xref: /openbmc/linux/security/security.c (revision 1dd24dae)
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *	This program is free software; you can redistribute it and/or modify
9  *	it under the terms of the GNU General Public License as published by
10  *	the Free Software Foundation; either version 2 of the License, or
11  *	(at your option) any later version.
12  */
13 
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/integrity.h>
20 #include <linux/ima.h>
21 #include <linux/evm.h>
22 #include <linux/fsnotify.h>
23 #include <linux/mman.h>
24 #include <linux/mount.h>
25 #include <linux/personality.h>
26 #include <linux/backing-dev.h>
27 #include <net/flow.h>
28 
29 #define MAX_LSM_EVM_XATTR	2
30 
31 /* Boot-time LSM user choice */
32 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
33 	CONFIG_DEFAULT_SECURITY;
34 
35 static struct security_operations *security_ops;
36 static struct security_operations default_security_ops = {
37 	.name	= "default",
38 };
39 
40 static inline int __init verify(struct security_operations *ops)
41 {
42 	/* verify the security_operations structure exists */
43 	if (!ops)
44 		return -EINVAL;
45 	security_fixup_ops(ops);
46 	return 0;
47 }
48 
49 static void __init do_security_initcalls(void)
50 {
51 	initcall_t *call;
52 	call = __security_initcall_start;
53 	while (call < __security_initcall_end) {
54 		(*call) ();
55 		call++;
56 	}
57 }
58 
59 /**
60  * security_init - initializes the security framework
61  *
62  * This should be called early in the kernel initialization sequence.
63  */
64 int __init security_init(void)
65 {
66 	printk(KERN_INFO "Security Framework initialized\n");
67 
68 	security_fixup_ops(&default_security_ops);
69 	security_ops = &default_security_ops;
70 	do_security_initcalls();
71 
72 	return 0;
73 }
74 
75 void reset_security_ops(void)
76 {
77 	security_ops = &default_security_ops;
78 }
79 
80 /* Save user chosen LSM */
81 static int __init choose_lsm(char *str)
82 {
83 	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
84 	return 1;
85 }
86 __setup("security=", choose_lsm);
87 
88 /**
89  * security_module_enable - Load given security module on boot ?
90  * @ops: a pointer to the struct security_operations that is to be checked.
91  *
92  * Each LSM must pass this method before registering its own operations
93  * to avoid security registration races. This method may also be used
94  * to check if your LSM is currently loaded during kernel initialization.
95  *
96  * Return true if:
97  *	-The passed LSM is the one chosen by user at boot time,
98  *	-or the passed LSM is configured as the default and the user did not
99  *	 choose an alternate LSM at boot time.
100  * Otherwise, return false.
101  */
102 int __init security_module_enable(struct security_operations *ops)
103 {
104 	return !strcmp(ops->name, chosen_lsm);
105 }
106 
107 /**
108  * register_security - registers a security framework with the kernel
109  * @ops: a pointer to the struct security_options that is to be registered
110  *
111  * This function allows a security module to register itself with the
112  * kernel security subsystem.  Some rudimentary checking is done on the @ops
113  * value passed to this function. You'll need to check first if your LSM
114  * is allowed to register its @ops by calling security_module_enable(@ops).
115  *
116  * If there is already a security module registered with the kernel,
117  * an error will be returned.  Otherwise %0 is returned on success.
118  */
119 int __init register_security(struct security_operations *ops)
120 {
121 	if (verify(ops)) {
122 		printk(KERN_DEBUG "%s could not verify "
123 		       "security_operations structure.\n", __func__);
124 		return -EINVAL;
125 	}
126 
127 	if (security_ops != &default_security_ops)
128 		return -EAGAIN;
129 
130 	security_ops = ops;
131 
132 	return 0;
133 }
134 
135 /* Security operations */
136 
137 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
138 {
139 #ifdef CONFIG_SECURITY_YAMA_STACKED
140 	int rc;
141 	rc = yama_ptrace_access_check(child, mode);
142 	if (rc)
143 		return rc;
144 #endif
145 	return security_ops->ptrace_access_check(child, mode);
146 }
147 
148 int security_ptrace_traceme(struct task_struct *parent)
149 {
150 #ifdef CONFIG_SECURITY_YAMA_STACKED
151 	int rc;
152 	rc = yama_ptrace_traceme(parent);
153 	if (rc)
154 		return rc;
155 #endif
156 	return security_ops->ptrace_traceme(parent);
157 }
158 
159 int security_capget(struct task_struct *target,
160 		     kernel_cap_t *effective,
161 		     kernel_cap_t *inheritable,
162 		     kernel_cap_t *permitted)
163 {
164 	return security_ops->capget(target, effective, inheritable, permitted);
165 }
166 
167 int security_capset(struct cred *new, const struct cred *old,
168 		    const kernel_cap_t *effective,
169 		    const kernel_cap_t *inheritable,
170 		    const kernel_cap_t *permitted)
171 {
172 	return security_ops->capset(new, old,
173 				    effective, inheritable, permitted);
174 }
175 
176 int security_capable(const struct cred *cred, struct user_namespace *ns,
177 		     int cap)
178 {
179 	return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
180 }
181 
182 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
183 			     int cap)
184 {
185 	return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
186 }
187 
188 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
189 {
190 	return security_ops->quotactl(cmds, type, id, sb);
191 }
192 
193 int security_quota_on(struct dentry *dentry)
194 {
195 	return security_ops->quota_on(dentry);
196 }
197 
198 int security_syslog(int type)
199 {
200 	return security_ops->syslog(type);
201 }
202 
203 int security_settime(const struct timespec *ts, const struct timezone *tz)
204 {
205 	return security_ops->settime(ts, tz);
206 }
207 
208 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
209 {
210 	return security_ops->vm_enough_memory(mm, pages);
211 }
212 
213 int security_bprm_set_creds(struct linux_binprm *bprm)
214 {
215 	return security_ops->bprm_set_creds(bprm);
216 }
217 
218 int security_bprm_check(struct linux_binprm *bprm)
219 {
220 	int ret;
221 
222 	ret = security_ops->bprm_check_security(bprm);
223 	if (ret)
224 		return ret;
225 	return ima_bprm_check(bprm);
226 }
227 
228 void security_bprm_committing_creds(struct linux_binprm *bprm)
229 {
230 	security_ops->bprm_committing_creds(bprm);
231 }
232 
233 void security_bprm_committed_creds(struct linux_binprm *bprm)
234 {
235 	security_ops->bprm_committed_creds(bprm);
236 }
237 
238 int security_bprm_secureexec(struct linux_binprm *bprm)
239 {
240 	return security_ops->bprm_secureexec(bprm);
241 }
242 
243 int security_sb_alloc(struct super_block *sb)
244 {
245 	return security_ops->sb_alloc_security(sb);
246 }
247 
248 void security_sb_free(struct super_block *sb)
249 {
250 	security_ops->sb_free_security(sb);
251 }
252 
253 int security_sb_copy_data(char *orig, char *copy)
254 {
255 	return security_ops->sb_copy_data(orig, copy);
256 }
257 EXPORT_SYMBOL(security_sb_copy_data);
258 
259 int security_sb_remount(struct super_block *sb, void *data)
260 {
261 	return security_ops->sb_remount(sb, data);
262 }
263 
264 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
265 {
266 	return security_ops->sb_kern_mount(sb, flags, data);
267 }
268 
269 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
270 {
271 	return security_ops->sb_show_options(m, sb);
272 }
273 
274 int security_sb_statfs(struct dentry *dentry)
275 {
276 	return security_ops->sb_statfs(dentry);
277 }
278 
279 int security_sb_mount(const char *dev_name, struct path *path,
280                        const char *type, unsigned long flags, void *data)
281 {
282 	return security_ops->sb_mount(dev_name, path, type, flags, data);
283 }
284 
285 int security_sb_umount(struct vfsmount *mnt, int flags)
286 {
287 	return security_ops->sb_umount(mnt, flags);
288 }
289 
290 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
291 {
292 	return security_ops->sb_pivotroot(old_path, new_path);
293 }
294 
295 int security_sb_set_mnt_opts(struct super_block *sb,
296 				struct security_mnt_opts *opts)
297 {
298 	return security_ops->sb_set_mnt_opts(sb, opts);
299 }
300 EXPORT_SYMBOL(security_sb_set_mnt_opts);
301 
302 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
303 				struct super_block *newsb)
304 {
305 	return security_ops->sb_clone_mnt_opts(oldsb, newsb);
306 }
307 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
308 
309 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
310 {
311 	return security_ops->sb_parse_opts_str(options, opts);
312 }
313 EXPORT_SYMBOL(security_sb_parse_opts_str);
314 
315 int security_inode_alloc(struct inode *inode)
316 {
317 	inode->i_security = NULL;
318 	return security_ops->inode_alloc_security(inode);
319 }
320 
321 void security_inode_free(struct inode *inode)
322 {
323 	integrity_inode_free(inode);
324 	security_ops->inode_free_security(inode);
325 }
326 
327 int security_inode_init_security(struct inode *inode, struct inode *dir,
328 				 const struct qstr *qstr,
329 				 const initxattrs initxattrs, void *fs_data)
330 {
331 	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
332 	struct xattr *lsm_xattr, *evm_xattr, *xattr;
333 	int ret;
334 
335 	if (unlikely(IS_PRIVATE(inode)))
336 		return 0;
337 
338 	memset(new_xattrs, 0, sizeof new_xattrs);
339 	if (!initxattrs)
340 		return security_ops->inode_init_security(inode, dir, qstr,
341 							 NULL, NULL, NULL);
342 	lsm_xattr = new_xattrs;
343 	ret = security_ops->inode_init_security(inode, dir, qstr,
344 						&lsm_xattr->name,
345 						&lsm_xattr->value,
346 						&lsm_xattr->value_len);
347 	if (ret)
348 		goto out;
349 
350 	evm_xattr = lsm_xattr + 1;
351 	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
352 	if (ret)
353 		goto out;
354 	ret = initxattrs(inode, new_xattrs, fs_data);
355 out:
356 	for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
357 		kfree(xattr->name);
358 		kfree(xattr->value);
359 	}
360 	return (ret == -EOPNOTSUPP) ? 0 : ret;
361 }
362 EXPORT_SYMBOL(security_inode_init_security);
363 
364 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
365 				     const struct qstr *qstr, char **name,
366 				     void **value, size_t *len)
367 {
368 	if (unlikely(IS_PRIVATE(inode)))
369 		return -EOPNOTSUPP;
370 	return security_ops->inode_init_security(inode, dir, qstr, name, value,
371 						 len);
372 }
373 EXPORT_SYMBOL(security_old_inode_init_security);
374 
375 #ifdef CONFIG_SECURITY_PATH
376 int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
377 			unsigned int dev)
378 {
379 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
380 		return 0;
381 	return security_ops->path_mknod(dir, dentry, mode, dev);
382 }
383 EXPORT_SYMBOL(security_path_mknod);
384 
385 int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
386 {
387 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
388 		return 0;
389 	return security_ops->path_mkdir(dir, dentry, mode);
390 }
391 EXPORT_SYMBOL(security_path_mkdir);
392 
393 int security_path_rmdir(struct path *dir, struct dentry *dentry)
394 {
395 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
396 		return 0;
397 	return security_ops->path_rmdir(dir, dentry);
398 }
399 
400 int security_path_unlink(struct path *dir, struct dentry *dentry)
401 {
402 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
403 		return 0;
404 	return security_ops->path_unlink(dir, dentry);
405 }
406 EXPORT_SYMBOL(security_path_unlink);
407 
408 int security_path_symlink(struct path *dir, struct dentry *dentry,
409 			  const char *old_name)
410 {
411 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
412 		return 0;
413 	return security_ops->path_symlink(dir, dentry, old_name);
414 }
415 
416 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
417 		       struct dentry *new_dentry)
418 {
419 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
420 		return 0;
421 	return security_ops->path_link(old_dentry, new_dir, new_dentry);
422 }
423 
424 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
425 			 struct path *new_dir, struct dentry *new_dentry)
426 {
427 	if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
428 		     (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
429 		return 0;
430 	return security_ops->path_rename(old_dir, old_dentry, new_dir,
431 					 new_dentry);
432 }
433 EXPORT_SYMBOL(security_path_rename);
434 
435 int security_path_truncate(struct path *path)
436 {
437 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
438 		return 0;
439 	return security_ops->path_truncate(path);
440 }
441 
442 int security_path_chmod(struct path *path, umode_t mode)
443 {
444 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
445 		return 0;
446 	return security_ops->path_chmod(path, mode);
447 }
448 
449 int security_path_chown(struct path *path, kuid_t uid, kgid_t gid)
450 {
451 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
452 		return 0;
453 	return security_ops->path_chown(path, uid, gid);
454 }
455 
456 int security_path_chroot(struct path *path)
457 {
458 	return security_ops->path_chroot(path);
459 }
460 #endif
461 
462 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
463 {
464 	if (unlikely(IS_PRIVATE(dir)))
465 		return 0;
466 	return security_ops->inode_create(dir, dentry, mode);
467 }
468 EXPORT_SYMBOL_GPL(security_inode_create);
469 
470 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
471 			 struct dentry *new_dentry)
472 {
473 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
474 		return 0;
475 	return security_ops->inode_link(old_dentry, dir, new_dentry);
476 }
477 
478 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
479 {
480 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
481 		return 0;
482 	return security_ops->inode_unlink(dir, dentry);
483 }
484 
485 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
486 			    const char *old_name)
487 {
488 	if (unlikely(IS_PRIVATE(dir)))
489 		return 0;
490 	return security_ops->inode_symlink(dir, dentry, old_name);
491 }
492 
493 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
494 {
495 	if (unlikely(IS_PRIVATE(dir)))
496 		return 0;
497 	return security_ops->inode_mkdir(dir, dentry, mode);
498 }
499 EXPORT_SYMBOL_GPL(security_inode_mkdir);
500 
501 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
502 {
503 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
504 		return 0;
505 	return security_ops->inode_rmdir(dir, dentry);
506 }
507 
508 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
509 {
510 	if (unlikely(IS_PRIVATE(dir)))
511 		return 0;
512 	return security_ops->inode_mknod(dir, dentry, mode, dev);
513 }
514 
515 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
516 			   struct inode *new_dir, struct dentry *new_dentry)
517 {
518         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
519             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
520 		return 0;
521 	return security_ops->inode_rename(old_dir, old_dentry,
522 					   new_dir, new_dentry);
523 }
524 
525 int security_inode_readlink(struct dentry *dentry)
526 {
527 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
528 		return 0;
529 	return security_ops->inode_readlink(dentry);
530 }
531 
532 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
533 {
534 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
535 		return 0;
536 	return security_ops->inode_follow_link(dentry, nd);
537 }
538 
539 int security_inode_permission(struct inode *inode, int mask)
540 {
541 	if (unlikely(IS_PRIVATE(inode)))
542 		return 0;
543 	return security_ops->inode_permission(inode, mask);
544 }
545 
546 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
547 {
548 	int ret;
549 
550 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
551 		return 0;
552 	ret = security_ops->inode_setattr(dentry, attr);
553 	if (ret)
554 		return ret;
555 	return evm_inode_setattr(dentry, attr);
556 }
557 EXPORT_SYMBOL_GPL(security_inode_setattr);
558 
559 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
560 {
561 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
562 		return 0;
563 	return security_ops->inode_getattr(mnt, dentry);
564 }
565 
566 int security_inode_setxattr(struct dentry *dentry, const char *name,
567 			    const void *value, size_t size, int flags)
568 {
569 	int ret;
570 
571 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
572 		return 0;
573 	ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
574 	if (ret)
575 		return ret;
576 	ret = ima_inode_setxattr(dentry, name, value, size);
577 	if (ret)
578 		return ret;
579 	return evm_inode_setxattr(dentry, name, value, size);
580 }
581 
582 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
583 				  const void *value, size_t size, int flags)
584 {
585 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
586 		return;
587 	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
588 	evm_inode_post_setxattr(dentry, name, value, size);
589 }
590 
591 int security_inode_getxattr(struct dentry *dentry, const char *name)
592 {
593 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
594 		return 0;
595 	return security_ops->inode_getxattr(dentry, name);
596 }
597 
598 int security_inode_listxattr(struct dentry *dentry)
599 {
600 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
601 		return 0;
602 	return security_ops->inode_listxattr(dentry);
603 }
604 
605 int security_inode_removexattr(struct dentry *dentry, const char *name)
606 {
607 	int ret;
608 
609 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
610 		return 0;
611 	ret = security_ops->inode_removexattr(dentry, name);
612 	if (ret)
613 		return ret;
614 	ret = ima_inode_removexattr(dentry, name);
615 	if (ret)
616 		return ret;
617 	return evm_inode_removexattr(dentry, name);
618 }
619 
620 int security_inode_need_killpriv(struct dentry *dentry)
621 {
622 	return security_ops->inode_need_killpriv(dentry);
623 }
624 
625 int security_inode_killpriv(struct dentry *dentry)
626 {
627 	return security_ops->inode_killpriv(dentry);
628 }
629 
630 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
631 {
632 	if (unlikely(IS_PRIVATE(inode)))
633 		return -EOPNOTSUPP;
634 	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
635 }
636 
637 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
638 {
639 	if (unlikely(IS_PRIVATE(inode)))
640 		return -EOPNOTSUPP;
641 	return security_ops->inode_setsecurity(inode, name, value, size, flags);
642 }
643 
644 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
645 {
646 	if (unlikely(IS_PRIVATE(inode)))
647 		return 0;
648 	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
649 }
650 
651 void security_inode_getsecid(const struct inode *inode, u32 *secid)
652 {
653 	security_ops->inode_getsecid(inode, secid);
654 }
655 
656 int security_file_permission(struct file *file, int mask)
657 {
658 	int ret;
659 
660 	ret = security_ops->file_permission(file, mask);
661 	if (ret)
662 		return ret;
663 
664 	return fsnotify_perm(file, mask);
665 }
666 
667 int security_file_alloc(struct file *file)
668 {
669 	return security_ops->file_alloc_security(file);
670 }
671 
672 void security_file_free(struct file *file)
673 {
674 	security_ops->file_free_security(file);
675 }
676 
677 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
678 {
679 	return security_ops->file_ioctl(file, cmd, arg);
680 }
681 
682 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
683 {
684 	/*
685 	 * Does we have PROT_READ and does the application expect
686 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
687 	 */
688 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
689 		return prot;
690 	if (!(current->personality & READ_IMPLIES_EXEC))
691 		return prot;
692 	/*
693 	 * if that's an anonymous mapping, let it.
694 	 */
695 	if (!file)
696 		return prot | PROT_EXEC;
697 	/*
698 	 * ditto if it's not on noexec mount, except that on !MMU we need
699 	 * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case
700 	 */
701 	if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
702 #ifndef CONFIG_MMU
703 		unsigned long caps = 0;
704 		struct address_space *mapping = file->f_mapping;
705 		if (mapping && mapping->backing_dev_info)
706 			caps = mapping->backing_dev_info->capabilities;
707 		if (!(caps & BDI_CAP_EXEC_MAP))
708 			return prot;
709 #endif
710 		return prot | PROT_EXEC;
711 	}
712 	/* anything on noexec mount won't get PROT_EXEC */
713 	return prot;
714 }
715 
716 int security_mmap_file(struct file *file, unsigned long prot,
717 			unsigned long flags)
718 {
719 	int ret;
720 	ret = security_ops->mmap_file(file, prot,
721 					mmap_prot(file, prot), flags);
722 	if (ret)
723 		return ret;
724 	return ima_file_mmap(file, prot);
725 }
726 
727 int security_mmap_addr(unsigned long addr)
728 {
729 	return security_ops->mmap_addr(addr);
730 }
731 
732 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
733 			    unsigned long prot)
734 {
735 	return security_ops->file_mprotect(vma, reqprot, prot);
736 }
737 
738 int security_file_lock(struct file *file, unsigned int cmd)
739 {
740 	return security_ops->file_lock(file, cmd);
741 }
742 
743 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
744 {
745 	return security_ops->file_fcntl(file, cmd, arg);
746 }
747 
748 int security_file_set_fowner(struct file *file)
749 {
750 	return security_ops->file_set_fowner(file);
751 }
752 
753 int security_file_send_sigiotask(struct task_struct *tsk,
754 				  struct fown_struct *fown, int sig)
755 {
756 	return security_ops->file_send_sigiotask(tsk, fown, sig);
757 }
758 
759 int security_file_receive(struct file *file)
760 {
761 	return security_ops->file_receive(file);
762 }
763 
764 int security_file_open(struct file *file, const struct cred *cred)
765 {
766 	int ret;
767 
768 	ret = security_ops->file_open(file, cred);
769 	if (ret)
770 		return ret;
771 
772 	return fsnotify_perm(file, MAY_OPEN);
773 }
774 
775 int security_task_create(unsigned long clone_flags)
776 {
777 	return security_ops->task_create(clone_flags);
778 }
779 
780 void security_task_free(struct task_struct *task)
781 {
782 #ifdef CONFIG_SECURITY_YAMA_STACKED
783 	yama_task_free(task);
784 #endif
785 	security_ops->task_free(task);
786 }
787 
788 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
789 {
790 	return security_ops->cred_alloc_blank(cred, gfp);
791 }
792 
793 void security_cred_free(struct cred *cred)
794 {
795 	security_ops->cred_free(cred);
796 }
797 
798 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
799 {
800 	return security_ops->cred_prepare(new, old, gfp);
801 }
802 
803 void security_transfer_creds(struct cred *new, const struct cred *old)
804 {
805 	security_ops->cred_transfer(new, old);
806 }
807 
808 int security_kernel_act_as(struct cred *new, u32 secid)
809 {
810 	return security_ops->kernel_act_as(new, secid);
811 }
812 
813 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
814 {
815 	return security_ops->kernel_create_files_as(new, inode);
816 }
817 
818 int security_kernel_module_request(char *kmod_name)
819 {
820 	return security_ops->kernel_module_request(kmod_name);
821 }
822 
823 int security_kernel_module_from_file(struct file *file)
824 {
825 	int ret;
826 
827 	ret = security_ops->kernel_module_from_file(file);
828 	if (ret)
829 		return ret;
830 	return ima_module_check(file);
831 }
832 
833 int security_task_fix_setuid(struct cred *new, const struct cred *old,
834 			     int flags)
835 {
836 	return security_ops->task_fix_setuid(new, old, flags);
837 }
838 
839 int security_task_setpgid(struct task_struct *p, pid_t pgid)
840 {
841 	return security_ops->task_setpgid(p, pgid);
842 }
843 
844 int security_task_getpgid(struct task_struct *p)
845 {
846 	return security_ops->task_getpgid(p);
847 }
848 
849 int security_task_getsid(struct task_struct *p)
850 {
851 	return security_ops->task_getsid(p);
852 }
853 
854 void security_task_getsecid(struct task_struct *p, u32 *secid)
855 {
856 	security_ops->task_getsecid(p, secid);
857 }
858 EXPORT_SYMBOL(security_task_getsecid);
859 
860 int security_task_setnice(struct task_struct *p, int nice)
861 {
862 	return security_ops->task_setnice(p, nice);
863 }
864 
865 int security_task_setioprio(struct task_struct *p, int ioprio)
866 {
867 	return security_ops->task_setioprio(p, ioprio);
868 }
869 
870 int security_task_getioprio(struct task_struct *p)
871 {
872 	return security_ops->task_getioprio(p);
873 }
874 
875 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
876 		struct rlimit *new_rlim)
877 {
878 	return security_ops->task_setrlimit(p, resource, new_rlim);
879 }
880 
881 int security_task_setscheduler(struct task_struct *p)
882 {
883 	return security_ops->task_setscheduler(p);
884 }
885 
886 int security_task_getscheduler(struct task_struct *p)
887 {
888 	return security_ops->task_getscheduler(p);
889 }
890 
891 int security_task_movememory(struct task_struct *p)
892 {
893 	return security_ops->task_movememory(p);
894 }
895 
896 int security_task_kill(struct task_struct *p, struct siginfo *info,
897 			int sig, u32 secid)
898 {
899 	return security_ops->task_kill(p, info, sig, secid);
900 }
901 
902 int security_task_wait(struct task_struct *p)
903 {
904 	return security_ops->task_wait(p);
905 }
906 
907 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
908 			 unsigned long arg4, unsigned long arg5)
909 {
910 #ifdef CONFIG_SECURITY_YAMA_STACKED
911 	int rc;
912 	rc = yama_task_prctl(option, arg2, arg3, arg4, arg5);
913 	if (rc != -ENOSYS)
914 		return rc;
915 #endif
916 	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
917 }
918 
919 void security_task_to_inode(struct task_struct *p, struct inode *inode)
920 {
921 	security_ops->task_to_inode(p, inode);
922 }
923 
924 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
925 {
926 	return security_ops->ipc_permission(ipcp, flag);
927 }
928 
929 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
930 {
931 	security_ops->ipc_getsecid(ipcp, secid);
932 }
933 
934 int security_msg_msg_alloc(struct msg_msg *msg)
935 {
936 	return security_ops->msg_msg_alloc_security(msg);
937 }
938 
939 void security_msg_msg_free(struct msg_msg *msg)
940 {
941 	security_ops->msg_msg_free_security(msg);
942 }
943 
944 int security_msg_queue_alloc(struct msg_queue *msq)
945 {
946 	return security_ops->msg_queue_alloc_security(msq);
947 }
948 
949 void security_msg_queue_free(struct msg_queue *msq)
950 {
951 	security_ops->msg_queue_free_security(msq);
952 }
953 
954 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
955 {
956 	return security_ops->msg_queue_associate(msq, msqflg);
957 }
958 
959 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
960 {
961 	return security_ops->msg_queue_msgctl(msq, cmd);
962 }
963 
964 int security_msg_queue_msgsnd(struct msg_queue *msq,
965 			       struct msg_msg *msg, int msqflg)
966 {
967 	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
968 }
969 
970 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
971 			       struct task_struct *target, long type, int mode)
972 {
973 	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
974 }
975 
976 int security_shm_alloc(struct shmid_kernel *shp)
977 {
978 	return security_ops->shm_alloc_security(shp);
979 }
980 
981 void security_shm_free(struct shmid_kernel *shp)
982 {
983 	security_ops->shm_free_security(shp);
984 }
985 
986 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
987 {
988 	return security_ops->shm_associate(shp, shmflg);
989 }
990 
991 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
992 {
993 	return security_ops->shm_shmctl(shp, cmd);
994 }
995 
996 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
997 {
998 	return security_ops->shm_shmat(shp, shmaddr, shmflg);
999 }
1000 
1001 int security_sem_alloc(struct sem_array *sma)
1002 {
1003 	return security_ops->sem_alloc_security(sma);
1004 }
1005 
1006 void security_sem_free(struct sem_array *sma)
1007 {
1008 	security_ops->sem_free_security(sma);
1009 }
1010 
1011 int security_sem_associate(struct sem_array *sma, int semflg)
1012 {
1013 	return security_ops->sem_associate(sma, semflg);
1014 }
1015 
1016 int security_sem_semctl(struct sem_array *sma, int cmd)
1017 {
1018 	return security_ops->sem_semctl(sma, cmd);
1019 }
1020 
1021 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
1022 			unsigned nsops, int alter)
1023 {
1024 	return security_ops->sem_semop(sma, sops, nsops, alter);
1025 }
1026 
1027 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1028 {
1029 	if (unlikely(inode && IS_PRIVATE(inode)))
1030 		return;
1031 	security_ops->d_instantiate(dentry, inode);
1032 }
1033 EXPORT_SYMBOL(security_d_instantiate);
1034 
1035 int security_getprocattr(struct task_struct *p, char *name, char **value)
1036 {
1037 	return security_ops->getprocattr(p, name, value);
1038 }
1039 
1040 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
1041 {
1042 	return security_ops->setprocattr(p, name, value, size);
1043 }
1044 
1045 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1046 {
1047 	return security_ops->netlink_send(sk, skb);
1048 }
1049 
1050 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1051 {
1052 	return security_ops->secid_to_secctx(secid, secdata, seclen);
1053 }
1054 EXPORT_SYMBOL(security_secid_to_secctx);
1055 
1056 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1057 {
1058 	return security_ops->secctx_to_secid(secdata, seclen, secid);
1059 }
1060 EXPORT_SYMBOL(security_secctx_to_secid);
1061 
1062 void security_release_secctx(char *secdata, u32 seclen)
1063 {
1064 	security_ops->release_secctx(secdata, seclen);
1065 }
1066 EXPORT_SYMBOL(security_release_secctx);
1067 
1068 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1069 {
1070 	return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1071 }
1072 EXPORT_SYMBOL(security_inode_notifysecctx);
1073 
1074 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1075 {
1076 	return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1077 }
1078 EXPORT_SYMBOL(security_inode_setsecctx);
1079 
1080 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1081 {
1082 	return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1083 }
1084 EXPORT_SYMBOL(security_inode_getsecctx);
1085 
1086 #ifdef CONFIG_SECURITY_NETWORK
1087 
1088 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1089 {
1090 	return security_ops->unix_stream_connect(sock, other, newsk);
1091 }
1092 EXPORT_SYMBOL(security_unix_stream_connect);
1093 
1094 int security_unix_may_send(struct socket *sock,  struct socket *other)
1095 {
1096 	return security_ops->unix_may_send(sock, other);
1097 }
1098 EXPORT_SYMBOL(security_unix_may_send);
1099 
1100 int security_socket_create(int family, int type, int protocol, int kern)
1101 {
1102 	return security_ops->socket_create(family, type, protocol, kern);
1103 }
1104 
1105 int security_socket_post_create(struct socket *sock, int family,
1106 				int type, int protocol, int kern)
1107 {
1108 	return security_ops->socket_post_create(sock, family, type,
1109 						protocol, kern);
1110 }
1111 
1112 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1113 {
1114 	return security_ops->socket_bind(sock, address, addrlen);
1115 }
1116 
1117 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1118 {
1119 	return security_ops->socket_connect(sock, address, addrlen);
1120 }
1121 
1122 int security_socket_listen(struct socket *sock, int backlog)
1123 {
1124 	return security_ops->socket_listen(sock, backlog);
1125 }
1126 
1127 int security_socket_accept(struct socket *sock, struct socket *newsock)
1128 {
1129 	return security_ops->socket_accept(sock, newsock);
1130 }
1131 
1132 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1133 {
1134 	return security_ops->socket_sendmsg(sock, msg, size);
1135 }
1136 
1137 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1138 			    int size, int flags)
1139 {
1140 	return security_ops->socket_recvmsg(sock, msg, size, flags);
1141 }
1142 
1143 int security_socket_getsockname(struct socket *sock)
1144 {
1145 	return security_ops->socket_getsockname(sock);
1146 }
1147 
1148 int security_socket_getpeername(struct socket *sock)
1149 {
1150 	return security_ops->socket_getpeername(sock);
1151 }
1152 
1153 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1154 {
1155 	return security_ops->socket_getsockopt(sock, level, optname);
1156 }
1157 
1158 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1159 {
1160 	return security_ops->socket_setsockopt(sock, level, optname);
1161 }
1162 
1163 int security_socket_shutdown(struct socket *sock, int how)
1164 {
1165 	return security_ops->socket_shutdown(sock, how);
1166 }
1167 
1168 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1169 {
1170 	return security_ops->socket_sock_rcv_skb(sk, skb);
1171 }
1172 EXPORT_SYMBOL(security_sock_rcv_skb);
1173 
1174 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1175 				      int __user *optlen, unsigned len)
1176 {
1177 	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1178 }
1179 
1180 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1181 {
1182 	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1183 }
1184 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1185 
1186 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1187 {
1188 	return security_ops->sk_alloc_security(sk, family, priority);
1189 }
1190 
1191 void security_sk_free(struct sock *sk)
1192 {
1193 	security_ops->sk_free_security(sk);
1194 }
1195 
1196 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1197 {
1198 	security_ops->sk_clone_security(sk, newsk);
1199 }
1200 EXPORT_SYMBOL(security_sk_clone);
1201 
1202 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1203 {
1204 	security_ops->sk_getsecid(sk, &fl->flowi_secid);
1205 }
1206 EXPORT_SYMBOL(security_sk_classify_flow);
1207 
1208 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1209 {
1210 	security_ops->req_classify_flow(req, fl);
1211 }
1212 EXPORT_SYMBOL(security_req_classify_flow);
1213 
1214 void security_sock_graft(struct sock *sk, struct socket *parent)
1215 {
1216 	security_ops->sock_graft(sk, parent);
1217 }
1218 EXPORT_SYMBOL(security_sock_graft);
1219 
1220 int security_inet_conn_request(struct sock *sk,
1221 			struct sk_buff *skb, struct request_sock *req)
1222 {
1223 	return security_ops->inet_conn_request(sk, skb, req);
1224 }
1225 EXPORT_SYMBOL(security_inet_conn_request);
1226 
1227 void security_inet_csk_clone(struct sock *newsk,
1228 			const struct request_sock *req)
1229 {
1230 	security_ops->inet_csk_clone(newsk, req);
1231 }
1232 
1233 void security_inet_conn_established(struct sock *sk,
1234 			struct sk_buff *skb)
1235 {
1236 	security_ops->inet_conn_established(sk, skb);
1237 }
1238 
1239 int security_secmark_relabel_packet(u32 secid)
1240 {
1241 	return security_ops->secmark_relabel_packet(secid);
1242 }
1243 EXPORT_SYMBOL(security_secmark_relabel_packet);
1244 
1245 void security_secmark_refcount_inc(void)
1246 {
1247 	security_ops->secmark_refcount_inc();
1248 }
1249 EXPORT_SYMBOL(security_secmark_refcount_inc);
1250 
1251 void security_secmark_refcount_dec(void)
1252 {
1253 	security_ops->secmark_refcount_dec();
1254 }
1255 EXPORT_SYMBOL(security_secmark_refcount_dec);
1256 
1257 int security_tun_dev_alloc_security(void **security)
1258 {
1259 	return security_ops->tun_dev_alloc_security(security);
1260 }
1261 EXPORT_SYMBOL(security_tun_dev_alloc_security);
1262 
1263 void security_tun_dev_free_security(void *security)
1264 {
1265 	security_ops->tun_dev_free_security(security);
1266 }
1267 EXPORT_SYMBOL(security_tun_dev_free_security);
1268 
1269 int security_tun_dev_create(void)
1270 {
1271 	return security_ops->tun_dev_create();
1272 }
1273 EXPORT_SYMBOL(security_tun_dev_create);
1274 
1275 int security_tun_dev_attach_queue(void *security)
1276 {
1277 	return security_ops->tun_dev_attach_queue(security);
1278 }
1279 EXPORT_SYMBOL(security_tun_dev_attach_queue);
1280 
1281 int security_tun_dev_attach(struct sock *sk, void *security)
1282 {
1283 	return security_ops->tun_dev_attach(sk, security);
1284 }
1285 EXPORT_SYMBOL(security_tun_dev_attach);
1286 
1287 int security_tun_dev_open(void *security)
1288 {
1289 	return security_ops->tun_dev_open(security);
1290 }
1291 EXPORT_SYMBOL(security_tun_dev_open);
1292 
1293 void security_skb_owned_by(struct sk_buff *skb, struct sock *sk)
1294 {
1295 	security_ops->skb_owned_by(skb, sk);
1296 }
1297 
1298 #endif	/* CONFIG_SECURITY_NETWORK */
1299 
1300 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1301 
1302 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1303 {
1304 	return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1305 }
1306 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1307 
1308 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1309 			      struct xfrm_sec_ctx **new_ctxp)
1310 {
1311 	return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1312 }
1313 
1314 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1315 {
1316 	security_ops->xfrm_policy_free_security(ctx);
1317 }
1318 EXPORT_SYMBOL(security_xfrm_policy_free);
1319 
1320 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1321 {
1322 	return security_ops->xfrm_policy_delete_security(ctx);
1323 }
1324 
1325 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1326 {
1327 	return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1328 }
1329 EXPORT_SYMBOL(security_xfrm_state_alloc);
1330 
1331 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1332 				      struct xfrm_sec_ctx *polsec, u32 secid)
1333 {
1334 	if (!polsec)
1335 		return 0;
1336 	/*
1337 	 * We want the context to be taken from secid which is usually
1338 	 * from the sock.
1339 	 */
1340 	return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1341 }
1342 
1343 int security_xfrm_state_delete(struct xfrm_state *x)
1344 {
1345 	return security_ops->xfrm_state_delete_security(x);
1346 }
1347 EXPORT_SYMBOL(security_xfrm_state_delete);
1348 
1349 void security_xfrm_state_free(struct xfrm_state *x)
1350 {
1351 	security_ops->xfrm_state_free_security(x);
1352 }
1353 
1354 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1355 {
1356 	return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1357 }
1358 
1359 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1360 				       struct xfrm_policy *xp,
1361 				       const struct flowi *fl)
1362 {
1363 	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1364 }
1365 
1366 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1367 {
1368 	return security_ops->xfrm_decode_session(skb, secid, 1);
1369 }
1370 
1371 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1372 {
1373 	int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1374 
1375 	BUG_ON(rc);
1376 }
1377 EXPORT_SYMBOL(security_skb_classify_flow);
1378 
1379 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1380 
1381 #ifdef CONFIG_KEYS
1382 
1383 int security_key_alloc(struct key *key, const struct cred *cred,
1384 		       unsigned long flags)
1385 {
1386 	return security_ops->key_alloc(key, cred, flags);
1387 }
1388 
1389 void security_key_free(struct key *key)
1390 {
1391 	security_ops->key_free(key);
1392 }
1393 
1394 int security_key_permission(key_ref_t key_ref,
1395 			    const struct cred *cred, key_perm_t perm)
1396 {
1397 	return security_ops->key_permission(key_ref, cred, perm);
1398 }
1399 
1400 int security_key_getsecurity(struct key *key, char **_buffer)
1401 {
1402 	return security_ops->key_getsecurity(key, _buffer);
1403 }
1404 
1405 #endif	/* CONFIG_KEYS */
1406 
1407 #ifdef CONFIG_AUDIT
1408 
1409 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1410 {
1411 	return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1412 }
1413 
1414 int security_audit_rule_known(struct audit_krule *krule)
1415 {
1416 	return security_ops->audit_rule_known(krule);
1417 }
1418 
1419 void security_audit_rule_free(void *lsmrule)
1420 {
1421 	security_ops->audit_rule_free(lsmrule);
1422 }
1423 
1424 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1425 			      struct audit_context *actx)
1426 {
1427 	return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1428 }
1429 
1430 #endif /* CONFIG_AUDIT */
1431