1 /* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/capability.h> 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/kernel.h> 18 #include <linux/security.h> 19 20 /* Boot-time LSM user choice */ 21 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1]; 22 23 /* things that live in capability.c */ 24 extern struct security_operations default_security_ops; 25 extern void security_fixup_ops(struct security_operations *ops); 26 27 struct security_operations *security_ops; /* Initialized to NULL */ 28 29 /* amount of vm to protect from userspace access */ 30 unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR; 31 32 static inline int verify(struct security_operations *ops) 33 { 34 /* verify the security_operations structure exists */ 35 if (!ops) 36 return -EINVAL; 37 security_fixup_ops(ops); 38 return 0; 39 } 40 41 static void __init do_security_initcalls(void) 42 { 43 initcall_t *call; 44 call = __security_initcall_start; 45 while (call < __security_initcall_end) { 46 (*call) (); 47 call++; 48 } 49 } 50 51 /** 52 * security_init - initializes the security framework 53 * 54 * This should be called early in the kernel initialization sequence. 55 */ 56 int __init security_init(void) 57 { 58 printk(KERN_INFO "Security Framework initialized\n"); 59 60 security_fixup_ops(&default_security_ops); 61 security_ops = &default_security_ops; 62 do_security_initcalls(); 63 64 return 0; 65 } 66 67 /* Save user chosen LSM */ 68 static int __init choose_lsm(char *str) 69 { 70 strncpy(chosen_lsm, str, SECURITY_NAME_MAX); 71 return 1; 72 } 73 __setup("security=", choose_lsm); 74 75 /** 76 * security_module_enable - Load given security module on boot ? 77 * @ops: a pointer to the struct security_operations that is to be checked. 78 * 79 * Each LSM must pass this method before registering its own operations 80 * to avoid security registration races. This method may also be used 81 * to check if your LSM is currently loaded during kernel initialization. 82 * 83 * Return true if: 84 * -The passed LSM is the one chosen by user at boot time, 85 * -or user didn't specify a specific LSM and we're the first to ask 86 * for registration permission, 87 * -or the passed LSM is currently loaded. 88 * Otherwise, return false. 89 */ 90 int __init security_module_enable(struct security_operations *ops) 91 { 92 if (!*chosen_lsm) 93 strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX); 94 else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX)) 95 return 0; 96 97 return 1; 98 } 99 100 /** 101 * register_security - registers a security framework with the kernel 102 * @ops: a pointer to the struct security_options that is to be registered 103 * 104 * This function allows a security module to register itself with the 105 * kernel security subsystem. Some rudimentary checking is done on the @ops 106 * value passed to this function. You'll need to check first if your LSM 107 * is allowed to register its @ops by calling security_module_enable(@ops). 108 * 109 * If there is already a security module registered with the kernel, 110 * an error will be returned. Otherwise %0 is returned on success. 111 */ 112 int register_security(struct security_operations *ops) 113 { 114 if (verify(ops)) { 115 printk(KERN_DEBUG "%s could not verify " 116 "security_operations structure.\n", __func__); 117 return -EINVAL; 118 } 119 120 if (security_ops != &default_security_ops) 121 return -EAGAIN; 122 123 security_ops = ops; 124 125 return 0; 126 } 127 128 /* Security operations */ 129 130 int security_ptrace_may_access(struct task_struct *child, unsigned int mode) 131 { 132 return security_ops->ptrace_may_access(child, mode); 133 } 134 135 int security_ptrace_traceme(struct task_struct *parent) 136 { 137 return security_ops->ptrace_traceme(parent); 138 } 139 140 int security_capget(struct task_struct *target, 141 kernel_cap_t *effective, 142 kernel_cap_t *inheritable, 143 kernel_cap_t *permitted) 144 { 145 return security_ops->capget(target, effective, inheritable, permitted); 146 } 147 148 int security_capset_check(kernel_cap_t *effective, 149 kernel_cap_t *inheritable, 150 kernel_cap_t *permitted) 151 { 152 return security_ops->capset_check(effective, inheritable, permitted); 153 } 154 155 void security_capset_set(kernel_cap_t *effective, 156 kernel_cap_t *inheritable, 157 kernel_cap_t *permitted) 158 { 159 security_ops->capset_set(effective, inheritable, permitted); 160 } 161 162 int security_capable(struct task_struct *tsk, int cap) 163 { 164 return security_ops->capable(tsk, cap, SECURITY_CAP_AUDIT); 165 } 166 167 int security_capable_noaudit(struct task_struct *tsk, int cap) 168 { 169 return security_ops->capable(tsk, cap, SECURITY_CAP_NOAUDIT); 170 } 171 172 int security_acct(struct file *file) 173 { 174 return security_ops->acct(file); 175 } 176 177 int security_sysctl(struct ctl_table *table, int op) 178 { 179 return security_ops->sysctl(table, op); 180 } 181 182 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 183 { 184 return security_ops->quotactl(cmds, type, id, sb); 185 } 186 187 int security_quota_on(struct dentry *dentry) 188 { 189 return security_ops->quota_on(dentry); 190 } 191 192 int security_syslog(int type) 193 { 194 return security_ops->syslog(type); 195 } 196 197 int security_settime(struct timespec *ts, struct timezone *tz) 198 { 199 return security_ops->settime(ts, tz); 200 } 201 202 int security_vm_enough_memory(long pages) 203 { 204 WARN_ON(current->mm == NULL); 205 return security_ops->vm_enough_memory(current->mm, pages); 206 } 207 208 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 209 { 210 WARN_ON(mm == NULL); 211 return security_ops->vm_enough_memory(mm, pages); 212 } 213 214 int security_vm_enough_memory_kern(long pages) 215 { 216 /* If current->mm is a kernel thread then we will pass NULL, 217 for this specific case that is fine */ 218 return security_ops->vm_enough_memory(current->mm, pages); 219 } 220 221 int security_bprm_alloc(struct linux_binprm *bprm) 222 { 223 return security_ops->bprm_alloc_security(bprm); 224 } 225 226 void security_bprm_free(struct linux_binprm *bprm) 227 { 228 security_ops->bprm_free_security(bprm); 229 } 230 231 void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe) 232 { 233 security_ops->bprm_apply_creds(bprm, unsafe); 234 } 235 236 void security_bprm_post_apply_creds(struct linux_binprm *bprm) 237 { 238 security_ops->bprm_post_apply_creds(bprm); 239 } 240 241 int security_bprm_set(struct linux_binprm *bprm) 242 { 243 return security_ops->bprm_set_security(bprm); 244 } 245 246 int security_bprm_check(struct linux_binprm *bprm) 247 { 248 return security_ops->bprm_check_security(bprm); 249 } 250 251 int security_bprm_secureexec(struct linux_binprm *bprm) 252 { 253 return security_ops->bprm_secureexec(bprm); 254 } 255 256 int security_sb_alloc(struct super_block *sb) 257 { 258 return security_ops->sb_alloc_security(sb); 259 } 260 261 void security_sb_free(struct super_block *sb) 262 { 263 security_ops->sb_free_security(sb); 264 } 265 266 int security_sb_copy_data(char *orig, char *copy) 267 { 268 return security_ops->sb_copy_data(orig, copy); 269 } 270 EXPORT_SYMBOL(security_sb_copy_data); 271 272 int security_sb_kern_mount(struct super_block *sb, void *data) 273 { 274 return security_ops->sb_kern_mount(sb, data); 275 } 276 277 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 278 { 279 return security_ops->sb_show_options(m, sb); 280 } 281 282 int security_sb_statfs(struct dentry *dentry) 283 { 284 return security_ops->sb_statfs(dentry); 285 } 286 287 int security_sb_mount(char *dev_name, struct path *path, 288 char *type, unsigned long flags, void *data) 289 { 290 return security_ops->sb_mount(dev_name, path, type, flags, data); 291 } 292 293 int security_sb_check_sb(struct vfsmount *mnt, struct path *path) 294 { 295 return security_ops->sb_check_sb(mnt, path); 296 } 297 298 int security_sb_umount(struct vfsmount *mnt, int flags) 299 { 300 return security_ops->sb_umount(mnt, flags); 301 } 302 303 void security_sb_umount_close(struct vfsmount *mnt) 304 { 305 security_ops->sb_umount_close(mnt); 306 } 307 308 void security_sb_umount_busy(struct vfsmount *mnt) 309 { 310 security_ops->sb_umount_busy(mnt); 311 } 312 313 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data) 314 { 315 security_ops->sb_post_remount(mnt, flags, data); 316 } 317 318 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint) 319 { 320 security_ops->sb_post_addmount(mnt, mountpoint); 321 } 322 323 int security_sb_pivotroot(struct path *old_path, struct path *new_path) 324 { 325 return security_ops->sb_pivotroot(old_path, new_path); 326 } 327 328 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path) 329 { 330 security_ops->sb_post_pivotroot(old_path, new_path); 331 } 332 333 int security_sb_set_mnt_opts(struct super_block *sb, 334 struct security_mnt_opts *opts) 335 { 336 return security_ops->sb_set_mnt_opts(sb, opts); 337 } 338 EXPORT_SYMBOL(security_sb_set_mnt_opts); 339 340 void security_sb_clone_mnt_opts(const struct super_block *oldsb, 341 struct super_block *newsb) 342 { 343 security_ops->sb_clone_mnt_opts(oldsb, newsb); 344 } 345 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 346 347 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) 348 { 349 return security_ops->sb_parse_opts_str(options, opts); 350 } 351 EXPORT_SYMBOL(security_sb_parse_opts_str); 352 353 int security_inode_alloc(struct inode *inode) 354 { 355 inode->i_security = NULL; 356 return security_ops->inode_alloc_security(inode); 357 } 358 359 void security_inode_free(struct inode *inode) 360 { 361 security_ops->inode_free_security(inode); 362 } 363 364 int security_inode_init_security(struct inode *inode, struct inode *dir, 365 char **name, void **value, size_t *len) 366 { 367 if (unlikely(IS_PRIVATE(inode))) 368 return -EOPNOTSUPP; 369 return security_ops->inode_init_security(inode, dir, name, value, len); 370 } 371 EXPORT_SYMBOL(security_inode_init_security); 372 373 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode) 374 { 375 if (unlikely(IS_PRIVATE(dir))) 376 return 0; 377 return security_ops->inode_create(dir, dentry, mode); 378 } 379 380 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 381 struct dentry *new_dentry) 382 { 383 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 384 return 0; 385 return security_ops->inode_link(old_dentry, dir, new_dentry); 386 } 387 388 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 389 { 390 if (unlikely(IS_PRIVATE(dentry->d_inode))) 391 return 0; 392 return security_ops->inode_unlink(dir, dentry); 393 } 394 395 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 396 const char *old_name) 397 { 398 if (unlikely(IS_PRIVATE(dir))) 399 return 0; 400 return security_ops->inode_symlink(dir, dentry, old_name); 401 } 402 403 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode) 404 { 405 if (unlikely(IS_PRIVATE(dir))) 406 return 0; 407 return security_ops->inode_mkdir(dir, dentry, mode); 408 } 409 410 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 411 { 412 if (unlikely(IS_PRIVATE(dentry->d_inode))) 413 return 0; 414 return security_ops->inode_rmdir(dir, dentry); 415 } 416 417 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 418 { 419 if (unlikely(IS_PRIVATE(dir))) 420 return 0; 421 return security_ops->inode_mknod(dir, dentry, mode, dev); 422 } 423 424 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 425 struct inode *new_dir, struct dentry *new_dentry) 426 { 427 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 428 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 429 return 0; 430 return security_ops->inode_rename(old_dir, old_dentry, 431 new_dir, new_dentry); 432 } 433 434 int security_inode_readlink(struct dentry *dentry) 435 { 436 if (unlikely(IS_PRIVATE(dentry->d_inode))) 437 return 0; 438 return security_ops->inode_readlink(dentry); 439 } 440 441 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd) 442 { 443 if (unlikely(IS_PRIVATE(dentry->d_inode))) 444 return 0; 445 return security_ops->inode_follow_link(dentry, nd); 446 } 447 448 int security_inode_permission(struct inode *inode, int mask) 449 { 450 if (unlikely(IS_PRIVATE(inode))) 451 return 0; 452 return security_ops->inode_permission(inode, mask); 453 } 454 455 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 456 { 457 if (unlikely(IS_PRIVATE(dentry->d_inode))) 458 return 0; 459 return security_ops->inode_setattr(dentry, attr); 460 } 461 EXPORT_SYMBOL_GPL(security_inode_setattr); 462 463 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 464 { 465 if (unlikely(IS_PRIVATE(dentry->d_inode))) 466 return 0; 467 return security_ops->inode_getattr(mnt, dentry); 468 } 469 470 void security_inode_delete(struct inode *inode) 471 { 472 if (unlikely(IS_PRIVATE(inode))) 473 return; 474 security_ops->inode_delete(inode); 475 } 476 477 int security_inode_setxattr(struct dentry *dentry, const char *name, 478 const void *value, size_t size, int flags) 479 { 480 if (unlikely(IS_PRIVATE(dentry->d_inode))) 481 return 0; 482 return security_ops->inode_setxattr(dentry, name, value, size, flags); 483 } 484 485 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 486 const void *value, size_t size, int flags) 487 { 488 if (unlikely(IS_PRIVATE(dentry->d_inode))) 489 return; 490 security_ops->inode_post_setxattr(dentry, name, value, size, flags); 491 } 492 493 int security_inode_getxattr(struct dentry *dentry, const char *name) 494 { 495 if (unlikely(IS_PRIVATE(dentry->d_inode))) 496 return 0; 497 return security_ops->inode_getxattr(dentry, name); 498 } 499 500 int security_inode_listxattr(struct dentry *dentry) 501 { 502 if (unlikely(IS_PRIVATE(dentry->d_inode))) 503 return 0; 504 return security_ops->inode_listxattr(dentry); 505 } 506 507 int security_inode_removexattr(struct dentry *dentry, const char *name) 508 { 509 if (unlikely(IS_PRIVATE(dentry->d_inode))) 510 return 0; 511 return security_ops->inode_removexattr(dentry, name); 512 } 513 514 int security_inode_need_killpriv(struct dentry *dentry) 515 { 516 return security_ops->inode_need_killpriv(dentry); 517 } 518 519 int security_inode_killpriv(struct dentry *dentry) 520 { 521 return security_ops->inode_killpriv(dentry); 522 } 523 524 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 525 { 526 if (unlikely(IS_PRIVATE(inode))) 527 return 0; 528 return security_ops->inode_getsecurity(inode, name, buffer, alloc); 529 } 530 531 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 532 { 533 if (unlikely(IS_PRIVATE(inode))) 534 return 0; 535 return security_ops->inode_setsecurity(inode, name, value, size, flags); 536 } 537 538 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 539 { 540 if (unlikely(IS_PRIVATE(inode))) 541 return 0; 542 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 543 } 544 545 void security_inode_getsecid(const struct inode *inode, u32 *secid) 546 { 547 security_ops->inode_getsecid(inode, secid); 548 } 549 550 int security_file_permission(struct file *file, int mask) 551 { 552 return security_ops->file_permission(file, mask); 553 } 554 555 int security_file_alloc(struct file *file) 556 { 557 return security_ops->file_alloc_security(file); 558 } 559 560 void security_file_free(struct file *file) 561 { 562 security_ops->file_free_security(file); 563 } 564 565 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 566 { 567 return security_ops->file_ioctl(file, cmd, arg); 568 } 569 570 int security_file_mmap(struct file *file, unsigned long reqprot, 571 unsigned long prot, unsigned long flags, 572 unsigned long addr, unsigned long addr_only) 573 { 574 return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only); 575 } 576 577 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 578 unsigned long prot) 579 { 580 return security_ops->file_mprotect(vma, reqprot, prot); 581 } 582 583 int security_file_lock(struct file *file, unsigned int cmd) 584 { 585 return security_ops->file_lock(file, cmd); 586 } 587 588 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 589 { 590 return security_ops->file_fcntl(file, cmd, arg); 591 } 592 593 int security_file_set_fowner(struct file *file) 594 { 595 return security_ops->file_set_fowner(file); 596 } 597 598 int security_file_send_sigiotask(struct task_struct *tsk, 599 struct fown_struct *fown, int sig) 600 { 601 return security_ops->file_send_sigiotask(tsk, fown, sig); 602 } 603 604 int security_file_receive(struct file *file) 605 { 606 return security_ops->file_receive(file); 607 } 608 609 int security_dentry_open(struct file *file) 610 { 611 return security_ops->dentry_open(file); 612 } 613 614 int security_task_create(unsigned long clone_flags) 615 { 616 return security_ops->task_create(clone_flags); 617 } 618 619 int security_task_alloc(struct task_struct *p) 620 { 621 return security_ops->task_alloc_security(p); 622 } 623 624 void security_task_free(struct task_struct *p) 625 { 626 security_ops->task_free_security(p); 627 } 628 629 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags) 630 { 631 return security_ops->task_setuid(id0, id1, id2, flags); 632 } 633 634 int security_task_post_setuid(uid_t old_ruid, uid_t old_euid, 635 uid_t old_suid, int flags) 636 { 637 return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags); 638 } 639 640 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags) 641 { 642 return security_ops->task_setgid(id0, id1, id2, flags); 643 } 644 645 int security_task_setpgid(struct task_struct *p, pid_t pgid) 646 { 647 return security_ops->task_setpgid(p, pgid); 648 } 649 650 int security_task_getpgid(struct task_struct *p) 651 { 652 return security_ops->task_getpgid(p); 653 } 654 655 int security_task_getsid(struct task_struct *p) 656 { 657 return security_ops->task_getsid(p); 658 } 659 660 void security_task_getsecid(struct task_struct *p, u32 *secid) 661 { 662 security_ops->task_getsecid(p, secid); 663 } 664 EXPORT_SYMBOL(security_task_getsecid); 665 666 int security_task_setgroups(struct group_info *group_info) 667 { 668 return security_ops->task_setgroups(group_info); 669 } 670 671 int security_task_setnice(struct task_struct *p, int nice) 672 { 673 return security_ops->task_setnice(p, nice); 674 } 675 676 int security_task_setioprio(struct task_struct *p, int ioprio) 677 { 678 return security_ops->task_setioprio(p, ioprio); 679 } 680 681 int security_task_getioprio(struct task_struct *p) 682 { 683 return security_ops->task_getioprio(p); 684 } 685 686 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim) 687 { 688 return security_ops->task_setrlimit(resource, new_rlim); 689 } 690 691 int security_task_setscheduler(struct task_struct *p, 692 int policy, struct sched_param *lp) 693 { 694 return security_ops->task_setscheduler(p, policy, lp); 695 } 696 697 int security_task_getscheduler(struct task_struct *p) 698 { 699 return security_ops->task_getscheduler(p); 700 } 701 702 int security_task_movememory(struct task_struct *p) 703 { 704 return security_ops->task_movememory(p); 705 } 706 707 int security_task_kill(struct task_struct *p, struct siginfo *info, 708 int sig, u32 secid) 709 { 710 return security_ops->task_kill(p, info, sig, secid); 711 } 712 713 int security_task_wait(struct task_struct *p) 714 { 715 return security_ops->task_wait(p); 716 } 717 718 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 719 unsigned long arg4, unsigned long arg5, long *rc_p) 720 { 721 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p); 722 } 723 724 void security_task_reparent_to_init(struct task_struct *p) 725 { 726 security_ops->task_reparent_to_init(p); 727 } 728 729 void security_task_to_inode(struct task_struct *p, struct inode *inode) 730 { 731 security_ops->task_to_inode(p, inode); 732 } 733 734 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 735 { 736 return security_ops->ipc_permission(ipcp, flag); 737 } 738 739 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 740 { 741 security_ops->ipc_getsecid(ipcp, secid); 742 } 743 744 int security_msg_msg_alloc(struct msg_msg *msg) 745 { 746 return security_ops->msg_msg_alloc_security(msg); 747 } 748 749 void security_msg_msg_free(struct msg_msg *msg) 750 { 751 security_ops->msg_msg_free_security(msg); 752 } 753 754 int security_msg_queue_alloc(struct msg_queue *msq) 755 { 756 return security_ops->msg_queue_alloc_security(msq); 757 } 758 759 void security_msg_queue_free(struct msg_queue *msq) 760 { 761 security_ops->msg_queue_free_security(msq); 762 } 763 764 int security_msg_queue_associate(struct msg_queue *msq, int msqflg) 765 { 766 return security_ops->msg_queue_associate(msq, msqflg); 767 } 768 769 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) 770 { 771 return security_ops->msg_queue_msgctl(msq, cmd); 772 } 773 774 int security_msg_queue_msgsnd(struct msg_queue *msq, 775 struct msg_msg *msg, int msqflg) 776 { 777 return security_ops->msg_queue_msgsnd(msq, msg, msqflg); 778 } 779 780 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 781 struct task_struct *target, long type, int mode) 782 { 783 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode); 784 } 785 786 int security_shm_alloc(struct shmid_kernel *shp) 787 { 788 return security_ops->shm_alloc_security(shp); 789 } 790 791 void security_shm_free(struct shmid_kernel *shp) 792 { 793 security_ops->shm_free_security(shp); 794 } 795 796 int security_shm_associate(struct shmid_kernel *shp, int shmflg) 797 { 798 return security_ops->shm_associate(shp, shmflg); 799 } 800 801 int security_shm_shmctl(struct shmid_kernel *shp, int cmd) 802 { 803 return security_ops->shm_shmctl(shp, cmd); 804 } 805 806 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg) 807 { 808 return security_ops->shm_shmat(shp, shmaddr, shmflg); 809 } 810 811 int security_sem_alloc(struct sem_array *sma) 812 { 813 return security_ops->sem_alloc_security(sma); 814 } 815 816 void security_sem_free(struct sem_array *sma) 817 { 818 security_ops->sem_free_security(sma); 819 } 820 821 int security_sem_associate(struct sem_array *sma, int semflg) 822 { 823 return security_ops->sem_associate(sma, semflg); 824 } 825 826 int security_sem_semctl(struct sem_array *sma, int cmd) 827 { 828 return security_ops->sem_semctl(sma, cmd); 829 } 830 831 int security_sem_semop(struct sem_array *sma, struct sembuf *sops, 832 unsigned nsops, int alter) 833 { 834 return security_ops->sem_semop(sma, sops, nsops, alter); 835 } 836 837 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 838 { 839 if (unlikely(inode && IS_PRIVATE(inode))) 840 return; 841 security_ops->d_instantiate(dentry, inode); 842 } 843 EXPORT_SYMBOL(security_d_instantiate); 844 845 int security_getprocattr(struct task_struct *p, char *name, char **value) 846 { 847 return security_ops->getprocattr(p, name, value); 848 } 849 850 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 851 { 852 return security_ops->setprocattr(p, name, value, size); 853 } 854 855 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 856 { 857 return security_ops->netlink_send(sk, skb); 858 } 859 860 int security_netlink_recv(struct sk_buff *skb, int cap) 861 { 862 return security_ops->netlink_recv(skb, cap); 863 } 864 EXPORT_SYMBOL(security_netlink_recv); 865 866 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 867 { 868 return security_ops->secid_to_secctx(secid, secdata, seclen); 869 } 870 EXPORT_SYMBOL(security_secid_to_secctx); 871 872 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 873 { 874 return security_ops->secctx_to_secid(secdata, seclen, secid); 875 } 876 EXPORT_SYMBOL(security_secctx_to_secid); 877 878 void security_release_secctx(char *secdata, u32 seclen) 879 { 880 security_ops->release_secctx(secdata, seclen); 881 } 882 EXPORT_SYMBOL(security_release_secctx); 883 884 #ifdef CONFIG_SECURITY_NETWORK 885 886 int security_unix_stream_connect(struct socket *sock, struct socket *other, 887 struct sock *newsk) 888 { 889 return security_ops->unix_stream_connect(sock, other, newsk); 890 } 891 EXPORT_SYMBOL(security_unix_stream_connect); 892 893 int security_unix_may_send(struct socket *sock, struct socket *other) 894 { 895 return security_ops->unix_may_send(sock, other); 896 } 897 EXPORT_SYMBOL(security_unix_may_send); 898 899 int security_socket_create(int family, int type, int protocol, int kern) 900 { 901 return security_ops->socket_create(family, type, protocol, kern); 902 } 903 904 int security_socket_post_create(struct socket *sock, int family, 905 int type, int protocol, int kern) 906 { 907 return security_ops->socket_post_create(sock, family, type, 908 protocol, kern); 909 } 910 911 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 912 { 913 return security_ops->socket_bind(sock, address, addrlen); 914 } 915 916 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 917 { 918 return security_ops->socket_connect(sock, address, addrlen); 919 } 920 921 int security_socket_listen(struct socket *sock, int backlog) 922 { 923 return security_ops->socket_listen(sock, backlog); 924 } 925 926 int security_socket_accept(struct socket *sock, struct socket *newsock) 927 { 928 return security_ops->socket_accept(sock, newsock); 929 } 930 931 void security_socket_post_accept(struct socket *sock, struct socket *newsock) 932 { 933 security_ops->socket_post_accept(sock, newsock); 934 } 935 936 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 937 { 938 return security_ops->socket_sendmsg(sock, msg, size); 939 } 940 941 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 942 int size, int flags) 943 { 944 return security_ops->socket_recvmsg(sock, msg, size, flags); 945 } 946 947 int security_socket_getsockname(struct socket *sock) 948 { 949 return security_ops->socket_getsockname(sock); 950 } 951 952 int security_socket_getpeername(struct socket *sock) 953 { 954 return security_ops->socket_getpeername(sock); 955 } 956 957 int security_socket_getsockopt(struct socket *sock, int level, int optname) 958 { 959 return security_ops->socket_getsockopt(sock, level, optname); 960 } 961 962 int security_socket_setsockopt(struct socket *sock, int level, int optname) 963 { 964 return security_ops->socket_setsockopt(sock, level, optname); 965 } 966 967 int security_socket_shutdown(struct socket *sock, int how) 968 { 969 return security_ops->socket_shutdown(sock, how); 970 } 971 972 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 973 { 974 return security_ops->socket_sock_rcv_skb(sk, skb); 975 } 976 EXPORT_SYMBOL(security_sock_rcv_skb); 977 978 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 979 int __user *optlen, unsigned len) 980 { 981 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 982 } 983 984 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 985 { 986 return security_ops->socket_getpeersec_dgram(sock, skb, secid); 987 } 988 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 989 990 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 991 { 992 return security_ops->sk_alloc_security(sk, family, priority); 993 } 994 995 void security_sk_free(struct sock *sk) 996 { 997 security_ops->sk_free_security(sk); 998 } 999 1000 void security_sk_clone(const struct sock *sk, struct sock *newsk) 1001 { 1002 security_ops->sk_clone_security(sk, newsk); 1003 } 1004 1005 void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 1006 { 1007 security_ops->sk_getsecid(sk, &fl->secid); 1008 } 1009 EXPORT_SYMBOL(security_sk_classify_flow); 1010 1011 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 1012 { 1013 security_ops->req_classify_flow(req, fl); 1014 } 1015 EXPORT_SYMBOL(security_req_classify_flow); 1016 1017 void security_sock_graft(struct sock *sk, struct socket *parent) 1018 { 1019 security_ops->sock_graft(sk, parent); 1020 } 1021 EXPORT_SYMBOL(security_sock_graft); 1022 1023 int security_inet_conn_request(struct sock *sk, 1024 struct sk_buff *skb, struct request_sock *req) 1025 { 1026 return security_ops->inet_conn_request(sk, skb, req); 1027 } 1028 EXPORT_SYMBOL(security_inet_conn_request); 1029 1030 void security_inet_csk_clone(struct sock *newsk, 1031 const struct request_sock *req) 1032 { 1033 security_ops->inet_csk_clone(newsk, req); 1034 } 1035 1036 void security_inet_conn_established(struct sock *sk, 1037 struct sk_buff *skb) 1038 { 1039 security_ops->inet_conn_established(sk, skb); 1040 } 1041 1042 #endif /* CONFIG_SECURITY_NETWORK */ 1043 1044 #ifdef CONFIG_SECURITY_NETWORK_XFRM 1045 1046 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx) 1047 { 1048 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx); 1049 } 1050 EXPORT_SYMBOL(security_xfrm_policy_alloc); 1051 1052 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 1053 struct xfrm_sec_ctx **new_ctxp) 1054 { 1055 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp); 1056 } 1057 1058 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 1059 { 1060 security_ops->xfrm_policy_free_security(ctx); 1061 } 1062 EXPORT_SYMBOL(security_xfrm_policy_free); 1063 1064 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 1065 { 1066 return security_ops->xfrm_policy_delete_security(ctx); 1067 } 1068 1069 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 1070 { 1071 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0); 1072 } 1073 EXPORT_SYMBOL(security_xfrm_state_alloc); 1074 1075 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1076 struct xfrm_sec_ctx *polsec, u32 secid) 1077 { 1078 if (!polsec) 1079 return 0; 1080 /* 1081 * We want the context to be taken from secid which is usually 1082 * from the sock. 1083 */ 1084 return security_ops->xfrm_state_alloc_security(x, NULL, secid); 1085 } 1086 1087 int security_xfrm_state_delete(struct xfrm_state *x) 1088 { 1089 return security_ops->xfrm_state_delete_security(x); 1090 } 1091 EXPORT_SYMBOL(security_xfrm_state_delete); 1092 1093 void security_xfrm_state_free(struct xfrm_state *x) 1094 { 1095 security_ops->xfrm_state_free_security(x); 1096 } 1097 1098 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 1099 { 1100 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir); 1101 } 1102 1103 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1104 struct xfrm_policy *xp, struct flowi *fl) 1105 { 1106 return security_ops->xfrm_state_pol_flow_match(x, xp, fl); 1107 } 1108 1109 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1110 { 1111 return security_ops->xfrm_decode_session(skb, secid, 1); 1112 } 1113 1114 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1115 { 1116 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0); 1117 1118 BUG_ON(rc); 1119 } 1120 EXPORT_SYMBOL(security_skb_classify_flow); 1121 1122 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1123 1124 #ifdef CONFIG_KEYS 1125 1126 int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags) 1127 { 1128 return security_ops->key_alloc(key, tsk, flags); 1129 } 1130 1131 void security_key_free(struct key *key) 1132 { 1133 security_ops->key_free(key); 1134 } 1135 1136 int security_key_permission(key_ref_t key_ref, 1137 struct task_struct *context, key_perm_t perm) 1138 { 1139 return security_ops->key_permission(key_ref, context, perm); 1140 } 1141 1142 int security_key_getsecurity(struct key *key, char **_buffer) 1143 { 1144 return security_ops->key_getsecurity(key, _buffer); 1145 } 1146 1147 #endif /* CONFIG_KEYS */ 1148 1149 #ifdef CONFIG_AUDIT 1150 1151 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 1152 { 1153 return security_ops->audit_rule_init(field, op, rulestr, lsmrule); 1154 } 1155 1156 int security_audit_rule_known(struct audit_krule *krule) 1157 { 1158 return security_ops->audit_rule_known(krule); 1159 } 1160 1161 void security_audit_rule_free(void *lsmrule) 1162 { 1163 security_ops->audit_rule_free(lsmrule); 1164 } 1165 1166 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 1167 struct audit_context *actx) 1168 { 1169 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx); 1170 } 1171 1172 #endif /* CONFIG_AUDIT */ 1173