xref: /openbmc/linux/security/security.c (revision 1a2a4d06)
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *	This program is free software; you can redistribute it and/or modify
9  *	it under the terms of the GNU General Public License as published by
10  *	the Free Software Foundation; either version 2 of the License, or
11  *	(at your option) any later version.
12  */
13 
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/integrity.h>
20 #include <linux/ima.h>
21 #include <linux/evm.h>
22 
23 #define MAX_LSM_EVM_XATTR	2
24 
25 /* Boot-time LSM user choice */
26 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
27 	CONFIG_DEFAULT_SECURITY;
28 
29 static struct security_operations *security_ops;
30 static struct security_operations default_security_ops = {
31 	.name	= "default",
32 };
33 
34 static inline int __init verify(struct security_operations *ops)
35 {
36 	/* verify the security_operations structure exists */
37 	if (!ops)
38 		return -EINVAL;
39 	security_fixup_ops(ops);
40 	return 0;
41 }
42 
43 static void __init do_security_initcalls(void)
44 {
45 	initcall_t *call;
46 	call = __security_initcall_start;
47 	while (call < __security_initcall_end) {
48 		(*call) ();
49 		call++;
50 	}
51 }
52 
53 /**
54  * security_init - initializes the security framework
55  *
56  * This should be called early in the kernel initialization sequence.
57  */
58 int __init security_init(void)
59 {
60 	printk(KERN_INFO "Security Framework initialized\n");
61 
62 	security_fixup_ops(&default_security_ops);
63 	security_ops = &default_security_ops;
64 	do_security_initcalls();
65 
66 	return 0;
67 }
68 
69 void reset_security_ops(void)
70 {
71 	security_ops = &default_security_ops;
72 }
73 
74 /* Save user chosen LSM */
75 static int __init choose_lsm(char *str)
76 {
77 	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
78 	return 1;
79 }
80 __setup("security=", choose_lsm);
81 
82 /**
83  * security_module_enable - Load given security module on boot ?
84  * @ops: a pointer to the struct security_operations that is to be checked.
85  *
86  * Each LSM must pass this method before registering its own operations
87  * to avoid security registration races. This method may also be used
88  * to check if your LSM is currently loaded during kernel initialization.
89  *
90  * Return true if:
91  *	-The passed LSM is the one chosen by user at boot time,
92  *	-or the passed LSM is configured as the default and the user did not
93  *	 choose an alternate LSM at boot time.
94  * Otherwise, return false.
95  */
96 int __init security_module_enable(struct security_operations *ops)
97 {
98 	return !strcmp(ops->name, chosen_lsm);
99 }
100 
101 /**
102  * register_security - registers a security framework with the kernel
103  * @ops: a pointer to the struct security_options that is to be registered
104  *
105  * This function allows a security module to register itself with the
106  * kernel security subsystem.  Some rudimentary checking is done on the @ops
107  * value passed to this function. You'll need to check first if your LSM
108  * is allowed to register its @ops by calling security_module_enable(@ops).
109  *
110  * If there is already a security module registered with the kernel,
111  * an error will be returned.  Otherwise %0 is returned on success.
112  */
113 int __init register_security(struct security_operations *ops)
114 {
115 	if (verify(ops)) {
116 		printk(KERN_DEBUG "%s could not verify "
117 		       "security_operations structure.\n", __func__);
118 		return -EINVAL;
119 	}
120 
121 	if (security_ops != &default_security_ops)
122 		return -EAGAIN;
123 
124 	security_ops = ops;
125 
126 	return 0;
127 }
128 
129 /* Security operations */
130 
131 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
132 {
133 	return security_ops->ptrace_access_check(child, mode);
134 }
135 
136 int security_ptrace_traceme(struct task_struct *parent)
137 {
138 	return security_ops->ptrace_traceme(parent);
139 }
140 
141 int security_capget(struct task_struct *target,
142 		     kernel_cap_t *effective,
143 		     kernel_cap_t *inheritable,
144 		     kernel_cap_t *permitted)
145 {
146 	return security_ops->capget(target, effective, inheritable, permitted);
147 }
148 
149 int security_capset(struct cred *new, const struct cred *old,
150 		    const kernel_cap_t *effective,
151 		    const kernel_cap_t *inheritable,
152 		    const kernel_cap_t *permitted)
153 {
154 	return security_ops->capset(new, old,
155 				    effective, inheritable, permitted);
156 }
157 
158 int security_capable(const struct cred *cred, struct user_namespace *ns,
159 		     int cap)
160 {
161 	return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
162 }
163 
164 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
165 			     int cap)
166 {
167 	return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
168 }
169 
170 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
171 {
172 	return security_ops->quotactl(cmds, type, id, sb);
173 }
174 
175 int security_quota_on(struct dentry *dentry)
176 {
177 	return security_ops->quota_on(dentry);
178 }
179 
180 int security_syslog(int type)
181 {
182 	return security_ops->syslog(type);
183 }
184 
185 int security_settime(const struct timespec *ts, const struct timezone *tz)
186 {
187 	return security_ops->settime(ts, tz);
188 }
189 
190 int security_vm_enough_memory(long pages)
191 {
192 	WARN_ON(current->mm == NULL);
193 	return security_ops->vm_enough_memory(current->mm, pages);
194 }
195 
196 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
197 {
198 	WARN_ON(mm == NULL);
199 	return security_ops->vm_enough_memory(mm, pages);
200 }
201 
202 int security_vm_enough_memory_kern(long pages)
203 {
204 	/* If current->mm is a kernel thread then we will pass NULL,
205 	   for this specific case that is fine */
206 	return security_ops->vm_enough_memory(current->mm, pages);
207 }
208 
209 int security_bprm_set_creds(struct linux_binprm *bprm)
210 {
211 	return security_ops->bprm_set_creds(bprm);
212 }
213 
214 int security_bprm_check(struct linux_binprm *bprm)
215 {
216 	int ret;
217 
218 	ret = security_ops->bprm_check_security(bprm);
219 	if (ret)
220 		return ret;
221 	return ima_bprm_check(bprm);
222 }
223 
224 void security_bprm_committing_creds(struct linux_binprm *bprm)
225 {
226 	security_ops->bprm_committing_creds(bprm);
227 }
228 
229 void security_bprm_committed_creds(struct linux_binprm *bprm)
230 {
231 	security_ops->bprm_committed_creds(bprm);
232 }
233 
234 int security_bprm_secureexec(struct linux_binprm *bprm)
235 {
236 	return security_ops->bprm_secureexec(bprm);
237 }
238 
239 int security_sb_alloc(struct super_block *sb)
240 {
241 	return security_ops->sb_alloc_security(sb);
242 }
243 
244 void security_sb_free(struct super_block *sb)
245 {
246 	security_ops->sb_free_security(sb);
247 }
248 
249 int security_sb_copy_data(char *orig, char *copy)
250 {
251 	return security_ops->sb_copy_data(orig, copy);
252 }
253 EXPORT_SYMBOL(security_sb_copy_data);
254 
255 int security_sb_remount(struct super_block *sb, void *data)
256 {
257 	return security_ops->sb_remount(sb, data);
258 }
259 
260 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
261 {
262 	return security_ops->sb_kern_mount(sb, flags, data);
263 }
264 
265 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
266 {
267 	return security_ops->sb_show_options(m, sb);
268 }
269 
270 int security_sb_statfs(struct dentry *dentry)
271 {
272 	return security_ops->sb_statfs(dentry);
273 }
274 
275 int security_sb_mount(char *dev_name, struct path *path,
276                        char *type, unsigned long flags, void *data)
277 {
278 	return security_ops->sb_mount(dev_name, path, type, flags, data);
279 }
280 
281 int security_sb_umount(struct vfsmount *mnt, int flags)
282 {
283 	return security_ops->sb_umount(mnt, flags);
284 }
285 
286 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
287 {
288 	return security_ops->sb_pivotroot(old_path, new_path);
289 }
290 
291 int security_sb_set_mnt_opts(struct super_block *sb,
292 				struct security_mnt_opts *opts)
293 {
294 	return security_ops->sb_set_mnt_opts(sb, opts);
295 }
296 EXPORT_SYMBOL(security_sb_set_mnt_opts);
297 
298 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
299 				struct super_block *newsb)
300 {
301 	security_ops->sb_clone_mnt_opts(oldsb, newsb);
302 }
303 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
304 
305 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
306 {
307 	return security_ops->sb_parse_opts_str(options, opts);
308 }
309 EXPORT_SYMBOL(security_sb_parse_opts_str);
310 
311 int security_inode_alloc(struct inode *inode)
312 {
313 	inode->i_security = NULL;
314 	return security_ops->inode_alloc_security(inode);
315 }
316 
317 void security_inode_free(struct inode *inode)
318 {
319 	integrity_inode_free(inode);
320 	security_ops->inode_free_security(inode);
321 }
322 
323 int security_inode_init_security(struct inode *inode, struct inode *dir,
324 				 const struct qstr *qstr,
325 				 const initxattrs initxattrs, void *fs_data)
326 {
327 	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
328 	struct xattr *lsm_xattr, *evm_xattr, *xattr;
329 	int ret;
330 
331 	if (unlikely(IS_PRIVATE(inode)))
332 		return 0;
333 
334 	memset(new_xattrs, 0, sizeof new_xattrs);
335 	if (!initxattrs)
336 		return security_ops->inode_init_security(inode, dir, qstr,
337 							 NULL, NULL, NULL);
338 	lsm_xattr = new_xattrs;
339 	ret = security_ops->inode_init_security(inode, dir, qstr,
340 						&lsm_xattr->name,
341 						&lsm_xattr->value,
342 						&lsm_xattr->value_len);
343 	if (ret)
344 		goto out;
345 
346 	evm_xattr = lsm_xattr + 1;
347 	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
348 	if (ret)
349 		goto out;
350 	ret = initxattrs(inode, new_xattrs, fs_data);
351 out:
352 	for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
353 		kfree(xattr->name);
354 		kfree(xattr->value);
355 	}
356 	return (ret == -EOPNOTSUPP) ? 0 : ret;
357 }
358 EXPORT_SYMBOL(security_inode_init_security);
359 
360 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
361 				     const struct qstr *qstr, char **name,
362 				     void **value, size_t *len)
363 {
364 	if (unlikely(IS_PRIVATE(inode)))
365 		return -EOPNOTSUPP;
366 	return security_ops->inode_init_security(inode, dir, qstr, name, value,
367 						 len);
368 }
369 EXPORT_SYMBOL(security_old_inode_init_security);
370 
371 #ifdef CONFIG_SECURITY_PATH
372 int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
373 			unsigned int dev)
374 {
375 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
376 		return 0;
377 	return security_ops->path_mknod(dir, dentry, mode, dev);
378 }
379 EXPORT_SYMBOL(security_path_mknod);
380 
381 int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
382 {
383 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
384 		return 0;
385 	return security_ops->path_mkdir(dir, dentry, mode);
386 }
387 EXPORT_SYMBOL(security_path_mkdir);
388 
389 int security_path_rmdir(struct path *dir, struct dentry *dentry)
390 {
391 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
392 		return 0;
393 	return security_ops->path_rmdir(dir, dentry);
394 }
395 
396 int security_path_unlink(struct path *dir, struct dentry *dentry)
397 {
398 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
399 		return 0;
400 	return security_ops->path_unlink(dir, dentry);
401 }
402 EXPORT_SYMBOL(security_path_unlink);
403 
404 int security_path_symlink(struct path *dir, struct dentry *dentry,
405 			  const char *old_name)
406 {
407 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
408 		return 0;
409 	return security_ops->path_symlink(dir, dentry, old_name);
410 }
411 
412 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
413 		       struct dentry *new_dentry)
414 {
415 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
416 		return 0;
417 	return security_ops->path_link(old_dentry, new_dir, new_dentry);
418 }
419 
420 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
421 			 struct path *new_dir, struct dentry *new_dentry)
422 {
423 	if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
424 		     (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
425 		return 0;
426 	return security_ops->path_rename(old_dir, old_dentry, new_dir,
427 					 new_dentry);
428 }
429 EXPORT_SYMBOL(security_path_rename);
430 
431 int security_path_truncate(struct path *path)
432 {
433 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
434 		return 0;
435 	return security_ops->path_truncate(path);
436 }
437 
438 int security_path_chmod(struct path *path, umode_t mode)
439 {
440 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
441 		return 0;
442 	return security_ops->path_chmod(path, mode);
443 }
444 
445 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
446 {
447 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
448 		return 0;
449 	return security_ops->path_chown(path, uid, gid);
450 }
451 
452 int security_path_chroot(struct path *path)
453 {
454 	return security_ops->path_chroot(path);
455 }
456 #endif
457 
458 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
459 {
460 	if (unlikely(IS_PRIVATE(dir)))
461 		return 0;
462 	return security_ops->inode_create(dir, dentry, mode);
463 }
464 EXPORT_SYMBOL_GPL(security_inode_create);
465 
466 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
467 			 struct dentry *new_dentry)
468 {
469 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
470 		return 0;
471 	return security_ops->inode_link(old_dentry, dir, new_dentry);
472 }
473 
474 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
475 {
476 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
477 		return 0;
478 	return security_ops->inode_unlink(dir, dentry);
479 }
480 
481 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
482 			    const char *old_name)
483 {
484 	if (unlikely(IS_PRIVATE(dir)))
485 		return 0;
486 	return security_ops->inode_symlink(dir, dentry, old_name);
487 }
488 
489 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
490 {
491 	if (unlikely(IS_PRIVATE(dir)))
492 		return 0;
493 	return security_ops->inode_mkdir(dir, dentry, mode);
494 }
495 EXPORT_SYMBOL_GPL(security_inode_mkdir);
496 
497 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
498 {
499 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
500 		return 0;
501 	return security_ops->inode_rmdir(dir, dentry);
502 }
503 
504 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
505 {
506 	if (unlikely(IS_PRIVATE(dir)))
507 		return 0;
508 	return security_ops->inode_mknod(dir, dentry, mode, dev);
509 }
510 
511 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
512 			   struct inode *new_dir, struct dentry *new_dentry)
513 {
514         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
515             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
516 		return 0;
517 	return security_ops->inode_rename(old_dir, old_dentry,
518 					   new_dir, new_dentry);
519 }
520 
521 int security_inode_readlink(struct dentry *dentry)
522 {
523 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
524 		return 0;
525 	return security_ops->inode_readlink(dentry);
526 }
527 
528 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
529 {
530 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
531 		return 0;
532 	return security_ops->inode_follow_link(dentry, nd);
533 }
534 
535 int security_inode_permission(struct inode *inode, int mask)
536 {
537 	if (unlikely(IS_PRIVATE(inode)))
538 		return 0;
539 	return security_ops->inode_permission(inode, mask);
540 }
541 
542 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
543 {
544 	int ret;
545 
546 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
547 		return 0;
548 	ret = security_ops->inode_setattr(dentry, attr);
549 	if (ret)
550 		return ret;
551 	return evm_inode_setattr(dentry, attr);
552 }
553 EXPORT_SYMBOL_GPL(security_inode_setattr);
554 
555 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
556 {
557 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
558 		return 0;
559 	return security_ops->inode_getattr(mnt, dentry);
560 }
561 
562 int security_inode_setxattr(struct dentry *dentry, const char *name,
563 			    const void *value, size_t size, int flags)
564 {
565 	int ret;
566 
567 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
568 		return 0;
569 	ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
570 	if (ret)
571 		return ret;
572 	return evm_inode_setxattr(dentry, name, value, size);
573 }
574 
575 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
576 				  const void *value, size_t size, int flags)
577 {
578 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
579 		return;
580 	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
581 	evm_inode_post_setxattr(dentry, name, value, size);
582 }
583 
584 int security_inode_getxattr(struct dentry *dentry, const char *name)
585 {
586 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
587 		return 0;
588 	return security_ops->inode_getxattr(dentry, name);
589 }
590 
591 int security_inode_listxattr(struct dentry *dentry)
592 {
593 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
594 		return 0;
595 	return security_ops->inode_listxattr(dentry);
596 }
597 
598 int security_inode_removexattr(struct dentry *dentry, const char *name)
599 {
600 	int ret;
601 
602 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
603 		return 0;
604 	ret = security_ops->inode_removexattr(dentry, name);
605 	if (ret)
606 		return ret;
607 	return evm_inode_removexattr(dentry, name);
608 }
609 
610 int security_inode_need_killpriv(struct dentry *dentry)
611 {
612 	return security_ops->inode_need_killpriv(dentry);
613 }
614 
615 int security_inode_killpriv(struct dentry *dentry)
616 {
617 	return security_ops->inode_killpriv(dentry);
618 }
619 
620 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
621 {
622 	if (unlikely(IS_PRIVATE(inode)))
623 		return -EOPNOTSUPP;
624 	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
625 }
626 
627 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
628 {
629 	if (unlikely(IS_PRIVATE(inode)))
630 		return -EOPNOTSUPP;
631 	return security_ops->inode_setsecurity(inode, name, value, size, flags);
632 }
633 
634 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
635 {
636 	if (unlikely(IS_PRIVATE(inode)))
637 		return 0;
638 	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
639 }
640 
641 void security_inode_getsecid(const struct inode *inode, u32 *secid)
642 {
643 	security_ops->inode_getsecid(inode, secid);
644 }
645 
646 int security_file_permission(struct file *file, int mask)
647 {
648 	int ret;
649 
650 	ret = security_ops->file_permission(file, mask);
651 	if (ret)
652 		return ret;
653 
654 	return fsnotify_perm(file, mask);
655 }
656 
657 int security_file_alloc(struct file *file)
658 {
659 	return security_ops->file_alloc_security(file);
660 }
661 
662 void security_file_free(struct file *file)
663 {
664 	security_ops->file_free_security(file);
665 }
666 
667 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
668 {
669 	return security_ops->file_ioctl(file, cmd, arg);
670 }
671 
672 int security_file_mmap(struct file *file, unsigned long reqprot,
673 			unsigned long prot, unsigned long flags,
674 			unsigned long addr, unsigned long addr_only)
675 {
676 	int ret;
677 
678 	ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
679 	if (ret)
680 		return ret;
681 	return ima_file_mmap(file, prot);
682 }
683 
684 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
685 			    unsigned long prot)
686 {
687 	return security_ops->file_mprotect(vma, reqprot, prot);
688 }
689 
690 int security_file_lock(struct file *file, unsigned int cmd)
691 {
692 	return security_ops->file_lock(file, cmd);
693 }
694 
695 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
696 {
697 	return security_ops->file_fcntl(file, cmd, arg);
698 }
699 
700 int security_file_set_fowner(struct file *file)
701 {
702 	return security_ops->file_set_fowner(file);
703 }
704 
705 int security_file_send_sigiotask(struct task_struct *tsk,
706 				  struct fown_struct *fown, int sig)
707 {
708 	return security_ops->file_send_sigiotask(tsk, fown, sig);
709 }
710 
711 int security_file_receive(struct file *file)
712 {
713 	return security_ops->file_receive(file);
714 }
715 
716 int security_dentry_open(struct file *file, const struct cred *cred)
717 {
718 	int ret;
719 
720 	ret = security_ops->dentry_open(file, cred);
721 	if (ret)
722 		return ret;
723 
724 	return fsnotify_perm(file, MAY_OPEN);
725 }
726 
727 int security_task_create(unsigned long clone_flags)
728 {
729 	return security_ops->task_create(clone_flags);
730 }
731 
732 void security_task_free(struct task_struct *task)
733 {
734 	security_ops->task_free(task);
735 }
736 
737 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
738 {
739 	return security_ops->cred_alloc_blank(cred, gfp);
740 }
741 
742 void security_cred_free(struct cred *cred)
743 {
744 	security_ops->cred_free(cred);
745 }
746 
747 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
748 {
749 	return security_ops->cred_prepare(new, old, gfp);
750 }
751 
752 void security_transfer_creds(struct cred *new, const struct cred *old)
753 {
754 	security_ops->cred_transfer(new, old);
755 }
756 
757 int security_kernel_act_as(struct cred *new, u32 secid)
758 {
759 	return security_ops->kernel_act_as(new, secid);
760 }
761 
762 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
763 {
764 	return security_ops->kernel_create_files_as(new, inode);
765 }
766 
767 int security_kernel_module_request(char *kmod_name)
768 {
769 	return security_ops->kernel_module_request(kmod_name);
770 }
771 
772 int security_task_fix_setuid(struct cred *new, const struct cred *old,
773 			     int flags)
774 {
775 	return security_ops->task_fix_setuid(new, old, flags);
776 }
777 
778 int security_task_setpgid(struct task_struct *p, pid_t pgid)
779 {
780 	return security_ops->task_setpgid(p, pgid);
781 }
782 
783 int security_task_getpgid(struct task_struct *p)
784 {
785 	return security_ops->task_getpgid(p);
786 }
787 
788 int security_task_getsid(struct task_struct *p)
789 {
790 	return security_ops->task_getsid(p);
791 }
792 
793 void security_task_getsecid(struct task_struct *p, u32 *secid)
794 {
795 	security_ops->task_getsecid(p, secid);
796 }
797 EXPORT_SYMBOL(security_task_getsecid);
798 
799 int security_task_setnice(struct task_struct *p, int nice)
800 {
801 	return security_ops->task_setnice(p, nice);
802 }
803 
804 int security_task_setioprio(struct task_struct *p, int ioprio)
805 {
806 	return security_ops->task_setioprio(p, ioprio);
807 }
808 
809 int security_task_getioprio(struct task_struct *p)
810 {
811 	return security_ops->task_getioprio(p);
812 }
813 
814 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
815 		struct rlimit *new_rlim)
816 {
817 	return security_ops->task_setrlimit(p, resource, new_rlim);
818 }
819 
820 int security_task_setscheduler(struct task_struct *p)
821 {
822 	return security_ops->task_setscheduler(p);
823 }
824 
825 int security_task_getscheduler(struct task_struct *p)
826 {
827 	return security_ops->task_getscheduler(p);
828 }
829 
830 int security_task_movememory(struct task_struct *p)
831 {
832 	return security_ops->task_movememory(p);
833 }
834 
835 int security_task_kill(struct task_struct *p, struct siginfo *info,
836 			int sig, u32 secid)
837 {
838 	return security_ops->task_kill(p, info, sig, secid);
839 }
840 
841 int security_task_wait(struct task_struct *p)
842 {
843 	return security_ops->task_wait(p);
844 }
845 
846 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
847 			 unsigned long arg4, unsigned long arg5)
848 {
849 	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
850 }
851 
852 void security_task_to_inode(struct task_struct *p, struct inode *inode)
853 {
854 	security_ops->task_to_inode(p, inode);
855 }
856 
857 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
858 {
859 	return security_ops->ipc_permission(ipcp, flag);
860 }
861 
862 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
863 {
864 	security_ops->ipc_getsecid(ipcp, secid);
865 }
866 
867 int security_msg_msg_alloc(struct msg_msg *msg)
868 {
869 	return security_ops->msg_msg_alloc_security(msg);
870 }
871 
872 void security_msg_msg_free(struct msg_msg *msg)
873 {
874 	security_ops->msg_msg_free_security(msg);
875 }
876 
877 int security_msg_queue_alloc(struct msg_queue *msq)
878 {
879 	return security_ops->msg_queue_alloc_security(msq);
880 }
881 
882 void security_msg_queue_free(struct msg_queue *msq)
883 {
884 	security_ops->msg_queue_free_security(msq);
885 }
886 
887 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
888 {
889 	return security_ops->msg_queue_associate(msq, msqflg);
890 }
891 
892 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
893 {
894 	return security_ops->msg_queue_msgctl(msq, cmd);
895 }
896 
897 int security_msg_queue_msgsnd(struct msg_queue *msq,
898 			       struct msg_msg *msg, int msqflg)
899 {
900 	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
901 }
902 
903 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
904 			       struct task_struct *target, long type, int mode)
905 {
906 	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
907 }
908 
909 int security_shm_alloc(struct shmid_kernel *shp)
910 {
911 	return security_ops->shm_alloc_security(shp);
912 }
913 
914 void security_shm_free(struct shmid_kernel *shp)
915 {
916 	security_ops->shm_free_security(shp);
917 }
918 
919 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
920 {
921 	return security_ops->shm_associate(shp, shmflg);
922 }
923 
924 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
925 {
926 	return security_ops->shm_shmctl(shp, cmd);
927 }
928 
929 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
930 {
931 	return security_ops->shm_shmat(shp, shmaddr, shmflg);
932 }
933 
934 int security_sem_alloc(struct sem_array *sma)
935 {
936 	return security_ops->sem_alloc_security(sma);
937 }
938 
939 void security_sem_free(struct sem_array *sma)
940 {
941 	security_ops->sem_free_security(sma);
942 }
943 
944 int security_sem_associate(struct sem_array *sma, int semflg)
945 {
946 	return security_ops->sem_associate(sma, semflg);
947 }
948 
949 int security_sem_semctl(struct sem_array *sma, int cmd)
950 {
951 	return security_ops->sem_semctl(sma, cmd);
952 }
953 
954 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
955 			unsigned nsops, int alter)
956 {
957 	return security_ops->sem_semop(sma, sops, nsops, alter);
958 }
959 
960 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
961 {
962 	if (unlikely(inode && IS_PRIVATE(inode)))
963 		return;
964 	security_ops->d_instantiate(dentry, inode);
965 }
966 EXPORT_SYMBOL(security_d_instantiate);
967 
968 int security_getprocattr(struct task_struct *p, char *name, char **value)
969 {
970 	return security_ops->getprocattr(p, name, value);
971 }
972 
973 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
974 {
975 	return security_ops->setprocattr(p, name, value, size);
976 }
977 
978 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
979 {
980 	return security_ops->netlink_send(sk, skb);
981 }
982 
983 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
984 {
985 	return security_ops->secid_to_secctx(secid, secdata, seclen);
986 }
987 EXPORT_SYMBOL(security_secid_to_secctx);
988 
989 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
990 {
991 	return security_ops->secctx_to_secid(secdata, seclen, secid);
992 }
993 EXPORT_SYMBOL(security_secctx_to_secid);
994 
995 void security_release_secctx(char *secdata, u32 seclen)
996 {
997 	security_ops->release_secctx(secdata, seclen);
998 }
999 EXPORT_SYMBOL(security_release_secctx);
1000 
1001 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1002 {
1003 	return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1004 }
1005 EXPORT_SYMBOL(security_inode_notifysecctx);
1006 
1007 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1008 {
1009 	return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1010 }
1011 EXPORT_SYMBOL(security_inode_setsecctx);
1012 
1013 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1014 {
1015 	return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1016 }
1017 EXPORT_SYMBOL(security_inode_getsecctx);
1018 
1019 #ifdef CONFIG_SECURITY_NETWORK
1020 
1021 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1022 {
1023 	return security_ops->unix_stream_connect(sock, other, newsk);
1024 }
1025 EXPORT_SYMBOL(security_unix_stream_connect);
1026 
1027 int security_unix_may_send(struct socket *sock,  struct socket *other)
1028 {
1029 	return security_ops->unix_may_send(sock, other);
1030 }
1031 EXPORT_SYMBOL(security_unix_may_send);
1032 
1033 int security_socket_create(int family, int type, int protocol, int kern)
1034 {
1035 	return security_ops->socket_create(family, type, protocol, kern);
1036 }
1037 
1038 int security_socket_post_create(struct socket *sock, int family,
1039 				int type, int protocol, int kern)
1040 {
1041 	return security_ops->socket_post_create(sock, family, type,
1042 						protocol, kern);
1043 }
1044 
1045 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1046 {
1047 	return security_ops->socket_bind(sock, address, addrlen);
1048 }
1049 
1050 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1051 {
1052 	return security_ops->socket_connect(sock, address, addrlen);
1053 }
1054 
1055 int security_socket_listen(struct socket *sock, int backlog)
1056 {
1057 	return security_ops->socket_listen(sock, backlog);
1058 }
1059 
1060 int security_socket_accept(struct socket *sock, struct socket *newsock)
1061 {
1062 	return security_ops->socket_accept(sock, newsock);
1063 }
1064 
1065 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1066 {
1067 	return security_ops->socket_sendmsg(sock, msg, size);
1068 }
1069 
1070 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1071 			    int size, int flags)
1072 {
1073 	return security_ops->socket_recvmsg(sock, msg, size, flags);
1074 }
1075 
1076 int security_socket_getsockname(struct socket *sock)
1077 {
1078 	return security_ops->socket_getsockname(sock);
1079 }
1080 
1081 int security_socket_getpeername(struct socket *sock)
1082 {
1083 	return security_ops->socket_getpeername(sock);
1084 }
1085 
1086 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1087 {
1088 	return security_ops->socket_getsockopt(sock, level, optname);
1089 }
1090 
1091 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1092 {
1093 	return security_ops->socket_setsockopt(sock, level, optname);
1094 }
1095 
1096 int security_socket_shutdown(struct socket *sock, int how)
1097 {
1098 	return security_ops->socket_shutdown(sock, how);
1099 }
1100 
1101 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1102 {
1103 	return security_ops->socket_sock_rcv_skb(sk, skb);
1104 }
1105 EXPORT_SYMBOL(security_sock_rcv_skb);
1106 
1107 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1108 				      int __user *optlen, unsigned len)
1109 {
1110 	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1111 }
1112 
1113 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1114 {
1115 	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1116 }
1117 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1118 
1119 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1120 {
1121 	return security_ops->sk_alloc_security(sk, family, priority);
1122 }
1123 
1124 void security_sk_free(struct sock *sk)
1125 {
1126 	security_ops->sk_free_security(sk);
1127 }
1128 
1129 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1130 {
1131 	security_ops->sk_clone_security(sk, newsk);
1132 }
1133 EXPORT_SYMBOL(security_sk_clone);
1134 
1135 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1136 {
1137 	security_ops->sk_getsecid(sk, &fl->flowi_secid);
1138 }
1139 EXPORT_SYMBOL(security_sk_classify_flow);
1140 
1141 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1142 {
1143 	security_ops->req_classify_flow(req, fl);
1144 }
1145 EXPORT_SYMBOL(security_req_classify_flow);
1146 
1147 void security_sock_graft(struct sock *sk, struct socket *parent)
1148 {
1149 	security_ops->sock_graft(sk, parent);
1150 }
1151 EXPORT_SYMBOL(security_sock_graft);
1152 
1153 int security_inet_conn_request(struct sock *sk,
1154 			struct sk_buff *skb, struct request_sock *req)
1155 {
1156 	return security_ops->inet_conn_request(sk, skb, req);
1157 }
1158 EXPORT_SYMBOL(security_inet_conn_request);
1159 
1160 void security_inet_csk_clone(struct sock *newsk,
1161 			const struct request_sock *req)
1162 {
1163 	security_ops->inet_csk_clone(newsk, req);
1164 }
1165 
1166 void security_inet_conn_established(struct sock *sk,
1167 			struct sk_buff *skb)
1168 {
1169 	security_ops->inet_conn_established(sk, skb);
1170 }
1171 
1172 int security_secmark_relabel_packet(u32 secid)
1173 {
1174 	return security_ops->secmark_relabel_packet(secid);
1175 }
1176 EXPORT_SYMBOL(security_secmark_relabel_packet);
1177 
1178 void security_secmark_refcount_inc(void)
1179 {
1180 	security_ops->secmark_refcount_inc();
1181 }
1182 EXPORT_SYMBOL(security_secmark_refcount_inc);
1183 
1184 void security_secmark_refcount_dec(void)
1185 {
1186 	security_ops->secmark_refcount_dec();
1187 }
1188 EXPORT_SYMBOL(security_secmark_refcount_dec);
1189 
1190 int security_tun_dev_create(void)
1191 {
1192 	return security_ops->tun_dev_create();
1193 }
1194 EXPORT_SYMBOL(security_tun_dev_create);
1195 
1196 void security_tun_dev_post_create(struct sock *sk)
1197 {
1198 	return security_ops->tun_dev_post_create(sk);
1199 }
1200 EXPORT_SYMBOL(security_tun_dev_post_create);
1201 
1202 int security_tun_dev_attach(struct sock *sk)
1203 {
1204 	return security_ops->tun_dev_attach(sk);
1205 }
1206 EXPORT_SYMBOL(security_tun_dev_attach);
1207 
1208 #endif	/* CONFIG_SECURITY_NETWORK */
1209 
1210 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1211 
1212 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1213 {
1214 	return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1215 }
1216 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1217 
1218 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1219 			      struct xfrm_sec_ctx **new_ctxp)
1220 {
1221 	return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1222 }
1223 
1224 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1225 {
1226 	security_ops->xfrm_policy_free_security(ctx);
1227 }
1228 EXPORT_SYMBOL(security_xfrm_policy_free);
1229 
1230 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1231 {
1232 	return security_ops->xfrm_policy_delete_security(ctx);
1233 }
1234 
1235 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1236 {
1237 	return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1238 }
1239 EXPORT_SYMBOL(security_xfrm_state_alloc);
1240 
1241 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1242 				      struct xfrm_sec_ctx *polsec, u32 secid)
1243 {
1244 	if (!polsec)
1245 		return 0;
1246 	/*
1247 	 * We want the context to be taken from secid which is usually
1248 	 * from the sock.
1249 	 */
1250 	return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1251 }
1252 
1253 int security_xfrm_state_delete(struct xfrm_state *x)
1254 {
1255 	return security_ops->xfrm_state_delete_security(x);
1256 }
1257 EXPORT_SYMBOL(security_xfrm_state_delete);
1258 
1259 void security_xfrm_state_free(struct xfrm_state *x)
1260 {
1261 	security_ops->xfrm_state_free_security(x);
1262 }
1263 
1264 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1265 {
1266 	return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1267 }
1268 
1269 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1270 				       struct xfrm_policy *xp,
1271 				       const struct flowi *fl)
1272 {
1273 	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1274 }
1275 
1276 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1277 {
1278 	return security_ops->xfrm_decode_session(skb, secid, 1);
1279 }
1280 
1281 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1282 {
1283 	int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1284 
1285 	BUG_ON(rc);
1286 }
1287 EXPORT_SYMBOL(security_skb_classify_flow);
1288 
1289 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1290 
1291 #ifdef CONFIG_KEYS
1292 
1293 int security_key_alloc(struct key *key, const struct cred *cred,
1294 		       unsigned long flags)
1295 {
1296 	return security_ops->key_alloc(key, cred, flags);
1297 }
1298 
1299 void security_key_free(struct key *key)
1300 {
1301 	security_ops->key_free(key);
1302 }
1303 
1304 int security_key_permission(key_ref_t key_ref,
1305 			    const struct cred *cred, key_perm_t perm)
1306 {
1307 	return security_ops->key_permission(key_ref, cred, perm);
1308 }
1309 
1310 int security_key_getsecurity(struct key *key, char **_buffer)
1311 {
1312 	return security_ops->key_getsecurity(key, _buffer);
1313 }
1314 
1315 #endif	/* CONFIG_KEYS */
1316 
1317 #ifdef CONFIG_AUDIT
1318 
1319 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1320 {
1321 	return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1322 }
1323 
1324 int security_audit_rule_known(struct audit_krule *krule)
1325 {
1326 	return security_ops->audit_rule_known(krule);
1327 }
1328 
1329 void security_audit_rule_free(void *lsmrule)
1330 {
1331 	security_ops->audit_rule_free(lsmrule);
1332 }
1333 
1334 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1335 			      struct audit_context *actx)
1336 {
1337 	return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1338 }
1339 
1340 #endif /* CONFIG_AUDIT */
1341