark_refcount_inc); 1171 1172 void security_secmark_refcount_dec(void) 1173 { 1174 security_ops->secmark_refcount_dec(); 1175 } 1176 EXPORT_SYMBOL(security_secmark_refcount_dec); 1177 1178 int security_tun_dev_create(void) 1179 { 1180 return security_ops->tun_dev_create(); 1181 } 1182 EXPORT_SYMBOL(security_tun_dev_create); 1183 1184 void security_tun_dev_post_create(struct sock *sk) 1185 { 1186 return security_ops->tun_dev_post_create(sk); 1187 } 1188 EXPORT_SYMBOL(security_tun_dev_post_create); 1189 1190 int security_tun_dev_attach(struct sock *sk) 1191 { 1192 return security_ops->tun_dev_attach(sk); 1193 } 1194 EXPORT_SYMBOL(security_tun_dev_attach); 1195 1196 #endif /* CONFIG_SECURITY_NETWORK */ 1197 1198 #ifdef CONFIG_SECURITY_NETWORK_XFRM 1199 1200 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx) 1201 { 1202 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx); 1203 } 1204 EXPORT_SYMBOL(security_xfrm_policy_alloc); 1205 1206 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 1207 struct xfrm_sec_ctx **new_ctxp) 1208 { 1209 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp); 1210 } 1211 1212 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 1213 { 1214 security_ops->xfrm_policy_free_security(ctx); 1215 } 1216 EXPORT_SYMBOL(security_xfrm_policy_free); 1217 1218 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 1219 { 1220 return security_ops->xfrm_policy_delete_security(ctx); 1221 } 1222 1223 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 1224 { 1225 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0); 1226 } 1227 EXPORT_SYMBOL(security_xfrm_state_alloc); 1228 1229 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1230 struct xfrm_sec_ctx *polsec, u32 secid) 1231 { 1232 if (!polsec) 1233 return 0; 1234 /* 1235 * We want the context to be taken from secid which is usually 1236 * from the sock. 1237 */ 1238 return security_ops->xfrm_state_alloc_security(x, NULL, secid); 1239 } 1240 1241 int security_xfrm_state_delete(struct xfrm_state *x) 1242 { 1243 return security_ops->xfrm_state_delete_security(x); 1244 } 1245 EXPORT_SYMBOL(security_xfrm_state_delete); 1246 1247 void security_xfrm_state_free(struct xfrm_state *x) 1248 { 1249 security_ops->xfrm_state_free_security(x); 1250 } 1251 1252 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 1253 { 1254 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir); 1255 } 1256 1257 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1258 struct xfrm_policy *xp, 1259 const struct flowi *fl) 1260 { 1261 return security_ops->xfrm_state_pol_flow_match(x, xp, fl); 1262 } 1263 1264 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1265 { 1266 return security_ops->xfrm_decode_session(skb, secid, 1); 1267 } 1268 1269 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1270 { 1271 int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0); 1272 1273 BUG_ON(rc); 1274 } 1275 EXPORT_SYMBOL(security_skb_classify_flow); 1276 1277 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1278 1279 #ifdef CONFIG_KEYS 1280 1281 int security_key_alloc(struct key *key, const struct cred *cred, 1282 unsigned long flags) 1283 { 1284 return security_ops->key_alloc(key, cred, flags); 1285 } 1286 1287 void security_key_free(struct key *key) 1288 { 1289 security_ops->key_free(key); 1290 } 1291 1292 int security_key_permission(key_ref_t key_ref, 1293 const struct cred *cred, key_perm_t perm) 1294 { 1295 return security_ops->key_permission(key_ref, cred, perm); 1296 } 1297 1298 int security_key_getsecurity(struct key *key, char **_buffer) 1299 { 1300 return security_ops->key_getsecurity(key, _buffer); 1301 } 1302 1303 #endif /* CONFIG_KEYS */ 1304 1305 #ifdef CONFIG_AUDIT 1306 1307 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 1308 { 1309 return security_ops->audit_rule_init(field, op, rulestr, lsmrule); 1310 } 1311 1312 int security_audit_rule_known(struct audit_krule *krule) 1313 { 1314 return security_ops->audit_rule_known(krule); 1315 } 1316 1317 void security_audit_rule_free(void *lsmrule) 1318 { 1319 security_ops->audit_rule_free(lsmrule); 1320 } 1321 1322 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 1323 struct audit_context *actx) 1324 { 1325 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx); 1326 } 1327 1328 #endif /* CONFIG_AUDIT */ 1329