xref: /openbmc/linux/security/security.c (revision 1cdcbec1)
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *	This program is free software; you can redistribute it and/or modify
9  *	it under the terms of the GNU General Public License as published by
10  *	the Free Software Foundation; either version 2 of the License, or
11  *	(at your option) any later version.
12  */
13 
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 
20 /* Boot-time LSM user choice */
21 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1];
22 
23 /* things that live in capability.c */
24 extern struct security_operations default_security_ops;
25 extern void security_fixup_ops(struct security_operations *ops);
26 
27 struct security_operations *security_ops;	/* Initialized to NULL */
28 
29 /* amount of vm to protect from userspace access */
30 unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR;
31 
32 static inline int verify(struct security_operations *ops)
33 {
34 	/* verify the security_operations structure exists */
35 	if (!ops)
36 		return -EINVAL;
37 	security_fixup_ops(ops);
38 	return 0;
39 }
40 
41 static void __init do_security_initcalls(void)
42 {
43 	initcall_t *call;
44 	call = __security_initcall_start;
45 	while (call < __security_initcall_end) {
46 		(*call) ();
47 		call++;
48 	}
49 }
50 
51 /**
52  * security_init - initializes the security framework
53  *
54  * This should be called early in the kernel initialization sequence.
55  */
56 int __init security_init(void)
57 {
58 	printk(KERN_INFO "Security Framework initialized\n");
59 
60 	security_fixup_ops(&default_security_ops);
61 	security_ops = &default_security_ops;
62 	do_security_initcalls();
63 
64 	return 0;
65 }
66 
67 /* Save user chosen LSM */
68 static int __init choose_lsm(char *str)
69 {
70 	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
71 	return 1;
72 }
73 __setup("security=", choose_lsm);
74 
75 /**
76  * security_module_enable - Load given security module on boot ?
77  * @ops: a pointer to the struct security_operations that is to be checked.
78  *
79  * Each LSM must pass this method before registering its own operations
80  * to avoid security registration races. This method may also be used
81  * to check if your LSM is currently loaded during kernel initialization.
82  *
83  * Return true if:
84  *	-The passed LSM is the one chosen by user at boot time,
85  *	-or user didn't specify a specific LSM and we're the first to ask
86  *	 for registration permission,
87  *	-or the passed LSM is currently loaded.
88  * Otherwise, return false.
89  */
90 int __init security_module_enable(struct security_operations *ops)
91 {
92 	if (!*chosen_lsm)
93 		strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
94 	else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
95 		return 0;
96 
97 	return 1;
98 }
99 
100 /**
101  * register_security - registers a security framework with the kernel
102  * @ops: a pointer to the struct security_options that is to be registered
103  *
104  * This function allows a security module to register itself with the
105  * kernel security subsystem.  Some rudimentary checking is done on the @ops
106  * value passed to this function. You'll need to check first if your LSM
107  * is allowed to register its @ops by calling security_module_enable(@ops).
108  *
109  * If there is already a security module registered with the kernel,
110  * an error will be returned.  Otherwise %0 is returned on success.
111  */
112 int register_security(struct security_operations *ops)
113 {
114 	if (verify(ops)) {
115 		printk(KERN_DEBUG "%s could not verify "
116 		       "security_operations structure.\n", __func__);
117 		return -EINVAL;
118 	}
119 
120 	if (security_ops != &default_security_ops)
121 		return -EAGAIN;
122 
123 	security_ops = ops;
124 
125 	return 0;
126 }
127 
128 /* Security operations */
129 
130 int security_ptrace_may_access(struct task_struct *child, unsigned int mode)
131 {
132 	return security_ops->ptrace_may_access(child, mode);
133 }
134 
135 int security_ptrace_traceme(struct task_struct *parent)
136 {
137 	return security_ops->ptrace_traceme(parent);
138 }
139 
140 int security_capget(struct task_struct *target,
141 		     kernel_cap_t *effective,
142 		     kernel_cap_t *inheritable,
143 		     kernel_cap_t *permitted)
144 {
145 	return security_ops->capget(target, effective, inheritable, permitted);
146 }
147 
148 int security_capset_check(kernel_cap_t *effective,
149 			  kernel_cap_t *inheritable,
150 			  kernel_cap_t *permitted)
151 {
152 	return security_ops->capset_check(effective, inheritable, permitted);
153 }
154 
155 void security_capset_set(kernel_cap_t *effective,
156 			 kernel_cap_t *inheritable,
157 			 kernel_cap_t *permitted)
158 {
159 	security_ops->capset_set(effective, inheritable, permitted);
160 }
161 
162 int security_capable(struct task_struct *tsk, int cap)
163 {
164 	return security_ops->capable(tsk, cap, SECURITY_CAP_AUDIT);
165 }
166 
167 int security_capable_noaudit(struct task_struct *tsk, int cap)
168 {
169 	return security_ops->capable(tsk, cap, SECURITY_CAP_NOAUDIT);
170 }
171 
172 int security_acct(struct file *file)
173 {
174 	return security_ops->acct(file);
175 }
176 
177 int security_sysctl(struct ctl_table *table, int op)
178 {
179 	return security_ops->sysctl(table, op);
180 }
181 
182 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
183 {
184 	return security_ops->quotactl(cmds, type, id, sb);
185 }
186 
187 int security_quota_on(struct dentry *dentry)
188 {
189 	return security_ops->quota_on(dentry);
190 }
191 
192 int security_syslog(int type)
193 {
194 	return security_ops->syslog(type);
195 }
196 
197 int security_settime(struct timespec *ts, struct timezone *tz)
198 {
199 	return security_ops->settime(ts, tz);
200 }
201 
202 int security_vm_enough_memory(long pages)
203 {
204 	WARN_ON(current->mm == NULL);
205 	return security_ops->vm_enough_memory(current->mm, pages);
206 }
207 
208 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
209 {
210 	WARN_ON(mm == NULL);
211 	return security_ops->vm_enough_memory(mm, pages);
212 }
213 
214 int security_vm_enough_memory_kern(long pages)
215 {
216 	/* If current->mm is a kernel thread then we will pass NULL,
217 	   for this specific case that is fine */
218 	return security_ops->vm_enough_memory(current->mm, pages);
219 }
220 
221 int security_bprm_alloc(struct linux_binprm *bprm)
222 {
223 	return security_ops->bprm_alloc_security(bprm);
224 }
225 
226 void security_bprm_free(struct linux_binprm *bprm)
227 {
228 	security_ops->bprm_free_security(bprm);
229 }
230 
231 void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
232 {
233 	security_ops->bprm_apply_creds(bprm, unsafe);
234 }
235 
236 void security_bprm_post_apply_creds(struct linux_binprm *bprm)
237 {
238 	security_ops->bprm_post_apply_creds(bprm);
239 }
240 
241 int security_bprm_set(struct linux_binprm *bprm)
242 {
243 	return security_ops->bprm_set_security(bprm);
244 }
245 
246 int security_bprm_check(struct linux_binprm *bprm)
247 {
248 	return security_ops->bprm_check_security(bprm);
249 }
250 
251 int security_bprm_secureexec(struct linux_binprm *bprm)
252 {
253 	return security_ops->bprm_secureexec(bprm);
254 }
255 
256 int security_sb_alloc(struct super_block *sb)
257 {
258 	return security_ops->sb_alloc_security(sb);
259 }
260 
261 void security_sb_free(struct super_block *sb)
262 {
263 	security_ops->sb_free_security(sb);
264 }
265 
266 int security_sb_copy_data(char *orig, char *copy)
267 {
268 	return security_ops->sb_copy_data(orig, copy);
269 }
270 EXPORT_SYMBOL(security_sb_copy_data);
271 
272 int security_sb_kern_mount(struct super_block *sb, void *data)
273 {
274 	return security_ops->sb_kern_mount(sb, data);
275 }
276 
277 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
278 {
279 	return security_ops->sb_show_options(m, sb);
280 }
281 
282 int security_sb_statfs(struct dentry *dentry)
283 {
284 	return security_ops->sb_statfs(dentry);
285 }
286 
287 int security_sb_mount(char *dev_name, struct path *path,
288                        char *type, unsigned long flags, void *data)
289 {
290 	return security_ops->sb_mount(dev_name, path, type, flags, data);
291 }
292 
293 int security_sb_check_sb(struct vfsmount *mnt, struct path *path)
294 {
295 	return security_ops->sb_check_sb(mnt, path);
296 }
297 
298 int security_sb_umount(struct vfsmount *mnt, int flags)
299 {
300 	return security_ops->sb_umount(mnt, flags);
301 }
302 
303 void security_sb_umount_close(struct vfsmount *mnt)
304 {
305 	security_ops->sb_umount_close(mnt);
306 }
307 
308 void security_sb_umount_busy(struct vfsmount *mnt)
309 {
310 	security_ops->sb_umount_busy(mnt);
311 }
312 
313 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
314 {
315 	security_ops->sb_post_remount(mnt, flags, data);
316 }
317 
318 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint)
319 {
320 	security_ops->sb_post_addmount(mnt, mountpoint);
321 }
322 
323 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
324 {
325 	return security_ops->sb_pivotroot(old_path, new_path);
326 }
327 
328 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path)
329 {
330 	security_ops->sb_post_pivotroot(old_path, new_path);
331 }
332 
333 int security_sb_set_mnt_opts(struct super_block *sb,
334 				struct security_mnt_opts *opts)
335 {
336 	return security_ops->sb_set_mnt_opts(sb, opts);
337 }
338 EXPORT_SYMBOL(security_sb_set_mnt_opts);
339 
340 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
341 				struct super_block *newsb)
342 {
343 	security_ops->sb_clone_mnt_opts(oldsb, newsb);
344 }
345 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
346 
347 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
348 {
349 	return security_ops->sb_parse_opts_str(options, opts);
350 }
351 EXPORT_SYMBOL(security_sb_parse_opts_str);
352 
353 int security_inode_alloc(struct inode *inode)
354 {
355 	inode->i_security = NULL;
356 	return security_ops->inode_alloc_security(inode);
357 }
358 
359 void security_inode_free(struct inode *inode)
360 {
361 	security_ops->inode_free_security(inode);
362 }
363 
364 int security_inode_init_security(struct inode *inode, struct inode *dir,
365 				  char **name, void **value, size_t *len)
366 {
367 	if (unlikely(IS_PRIVATE(inode)))
368 		return -EOPNOTSUPP;
369 	return security_ops->inode_init_security(inode, dir, name, value, len);
370 }
371 EXPORT_SYMBOL(security_inode_init_security);
372 
373 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
374 {
375 	if (unlikely(IS_PRIVATE(dir)))
376 		return 0;
377 	return security_ops->inode_create(dir, dentry, mode);
378 }
379 
380 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
381 			 struct dentry *new_dentry)
382 {
383 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
384 		return 0;
385 	return security_ops->inode_link(old_dentry, dir, new_dentry);
386 }
387 
388 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
389 {
390 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
391 		return 0;
392 	return security_ops->inode_unlink(dir, dentry);
393 }
394 
395 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
396 			    const char *old_name)
397 {
398 	if (unlikely(IS_PRIVATE(dir)))
399 		return 0;
400 	return security_ops->inode_symlink(dir, dentry, old_name);
401 }
402 
403 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
404 {
405 	if (unlikely(IS_PRIVATE(dir)))
406 		return 0;
407 	return security_ops->inode_mkdir(dir, dentry, mode);
408 }
409 
410 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
411 {
412 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
413 		return 0;
414 	return security_ops->inode_rmdir(dir, dentry);
415 }
416 
417 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
418 {
419 	if (unlikely(IS_PRIVATE(dir)))
420 		return 0;
421 	return security_ops->inode_mknod(dir, dentry, mode, dev);
422 }
423 
424 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
425 			   struct inode *new_dir, struct dentry *new_dentry)
426 {
427         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
428             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
429 		return 0;
430 	return security_ops->inode_rename(old_dir, old_dentry,
431 					   new_dir, new_dentry);
432 }
433 
434 int security_inode_readlink(struct dentry *dentry)
435 {
436 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
437 		return 0;
438 	return security_ops->inode_readlink(dentry);
439 }
440 
441 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
442 {
443 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
444 		return 0;
445 	return security_ops->inode_follow_link(dentry, nd);
446 }
447 
448 int security_inode_permission(struct inode *inode, int mask)
449 {
450 	if (unlikely(IS_PRIVATE(inode)))
451 		return 0;
452 	return security_ops->inode_permission(inode, mask);
453 }
454 
455 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
456 {
457 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
458 		return 0;
459 	return security_ops->inode_setattr(dentry, attr);
460 }
461 EXPORT_SYMBOL_GPL(security_inode_setattr);
462 
463 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
464 {
465 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
466 		return 0;
467 	return security_ops->inode_getattr(mnt, dentry);
468 }
469 
470 void security_inode_delete(struct inode *inode)
471 {
472 	if (unlikely(IS_PRIVATE(inode)))
473 		return;
474 	security_ops->inode_delete(inode);
475 }
476 
477 int security_inode_setxattr(struct dentry *dentry, const char *name,
478 			    const void *value, size_t size, int flags)
479 {
480 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
481 		return 0;
482 	return security_ops->inode_setxattr(dentry, name, value, size, flags);
483 }
484 
485 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
486 				  const void *value, size_t size, int flags)
487 {
488 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
489 		return;
490 	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
491 }
492 
493 int security_inode_getxattr(struct dentry *dentry, const char *name)
494 {
495 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
496 		return 0;
497 	return security_ops->inode_getxattr(dentry, name);
498 }
499 
500 int security_inode_listxattr(struct dentry *dentry)
501 {
502 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
503 		return 0;
504 	return security_ops->inode_listxattr(dentry);
505 }
506 
507 int security_inode_removexattr(struct dentry *dentry, const char *name)
508 {
509 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
510 		return 0;
511 	return security_ops->inode_removexattr(dentry, name);
512 }
513 
514 int security_inode_need_killpriv(struct dentry *dentry)
515 {
516 	return security_ops->inode_need_killpriv(dentry);
517 }
518 
519 int security_inode_killpriv(struct dentry *dentry)
520 {
521 	return security_ops->inode_killpriv(dentry);
522 }
523 
524 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
525 {
526 	if (unlikely(IS_PRIVATE(inode)))
527 		return 0;
528 	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
529 }
530 
531 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
532 {
533 	if (unlikely(IS_PRIVATE(inode)))
534 		return 0;
535 	return security_ops->inode_setsecurity(inode, name, value, size, flags);
536 }
537 
538 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
539 {
540 	if (unlikely(IS_PRIVATE(inode)))
541 		return 0;
542 	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
543 }
544 
545 void security_inode_getsecid(const struct inode *inode, u32 *secid)
546 {
547 	security_ops->inode_getsecid(inode, secid);
548 }
549 
550 int security_file_permission(struct file *file, int mask)
551 {
552 	return security_ops->file_permission(file, mask);
553 }
554 
555 int security_file_alloc(struct file *file)
556 {
557 	return security_ops->file_alloc_security(file);
558 }
559 
560 void security_file_free(struct file *file)
561 {
562 	security_ops->file_free_security(file);
563 }
564 
565 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
566 {
567 	return security_ops->file_ioctl(file, cmd, arg);
568 }
569 
570 int security_file_mmap(struct file *file, unsigned long reqprot,
571 			unsigned long prot, unsigned long flags,
572 			unsigned long addr, unsigned long addr_only)
573 {
574 	return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
575 }
576 
577 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
578 			    unsigned long prot)
579 {
580 	return security_ops->file_mprotect(vma, reqprot, prot);
581 }
582 
583 int security_file_lock(struct file *file, unsigned int cmd)
584 {
585 	return security_ops->file_lock(file, cmd);
586 }
587 
588 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
589 {
590 	return security_ops->file_fcntl(file, cmd, arg);
591 }
592 
593 int security_file_set_fowner(struct file *file)
594 {
595 	return security_ops->file_set_fowner(file);
596 }
597 
598 int security_file_send_sigiotask(struct task_struct *tsk,
599 				  struct fown_struct *fown, int sig)
600 {
601 	return security_ops->file_send_sigiotask(tsk, fown, sig);
602 }
603 
604 int security_file_receive(struct file *file)
605 {
606 	return security_ops->file_receive(file);
607 }
608 
609 int security_dentry_open(struct file *file)
610 {
611 	return security_ops->dentry_open(file);
612 }
613 
614 int security_task_create(unsigned long clone_flags)
615 {
616 	return security_ops->task_create(clone_flags);
617 }
618 
619 int security_task_alloc(struct task_struct *p)
620 {
621 	return security_ops->task_alloc_security(p);
622 }
623 
624 void security_task_free(struct task_struct *p)
625 {
626 	security_ops->task_free_security(p);
627 }
628 
629 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
630 {
631 	return security_ops->task_setuid(id0, id1, id2, flags);
632 }
633 
634 int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
635 			       uid_t old_suid, int flags)
636 {
637 	return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags);
638 }
639 
640 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
641 {
642 	return security_ops->task_setgid(id0, id1, id2, flags);
643 }
644 
645 int security_task_setpgid(struct task_struct *p, pid_t pgid)
646 {
647 	return security_ops->task_setpgid(p, pgid);
648 }
649 
650 int security_task_getpgid(struct task_struct *p)
651 {
652 	return security_ops->task_getpgid(p);
653 }
654 
655 int security_task_getsid(struct task_struct *p)
656 {
657 	return security_ops->task_getsid(p);
658 }
659 
660 void security_task_getsecid(struct task_struct *p, u32 *secid)
661 {
662 	security_ops->task_getsecid(p, secid);
663 }
664 EXPORT_SYMBOL(security_task_getsecid);
665 
666 int security_task_setgroups(struct group_info *group_info)
667 {
668 	return security_ops->task_setgroups(group_info);
669 }
670 
671 int security_task_setnice(struct task_struct *p, int nice)
672 {
673 	return security_ops->task_setnice(p, nice);
674 }
675 
676 int security_task_setioprio(struct task_struct *p, int ioprio)
677 {
678 	return security_ops->task_setioprio(p, ioprio);
679 }
680 
681 int security_task_getioprio(struct task_struct *p)
682 {
683 	return security_ops->task_getioprio(p);
684 }
685 
686 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
687 {
688 	return security_ops->task_setrlimit(resource, new_rlim);
689 }
690 
691 int security_task_setscheduler(struct task_struct *p,
692 				int policy, struct sched_param *lp)
693 {
694 	return security_ops->task_setscheduler(p, policy, lp);
695 }
696 
697 int security_task_getscheduler(struct task_struct *p)
698 {
699 	return security_ops->task_getscheduler(p);
700 }
701 
702 int security_task_movememory(struct task_struct *p)
703 {
704 	return security_ops->task_movememory(p);
705 }
706 
707 int security_task_kill(struct task_struct *p, struct siginfo *info,
708 			int sig, u32 secid)
709 {
710 	return security_ops->task_kill(p, info, sig, secid);
711 }
712 
713 int security_task_wait(struct task_struct *p)
714 {
715 	return security_ops->task_wait(p);
716 }
717 
718 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
719 			 unsigned long arg4, unsigned long arg5, long *rc_p)
720 {
721 	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p);
722 }
723 
724 void security_task_reparent_to_init(struct task_struct *p)
725 {
726 	security_ops->task_reparent_to_init(p);
727 }
728 
729 void security_task_to_inode(struct task_struct *p, struct inode *inode)
730 {
731 	security_ops->task_to_inode(p, inode);
732 }
733 
734 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
735 {
736 	return security_ops->ipc_permission(ipcp, flag);
737 }
738 
739 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
740 {
741 	security_ops->ipc_getsecid(ipcp, secid);
742 }
743 
744 int security_msg_msg_alloc(struct msg_msg *msg)
745 {
746 	return security_ops->msg_msg_alloc_security(msg);
747 }
748 
749 void security_msg_msg_free(struct msg_msg *msg)
750 {
751 	security_ops->msg_msg_free_security(msg);
752 }
753 
754 int security_msg_queue_alloc(struct msg_queue *msq)
755 {
756 	return security_ops->msg_queue_alloc_security(msq);
757 }
758 
759 void security_msg_queue_free(struct msg_queue *msq)
760 {
761 	security_ops->msg_queue_free_security(msq);
762 }
763 
764 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
765 {
766 	return security_ops->msg_queue_associate(msq, msqflg);
767 }
768 
769 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
770 {
771 	return security_ops->msg_queue_msgctl(msq, cmd);
772 }
773 
774 int security_msg_queue_msgsnd(struct msg_queue *msq,
775 			       struct msg_msg *msg, int msqflg)
776 {
777 	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
778 }
779 
780 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
781 			       struct task_struct *target, long type, int mode)
782 {
783 	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
784 }
785 
786 int security_shm_alloc(struct shmid_kernel *shp)
787 {
788 	return security_ops->shm_alloc_security(shp);
789 }
790 
791 void security_shm_free(struct shmid_kernel *shp)
792 {
793 	security_ops->shm_free_security(shp);
794 }
795 
796 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
797 {
798 	return security_ops->shm_associate(shp, shmflg);
799 }
800 
801 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
802 {
803 	return security_ops->shm_shmctl(shp, cmd);
804 }
805 
806 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
807 {
808 	return security_ops->shm_shmat(shp, shmaddr, shmflg);
809 }
810 
811 int security_sem_alloc(struct sem_array *sma)
812 {
813 	return security_ops->sem_alloc_security(sma);
814 }
815 
816 void security_sem_free(struct sem_array *sma)
817 {
818 	security_ops->sem_free_security(sma);
819 }
820 
821 int security_sem_associate(struct sem_array *sma, int semflg)
822 {
823 	return security_ops->sem_associate(sma, semflg);
824 }
825 
826 int security_sem_semctl(struct sem_array *sma, int cmd)
827 {
828 	return security_ops->sem_semctl(sma, cmd);
829 }
830 
831 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
832 			unsigned nsops, int alter)
833 {
834 	return security_ops->sem_semop(sma, sops, nsops, alter);
835 }
836 
837 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
838 {
839 	if (unlikely(inode && IS_PRIVATE(inode)))
840 		return;
841 	security_ops->d_instantiate(dentry, inode);
842 }
843 EXPORT_SYMBOL(security_d_instantiate);
844 
845 int security_getprocattr(struct task_struct *p, char *name, char **value)
846 {
847 	return security_ops->getprocattr(p, name, value);
848 }
849 
850 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
851 {
852 	return security_ops->setprocattr(p, name, value, size);
853 }
854 
855 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
856 {
857 	return security_ops->netlink_send(sk, skb);
858 }
859 
860 int security_netlink_recv(struct sk_buff *skb, int cap)
861 {
862 	return security_ops->netlink_recv(skb, cap);
863 }
864 EXPORT_SYMBOL(security_netlink_recv);
865 
866 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
867 {
868 	return security_ops->secid_to_secctx(secid, secdata, seclen);
869 }
870 EXPORT_SYMBOL(security_secid_to_secctx);
871 
872 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
873 {
874 	return security_ops->secctx_to_secid(secdata, seclen, secid);
875 }
876 EXPORT_SYMBOL(security_secctx_to_secid);
877 
878 void security_release_secctx(char *secdata, u32 seclen)
879 {
880 	security_ops->release_secctx(secdata, seclen);
881 }
882 EXPORT_SYMBOL(security_release_secctx);
883 
884 #ifdef CONFIG_SECURITY_NETWORK
885 
886 int security_unix_stream_connect(struct socket *sock, struct socket *other,
887 				 struct sock *newsk)
888 {
889 	return security_ops->unix_stream_connect(sock, other, newsk);
890 }
891 EXPORT_SYMBOL(security_unix_stream_connect);
892 
893 int security_unix_may_send(struct socket *sock,  struct socket *other)
894 {
895 	return security_ops->unix_may_send(sock, other);
896 }
897 EXPORT_SYMBOL(security_unix_may_send);
898 
899 int security_socket_create(int family, int type, int protocol, int kern)
900 {
901 	return security_ops->socket_create(family, type, protocol, kern);
902 }
903 
904 int security_socket_post_create(struct socket *sock, int family,
905 				int type, int protocol, int kern)
906 {
907 	return security_ops->socket_post_create(sock, family, type,
908 						protocol, kern);
909 }
910 
911 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
912 {
913 	return security_ops->socket_bind(sock, address, addrlen);
914 }
915 
916 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
917 {
918 	return security_ops->socket_connect(sock, address, addrlen);
919 }
920 
921 int security_socket_listen(struct socket *sock, int backlog)
922 {
923 	return security_ops->socket_listen(sock, backlog);
924 }
925 
926 int security_socket_accept(struct socket *sock, struct socket *newsock)
927 {
928 	return security_ops->socket_accept(sock, newsock);
929 }
930 
931 void security_socket_post_accept(struct socket *sock, struct socket *newsock)
932 {
933 	security_ops->socket_post_accept(sock, newsock);
934 }
935 
936 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
937 {
938 	return security_ops->socket_sendmsg(sock, msg, size);
939 }
940 
941 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
942 			    int size, int flags)
943 {
944 	return security_ops->socket_recvmsg(sock, msg, size, flags);
945 }
946 
947 int security_socket_getsockname(struct socket *sock)
948 {
949 	return security_ops->socket_getsockname(sock);
950 }
951 
952 int security_socket_getpeername(struct socket *sock)
953 {
954 	return security_ops->socket_getpeername(sock);
955 }
956 
957 int security_socket_getsockopt(struct socket *sock, int level, int optname)
958 {
959 	return security_ops->socket_getsockopt(sock, level, optname);
960 }
961 
962 int security_socket_setsockopt(struct socket *sock, int level, int optname)
963 {
964 	return security_ops->socket_setsockopt(sock, level, optname);
965 }
966 
967 int security_socket_shutdown(struct socket *sock, int how)
968 {
969 	return security_ops->socket_shutdown(sock, how);
970 }
971 
972 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
973 {
974 	return security_ops->socket_sock_rcv_skb(sk, skb);
975 }
976 EXPORT_SYMBOL(security_sock_rcv_skb);
977 
978 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
979 				      int __user *optlen, unsigned len)
980 {
981 	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
982 }
983 
984 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
985 {
986 	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
987 }
988 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
989 
990 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
991 {
992 	return security_ops->sk_alloc_security(sk, family, priority);
993 }
994 
995 void security_sk_free(struct sock *sk)
996 {
997 	security_ops->sk_free_security(sk);
998 }
999 
1000 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1001 {
1002 	security_ops->sk_clone_security(sk, newsk);
1003 }
1004 
1005 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1006 {
1007 	security_ops->sk_getsecid(sk, &fl->secid);
1008 }
1009 EXPORT_SYMBOL(security_sk_classify_flow);
1010 
1011 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1012 {
1013 	security_ops->req_classify_flow(req, fl);
1014 }
1015 EXPORT_SYMBOL(security_req_classify_flow);
1016 
1017 void security_sock_graft(struct sock *sk, struct socket *parent)
1018 {
1019 	security_ops->sock_graft(sk, parent);
1020 }
1021 EXPORT_SYMBOL(security_sock_graft);
1022 
1023 int security_inet_conn_request(struct sock *sk,
1024 			struct sk_buff *skb, struct request_sock *req)
1025 {
1026 	return security_ops->inet_conn_request(sk, skb, req);
1027 }
1028 EXPORT_SYMBOL(security_inet_conn_request);
1029 
1030 void security_inet_csk_clone(struct sock *newsk,
1031 			const struct request_sock *req)
1032 {
1033 	security_ops->inet_csk_clone(newsk, req);
1034 }
1035 
1036 void security_inet_conn_established(struct sock *sk,
1037 			struct sk_buff *skb)
1038 {
1039 	security_ops->inet_conn_established(sk, skb);
1040 }
1041 
1042 #endif	/* CONFIG_SECURITY_NETWORK */
1043 
1044 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1045 
1046 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1047 {
1048 	return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1049 }
1050 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1051 
1052 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1053 			      struct xfrm_sec_ctx **new_ctxp)
1054 {
1055 	return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1056 }
1057 
1058 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1059 {
1060 	security_ops->xfrm_policy_free_security(ctx);
1061 }
1062 EXPORT_SYMBOL(security_xfrm_policy_free);
1063 
1064 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1065 {
1066 	return security_ops->xfrm_policy_delete_security(ctx);
1067 }
1068 
1069 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1070 {
1071 	return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1072 }
1073 EXPORT_SYMBOL(security_xfrm_state_alloc);
1074 
1075 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1076 				      struct xfrm_sec_ctx *polsec, u32 secid)
1077 {
1078 	if (!polsec)
1079 		return 0;
1080 	/*
1081 	 * We want the context to be taken from secid which is usually
1082 	 * from the sock.
1083 	 */
1084 	return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1085 }
1086 
1087 int security_xfrm_state_delete(struct xfrm_state *x)
1088 {
1089 	return security_ops->xfrm_state_delete_security(x);
1090 }
1091 EXPORT_SYMBOL(security_xfrm_state_delete);
1092 
1093 void security_xfrm_state_free(struct xfrm_state *x)
1094 {
1095 	security_ops->xfrm_state_free_security(x);
1096 }
1097 
1098 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1099 {
1100 	return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1101 }
1102 
1103 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1104 				       struct xfrm_policy *xp, struct flowi *fl)
1105 {
1106 	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1107 }
1108 
1109 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1110 {
1111 	return security_ops->xfrm_decode_session(skb, secid, 1);
1112 }
1113 
1114 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1115 {
1116 	int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1117 
1118 	BUG_ON(rc);
1119 }
1120 EXPORT_SYMBOL(security_skb_classify_flow);
1121 
1122 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1123 
1124 #ifdef CONFIG_KEYS
1125 
1126 int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags)
1127 {
1128 	return security_ops->key_alloc(key, tsk, flags);
1129 }
1130 
1131 void security_key_free(struct key *key)
1132 {
1133 	security_ops->key_free(key);
1134 }
1135 
1136 int security_key_permission(key_ref_t key_ref,
1137 			    struct task_struct *context, key_perm_t perm)
1138 {
1139 	return security_ops->key_permission(key_ref, context, perm);
1140 }
1141 
1142 int security_key_getsecurity(struct key *key, char **_buffer)
1143 {
1144 	return security_ops->key_getsecurity(key, _buffer);
1145 }
1146 
1147 #endif	/* CONFIG_KEYS */
1148 
1149 #ifdef CONFIG_AUDIT
1150 
1151 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1152 {
1153 	return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1154 }
1155 
1156 int security_audit_rule_known(struct audit_krule *krule)
1157 {
1158 	return security_ops->audit_rule_known(krule);
1159 }
1160 
1161 void security_audit_rule_free(void *lsmrule)
1162 {
1163 	security_ops->audit_rule_free(lsmrule);
1164 }
1165 
1166 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1167 			      struct audit_context *actx)
1168 {
1169 	return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1170 }
1171 
1172 #endif /* CONFIG_AUDIT */
1173