1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Security plug functions 4 * 5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 8 * Copyright (C) 2016 Mellanox Technologies 9 */ 10 11 #define pr_fmt(fmt) "LSM: " fmt 12 13 #include <linux/bpf.h> 14 #include <linux/capability.h> 15 #include <linux/dcache.h> 16 #include <linux/export.h> 17 #include <linux/init.h> 18 #include <linux/kernel.h> 19 #include <linux/lsm_hooks.h> 20 #include <linux/integrity.h> 21 #include <linux/ima.h> 22 #include <linux/evm.h> 23 #include <linux/fsnotify.h> 24 #include <linux/mman.h> 25 #include <linux/mount.h> 26 #include <linux/personality.h> 27 #include <linux/backing-dev.h> 28 #include <linux/string.h> 29 #include <linux/msg.h> 30 #include <net/flow.h> 31 32 #define MAX_LSM_EVM_XATTR 2 33 34 /* How many LSMs were built into the kernel? */ 35 #define LSM_COUNT (__end_lsm_info - __start_lsm_info) 36 37 /* 38 * These are descriptions of the reasons that can be passed to the 39 * security_locked_down() LSM hook. Placing this array here allows 40 * all security modules to use the same descriptions for auditing 41 * purposes. 42 */ 43 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = { 44 [LOCKDOWN_NONE] = "none", 45 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading", 46 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port", 47 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access", 48 [LOCKDOWN_KEXEC] = "kexec of unsigned images", 49 [LOCKDOWN_HIBERNATION] = "hibernation", 50 [LOCKDOWN_PCI_ACCESS] = "direct PCI access", 51 [LOCKDOWN_IOPORT] = "raw io port access", 52 [LOCKDOWN_MSR] = "raw MSR access", 53 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables", 54 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage", 55 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO", 56 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters", 57 [LOCKDOWN_MMIOTRACE] = "unsafe mmio", 58 [LOCKDOWN_DEBUGFS] = "debugfs access", 59 [LOCKDOWN_XMON_WR] = "xmon write access", 60 [LOCKDOWN_INTEGRITY_MAX] = "integrity", 61 [LOCKDOWN_KCORE] = "/proc/kcore access", 62 [LOCKDOWN_KPROBES] = "use of kprobes", 63 [LOCKDOWN_BPF_READ] = "use of bpf to read kernel RAM", 64 [LOCKDOWN_PERF] = "unsafe use of perf", 65 [LOCKDOWN_TRACEFS] = "use of tracefs", 66 [LOCKDOWN_XMON_RW] = "xmon read and write access", 67 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality", 68 }; 69 70 struct security_hook_heads security_hook_heads __lsm_ro_after_init; 71 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain); 72 73 static struct kmem_cache *lsm_file_cache; 74 static struct kmem_cache *lsm_inode_cache; 75 76 char *lsm_names; 77 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init; 78 79 /* Boot-time LSM user choice */ 80 static __initdata const char *chosen_lsm_order; 81 static __initdata const char *chosen_major_lsm; 82 83 static __initconst const char * const builtin_lsm_order = CONFIG_LSM; 84 85 /* Ordered list of LSMs to initialize. */ 86 static __initdata struct lsm_info **ordered_lsms; 87 static __initdata struct lsm_info *exclusive; 88 89 static __initdata bool debug; 90 #define init_debug(...) \ 91 do { \ 92 if (debug) \ 93 pr_info(__VA_ARGS__); \ 94 } while (0) 95 96 static bool __init is_enabled(struct lsm_info *lsm) 97 { 98 if (!lsm->enabled) 99 return false; 100 101 return *lsm->enabled; 102 } 103 104 /* Mark an LSM's enabled flag. */ 105 static int lsm_enabled_true __initdata = 1; 106 static int lsm_enabled_false __initdata = 0; 107 static void __init set_enabled(struct lsm_info *lsm, bool enabled) 108 { 109 /* 110 * When an LSM hasn't configured an enable variable, we can use 111 * a hard-coded location for storing the default enabled state. 112 */ 113 if (!lsm->enabled) { 114 if (enabled) 115 lsm->enabled = &lsm_enabled_true; 116 else 117 lsm->enabled = &lsm_enabled_false; 118 } else if (lsm->enabled == &lsm_enabled_true) { 119 if (!enabled) 120 lsm->enabled = &lsm_enabled_false; 121 } else if (lsm->enabled == &lsm_enabled_false) { 122 if (enabled) 123 lsm->enabled = &lsm_enabled_true; 124 } else { 125 *lsm->enabled = enabled; 126 } 127 } 128 129 /* Is an LSM already listed in the ordered LSMs list? */ 130 static bool __init exists_ordered_lsm(struct lsm_info *lsm) 131 { 132 struct lsm_info **check; 133 134 for (check = ordered_lsms; *check; check++) 135 if (*check == lsm) 136 return true; 137 138 return false; 139 } 140 141 /* Append an LSM to the list of ordered LSMs to initialize. */ 142 static int last_lsm __initdata; 143 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from) 144 { 145 /* Ignore duplicate selections. */ 146 if (exists_ordered_lsm(lsm)) 147 return; 148 149 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from)) 150 return; 151 152 /* Enable this LSM, if it is not already set. */ 153 if (!lsm->enabled) 154 lsm->enabled = &lsm_enabled_true; 155 ordered_lsms[last_lsm++] = lsm; 156 157 init_debug("%s ordering: %s (%sabled)\n", from, lsm->name, 158 is_enabled(lsm) ? "en" : "dis"); 159 } 160 161 /* Is an LSM allowed to be initialized? */ 162 static bool __init lsm_allowed(struct lsm_info *lsm) 163 { 164 /* Skip if the LSM is disabled. */ 165 if (!is_enabled(lsm)) 166 return false; 167 168 /* Not allowed if another exclusive LSM already initialized. */ 169 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) { 170 init_debug("exclusive disabled: %s\n", lsm->name); 171 return false; 172 } 173 174 return true; 175 } 176 177 static void __init lsm_set_blob_size(int *need, int *lbs) 178 { 179 int offset; 180 181 if (*need > 0) { 182 offset = *lbs; 183 *lbs += *need; 184 *need = offset; 185 } 186 } 187 188 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed) 189 { 190 if (!needed) 191 return; 192 193 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred); 194 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file); 195 /* 196 * The inode blob gets an rcu_head in addition to 197 * what the modules might need. 198 */ 199 if (needed->lbs_inode && blob_sizes.lbs_inode == 0) 200 blob_sizes.lbs_inode = sizeof(struct rcu_head); 201 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode); 202 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc); 203 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg); 204 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task); 205 } 206 207 /* Prepare LSM for initialization. */ 208 static void __init prepare_lsm(struct lsm_info *lsm) 209 { 210 int enabled = lsm_allowed(lsm); 211 212 /* Record enablement (to handle any following exclusive LSMs). */ 213 set_enabled(lsm, enabled); 214 215 /* If enabled, do pre-initialization work. */ 216 if (enabled) { 217 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) { 218 exclusive = lsm; 219 init_debug("exclusive chosen: %s\n", lsm->name); 220 } 221 222 lsm_set_blob_sizes(lsm->blobs); 223 } 224 } 225 226 /* Initialize a given LSM, if it is enabled. */ 227 static void __init initialize_lsm(struct lsm_info *lsm) 228 { 229 if (is_enabled(lsm)) { 230 int ret; 231 232 init_debug("initializing %s\n", lsm->name); 233 ret = lsm->init(); 234 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); 235 } 236 } 237 238 /* Populate ordered LSMs list from comma-separated LSM name list. */ 239 static void __init ordered_lsm_parse(const char *order, const char *origin) 240 { 241 struct lsm_info *lsm; 242 char *sep, *name, *next; 243 244 /* LSM_ORDER_FIRST is always first. */ 245 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 246 if (lsm->order == LSM_ORDER_FIRST) 247 append_ordered_lsm(lsm, "first"); 248 } 249 250 /* Process "security=", if given. */ 251 if (chosen_major_lsm) { 252 struct lsm_info *major; 253 254 /* 255 * To match the original "security=" behavior, this 256 * explicitly does NOT fallback to another Legacy Major 257 * if the selected one was separately disabled: disable 258 * all non-matching Legacy Major LSMs. 259 */ 260 for (major = __start_lsm_info; major < __end_lsm_info; 261 major++) { 262 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) && 263 strcmp(major->name, chosen_major_lsm) != 0) { 264 set_enabled(major, false); 265 init_debug("security=%s disabled: %s\n", 266 chosen_major_lsm, major->name); 267 } 268 } 269 } 270 271 sep = kstrdup(order, GFP_KERNEL); 272 next = sep; 273 /* Walk the list, looking for matching LSMs. */ 274 while ((name = strsep(&next, ",")) != NULL) { 275 bool found = false; 276 277 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 278 if (lsm->order == LSM_ORDER_MUTABLE && 279 strcmp(lsm->name, name) == 0) { 280 append_ordered_lsm(lsm, origin); 281 found = true; 282 } 283 } 284 285 if (!found) 286 init_debug("%s ignored: %s\n", origin, name); 287 } 288 289 /* Process "security=", if given. */ 290 if (chosen_major_lsm) { 291 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 292 if (exists_ordered_lsm(lsm)) 293 continue; 294 if (strcmp(lsm->name, chosen_major_lsm) == 0) 295 append_ordered_lsm(lsm, "security="); 296 } 297 } 298 299 /* Disable all LSMs not in the ordered list. */ 300 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 301 if (exists_ordered_lsm(lsm)) 302 continue; 303 set_enabled(lsm, false); 304 init_debug("%s disabled: %s\n", origin, lsm->name); 305 } 306 307 kfree(sep); 308 } 309 310 static void __init lsm_early_cred(struct cred *cred); 311 static void __init lsm_early_task(struct task_struct *task); 312 313 static int lsm_append(const char *new, char **result); 314 315 static void __init ordered_lsm_init(void) 316 { 317 struct lsm_info **lsm; 318 319 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms), 320 GFP_KERNEL); 321 322 if (chosen_lsm_order) { 323 if (chosen_major_lsm) { 324 pr_info("security= is ignored because it is superseded by lsm=\n"); 325 chosen_major_lsm = NULL; 326 } 327 ordered_lsm_parse(chosen_lsm_order, "cmdline"); 328 } else 329 ordered_lsm_parse(builtin_lsm_order, "builtin"); 330 331 for (lsm = ordered_lsms; *lsm; lsm++) 332 prepare_lsm(*lsm); 333 334 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred); 335 init_debug("file blob size = %d\n", blob_sizes.lbs_file); 336 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode); 337 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc); 338 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg); 339 init_debug("task blob size = %d\n", blob_sizes.lbs_task); 340 341 /* 342 * Create any kmem_caches needed for blobs 343 */ 344 if (blob_sizes.lbs_file) 345 lsm_file_cache = kmem_cache_create("lsm_file_cache", 346 blob_sizes.lbs_file, 0, 347 SLAB_PANIC, NULL); 348 if (blob_sizes.lbs_inode) 349 lsm_inode_cache = kmem_cache_create("lsm_inode_cache", 350 blob_sizes.lbs_inode, 0, 351 SLAB_PANIC, NULL); 352 353 lsm_early_cred((struct cred *) current->cred); 354 lsm_early_task(current); 355 for (lsm = ordered_lsms; *lsm; lsm++) 356 initialize_lsm(*lsm); 357 358 kfree(ordered_lsms); 359 } 360 361 int __init early_security_init(void) 362 { 363 int i; 364 struct hlist_head *list = (struct hlist_head *) &security_hook_heads; 365 struct lsm_info *lsm; 366 367 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head); 368 i++) 369 INIT_HLIST_HEAD(&list[i]); 370 371 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 372 if (!lsm->enabled) 373 lsm->enabled = &lsm_enabled_true; 374 prepare_lsm(lsm); 375 initialize_lsm(lsm); 376 } 377 378 return 0; 379 } 380 381 /** 382 * security_init - initializes the security framework 383 * 384 * This should be called early in the kernel initialization sequence. 385 */ 386 int __init security_init(void) 387 { 388 struct lsm_info *lsm; 389 390 pr_info("Security Framework initializing\n"); 391 392 /* 393 * Append the names of the early LSM modules now that kmalloc() is 394 * available 395 */ 396 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 397 if (lsm->enabled) 398 lsm_append(lsm->name, &lsm_names); 399 } 400 401 /* Load LSMs in specified order. */ 402 ordered_lsm_init(); 403 404 return 0; 405 } 406 407 /* Save user chosen LSM */ 408 static int __init choose_major_lsm(char *str) 409 { 410 chosen_major_lsm = str; 411 return 1; 412 } 413 __setup("security=", choose_major_lsm); 414 415 /* Explicitly choose LSM initialization order. */ 416 static int __init choose_lsm_order(char *str) 417 { 418 chosen_lsm_order = str; 419 return 1; 420 } 421 __setup("lsm=", choose_lsm_order); 422 423 /* Enable LSM order debugging. */ 424 static int __init enable_debug(char *str) 425 { 426 debug = true; 427 return 1; 428 } 429 __setup("lsm.debug", enable_debug); 430 431 static bool match_last_lsm(const char *list, const char *lsm) 432 { 433 const char *last; 434 435 if (WARN_ON(!list || !lsm)) 436 return false; 437 last = strrchr(list, ','); 438 if (last) 439 /* Pass the comma, strcmp() will check for '\0' */ 440 last++; 441 else 442 last = list; 443 return !strcmp(last, lsm); 444 } 445 446 static int lsm_append(const char *new, char **result) 447 { 448 char *cp; 449 450 if (*result == NULL) { 451 *result = kstrdup(new, GFP_KERNEL); 452 if (*result == NULL) 453 return -ENOMEM; 454 } else { 455 /* Check if it is the last registered name */ 456 if (match_last_lsm(*result, new)) 457 return 0; 458 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 459 if (cp == NULL) 460 return -ENOMEM; 461 kfree(*result); 462 *result = cp; 463 } 464 return 0; 465 } 466 467 /** 468 * security_add_hooks - Add a modules hooks to the hook lists. 469 * @hooks: the hooks to add 470 * @count: the number of hooks to add 471 * @lsm: the name of the security module 472 * 473 * Each LSM has to register its hooks with the infrastructure. 474 */ 475 void __init security_add_hooks(struct security_hook_list *hooks, int count, 476 char *lsm) 477 { 478 int i; 479 480 for (i = 0; i < count; i++) { 481 hooks[i].lsm = lsm; 482 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 483 } 484 485 /* 486 * Don't try to append during early_security_init(), we'll come back 487 * and fix this up afterwards. 488 */ 489 if (slab_is_available()) { 490 if (lsm_append(lsm, &lsm_names) < 0) 491 panic("%s - Cannot get early memory.\n", __func__); 492 } 493 } 494 495 int call_blocking_lsm_notifier(enum lsm_event event, void *data) 496 { 497 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain, 498 event, data); 499 } 500 EXPORT_SYMBOL(call_blocking_lsm_notifier); 501 502 int register_blocking_lsm_notifier(struct notifier_block *nb) 503 { 504 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain, 505 nb); 506 } 507 EXPORT_SYMBOL(register_blocking_lsm_notifier); 508 509 int unregister_blocking_lsm_notifier(struct notifier_block *nb) 510 { 511 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain, 512 nb); 513 } 514 EXPORT_SYMBOL(unregister_blocking_lsm_notifier); 515 516 /** 517 * lsm_cred_alloc - allocate a composite cred blob 518 * @cred: the cred that needs a blob 519 * @gfp: allocation type 520 * 521 * Allocate the cred blob for all the modules 522 * 523 * Returns 0, or -ENOMEM if memory can't be allocated. 524 */ 525 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp) 526 { 527 if (blob_sizes.lbs_cred == 0) { 528 cred->security = NULL; 529 return 0; 530 } 531 532 cred->security = kzalloc(blob_sizes.lbs_cred, gfp); 533 if (cred->security == NULL) 534 return -ENOMEM; 535 return 0; 536 } 537 538 /** 539 * lsm_early_cred - during initialization allocate a composite cred blob 540 * @cred: the cred that needs a blob 541 * 542 * Allocate the cred blob for all the modules 543 */ 544 static void __init lsm_early_cred(struct cred *cred) 545 { 546 int rc = lsm_cred_alloc(cred, GFP_KERNEL); 547 548 if (rc) 549 panic("%s: Early cred alloc failed.\n", __func__); 550 } 551 552 /** 553 * lsm_file_alloc - allocate a composite file blob 554 * @file: the file that needs a blob 555 * 556 * Allocate the file blob for all the modules 557 * 558 * Returns 0, or -ENOMEM if memory can't be allocated. 559 */ 560 static int lsm_file_alloc(struct file *file) 561 { 562 if (!lsm_file_cache) { 563 file->f_security = NULL; 564 return 0; 565 } 566 567 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL); 568 if (file->f_security == NULL) 569 return -ENOMEM; 570 return 0; 571 } 572 573 /** 574 * lsm_inode_alloc - allocate a composite inode blob 575 * @inode: the inode that needs a blob 576 * 577 * Allocate the inode blob for all the modules 578 * 579 * Returns 0, or -ENOMEM if memory can't be allocated. 580 */ 581 int lsm_inode_alloc(struct inode *inode) 582 { 583 if (!lsm_inode_cache) { 584 inode->i_security = NULL; 585 return 0; 586 } 587 588 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS); 589 if (inode->i_security == NULL) 590 return -ENOMEM; 591 return 0; 592 } 593 594 /** 595 * lsm_task_alloc - allocate a composite task blob 596 * @task: the task that needs a blob 597 * 598 * Allocate the task blob for all the modules 599 * 600 * Returns 0, or -ENOMEM if memory can't be allocated. 601 */ 602 static int lsm_task_alloc(struct task_struct *task) 603 { 604 if (blob_sizes.lbs_task == 0) { 605 task->security = NULL; 606 return 0; 607 } 608 609 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL); 610 if (task->security == NULL) 611 return -ENOMEM; 612 return 0; 613 } 614 615 /** 616 * lsm_ipc_alloc - allocate a composite ipc blob 617 * @kip: the ipc that needs a blob 618 * 619 * Allocate the ipc blob for all the modules 620 * 621 * Returns 0, or -ENOMEM if memory can't be allocated. 622 */ 623 static int lsm_ipc_alloc(struct kern_ipc_perm *kip) 624 { 625 if (blob_sizes.lbs_ipc == 0) { 626 kip->security = NULL; 627 return 0; 628 } 629 630 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL); 631 if (kip->security == NULL) 632 return -ENOMEM; 633 return 0; 634 } 635 636 /** 637 * lsm_msg_msg_alloc - allocate a composite msg_msg blob 638 * @mp: the msg_msg that needs a blob 639 * 640 * Allocate the ipc blob for all the modules 641 * 642 * Returns 0, or -ENOMEM if memory can't be allocated. 643 */ 644 static int lsm_msg_msg_alloc(struct msg_msg *mp) 645 { 646 if (blob_sizes.lbs_msg_msg == 0) { 647 mp->security = NULL; 648 return 0; 649 } 650 651 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL); 652 if (mp->security == NULL) 653 return -ENOMEM; 654 return 0; 655 } 656 657 /** 658 * lsm_early_task - during initialization allocate a composite task blob 659 * @task: the task that needs a blob 660 * 661 * Allocate the task blob for all the modules 662 */ 663 static void __init lsm_early_task(struct task_struct *task) 664 { 665 int rc = lsm_task_alloc(task); 666 667 if (rc) 668 panic("%s: Early task alloc failed.\n", __func__); 669 } 670 671 /* 672 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and 673 * can be accessed with: 674 * 675 * LSM_RET_DEFAULT(<hook_name>) 676 * 677 * The macros below define static constants for the default value of each 678 * LSM hook. 679 */ 680 #define LSM_RET_DEFAULT(NAME) (NAME##_default) 681 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME) 682 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \ 683 static const int LSM_RET_DEFAULT(NAME) = (DEFAULT); 684 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 685 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME) 686 687 #include <linux/lsm_hook_defs.h> 688 #undef LSM_HOOK 689 690 /* 691 * Hook list operation macros. 692 * 693 * call_void_hook: 694 * This is a hook that does not return a value. 695 * 696 * call_int_hook: 697 * This is a hook that returns a value. 698 */ 699 700 #define call_void_hook(FUNC, ...) \ 701 do { \ 702 struct security_hook_list *P; \ 703 \ 704 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 705 P->hook.FUNC(__VA_ARGS__); \ 706 } while (0) 707 708 #define call_int_hook(FUNC, IRC, ...) ({ \ 709 int RC = IRC; \ 710 do { \ 711 struct security_hook_list *P; \ 712 \ 713 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 714 RC = P->hook.FUNC(__VA_ARGS__); \ 715 if (RC != 0) \ 716 break; \ 717 } \ 718 } while (0); \ 719 RC; \ 720 }) 721 722 /* Security operations */ 723 724 int security_binder_set_context_mgr(struct task_struct *mgr) 725 { 726 return call_int_hook(binder_set_context_mgr, 0, mgr); 727 } 728 729 int security_binder_transaction(struct task_struct *from, 730 struct task_struct *to) 731 { 732 return call_int_hook(binder_transaction, 0, from, to); 733 } 734 735 int security_binder_transfer_binder(struct task_struct *from, 736 struct task_struct *to) 737 { 738 return call_int_hook(binder_transfer_binder, 0, from, to); 739 } 740 741 int security_binder_transfer_file(struct task_struct *from, 742 struct task_struct *to, struct file *file) 743 { 744 return call_int_hook(binder_transfer_file, 0, from, to, file); 745 } 746 747 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 748 { 749 return call_int_hook(ptrace_access_check, 0, child, mode); 750 } 751 752 int security_ptrace_traceme(struct task_struct *parent) 753 { 754 return call_int_hook(ptrace_traceme, 0, parent); 755 } 756 757 int security_capget(struct task_struct *target, 758 kernel_cap_t *effective, 759 kernel_cap_t *inheritable, 760 kernel_cap_t *permitted) 761 { 762 return call_int_hook(capget, 0, target, 763 effective, inheritable, permitted); 764 } 765 766 int security_capset(struct cred *new, const struct cred *old, 767 const kernel_cap_t *effective, 768 const kernel_cap_t *inheritable, 769 const kernel_cap_t *permitted) 770 { 771 return call_int_hook(capset, 0, new, old, 772 effective, inheritable, permitted); 773 } 774 775 int security_capable(const struct cred *cred, 776 struct user_namespace *ns, 777 int cap, 778 unsigned int opts) 779 { 780 return call_int_hook(capable, 0, cred, ns, cap, opts); 781 } 782 783 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 784 { 785 return call_int_hook(quotactl, 0, cmds, type, id, sb); 786 } 787 788 int security_quota_on(struct dentry *dentry) 789 { 790 return call_int_hook(quota_on, 0, dentry); 791 } 792 793 int security_syslog(int type) 794 { 795 return call_int_hook(syslog, 0, type); 796 } 797 798 int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 799 { 800 return call_int_hook(settime, 0, ts, tz); 801 } 802 803 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 804 { 805 struct security_hook_list *hp; 806 int cap_sys_admin = 1; 807 int rc; 808 809 /* 810 * The module will respond with a positive value if 811 * it thinks the __vm_enough_memory() call should be 812 * made with the cap_sys_admin set. If all of the modules 813 * agree that it should be set it will. If any module 814 * thinks it should not be set it won't. 815 */ 816 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 817 rc = hp->hook.vm_enough_memory(mm, pages); 818 if (rc <= 0) { 819 cap_sys_admin = 0; 820 break; 821 } 822 } 823 return __vm_enough_memory(mm, pages, cap_sys_admin); 824 } 825 826 int security_bprm_set_creds(struct linux_binprm *bprm) 827 { 828 return call_int_hook(bprm_set_creds, 0, bprm); 829 } 830 831 int security_bprm_check(struct linux_binprm *bprm) 832 { 833 int ret; 834 835 ret = call_int_hook(bprm_check_security, 0, bprm); 836 if (ret) 837 return ret; 838 return ima_bprm_check(bprm); 839 } 840 841 void security_bprm_committing_creds(struct linux_binprm *bprm) 842 { 843 call_void_hook(bprm_committing_creds, bprm); 844 } 845 846 void security_bprm_committed_creds(struct linux_binprm *bprm) 847 { 848 call_void_hook(bprm_committed_creds, bprm); 849 } 850 851 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) 852 { 853 return call_int_hook(fs_context_dup, 0, fc, src_fc); 854 } 855 856 int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param) 857 { 858 return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param); 859 } 860 861 int security_sb_alloc(struct super_block *sb) 862 { 863 return call_int_hook(sb_alloc_security, 0, sb); 864 } 865 866 void security_sb_free(struct super_block *sb) 867 { 868 call_void_hook(sb_free_security, sb); 869 } 870 871 void security_free_mnt_opts(void **mnt_opts) 872 { 873 if (!*mnt_opts) 874 return; 875 call_void_hook(sb_free_mnt_opts, *mnt_opts); 876 *mnt_opts = NULL; 877 } 878 EXPORT_SYMBOL(security_free_mnt_opts); 879 880 int security_sb_eat_lsm_opts(char *options, void **mnt_opts) 881 { 882 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts); 883 } 884 EXPORT_SYMBOL(security_sb_eat_lsm_opts); 885 886 int security_sb_remount(struct super_block *sb, 887 void *mnt_opts) 888 { 889 return call_int_hook(sb_remount, 0, sb, mnt_opts); 890 } 891 EXPORT_SYMBOL(security_sb_remount); 892 893 int security_sb_kern_mount(struct super_block *sb) 894 { 895 return call_int_hook(sb_kern_mount, 0, sb); 896 } 897 898 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 899 { 900 return call_int_hook(sb_show_options, 0, m, sb); 901 } 902 903 int security_sb_statfs(struct dentry *dentry) 904 { 905 return call_int_hook(sb_statfs, 0, dentry); 906 } 907 908 int security_sb_mount(const char *dev_name, const struct path *path, 909 const char *type, unsigned long flags, void *data) 910 { 911 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data); 912 } 913 914 int security_sb_umount(struct vfsmount *mnt, int flags) 915 { 916 return call_int_hook(sb_umount, 0, mnt, flags); 917 } 918 919 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path) 920 { 921 return call_int_hook(sb_pivotroot, 0, old_path, new_path); 922 } 923 924 int security_sb_set_mnt_opts(struct super_block *sb, 925 void *mnt_opts, 926 unsigned long kern_flags, 927 unsigned long *set_kern_flags) 928 { 929 return call_int_hook(sb_set_mnt_opts, 930 mnt_opts ? -EOPNOTSUPP : 0, sb, 931 mnt_opts, kern_flags, set_kern_flags); 932 } 933 EXPORT_SYMBOL(security_sb_set_mnt_opts); 934 935 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 936 struct super_block *newsb, 937 unsigned long kern_flags, 938 unsigned long *set_kern_flags) 939 { 940 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb, 941 kern_flags, set_kern_flags); 942 } 943 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 944 945 int security_add_mnt_opt(const char *option, const char *val, int len, 946 void **mnt_opts) 947 { 948 return call_int_hook(sb_add_mnt_opt, -EINVAL, 949 option, val, len, mnt_opts); 950 } 951 EXPORT_SYMBOL(security_add_mnt_opt); 952 953 int security_move_mount(const struct path *from_path, const struct path *to_path) 954 { 955 return call_int_hook(move_mount, 0, from_path, to_path); 956 } 957 958 int security_path_notify(const struct path *path, u64 mask, 959 unsigned int obj_type) 960 { 961 return call_int_hook(path_notify, 0, path, mask, obj_type); 962 } 963 964 int security_inode_alloc(struct inode *inode) 965 { 966 int rc = lsm_inode_alloc(inode); 967 968 if (unlikely(rc)) 969 return rc; 970 rc = call_int_hook(inode_alloc_security, 0, inode); 971 if (unlikely(rc)) 972 security_inode_free(inode); 973 return rc; 974 } 975 976 static void inode_free_by_rcu(struct rcu_head *head) 977 { 978 /* 979 * The rcu head is at the start of the inode blob 980 */ 981 kmem_cache_free(lsm_inode_cache, head); 982 } 983 984 void security_inode_free(struct inode *inode) 985 { 986 integrity_inode_free(inode); 987 call_void_hook(inode_free_security, inode); 988 /* 989 * The inode may still be referenced in a path walk and 990 * a call to security_inode_permission() can be made 991 * after inode_free_security() is called. Ideally, the VFS 992 * wouldn't do this, but fixing that is a much harder 993 * job. For now, simply free the i_security via RCU, and 994 * leave the current inode->i_security pointer intact. 995 * The inode will be freed after the RCU grace period too. 996 */ 997 if (inode->i_security) 998 call_rcu((struct rcu_head *)inode->i_security, 999 inode_free_by_rcu); 1000 } 1001 1002 int security_dentry_init_security(struct dentry *dentry, int mode, 1003 const struct qstr *name, void **ctx, 1004 u32 *ctxlen) 1005 { 1006 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode, 1007 name, ctx, ctxlen); 1008 } 1009 EXPORT_SYMBOL(security_dentry_init_security); 1010 1011 int security_dentry_create_files_as(struct dentry *dentry, int mode, 1012 struct qstr *name, 1013 const struct cred *old, struct cred *new) 1014 { 1015 return call_int_hook(dentry_create_files_as, 0, dentry, mode, 1016 name, old, new); 1017 } 1018 EXPORT_SYMBOL(security_dentry_create_files_as); 1019 1020 int security_inode_init_security(struct inode *inode, struct inode *dir, 1021 const struct qstr *qstr, 1022 const initxattrs initxattrs, void *fs_data) 1023 { 1024 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 1025 struct xattr *lsm_xattr, *evm_xattr, *xattr; 1026 int ret; 1027 1028 if (unlikely(IS_PRIVATE(inode))) 1029 return 0; 1030 1031 if (!initxattrs) 1032 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, 1033 dir, qstr, NULL, NULL, NULL); 1034 memset(new_xattrs, 0, sizeof(new_xattrs)); 1035 lsm_xattr = new_xattrs; 1036 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr, 1037 &lsm_xattr->name, 1038 &lsm_xattr->value, 1039 &lsm_xattr->value_len); 1040 if (ret) 1041 goto out; 1042 1043 evm_xattr = lsm_xattr + 1; 1044 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 1045 if (ret) 1046 goto out; 1047 ret = initxattrs(inode, new_xattrs, fs_data); 1048 out: 1049 for (xattr = new_xattrs; xattr->value != NULL; xattr++) 1050 kfree(xattr->value); 1051 return (ret == -EOPNOTSUPP) ? 0 : ret; 1052 } 1053 EXPORT_SYMBOL(security_inode_init_security); 1054 1055 int security_old_inode_init_security(struct inode *inode, struct inode *dir, 1056 const struct qstr *qstr, const char **name, 1057 void **value, size_t *len) 1058 { 1059 if (unlikely(IS_PRIVATE(inode))) 1060 return -EOPNOTSUPP; 1061 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, 1062 qstr, name, value, len); 1063 } 1064 EXPORT_SYMBOL(security_old_inode_init_security); 1065 1066 #ifdef CONFIG_SECURITY_PATH 1067 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode, 1068 unsigned int dev) 1069 { 1070 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1071 return 0; 1072 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev); 1073 } 1074 EXPORT_SYMBOL(security_path_mknod); 1075 1076 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode) 1077 { 1078 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1079 return 0; 1080 return call_int_hook(path_mkdir, 0, dir, dentry, mode); 1081 } 1082 EXPORT_SYMBOL(security_path_mkdir); 1083 1084 int security_path_rmdir(const struct path *dir, struct dentry *dentry) 1085 { 1086 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1087 return 0; 1088 return call_int_hook(path_rmdir, 0, dir, dentry); 1089 } 1090 1091 int security_path_unlink(const struct path *dir, struct dentry *dentry) 1092 { 1093 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1094 return 0; 1095 return call_int_hook(path_unlink, 0, dir, dentry); 1096 } 1097 EXPORT_SYMBOL(security_path_unlink); 1098 1099 int security_path_symlink(const struct path *dir, struct dentry *dentry, 1100 const char *old_name) 1101 { 1102 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1103 return 0; 1104 return call_int_hook(path_symlink, 0, dir, dentry, old_name); 1105 } 1106 1107 int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 1108 struct dentry *new_dentry) 1109 { 1110 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1111 return 0; 1112 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry); 1113 } 1114 1115 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 1116 const struct path *new_dir, struct dentry *new_dentry, 1117 unsigned int flags) 1118 { 1119 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1120 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1121 return 0; 1122 1123 if (flags & RENAME_EXCHANGE) { 1124 int err = call_int_hook(path_rename, 0, new_dir, new_dentry, 1125 old_dir, old_dentry); 1126 if (err) 1127 return err; 1128 } 1129 1130 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir, 1131 new_dentry); 1132 } 1133 EXPORT_SYMBOL(security_path_rename); 1134 1135 int security_path_truncate(const struct path *path) 1136 { 1137 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1138 return 0; 1139 return call_int_hook(path_truncate, 0, path); 1140 } 1141 1142 int security_path_chmod(const struct path *path, umode_t mode) 1143 { 1144 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1145 return 0; 1146 return call_int_hook(path_chmod, 0, path, mode); 1147 } 1148 1149 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 1150 { 1151 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1152 return 0; 1153 return call_int_hook(path_chown, 0, path, uid, gid); 1154 } 1155 1156 int security_path_chroot(const struct path *path) 1157 { 1158 return call_int_hook(path_chroot, 0, path); 1159 } 1160 #endif 1161 1162 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 1163 { 1164 if (unlikely(IS_PRIVATE(dir))) 1165 return 0; 1166 return call_int_hook(inode_create, 0, dir, dentry, mode); 1167 } 1168 EXPORT_SYMBOL_GPL(security_inode_create); 1169 1170 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 1171 struct dentry *new_dentry) 1172 { 1173 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1174 return 0; 1175 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry); 1176 } 1177 1178 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 1179 { 1180 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1181 return 0; 1182 return call_int_hook(inode_unlink, 0, dir, dentry); 1183 } 1184 1185 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 1186 const char *old_name) 1187 { 1188 if (unlikely(IS_PRIVATE(dir))) 1189 return 0; 1190 return call_int_hook(inode_symlink, 0, dir, dentry, old_name); 1191 } 1192 1193 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1194 { 1195 if (unlikely(IS_PRIVATE(dir))) 1196 return 0; 1197 return call_int_hook(inode_mkdir, 0, dir, dentry, mode); 1198 } 1199 EXPORT_SYMBOL_GPL(security_inode_mkdir); 1200 1201 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 1202 { 1203 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1204 return 0; 1205 return call_int_hook(inode_rmdir, 0, dir, dentry); 1206 } 1207 1208 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 1209 { 1210 if (unlikely(IS_PRIVATE(dir))) 1211 return 0; 1212 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev); 1213 } 1214 1215 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 1216 struct inode *new_dir, struct dentry *new_dentry, 1217 unsigned int flags) 1218 { 1219 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1220 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1221 return 0; 1222 1223 if (flags & RENAME_EXCHANGE) { 1224 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry, 1225 old_dir, old_dentry); 1226 if (err) 1227 return err; 1228 } 1229 1230 return call_int_hook(inode_rename, 0, old_dir, old_dentry, 1231 new_dir, new_dentry); 1232 } 1233 1234 int security_inode_readlink(struct dentry *dentry) 1235 { 1236 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1237 return 0; 1238 return call_int_hook(inode_readlink, 0, dentry); 1239 } 1240 1241 int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 1242 bool rcu) 1243 { 1244 if (unlikely(IS_PRIVATE(inode))) 1245 return 0; 1246 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu); 1247 } 1248 1249 int security_inode_permission(struct inode *inode, int mask) 1250 { 1251 if (unlikely(IS_PRIVATE(inode))) 1252 return 0; 1253 return call_int_hook(inode_permission, 0, inode, mask); 1254 } 1255 1256 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 1257 { 1258 int ret; 1259 1260 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1261 return 0; 1262 ret = call_int_hook(inode_setattr, 0, dentry, attr); 1263 if (ret) 1264 return ret; 1265 return evm_inode_setattr(dentry, attr); 1266 } 1267 EXPORT_SYMBOL_GPL(security_inode_setattr); 1268 1269 int security_inode_getattr(const struct path *path) 1270 { 1271 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1272 return 0; 1273 return call_int_hook(inode_getattr, 0, path); 1274 } 1275 1276 int security_inode_setxattr(struct dentry *dentry, const char *name, 1277 const void *value, size_t size, int flags) 1278 { 1279 int ret; 1280 1281 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1282 return 0; 1283 /* 1284 * SELinux and Smack integrate the cap call, 1285 * so assume that all LSMs supplying this call do so. 1286 */ 1287 ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size, 1288 flags); 1289 1290 if (ret == 1) 1291 ret = cap_inode_setxattr(dentry, name, value, size, flags); 1292 if (ret) 1293 return ret; 1294 ret = ima_inode_setxattr(dentry, name, value, size); 1295 if (ret) 1296 return ret; 1297 return evm_inode_setxattr(dentry, name, value, size); 1298 } 1299 1300 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 1301 const void *value, size_t size, int flags) 1302 { 1303 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1304 return; 1305 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 1306 evm_inode_post_setxattr(dentry, name, value, size); 1307 } 1308 1309 int security_inode_getxattr(struct dentry *dentry, const char *name) 1310 { 1311 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1312 return 0; 1313 return call_int_hook(inode_getxattr, 0, dentry, name); 1314 } 1315 1316 int security_inode_listxattr(struct dentry *dentry) 1317 { 1318 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1319 return 0; 1320 return call_int_hook(inode_listxattr, 0, dentry); 1321 } 1322 1323 int security_inode_removexattr(struct dentry *dentry, const char *name) 1324 { 1325 int ret; 1326 1327 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1328 return 0; 1329 /* 1330 * SELinux and Smack integrate the cap call, 1331 * so assume that all LSMs supplying this call do so. 1332 */ 1333 ret = call_int_hook(inode_removexattr, 1, dentry, name); 1334 if (ret == 1) 1335 ret = cap_inode_removexattr(dentry, name); 1336 if (ret) 1337 return ret; 1338 ret = ima_inode_removexattr(dentry, name); 1339 if (ret) 1340 return ret; 1341 return evm_inode_removexattr(dentry, name); 1342 } 1343 1344 int security_inode_need_killpriv(struct dentry *dentry) 1345 { 1346 return call_int_hook(inode_need_killpriv, 0, dentry); 1347 } 1348 1349 int security_inode_killpriv(struct dentry *dentry) 1350 { 1351 return call_int_hook(inode_killpriv, 0, dentry); 1352 } 1353 1354 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc) 1355 { 1356 struct security_hook_list *hp; 1357 int rc; 1358 1359 if (unlikely(IS_PRIVATE(inode))) 1360 return LSM_RET_DEFAULT(inode_getsecurity); 1361 /* 1362 * Only one module will provide an attribute with a given name. 1363 */ 1364 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) { 1365 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc); 1366 if (rc != LSM_RET_DEFAULT(inode_getsecurity)) 1367 return rc; 1368 } 1369 return LSM_RET_DEFAULT(inode_getsecurity); 1370 } 1371 1372 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 1373 { 1374 struct security_hook_list *hp; 1375 int rc; 1376 1377 if (unlikely(IS_PRIVATE(inode))) 1378 return LSM_RET_DEFAULT(inode_setsecurity); 1379 /* 1380 * Only one module will provide an attribute with a given name. 1381 */ 1382 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) { 1383 rc = hp->hook.inode_setsecurity(inode, name, value, size, 1384 flags); 1385 if (rc != LSM_RET_DEFAULT(inode_setsecurity)) 1386 return rc; 1387 } 1388 return LSM_RET_DEFAULT(inode_setsecurity); 1389 } 1390 1391 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 1392 { 1393 if (unlikely(IS_PRIVATE(inode))) 1394 return 0; 1395 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size); 1396 } 1397 EXPORT_SYMBOL(security_inode_listsecurity); 1398 1399 void security_inode_getsecid(struct inode *inode, u32 *secid) 1400 { 1401 call_void_hook(inode_getsecid, inode, secid); 1402 } 1403 1404 int security_inode_copy_up(struct dentry *src, struct cred **new) 1405 { 1406 return call_int_hook(inode_copy_up, 0, src, new); 1407 } 1408 EXPORT_SYMBOL(security_inode_copy_up); 1409 1410 int security_inode_copy_up_xattr(const char *name) 1411 { 1412 return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name); 1413 } 1414 EXPORT_SYMBOL(security_inode_copy_up_xattr); 1415 1416 int security_kernfs_init_security(struct kernfs_node *kn_dir, 1417 struct kernfs_node *kn) 1418 { 1419 return call_int_hook(kernfs_init_security, 0, kn_dir, kn); 1420 } 1421 1422 int security_file_permission(struct file *file, int mask) 1423 { 1424 int ret; 1425 1426 ret = call_int_hook(file_permission, 0, file, mask); 1427 if (ret) 1428 return ret; 1429 1430 return fsnotify_perm(file, mask); 1431 } 1432 1433 int security_file_alloc(struct file *file) 1434 { 1435 int rc = lsm_file_alloc(file); 1436 1437 if (rc) 1438 return rc; 1439 rc = call_int_hook(file_alloc_security, 0, file); 1440 if (unlikely(rc)) 1441 security_file_free(file); 1442 return rc; 1443 } 1444 1445 void security_file_free(struct file *file) 1446 { 1447 void *blob; 1448 1449 call_void_hook(file_free_security, file); 1450 1451 blob = file->f_security; 1452 if (blob) { 1453 file->f_security = NULL; 1454 kmem_cache_free(lsm_file_cache, blob); 1455 } 1456 } 1457 1458 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1459 { 1460 return call_int_hook(file_ioctl, 0, file, cmd, arg); 1461 } 1462 1463 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 1464 { 1465 /* 1466 * Does we have PROT_READ and does the application expect 1467 * it to imply PROT_EXEC? If not, nothing to talk about... 1468 */ 1469 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 1470 return prot; 1471 if (!(current->personality & READ_IMPLIES_EXEC)) 1472 return prot; 1473 /* 1474 * if that's an anonymous mapping, let it. 1475 */ 1476 if (!file) 1477 return prot | PROT_EXEC; 1478 /* 1479 * ditto if it's not on noexec mount, except that on !MMU we need 1480 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 1481 */ 1482 if (!path_noexec(&file->f_path)) { 1483 #ifndef CONFIG_MMU 1484 if (file->f_op->mmap_capabilities) { 1485 unsigned caps = file->f_op->mmap_capabilities(file); 1486 if (!(caps & NOMMU_MAP_EXEC)) 1487 return prot; 1488 } 1489 #endif 1490 return prot | PROT_EXEC; 1491 } 1492 /* anything on noexec mount won't get PROT_EXEC */ 1493 return prot; 1494 } 1495 1496 int security_mmap_file(struct file *file, unsigned long prot, 1497 unsigned long flags) 1498 { 1499 int ret; 1500 ret = call_int_hook(mmap_file, 0, file, prot, 1501 mmap_prot(file, prot), flags); 1502 if (ret) 1503 return ret; 1504 return ima_file_mmap(file, prot); 1505 } 1506 1507 int security_mmap_addr(unsigned long addr) 1508 { 1509 return call_int_hook(mmap_addr, 0, addr); 1510 } 1511 1512 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 1513 unsigned long prot) 1514 { 1515 return call_int_hook(file_mprotect, 0, vma, reqprot, prot); 1516 } 1517 1518 int security_file_lock(struct file *file, unsigned int cmd) 1519 { 1520 return call_int_hook(file_lock, 0, file, cmd); 1521 } 1522 1523 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 1524 { 1525 return call_int_hook(file_fcntl, 0, file, cmd, arg); 1526 } 1527 1528 void security_file_set_fowner(struct file *file) 1529 { 1530 call_void_hook(file_set_fowner, file); 1531 } 1532 1533 int security_file_send_sigiotask(struct task_struct *tsk, 1534 struct fown_struct *fown, int sig) 1535 { 1536 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig); 1537 } 1538 1539 int security_file_receive(struct file *file) 1540 { 1541 return call_int_hook(file_receive, 0, file); 1542 } 1543 1544 int security_file_open(struct file *file) 1545 { 1546 int ret; 1547 1548 ret = call_int_hook(file_open, 0, file); 1549 if (ret) 1550 return ret; 1551 1552 return fsnotify_perm(file, MAY_OPEN); 1553 } 1554 1555 int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 1556 { 1557 int rc = lsm_task_alloc(task); 1558 1559 if (rc) 1560 return rc; 1561 rc = call_int_hook(task_alloc, 0, task, clone_flags); 1562 if (unlikely(rc)) 1563 security_task_free(task); 1564 return rc; 1565 } 1566 1567 void security_task_free(struct task_struct *task) 1568 { 1569 call_void_hook(task_free, task); 1570 1571 kfree(task->security); 1572 task->security = NULL; 1573 } 1574 1575 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 1576 { 1577 int rc = lsm_cred_alloc(cred, gfp); 1578 1579 if (rc) 1580 return rc; 1581 1582 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp); 1583 if (unlikely(rc)) 1584 security_cred_free(cred); 1585 return rc; 1586 } 1587 1588 void security_cred_free(struct cred *cred) 1589 { 1590 /* 1591 * There is a failure case in prepare_creds() that 1592 * may result in a call here with ->security being NULL. 1593 */ 1594 if (unlikely(cred->security == NULL)) 1595 return; 1596 1597 call_void_hook(cred_free, cred); 1598 1599 kfree(cred->security); 1600 cred->security = NULL; 1601 } 1602 1603 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 1604 { 1605 int rc = lsm_cred_alloc(new, gfp); 1606 1607 if (rc) 1608 return rc; 1609 1610 rc = call_int_hook(cred_prepare, 0, new, old, gfp); 1611 if (unlikely(rc)) 1612 security_cred_free(new); 1613 return rc; 1614 } 1615 1616 void security_transfer_creds(struct cred *new, const struct cred *old) 1617 { 1618 call_void_hook(cred_transfer, new, old); 1619 } 1620 1621 void security_cred_getsecid(const struct cred *c, u32 *secid) 1622 { 1623 *secid = 0; 1624 call_void_hook(cred_getsecid, c, secid); 1625 } 1626 EXPORT_SYMBOL(security_cred_getsecid); 1627 1628 int security_kernel_act_as(struct cred *new, u32 secid) 1629 { 1630 return call_int_hook(kernel_act_as, 0, new, secid); 1631 } 1632 1633 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 1634 { 1635 return call_int_hook(kernel_create_files_as, 0, new, inode); 1636 } 1637 1638 int security_kernel_module_request(char *kmod_name) 1639 { 1640 int ret; 1641 1642 ret = call_int_hook(kernel_module_request, 0, kmod_name); 1643 if (ret) 1644 return ret; 1645 return integrity_kernel_module_request(kmod_name); 1646 } 1647 1648 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id) 1649 { 1650 int ret; 1651 1652 ret = call_int_hook(kernel_read_file, 0, file, id); 1653 if (ret) 1654 return ret; 1655 return ima_read_file(file, id); 1656 } 1657 EXPORT_SYMBOL_GPL(security_kernel_read_file); 1658 1659 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 1660 enum kernel_read_file_id id) 1661 { 1662 int ret; 1663 1664 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id); 1665 if (ret) 1666 return ret; 1667 return ima_post_read_file(file, buf, size, id); 1668 } 1669 EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 1670 1671 int security_kernel_load_data(enum kernel_load_data_id id) 1672 { 1673 int ret; 1674 1675 ret = call_int_hook(kernel_load_data, 0, id); 1676 if (ret) 1677 return ret; 1678 return ima_load_data(id); 1679 } 1680 EXPORT_SYMBOL_GPL(security_kernel_load_data); 1681 1682 int security_task_fix_setuid(struct cred *new, const struct cred *old, 1683 int flags) 1684 { 1685 return call_int_hook(task_fix_setuid, 0, new, old, flags); 1686 } 1687 1688 int security_task_setpgid(struct task_struct *p, pid_t pgid) 1689 { 1690 return call_int_hook(task_setpgid, 0, p, pgid); 1691 } 1692 1693 int security_task_getpgid(struct task_struct *p) 1694 { 1695 return call_int_hook(task_getpgid, 0, p); 1696 } 1697 1698 int security_task_getsid(struct task_struct *p) 1699 { 1700 return call_int_hook(task_getsid, 0, p); 1701 } 1702 1703 void security_task_getsecid(struct task_struct *p, u32 *secid) 1704 { 1705 *secid = 0; 1706 call_void_hook(task_getsecid, p, secid); 1707 } 1708 EXPORT_SYMBOL(security_task_getsecid); 1709 1710 int security_task_setnice(struct task_struct *p, int nice) 1711 { 1712 return call_int_hook(task_setnice, 0, p, nice); 1713 } 1714 1715 int security_task_setioprio(struct task_struct *p, int ioprio) 1716 { 1717 return call_int_hook(task_setioprio, 0, p, ioprio); 1718 } 1719 1720 int security_task_getioprio(struct task_struct *p) 1721 { 1722 return call_int_hook(task_getioprio, 0, p); 1723 } 1724 1725 int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 1726 unsigned int flags) 1727 { 1728 return call_int_hook(task_prlimit, 0, cred, tcred, flags); 1729 } 1730 1731 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 1732 struct rlimit *new_rlim) 1733 { 1734 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim); 1735 } 1736 1737 int security_task_setscheduler(struct task_struct *p) 1738 { 1739 return call_int_hook(task_setscheduler, 0, p); 1740 } 1741 1742 int security_task_getscheduler(struct task_struct *p) 1743 { 1744 return call_int_hook(task_getscheduler, 0, p); 1745 } 1746 1747 int security_task_movememory(struct task_struct *p) 1748 { 1749 return call_int_hook(task_movememory, 0, p); 1750 } 1751 1752 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, 1753 int sig, const struct cred *cred) 1754 { 1755 return call_int_hook(task_kill, 0, p, info, sig, cred); 1756 } 1757 1758 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 1759 unsigned long arg4, unsigned long arg5) 1760 { 1761 int thisrc; 1762 int rc = LSM_RET_DEFAULT(task_prctl); 1763 struct security_hook_list *hp; 1764 1765 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 1766 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 1767 if (thisrc != LSM_RET_DEFAULT(task_prctl)) { 1768 rc = thisrc; 1769 if (thisrc != 0) 1770 break; 1771 } 1772 } 1773 return rc; 1774 } 1775 1776 void security_task_to_inode(struct task_struct *p, struct inode *inode) 1777 { 1778 call_void_hook(task_to_inode, p, inode); 1779 } 1780 1781 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 1782 { 1783 return call_int_hook(ipc_permission, 0, ipcp, flag); 1784 } 1785 1786 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 1787 { 1788 *secid = 0; 1789 call_void_hook(ipc_getsecid, ipcp, secid); 1790 } 1791 1792 int security_msg_msg_alloc(struct msg_msg *msg) 1793 { 1794 int rc = lsm_msg_msg_alloc(msg); 1795 1796 if (unlikely(rc)) 1797 return rc; 1798 rc = call_int_hook(msg_msg_alloc_security, 0, msg); 1799 if (unlikely(rc)) 1800 security_msg_msg_free(msg); 1801 return rc; 1802 } 1803 1804 void security_msg_msg_free(struct msg_msg *msg) 1805 { 1806 call_void_hook(msg_msg_free_security, msg); 1807 kfree(msg->security); 1808 msg->security = NULL; 1809 } 1810 1811 int security_msg_queue_alloc(struct kern_ipc_perm *msq) 1812 { 1813 int rc = lsm_ipc_alloc(msq); 1814 1815 if (unlikely(rc)) 1816 return rc; 1817 rc = call_int_hook(msg_queue_alloc_security, 0, msq); 1818 if (unlikely(rc)) 1819 security_msg_queue_free(msq); 1820 return rc; 1821 } 1822 1823 void security_msg_queue_free(struct kern_ipc_perm *msq) 1824 { 1825 call_void_hook(msg_queue_free_security, msq); 1826 kfree(msq->security); 1827 msq->security = NULL; 1828 } 1829 1830 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 1831 { 1832 return call_int_hook(msg_queue_associate, 0, msq, msqflg); 1833 } 1834 1835 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 1836 { 1837 return call_int_hook(msg_queue_msgctl, 0, msq, cmd); 1838 } 1839 1840 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 1841 struct msg_msg *msg, int msqflg) 1842 { 1843 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg); 1844 } 1845 1846 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 1847 struct task_struct *target, long type, int mode) 1848 { 1849 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode); 1850 } 1851 1852 int security_shm_alloc(struct kern_ipc_perm *shp) 1853 { 1854 int rc = lsm_ipc_alloc(shp); 1855 1856 if (unlikely(rc)) 1857 return rc; 1858 rc = call_int_hook(shm_alloc_security, 0, shp); 1859 if (unlikely(rc)) 1860 security_shm_free(shp); 1861 return rc; 1862 } 1863 1864 void security_shm_free(struct kern_ipc_perm *shp) 1865 { 1866 call_void_hook(shm_free_security, shp); 1867 kfree(shp->security); 1868 shp->security = NULL; 1869 } 1870 1871 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 1872 { 1873 return call_int_hook(shm_associate, 0, shp, shmflg); 1874 } 1875 1876 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 1877 { 1878 return call_int_hook(shm_shmctl, 0, shp, cmd); 1879 } 1880 1881 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg) 1882 { 1883 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg); 1884 } 1885 1886 int security_sem_alloc(struct kern_ipc_perm *sma) 1887 { 1888 int rc = lsm_ipc_alloc(sma); 1889 1890 if (unlikely(rc)) 1891 return rc; 1892 rc = call_int_hook(sem_alloc_security, 0, sma); 1893 if (unlikely(rc)) 1894 security_sem_free(sma); 1895 return rc; 1896 } 1897 1898 void security_sem_free(struct kern_ipc_perm *sma) 1899 { 1900 call_void_hook(sem_free_security, sma); 1901 kfree(sma->security); 1902 sma->security = NULL; 1903 } 1904 1905 int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 1906 { 1907 return call_int_hook(sem_associate, 0, sma, semflg); 1908 } 1909 1910 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 1911 { 1912 return call_int_hook(sem_semctl, 0, sma, cmd); 1913 } 1914 1915 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 1916 unsigned nsops, int alter) 1917 { 1918 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter); 1919 } 1920 1921 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 1922 { 1923 if (unlikely(inode && IS_PRIVATE(inode))) 1924 return; 1925 call_void_hook(d_instantiate, dentry, inode); 1926 } 1927 EXPORT_SYMBOL(security_d_instantiate); 1928 1929 int security_getprocattr(struct task_struct *p, const char *lsm, char *name, 1930 char **value) 1931 { 1932 struct security_hook_list *hp; 1933 1934 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) { 1935 if (lsm != NULL && strcmp(lsm, hp->lsm)) 1936 continue; 1937 return hp->hook.getprocattr(p, name, value); 1938 } 1939 return LSM_RET_DEFAULT(getprocattr); 1940 } 1941 1942 int security_setprocattr(const char *lsm, const char *name, void *value, 1943 size_t size) 1944 { 1945 struct security_hook_list *hp; 1946 1947 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) { 1948 if (lsm != NULL && strcmp(lsm, hp->lsm)) 1949 continue; 1950 return hp->hook.setprocattr(name, value, size); 1951 } 1952 return LSM_RET_DEFAULT(setprocattr); 1953 } 1954 1955 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 1956 { 1957 return call_int_hook(netlink_send, 0, sk, skb); 1958 } 1959 1960 int security_ismaclabel(const char *name) 1961 { 1962 return call_int_hook(ismaclabel, 0, name); 1963 } 1964 EXPORT_SYMBOL(security_ismaclabel); 1965 1966 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 1967 { 1968 return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata, 1969 seclen); 1970 } 1971 EXPORT_SYMBOL(security_secid_to_secctx); 1972 1973 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 1974 { 1975 *secid = 0; 1976 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid); 1977 } 1978 EXPORT_SYMBOL(security_secctx_to_secid); 1979 1980 void security_release_secctx(char *secdata, u32 seclen) 1981 { 1982 call_void_hook(release_secctx, secdata, seclen); 1983 } 1984 EXPORT_SYMBOL(security_release_secctx); 1985 1986 void security_inode_invalidate_secctx(struct inode *inode) 1987 { 1988 call_void_hook(inode_invalidate_secctx, inode); 1989 } 1990 EXPORT_SYMBOL(security_inode_invalidate_secctx); 1991 1992 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 1993 { 1994 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen); 1995 } 1996 EXPORT_SYMBOL(security_inode_notifysecctx); 1997 1998 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 1999 { 2000 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen); 2001 } 2002 EXPORT_SYMBOL(security_inode_setsecctx); 2003 2004 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 2005 { 2006 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen); 2007 } 2008 EXPORT_SYMBOL(security_inode_getsecctx); 2009 2010 #ifdef CONFIG_SECURITY_NETWORK 2011 2012 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 2013 { 2014 return call_int_hook(unix_stream_connect, 0, sock, other, newsk); 2015 } 2016 EXPORT_SYMBOL(security_unix_stream_connect); 2017 2018 int security_unix_may_send(struct socket *sock, struct socket *other) 2019 { 2020 return call_int_hook(unix_may_send, 0, sock, other); 2021 } 2022 EXPORT_SYMBOL(security_unix_may_send); 2023 2024 int security_socket_create(int family, int type, int protocol, int kern) 2025 { 2026 return call_int_hook(socket_create, 0, family, type, protocol, kern); 2027 } 2028 2029 int security_socket_post_create(struct socket *sock, int family, 2030 int type, int protocol, int kern) 2031 { 2032 return call_int_hook(socket_post_create, 0, sock, family, type, 2033 protocol, kern); 2034 } 2035 2036 int security_socket_socketpair(struct socket *socka, struct socket *sockb) 2037 { 2038 return call_int_hook(socket_socketpair, 0, socka, sockb); 2039 } 2040 EXPORT_SYMBOL(security_socket_socketpair); 2041 2042 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 2043 { 2044 return call_int_hook(socket_bind, 0, sock, address, addrlen); 2045 } 2046 2047 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 2048 { 2049 return call_int_hook(socket_connect, 0, sock, address, addrlen); 2050 } 2051 2052 int security_socket_listen(struct socket *sock, int backlog) 2053 { 2054 return call_int_hook(socket_listen, 0, sock, backlog); 2055 } 2056 2057 int security_socket_accept(struct socket *sock, struct socket *newsock) 2058 { 2059 return call_int_hook(socket_accept, 0, sock, newsock); 2060 } 2061 2062 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 2063 { 2064 return call_int_hook(socket_sendmsg, 0, sock, msg, size); 2065 } 2066 2067 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 2068 int size, int flags) 2069 { 2070 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags); 2071 } 2072 2073 int security_socket_getsockname(struct socket *sock) 2074 { 2075 return call_int_hook(socket_getsockname, 0, sock); 2076 } 2077 2078 int security_socket_getpeername(struct socket *sock) 2079 { 2080 return call_int_hook(socket_getpeername, 0, sock); 2081 } 2082 2083 int security_socket_getsockopt(struct socket *sock, int level, int optname) 2084 { 2085 return call_int_hook(socket_getsockopt, 0, sock, level, optname); 2086 } 2087 2088 int security_socket_setsockopt(struct socket *sock, int level, int optname) 2089 { 2090 return call_int_hook(socket_setsockopt, 0, sock, level, optname); 2091 } 2092 2093 int security_socket_shutdown(struct socket *sock, int how) 2094 { 2095 return call_int_hook(socket_shutdown, 0, sock, how); 2096 } 2097 2098 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 2099 { 2100 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb); 2101 } 2102 EXPORT_SYMBOL(security_sock_rcv_skb); 2103 2104 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 2105 int __user *optlen, unsigned len) 2106 { 2107 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock, 2108 optval, optlen, len); 2109 } 2110 2111 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 2112 { 2113 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock, 2114 skb, secid); 2115 } 2116 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 2117 2118 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 2119 { 2120 return call_int_hook(sk_alloc_security, 0, sk, family, priority); 2121 } 2122 2123 void security_sk_free(struct sock *sk) 2124 { 2125 call_void_hook(sk_free_security, sk); 2126 } 2127 2128 void security_sk_clone(const struct sock *sk, struct sock *newsk) 2129 { 2130 call_void_hook(sk_clone_security, sk, newsk); 2131 } 2132 EXPORT_SYMBOL(security_sk_clone); 2133 2134 void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 2135 { 2136 call_void_hook(sk_getsecid, sk, &fl->flowi_secid); 2137 } 2138 EXPORT_SYMBOL(security_sk_classify_flow); 2139 2140 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 2141 { 2142 call_void_hook(req_classify_flow, req, fl); 2143 } 2144 EXPORT_SYMBOL(security_req_classify_flow); 2145 2146 void security_sock_graft(struct sock *sk, struct socket *parent) 2147 { 2148 call_void_hook(sock_graft, sk, parent); 2149 } 2150 EXPORT_SYMBOL(security_sock_graft); 2151 2152 int security_inet_conn_request(struct sock *sk, 2153 struct sk_buff *skb, struct request_sock *req) 2154 { 2155 return call_int_hook(inet_conn_request, 0, sk, skb, req); 2156 } 2157 EXPORT_SYMBOL(security_inet_conn_request); 2158 2159 void security_inet_csk_clone(struct sock *newsk, 2160 const struct request_sock *req) 2161 { 2162 call_void_hook(inet_csk_clone, newsk, req); 2163 } 2164 2165 void security_inet_conn_established(struct sock *sk, 2166 struct sk_buff *skb) 2167 { 2168 call_void_hook(inet_conn_established, sk, skb); 2169 } 2170 EXPORT_SYMBOL(security_inet_conn_established); 2171 2172 int security_secmark_relabel_packet(u32 secid) 2173 { 2174 return call_int_hook(secmark_relabel_packet, 0, secid); 2175 } 2176 EXPORT_SYMBOL(security_secmark_relabel_packet); 2177 2178 void security_secmark_refcount_inc(void) 2179 { 2180 call_void_hook(secmark_refcount_inc); 2181 } 2182 EXPORT_SYMBOL(security_secmark_refcount_inc); 2183 2184 void security_secmark_refcount_dec(void) 2185 { 2186 call_void_hook(secmark_refcount_dec); 2187 } 2188 EXPORT_SYMBOL(security_secmark_refcount_dec); 2189 2190 int security_tun_dev_alloc_security(void **security) 2191 { 2192 return call_int_hook(tun_dev_alloc_security, 0, security); 2193 } 2194 EXPORT_SYMBOL(security_tun_dev_alloc_security); 2195 2196 void security_tun_dev_free_security(void *security) 2197 { 2198 call_void_hook(tun_dev_free_security, security); 2199 } 2200 EXPORT_SYMBOL(security_tun_dev_free_security); 2201 2202 int security_tun_dev_create(void) 2203 { 2204 return call_int_hook(tun_dev_create, 0); 2205 } 2206 EXPORT_SYMBOL(security_tun_dev_create); 2207 2208 int security_tun_dev_attach_queue(void *security) 2209 { 2210 return call_int_hook(tun_dev_attach_queue, 0, security); 2211 } 2212 EXPORT_SYMBOL(security_tun_dev_attach_queue); 2213 2214 int security_tun_dev_attach(struct sock *sk, void *security) 2215 { 2216 return call_int_hook(tun_dev_attach, 0, sk, security); 2217 } 2218 EXPORT_SYMBOL(security_tun_dev_attach); 2219 2220 int security_tun_dev_open(void *security) 2221 { 2222 return call_int_hook(tun_dev_open, 0, security); 2223 } 2224 EXPORT_SYMBOL(security_tun_dev_open); 2225 2226 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb) 2227 { 2228 return call_int_hook(sctp_assoc_request, 0, ep, skb); 2229 } 2230 EXPORT_SYMBOL(security_sctp_assoc_request); 2231 2232 int security_sctp_bind_connect(struct sock *sk, int optname, 2233 struct sockaddr *address, int addrlen) 2234 { 2235 return call_int_hook(sctp_bind_connect, 0, sk, optname, 2236 address, addrlen); 2237 } 2238 EXPORT_SYMBOL(security_sctp_bind_connect); 2239 2240 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk, 2241 struct sock *newsk) 2242 { 2243 call_void_hook(sctp_sk_clone, ep, sk, newsk); 2244 } 2245 EXPORT_SYMBOL(security_sctp_sk_clone); 2246 2247 #endif /* CONFIG_SECURITY_NETWORK */ 2248 2249 #ifdef CONFIG_SECURITY_INFINIBAND 2250 2251 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 2252 { 2253 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey); 2254 } 2255 EXPORT_SYMBOL(security_ib_pkey_access); 2256 2257 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num) 2258 { 2259 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num); 2260 } 2261 EXPORT_SYMBOL(security_ib_endport_manage_subnet); 2262 2263 int security_ib_alloc_security(void **sec) 2264 { 2265 return call_int_hook(ib_alloc_security, 0, sec); 2266 } 2267 EXPORT_SYMBOL(security_ib_alloc_security); 2268 2269 void security_ib_free_security(void *sec) 2270 { 2271 call_void_hook(ib_free_security, sec); 2272 } 2273 EXPORT_SYMBOL(security_ib_free_security); 2274 #endif /* CONFIG_SECURITY_INFINIBAND */ 2275 2276 #ifdef CONFIG_SECURITY_NETWORK_XFRM 2277 2278 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 2279 struct xfrm_user_sec_ctx *sec_ctx, 2280 gfp_t gfp) 2281 { 2282 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp); 2283 } 2284 EXPORT_SYMBOL(security_xfrm_policy_alloc); 2285 2286 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 2287 struct xfrm_sec_ctx **new_ctxp) 2288 { 2289 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp); 2290 } 2291 2292 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 2293 { 2294 call_void_hook(xfrm_policy_free_security, ctx); 2295 } 2296 EXPORT_SYMBOL(security_xfrm_policy_free); 2297 2298 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 2299 { 2300 return call_int_hook(xfrm_policy_delete_security, 0, ctx); 2301 } 2302 2303 int security_xfrm_state_alloc(struct xfrm_state *x, 2304 struct xfrm_user_sec_ctx *sec_ctx) 2305 { 2306 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx); 2307 } 2308 EXPORT_SYMBOL(security_xfrm_state_alloc); 2309 2310 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 2311 struct xfrm_sec_ctx *polsec, u32 secid) 2312 { 2313 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid); 2314 } 2315 2316 int security_xfrm_state_delete(struct xfrm_state *x) 2317 { 2318 return call_int_hook(xfrm_state_delete_security, 0, x); 2319 } 2320 EXPORT_SYMBOL(security_xfrm_state_delete); 2321 2322 void security_xfrm_state_free(struct xfrm_state *x) 2323 { 2324 call_void_hook(xfrm_state_free_security, x); 2325 } 2326 2327 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 2328 { 2329 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir); 2330 } 2331 2332 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 2333 struct xfrm_policy *xp, 2334 const struct flowi *fl) 2335 { 2336 struct security_hook_list *hp; 2337 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match); 2338 2339 /* 2340 * Since this function is expected to return 0 or 1, the judgment 2341 * becomes difficult if multiple LSMs supply this call. Fortunately, 2342 * we can use the first LSM's judgment because currently only SELinux 2343 * supplies this call. 2344 * 2345 * For speed optimization, we explicitly break the loop rather than 2346 * using the macro 2347 */ 2348 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 2349 list) { 2350 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl); 2351 break; 2352 } 2353 return rc; 2354 } 2355 2356 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 2357 { 2358 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1); 2359 } 2360 2361 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 2362 { 2363 int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid, 2364 0); 2365 2366 BUG_ON(rc); 2367 } 2368 EXPORT_SYMBOL(security_skb_classify_flow); 2369 2370 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 2371 2372 #ifdef CONFIG_KEYS 2373 2374 int security_key_alloc(struct key *key, const struct cred *cred, 2375 unsigned long flags) 2376 { 2377 return call_int_hook(key_alloc, 0, key, cred, flags); 2378 } 2379 2380 void security_key_free(struct key *key) 2381 { 2382 call_void_hook(key_free, key); 2383 } 2384 2385 int security_key_permission(key_ref_t key_ref, 2386 const struct cred *cred, unsigned perm) 2387 { 2388 return call_int_hook(key_permission, 0, key_ref, cred, perm); 2389 } 2390 2391 int security_key_getsecurity(struct key *key, char **_buffer) 2392 { 2393 *_buffer = NULL; 2394 return call_int_hook(key_getsecurity, 0, key, _buffer); 2395 } 2396 2397 #endif /* CONFIG_KEYS */ 2398 2399 #ifdef CONFIG_AUDIT 2400 2401 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 2402 { 2403 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule); 2404 } 2405 2406 int security_audit_rule_known(struct audit_krule *krule) 2407 { 2408 return call_int_hook(audit_rule_known, 0, krule); 2409 } 2410 2411 void security_audit_rule_free(void *lsmrule) 2412 { 2413 call_void_hook(audit_rule_free, lsmrule); 2414 } 2415 2416 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule) 2417 { 2418 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule); 2419 } 2420 #endif /* CONFIG_AUDIT */ 2421 2422 #ifdef CONFIG_BPF_SYSCALL 2423 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 2424 { 2425 return call_int_hook(bpf, 0, cmd, attr, size); 2426 } 2427 int security_bpf_map(struct bpf_map *map, fmode_t fmode) 2428 { 2429 return call_int_hook(bpf_map, 0, map, fmode); 2430 } 2431 int security_bpf_prog(struct bpf_prog *prog) 2432 { 2433 return call_int_hook(bpf_prog, 0, prog); 2434 } 2435 int security_bpf_map_alloc(struct bpf_map *map) 2436 { 2437 return call_int_hook(bpf_map_alloc_security, 0, map); 2438 } 2439 int security_bpf_prog_alloc(struct bpf_prog_aux *aux) 2440 { 2441 return call_int_hook(bpf_prog_alloc_security, 0, aux); 2442 } 2443 void security_bpf_map_free(struct bpf_map *map) 2444 { 2445 call_void_hook(bpf_map_free_security, map); 2446 } 2447 void security_bpf_prog_free(struct bpf_prog_aux *aux) 2448 { 2449 call_void_hook(bpf_prog_free_security, aux); 2450 } 2451 #endif /* CONFIG_BPF_SYSCALL */ 2452 2453 int security_locked_down(enum lockdown_reason what) 2454 { 2455 return call_int_hook(locked_down, 0, what); 2456 } 2457 EXPORT_SYMBOL(security_locked_down); 2458 2459 #ifdef CONFIG_PERF_EVENTS 2460 int security_perf_event_open(struct perf_event_attr *attr, int type) 2461 { 2462 return call_int_hook(perf_event_open, 0, attr, type); 2463 } 2464 2465 int security_perf_event_alloc(struct perf_event *event) 2466 { 2467 return call_int_hook(perf_event_alloc, 0, event); 2468 } 2469 2470 void security_perf_event_free(struct perf_event *event) 2471 { 2472 call_void_hook(perf_event_free, event); 2473 } 2474 2475 int security_perf_event_read(struct perf_event *event) 2476 { 2477 return call_int_hook(perf_event_read, 0, event); 2478 } 2479 2480 int security_perf_event_write(struct perf_event *event) 2481 { 2482 return call_int_hook(perf_event_write, 0, event); 2483 } 2484 #endif /* CONFIG_PERF_EVENTS */ 2485