1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Security plug functions 4 * 5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 8 * Copyright (C) 2016 Mellanox Technologies 9 */ 10 11 #define pr_fmt(fmt) "LSM: " fmt 12 13 #include <linux/bpf.h> 14 #include <linux/capability.h> 15 #include <linux/dcache.h> 16 #include <linux/export.h> 17 #include <linux/init.h> 18 #include <linux/kernel.h> 19 #include <linux/kernel_read_file.h> 20 #include <linux/lsm_hooks.h> 21 #include <linux/integrity.h> 22 #include <linux/ima.h> 23 #include <linux/evm.h> 24 #include <linux/fsnotify.h> 25 #include <linux/mman.h> 26 #include <linux/mount.h> 27 #include <linux/personality.h> 28 #include <linux/backing-dev.h> 29 #include <linux/string.h> 30 #include <linux/msg.h> 31 #include <net/flow.h> 32 33 #define MAX_LSM_EVM_XATTR 2 34 35 /* How many LSMs were built into the kernel? */ 36 #define LSM_COUNT (__end_lsm_info - __start_lsm_info) 37 38 /* 39 * These are descriptions of the reasons that can be passed to the 40 * security_locked_down() LSM hook. Placing this array here allows 41 * all security modules to use the same descriptions for auditing 42 * purposes. 43 */ 44 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = { 45 [LOCKDOWN_NONE] = "none", 46 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading", 47 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port", 48 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access", 49 [LOCKDOWN_KEXEC] = "kexec of unsigned images", 50 [LOCKDOWN_HIBERNATION] = "hibernation", 51 [LOCKDOWN_PCI_ACCESS] = "direct PCI access", 52 [LOCKDOWN_IOPORT] = "raw io port access", 53 [LOCKDOWN_MSR] = "raw MSR access", 54 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables", 55 [LOCKDOWN_DEVICE_TREE] = "modifying device tree contents", 56 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage", 57 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO", 58 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters", 59 [LOCKDOWN_MMIOTRACE] = "unsafe mmio", 60 [LOCKDOWN_DEBUGFS] = "debugfs access", 61 [LOCKDOWN_XMON_WR] = "xmon write access", 62 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM", 63 [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM", 64 [LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection", 65 [LOCKDOWN_INTEGRITY_MAX] = "integrity", 66 [LOCKDOWN_KCORE] = "/proc/kcore access", 67 [LOCKDOWN_KPROBES] = "use of kprobes", 68 [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM", 69 [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM", 70 [LOCKDOWN_PERF] = "unsafe use of perf", 71 [LOCKDOWN_TRACEFS] = "use of tracefs", 72 [LOCKDOWN_XMON_RW] = "xmon read and write access", 73 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret", 74 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality", 75 }; 76 77 struct security_hook_heads security_hook_heads __lsm_ro_after_init; 78 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain); 79 80 static struct kmem_cache *lsm_file_cache; 81 static struct kmem_cache *lsm_inode_cache; 82 83 char *lsm_names; 84 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init; 85 86 /* Boot-time LSM user choice */ 87 static __initdata const char *chosen_lsm_order; 88 static __initdata const char *chosen_major_lsm; 89 90 static __initconst const char * const builtin_lsm_order = CONFIG_LSM; 91 92 /* Ordered list of LSMs to initialize. */ 93 static __initdata struct lsm_info **ordered_lsms; 94 static __initdata struct lsm_info *exclusive; 95 96 static __initdata bool debug; 97 #define init_debug(...) \ 98 do { \ 99 if (debug) \ 100 pr_info(__VA_ARGS__); \ 101 } while (0) 102 103 static bool __init is_enabled(struct lsm_info *lsm) 104 { 105 if (!lsm->enabled) 106 return false; 107 108 return *lsm->enabled; 109 } 110 111 /* Mark an LSM's enabled flag. */ 112 static int lsm_enabled_true __initdata = 1; 113 static int lsm_enabled_false __initdata = 0; 114 static void __init set_enabled(struct lsm_info *lsm, bool enabled) 115 { 116 /* 117 * When an LSM hasn't configured an enable variable, we can use 118 * a hard-coded location for storing the default enabled state. 119 */ 120 if (!lsm->enabled) { 121 if (enabled) 122 lsm->enabled = &lsm_enabled_true; 123 else 124 lsm->enabled = &lsm_enabled_false; 125 } else if (lsm->enabled == &lsm_enabled_true) { 126 if (!enabled) 127 lsm->enabled = &lsm_enabled_false; 128 } else if (lsm->enabled == &lsm_enabled_false) { 129 if (enabled) 130 lsm->enabled = &lsm_enabled_true; 131 } else { 132 *lsm->enabled = enabled; 133 } 134 } 135 136 /* Is an LSM already listed in the ordered LSMs list? */ 137 static bool __init exists_ordered_lsm(struct lsm_info *lsm) 138 { 139 struct lsm_info **check; 140 141 for (check = ordered_lsms; *check; check++) 142 if (*check == lsm) 143 return true; 144 145 return false; 146 } 147 148 /* Append an LSM to the list of ordered LSMs to initialize. */ 149 static int last_lsm __initdata; 150 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from) 151 { 152 /* Ignore duplicate selections. */ 153 if (exists_ordered_lsm(lsm)) 154 return; 155 156 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from)) 157 return; 158 159 /* Enable this LSM, if it is not already set. */ 160 if (!lsm->enabled) 161 lsm->enabled = &lsm_enabled_true; 162 ordered_lsms[last_lsm++] = lsm; 163 164 init_debug("%s ordered: %s (%s)\n", from, lsm->name, 165 is_enabled(lsm) ? "enabled" : "disabled"); 166 } 167 168 /* Is an LSM allowed to be initialized? */ 169 static bool __init lsm_allowed(struct lsm_info *lsm) 170 { 171 /* Skip if the LSM is disabled. */ 172 if (!is_enabled(lsm)) 173 return false; 174 175 /* Not allowed if another exclusive LSM already initialized. */ 176 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) { 177 init_debug("exclusive disabled: %s\n", lsm->name); 178 return false; 179 } 180 181 return true; 182 } 183 184 static void __init lsm_set_blob_size(int *need, int *lbs) 185 { 186 int offset; 187 188 if (*need <= 0) 189 return; 190 191 offset = ALIGN(*lbs, sizeof(void *)); 192 *lbs = offset + *need; 193 *need = offset; 194 } 195 196 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed) 197 { 198 if (!needed) 199 return; 200 201 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred); 202 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file); 203 /* 204 * The inode blob gets an rcu_head in addition to 205 * what the modules might need. 206 */ 207 if (needed->lbs_inode && blob_sizes.lbs_inode == 0) 208 blob_sizes.lbs_inode = sizeof(struct rcu_head); 209 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode); 210 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc); 211 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg); 212 lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock); 213 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task); 214 } 215 216 /* Prepare LSM for initialization. */ 217 static void __init prepare_lsm(struct lsm_info *lsm) 218 { 219 int enabled = lsm_allowed(lsm); 220 221 /* Record enablement (to handle any following exclusive LSMs). */ 222 set_enabled(lsm, enabled); 223 224 /* If enabled, do pre-initialization work. */ 225 if (enabled) { 226 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) { 227 exclusive = lsm; 228 init_debug("exclusive chosen: %s\n", lsm->name); 229 } 230 231 lsm_set_blob_sizes(lsm->blobs); 232 } 233 } 234 235 /* Initialize a given LSM, if it is enabled. */ 236 static void __init initialize_lsm(struct lsm_info *lsm) 237 { 238 if (is_enabled(lsm)) { 239 int ret; 240 241 init_debug("initializing %s\n", lsm->name); 242 ret = lsm->init(); 243 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); 244 } 245 } 246 247 /* Populate ordered LSMs list from comma-separated LSM name list. */ 248 static void __init ordered_lsm_parse(const char *order, const char *origin) 249 { 250 struct lsm_info *lsm; 251 char *sep, *name, *next; 252 253 /* LSM_ORDER_FIRST is always first. */ 254 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 255 if (lsm->order == LSM_ORDER_FIRST) 256 append_ordered_lsm(lsm, " first"); 257 } 258 259 /* Process "security=", if given. */ 260 if (chosen_major_lsm) { 261 struct lsm_info *major; 262 263 /* 264 * To match the original "security=" behavior, this 265 * explicitly does NOT fallback to another Legacy Major 266 * if the selected one was separately disabled: disable 267 * all non-matching Legacy Major LSMs. 268 */ 269 for (major = __start_lsm_info; major < __end_lsm_info; 270 major++) { 271 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) && 272 strcmp(major->name, chosen_major_lsm) != 0) { 273 set_enabled(major, false); 274 init_debug("security=%s disabled: %s (only one legacy major LSM)\n", 275 chosen_major_lsm, major->name); 276 } 277 } 278 } 279 280 sep = kstrdup(order, GFP_KERNEL); 281 next = sep; 282 /* Walk the list, looking for matching LSMs. */ 283 while ((name = strsep(&next, ",")) != NULL) { 284 bool found = false; 285 286 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 287 if (lsm->order == LSM_ORDER_MUTABLE && 288 strcmp(lsm->name, name) == 0) { 289 append_ordered_lsm(lsm, origin); 290 found = true; 291 } 292 } 293 294 if (!found) 295 init_debug("%s ignored: %s (not built into kernel)\n", 296 origin, name); 297 } 298 299 /* Process "security=", if given. */ 300 if (chosen_major_lsm) { 301 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 302 if (exists_ordered_lsm(lsm)) 303 continue; 304 if (strcmp(lsm->name, chosen_major_lsm) == 0) 305 append_ordered_lsm(lsm, "security="); 306 } 307 } 308 309 /* Disable all LSMs not in the ordered list. */ 310 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 311 if (exists_ordered_lsm(lsm)) 312 continue; 313 set_enabled(lsm, false); 314 init_debug("%s skipped: %s (not in requested order)\n", 315 origin, lsm->name); 316 } 317 318 kfree(sep); 319 } 320 321 static void __init lsm_early_cred(struct cred *cred); 322 static void __init lsm_early_task(struct task_struct *task); 323 324 static int lsm_append(const char *new, char **result); 325 326 static void __init report_lsm_order(void) 327 { 328 struct lsm_info **lsm, *early; 329 int first = 0; 330 331 pr_info("initializing lsm="); 332 333 /* Report each enabled LSM name, comma separated. */ 334 for (early = __start_early_lsm_info; early < __end_early_lsm_info; early++) 335 if (is_enabled(early)) 336 pr_cont("%s%s", first++ == 0 ? "" : ",", early->name); 337 for (lsm = ordered_lsms; *lsm; lsm++) 338 if (is_enabled(*lsm)) 339 pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name); 340 341 pr_cont("\n"); 342 } 343 344 static void __init ordered_lsm_init(void) 345 { 346 struct lsm_info **lsm; 347 348 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms), 349 GFP_KERNEL); 350 351 if (chosen_lsm_order) { 352 if (chosen_major_lsm) { 353 pr_warn("security=%s is ignored because it is superseded by lsm=%s\n", 354 chosen_major_lsm, chosen_lsm_order); 355 chosen_major_lsm = NULL; 356 } 357 ordered_lsm_parse(chosen_lsm_order, "cmdline"); 358 } else 359 ordered_lsm_parse(builtin_lsm_order, "builtin"); 360 361 for (lsm = ordered_lsms; *lsm; lsm++) 362 prepare_lsm(*lsm); 363 364 report_lsm_order(); 365 366 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred); 367 init_debug("file blob size = %d\n", blob_sizes.lbs_file); 368 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode); 369 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc); 370 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg); 371 init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock); 372 init_debug("task blob size = %d\n", blob_sizes.lbs_task); 373 374 /* 375 * Create any kmem_caches needed for blobs 376 */ 377 if (blob_sizes.lbs_file) 378 lsm_file_cache = kmem_cache_create("lsm_file_cache", 379 blob_sizes.lbs_file, 0, 380 SLAB_PANIC, NULL); 381 if (blob_sizes.lbs_inode) 382 lsm_inode_cache = kmem_cache_create("lsm_inode_cache", 383 blob_sizes.lbs_inode, 0, 384 SLAB_PANIC, NULL); 385 386 lsm_early_cred((struct cred *) current->cred); 387 lsm_early_task(current); 388 for (lsm = ordered_lsms; *lsm; lsm++) 389 initialize_lsm(*lsm); 390 391 kfree(ordered_lsms); 392 } 393 394 int __init early_security_init(void) 395 { 396 struct lsm_info *lsm; 397 398 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 399 INIT_HLIST_HEAD(&security_hook_heads.NAME); 400 #include "linux/lsm_hook_defs.h" 401 #undef LSM_HOOK 402 403 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 404 if (!lsm->enabled) 405 lsm->enabled = &lsm_enabled_true; 406 prepare_lsm(lsm); 407 initialize_lsm(lsm); 408 } 409 410 return 0; 411 } 412 413 /** 414 * security_init - initializes the security framework 415 * 416 * This should be called early in the kernel initialization sequence. 417 */ 418 int __init security_init(void) 419 { 420 struct lsm_info *lsm; 421 422 init_debug("legacy security=%s\n", chosen_major_lsm ?: " *unspecified*"); 423 init_debug(" CONFIG_LSM=%s\n", builtin_lsm_order); 424 init_debug("boot arg lsm=%s\n", chosen_lsm_order ?: " *unspecified*"); 425 426 /* 427 * Append the names of the early LSM modules now that kmalloc() is 428 * available 429 */ 430 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 431 init_debug(" early started: %s (%s)\n", lsm->name, 432 is_enabled(lsm) ? "enabled" : "disabled"); 433 if (lsm->enabled) 434 lsm_append(lsm->name, &lsm_names); 435 } 436 437 /* Load LSMs in specified order. */ 438 ordered_lsm_init(); 439 440 return 0; 441 } 442 443 /* Save user chosen LSM */ 444 static int __init choose_major_lsm(char *str) 445 { 446 chosen_major_lsm = str; 447 return 1; 448 } 449 __setup("security=", choose_major_lsm); 450 451 /* Explicitly choose LSM initialization order. */ 452 static int __init choose_lsm_order(char *str) 453 { 454 chosen_lsm_order = str; 455 return 1; 456 } 457 __setup("lsm=", choose_lsm_order); 458 459 /* Enable LSM order debugging. */ 460 static int __init enable_debug(char *str) 461 { 462 debug = true; 463 return 1; 464 } 465 __setup("lsm.debug", enable_debug); 466 467 static bool match_last_lsm(const char *list, const char *lsm) 468 { 469 const char *last; 470 471 if (WARN_ON(!list || !lsm)) 472 return false; 473 last = strrchr(list, ','); 474 if (last) 475 /* Pass the comma, strcmp() will check for '\0' */ 476 last++; 477 else 478 last = list; 479 return !strcmp(last, lsm); 480 } 481 482 static int lsm_append(const char *new, char **result) 483 { 484 char *cp; 485 486 if (*result == NULL) { 487 *result = kstrdup(new, GFP_KERNEL); 488 if (*result == NULL) 489 return -ENOMEM; 490 } else { 491 /* Check if it is the last registered name */ 492 if (match_last_lsm(*result, new)) 493 return 0; 494 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 495 if (cp == NULL) 496 return -ENOMEM; 497 kfree(*result); 498 *result = cp; 499 } 500 return 0; 501 } 502 503 /** 504 * security_add_hooks - Add a modules hooks to the hook lists. 505 * @hooks: the hooks to add 506 * @count: the number of hooks to add 507 * @lsm: the name of the security module 508 * 509 * Each LSM has to register its hooks with the infrastructure. 510 */ 511 void __init security_add_hooks(struct security_hook_list *hooks, int count, 512 const char *lsm) 513 { 514 int i; 515 516 for (i = 0; i < count; i++) { 517 hooks[i].lsm = lsm; 518 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 519 } 520 521 /* 522 * Don't try to append during early_security_init(), we'll come back 523 * and fix this up afterwards. 524 */ 525 if (slab_is_available()) { 526 if (lsm_append(lsm, &lsm_names) < 0) 527 panic("%s - Cannot get early memory.\n", __func__); 528 } 529 } 530 531 int call_blocking_lsm_notifier(enum lsm_event event, void *data) 532 { 533 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain, 534 event, data); 535 } 536 EXPORT_SYMBOL(call_blocking_lsm_notifier); 537 538 int register_blocking_lsm_notifier(struct notifier_block *nb) 539 { 540 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain, 541 nb); 542 } 543 EXPORT_SYMBOL(register_blocking_lsm_notifier); 544 545 int unregister_blocking_lsm_notifier(struct notifier_block *nb) 546 { 547 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain, 548 nb); 549 } 550 EXPORT_SYMBOL(unregister_blocking_lsm_notifier); 551 552 /** 553 * lsm_cred_alloc - allocate a composite cred blob 554 * @cred: the cred that needs a blob 555 * @gfp: allocation type 556 * 557 * Allocate the cred blob for all the modules 558 * 559 * Returns 0, or -ENOMEM if memory can't be allocated. 560 */ 561 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp) 562 { 563 if (blob_sizes.lbs_cred == 0) { 564 cred->security = NULL; 565 return 0; 566 } 567 568 cred->security = kzalloc(blob_sizes.lbs_cred, gfp); 569 if (cred->security == NULL) 570 return -ENOMEM; 571 return 0; 572 } 573 574 /** 575 * lsm_early_cred - during initialization allocate a composite cred blob 576 * @cred: the cred that needs a blob 577 * 578 * Allocate the cred blob for all the modules 579 */ 580 static void __init lsm_early_cred(struct cred *cred) 581 { 582 int rc = lsm_cred_alloc(cred, GFP_KERNEL); 583 584 if (rc) 585 panic("%s: Early cred alloc failed.\n", __func__); 586 } 587 588 /** 589 * lsm_file_alloc - allocate a composite file blob 590 * @file: the file that needs a blob 591 * 592 * Allocate the file blob for all the modules 593 * 594 * Returns 0, or -ENOMEM if memory can't be allocated. 595 */ 596 static int lsm_file_alloc(struct file *file) 597 { 598 if (!lsm_file_cache) { 599 file->f_security = NULL; 600 return 0; 601 } 602 603 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL); 604 if (file->f_security == NULL) 605 return -ENOMEM; 606 return 0; 607 } 608 609 /** 610 * lsm_inode_alloc - allocate a composite inode blob 611 * @inode: the inode that needs a blob 612 * 613 * Allocate the inode blob for all the modules 614 * 615 * Returns 0, or -ENOMEM if memory can't be allocated. 616 */ 617 int lsm_inode_alloc(struct inode *inode) 618 { 619 if (!lsm_inode_cache) { 620 inode->i_security = NULL; 621 return 0; 622 } 623 624 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS); 625 if (inode->i_security == NULL) 626 return -ENOMEM; 627 return 0; 628 } 629 630 /** 631 * lsm_task_alloc - allocate a composite task blob 632 * @task: the task that needs a blob 633 * 634 * Allocate the task blob for all the modules 635 * 636 * Returns 0, or -ENOMEM if memory can't be allocated. 637 */ 638 static int lsm_task_alloc(struct task_struct *task) 639 { 640 if (blob_sizes.lbs_task == 0) { 641 task->security = NULL; 642 return 0; 643 } 644 645 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL); 646 if (task->security == NULL) 647 return -ENOMEM; 648 return 0; 649 } 650 651 /** 652 * lsm_ipc_alloc - allocate a composite ipc blob 653 * @kip: the ipc that needs a blob 654 * 655 * Allocate the ipc blob for all the modules 656 * 657 * Returns 0, or -ENOMEM if memory can't be allocated. 658 */ 659 static int lsm_ipc_alloc(struct kern_ipc_perm *kip) 660 { 661 if (blob_sizes.lbs_ipc == 0) { 662 kip->security = NULL; 663 return 0; 664 } 665 666 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL); 667 if (kip->security == NULL) 668 return -ENOMEM; 669 return 0; 670 } 671 672 /** 673 * lsm_msg_msg_alloc - allocate a composite msg_msg blob 674 * @mp: the msg_msg that needs a blob 675 * 676 * Allocate the ipc blob for all the modules 677 * 678 * Returns 0, or -ENOMEM if memory can't be allocated. 679 */ 680 static int lsm_msg_msg_alloc(struct msg_msg *mp) 681 { 682 if (blob_sizes.lbs_msg_msg == 0) { 683 mp->security = NULL; 684 return 0; 685 } 686 687 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL); 688 if (mp->security == NULL) 689 return -ENOMEM; 690 return 0; 691 } 692 693 /** 694 * lsm_early_task - during initialization allocate a composite task blob 695 * @task: the task that needs a blob 696 * 697 * Allocate the task blob for all the modules 698 */ 699 static void __init lsm_early_task(struct task_struct *task) 700 { 701 int rc = lsm_task_alloc(task); 702 703 if (rc) 704 panic("%s: Early task alloc failed.\n", __func__); 705 } 706 707 /** 708 * lsm_superblock_alloc - allocate a composite superblock blob 709 * @sb: the superblock that needs a blob 710 * 711 * Allocate the superblock blob for all the modules 712 * 713 * Returns 0, or -ENOMEM if memory can't be allocated. 714 */ 715 static int lsm_superblock_alloc(struct super_block *sb) 716 { 717 if (blob_sizes.lbs_superblock == 0) { 718 sb->s_security = NULL; 719 return 0; 720 } 721 722 sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL); 723 if (sb->s_security == NULL) 724 return -ENOMEM; 725 return 0; 726 } 727 728 /* 729 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and 730 * can be accessed with: 731 * 732 * LSM_RET_DEFAULT(<hook_name>) 733 * 734 * The macros below define static constants for the default value of each 735 * LSM hook. 736 */ 737 #define LSM_RET_DEFAULT(NAME) (NAME##_default) 738 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME) 739 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \ 740 static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT); 741 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 742 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME) 743 744 #include <linux/lsm_hook_defs.h> 745 #undef LSM_HOOK 746 747 /* 748 * Hook list operation macros. 749 * 750 * call_void_hook: 751 * This is a hook that does not return a value. 752 * 753 * call_int_hook: 754 * This is a hook that returns a value. 755 */ 756 757 #define call_void_hook(FUNC, ...) \ 758 do { \ 759 struct security_hook_list *P; \ 760 \ 761 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 762 P->hook.FUNC(__VA_ARGS__); \ 763 } while (0) 764 765 #define call_int_hook(FUNC, IRC, ...) ({ \ 766 int RC = IRC; \ 767 do { \ 768 struct security_hook_list *P; \ 769 \ 770 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 771 RC = P->hook.FUNC(__VA_ARGS__); \ 772 if (RC != 0) \ 773 break; \ 774 } \ 775 } while (0); \ 776 RC; \ 777 }) 778 779 /* Security operations */ 780 781 int security_binder_set_context_mgr(const struct cred *mgr) 782 { 783 return call_int_hook(binder_set_context_mgr, 0, mgr); 784 } 785 786 int security_binder_transaction(const struct cred *from, 787 const struct cred *to) 788 { 789 return call_int_hook(binder_transaction, 0, from, to); 790 } 791 792 int security_binder_transfer_binder(const struct cred *from, 793 const struct cred *to) 794 { 795 return call_int_hook(binder_transfer_binder, 0, from, to); 796 } 797 798 int security_binder_transfer_file(const struct cred *from, 799 const struct cred *to, struct file *file) 800 { 801 return call_int_hook(binder_transfer_file, 0, from, to, file); 802 } 803 804 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 805 { 806 return call_int_hook(ptrace_access_check, 0, child, mode); 807 } 808 809 int security_ptrace_traceme(struct task_struct *parent) 810 { 811 return call_int_hook(ptrace_traceme, 0, parent); 812 } 813 814 int security_capget(struct task_struct *target, 815 kernel_cap_t *effective, 816 kernel_cap_t *inheritable, 817 kernel_cap_t *permitted) 818 { 819 return call_int_hook(capget, 0, target, 820 effective, inheritable, permitted); 821 } 822 823 int security_capset(struct cred *new, const struct cred *old, 824 const kernel_cap_t *effective, 825 const kernel_cap_t *inheritable, 826 const kernel_cap_t *permitted) 827 { 828 return call_int_hook(capset, 0, new, old, 829 effective, inheritable, permitted); 830 } 831 832 int security_capable(const struct cred *cred, 833 struct user_namespace *ns, 834 int cap, 835 unsigned int opts) 836 { 837 return call_int_hook(capable, 0, cred, ns, cap, opts); 838 } 839 840 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 841 { 842 return call_int_hook(quotactl, 0, cmds, type, id, sb); 843 } 844 845 int security_quota_on(struct dentry *dentry) 846 { 847 return call_int_hook(quota_on, 0, dentry); 848 } 849 850 int security_syslog(int type) 851 { 852 return call_int_hook(syslog, 0, type); 853 } 854 855 int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 856 { 857 return call_int_hook(settime, 0, ts, tz); 858 } 859 860 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 861 { 862 struct security_hook_list *hp; 863 int cap_sys_admin = 1; 864 int rc; 865 866 /* 867 * The module will respond with a positive value if 868 * it thinks the __vm_enough_memory() call should be 869 * made with the cap_sys_admin set. If all of the modules 870 * agree that it should be set it will. If any module 871 * thinks it should not be set it won't. 872 */ 873 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 874 rc = hp->hook.vm_enough_memory(mm, pages); 875 if (rc <= 0) { 876 cap_sys_admin = 0; 877 break; 878 } 879 } 880 return __vm_enough_memory(mm, pages, cap_sys_admin); 881 } 882 883 int security_bprm_creds_for_exec(struct linux_binprm *bprm) 884 { 885 return call_int_hook(bprm_creds_for_exec, 0, bprm); 886 } 887 888 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file) 889 { 890 return call_int_hook(bprm_creds_from_file, 0, bprm, file); 891 } 892 893 int security_bprm_check(struct linux_binprm *bprm) 894 { 895 int ret; 896 897 ret = call_int_hook(bprm_check_security, 0, bprm); 898 if (ret) 899 return ret; 900 return ima_bprm_check(bprm); 901 } 902 903 void security_bprm_committing_creds(struct linux_binprm *bprm) 904 { 905 call_void_hook(bprm_committing_creds, bprm); 906 } 907 908 void security_bprm_committed_creds(struct linux_binprm *bprm) 909 { 910 call_void_hook(bprm_committed_creds, bprm); 911 } 912 913 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) 914 { 915 return call_int_hook(fs_context_dup, 0, fc, src_fc); 916 } 917 918 int security_fs_context_parse_param(struct fs_context *fc, 919 struct fs_parameter *param) 920 { 921 struct security_hook_list *hp; 922 int trc; 923 int rc = -ENOPARAM; 924 925 hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param, 926 list) { 927 trc = hp->hook.fs_context_parse_param(fc, param); 928 if (trc == 0) 929 rc = 0; 930 else if (trc != -ENOPARAM) 931 return trc; 932 } 933 return rc; 934 } 935 936 int security_sb_alloc(struct super_block *sb) 937 { 938 int rc = lsm_superblock_alloc(sb); 939 940 if (unlikely(rc)) 941 return rc; 942 rc = call_int_hook(sb_alloc_security, 0, sb); 943 if (unlikely(rc)) 944 security_sb_free(sb); 945 return rc; 946 } 947 948 void security_sb_delete(struct super_block *sb) 949 { 950 call_void_hook(sb_delete, sb); 951 } 952 953 void security_sb_free(struct super_block *sb) 954 { 955 call_void_hook(sb_free_security, sb); 956 kfree(sb->s_security); 957 sb->s_security = NULL; 958 } 959 960 void security_free_mnt_opts(void **mnt_opts) 961 { 962 if (!*mnt_opts) 963 return; 964 call_void_hook(sb_free_mnt_opts, *mnt_opts); 965 *mnt_opts = NULL; 966 } 967 EXPORT_SYMBOL(security_free_mnt_opts); 968 969 int security_sb_eat_lsm_opts(char *options, void **mnt_opts) 970 { 971 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts); 972 } 973 EXPORT_SYMBOL(security_sb_eat_lsm_opts); 974 975 int security_sb_mnt_opts_compat(struct super_block *sb, 976 void *mnt_opts) 977 { 978 return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts); 979 } 980 EXPORT_SYMBOL(security_sb_mnt_opts_compat); 981 982 int security_sb_remount(struct super_block *sb, 983 void *mnt_opts) 984 { 985 return call_int_hook(sb_remount, 0, sb, mnt_opts); 986 } 987 EXPORT_SYMBOL(security_sb_remount); 988 989 int security_sb_kern_mount(struct super_block *sb) 990 { 991 return call_int_hook(sb_kern_mount, 0, sb); 992 } 993 994 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 995 { 996 return call_int_hook(sb_show_options, 0, m, sb); 997 } 998 999 int security_sb_statfs(struct dentry *dentry) 1000 { 1001 return call_int_hook(sb_statfs, 0, dentry); 1002 } 1003 1004 int security_sb_mount(const char *dev_name, const struct path *path, 1005 const char *type, unsigned long flags, void *data) 1006 { 1007 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data); 1008 } 1009 1010 int security_sb_umount(struct vfsmount *mnt, int flags) 1011 { 1012 return call_int_hook(sb_umount, 0, mnt, flags); 1013 } 1014 1015 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path) 1016 { 1017 return call_int_hook(sb_pivotroot, 0, old_path, new_path); 1018 } 1019 1020 int security_sb_set_mnt_opts(struct super_block *sb, 1021 void *mnt_opts, 1022 unsigned long kern_flags, 1023 unsigned long *set_kern_flags) 1024 { 1025 return call_int_hook(sb_set_mnt_opts, 1026 mnt_opts ? -EOPNOTSUPP : 0, sb, 1027 mnt_opts, kern_flags, set_kern_flags); 1028 } 1029 EXPORT_SYMBOL(security_sb_set_mnt_opts); 1030 1031 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 1032 struct super_block *newsb, 1033 unsigned long kern_flags, 1034 unsigned long *set_kern_flags) 1035 { 1036 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb, 1037 kern_flags, set_kern_flags); 1038 } 1039 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 1040 1041 int security_move_mount(const struct path *from_path, const struct path *to_path) 1042 { 1043 return call_int_hook(move_mount, 0, from_path, to_path); 1044 } 1045 1046 int security_path_notify(const struct path *path, u64 mask, 1047 unsigned int obj_type) 1048 { 1049 return call_int_hook(path_notify, 0, path, mask, obj_type); 1050 } 1051 1052 int security_inode_alloc(struct inode *inode) 1053 { 1054 int rc = lsm_inode_alloc(inode); 1055 1056 if (unlikely(rc)) 1057 return rc; 1058 rc = call_int_hook(inode_alloc_security, 0, inode); 1059 if (unlikely(rc)) 1060 security_inode_free(inode); 1061 return rc; 1062 } 1063 1064 static void inode_free_by_rcu(struct rcu_head *head) 1065 { 1066 /* 1067 * The rcu head is at the start of the inode blob 1068 */ 1069 kmem_cache_free(lsm_inode_cache, head); 1070 } 1071 1072 void security_inode_free(struct inode *inode) 1073 { 1074 integrity_inode_free(inode); 1075 call_void_hook(inode_free_security, inode); 1076 /* 1077 * The inode may still be referenced in a path walk and 1078 * a call to security_inode_permission() can be made 1079 * after inode_free_security() is called. Ideally, the VFS 1080 * wouldn't do this, but fixing that is a much harder 1081 * job. For now, simply free the i_security via RCU, and 1082 * leave the current inode->i_security pointer intact. 1083 * The inode will be freed after the RCU grace period too. 1084 */ 1085 if (inode->i_security) 1086 call_rcu((struct rcu_head *)inode->i_security, 1087 inode_free_by_rcu); 1088 } 1089 1090 int security_dentry_init_security(struct dentry *dentry, int mode, 1091 const struct qstr *name, 1092 const char **xattr_name, void **ctx, 1093 u32 *ctxlen) 1094 { 1095 struct security_hook_list *hp; 1096 int rc; 1097 1098 /* 1099 * Only one module will provide a security context. 1100 */ 1101 hlist_for_each_entry(hp, &security_hook_heads.dentry_init_security, list) { 1102 rc = hp->hook.dentry_init_security(dentry, mode, name, 1103 xattr_name, ctx, ctxlen); 1104 if (rc != LSM_RET_DEFAULT(dentry_init_security)) 1105 return rc; 1106 } 1107 return LSM_RET_DEFAULT(dentry_init_security); 1108 } 1109 EXPORT_SYMBOL(security_dentry_init_security); 1110 1111 int security_dentry_create_files_as(struct dentry *dentry, int mode, 1112 struct qstr *name, 1113 const struct cred *old, struct cred *new) 1114 { 1115 return call_int_hook(dentry_create_files_as, 0, dentry, mode, 1116 name, old, new); 1117 } 1118 EXPORT_SYMBOL(security_dentry_create_files_as); 1119 1120 int security_inode_init_security(struct inode *inode, struct inode *dir, 1121 const struct qstr *qstr, 1122 const initxattrs initxattrs, void *fs_data) 1123 { 1124 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 1125 struct xattr *lsm_xattr, *evm_xattr, *xattr; 1126 int ret; 1127 1128 if (unlikely(IS_PRIVATE(inode))) 1129 return 0; 1130 1131 if (!initxattrs) 1132 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, 1133 dir, qstr, NULL, NULL, NULL); 1134 memset(new_xattrs, 0, sizeof(new_xattrs)); 1135 lsm_xattr = new_xattrs; 1136 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr, 1137 &lsm_xattr->name, 1138 &lsm_xattr->value, 1139 &lsm_xattr->value_len); 1140 if (ret) 1141 goto out; 1142 1143 evm_xattr = lsm_xattr + 1; 1144 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 1145 if (ret) 1146 goto out; 1147 ret = initxattrs(inode, new_xattrs, fs_data); 1148 out: 1149 for (xattr = new_xattrs; xattr->value != NULL; xattr++) 1150 kfree(xattr->value); 1151 return (ret == -EOPNOTSUPP) ? 0 : ret; 1152 } 1153 EXPORT_SYMBOL(security_inode_init_security); 1154 1155 int security_inode_init_security_anon(struct inode *inode, 1156 const struct qstr *name, 1157 const struct inode *context_inode) 1158 { 1159 return call_int_hook(inode_init_security_anon, 0, inode, name, 1160 context_inode); 1161 } 1162 1163 int security_old_inode_init_security(struct inode *inode, struct inode *dir, 1164 const struct qstr *qstr, const char **name, 1165 void **value, size_t *len) 1166 { 1167 if (unlikely(IS_PRIVATE(inode))) 1168 return -EOPNOTSUPP; 1169 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, 1170 qstr, name, value, len); 1171 } 1172 EXPORT_SYMBOL(security_old_inode_init_security); 1173 1174 #ifdef CONFIG_SECURITY_PATH 1175 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode, 1176 unsigned int dev) 1177 { 1178 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1179 return 0; 1180 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev); 1181 } 1182 EXPORT_SYMBOL(security_path_mknod); 1183 1184 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode) 1185 { 1186 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1187 return 0; 1188 return call_int_hook(path_mkdir, 0, dir, dentry, mode); 1189 } 1190 EXPORT_SYMBOL(security_path_mkdir); 1191 1192 int security_path_rmdir(const struct path *dir, struct dentry *dentry) 1193 { 1194 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1195 return 0; 1196 return call_int_hook(path_rmdir, 0, dir, dentry); 1197 } 1198 1199 int security_path_unlink(const struct path *dir, struct dentry *dentry) 1200 { 1201 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1202 return 0; 1203 return call_int_hook(path_unlink, 0, dir, dentry); 1204 } 1205 EXPORT_SYMBOL(security_path_unlink); 1206 1207 int security_path_symlink(const struct path *dir, struct dentry *dentry, 1208 const char *old_name) 1209 { 1210 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1211 return 0; 1212 return call_int_hook(path_symlink, 0, dir, dentry, old_name); 1213 } 1214 1215 int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 1216 struct dentry *new_dentry) 1217 { 1218 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1219 return 0; 1220 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry); 1221 } 1222 1223 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 1224 const struct path *new_dir, struct dentry *new_dentry, 1225 unsigned int flags) 1226 { 1227 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1228 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1229 return 0; 1230 1231 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir, 1232 new_dentry, flags); 1233 } 1234 EXPORT_SYMBOL(security_path_rename); 1235 1236 int security_path_truncate(const struct path *path) 1237 { 1238 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1239 return 0; 1240 return call_int_hook(path_truncate, 0, path); 1241 } 1242 1243 int security_path_chmod(const struct path *path, umode_t mode) 1244 { 1245 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1246 return 0; 1247 return call_int_hook(path_chmod, 0, path, mode); 1248 } 1249 1250 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 1251 { 1252 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1253 return 0; 1254 return call_int_hook(path_chown, 0, path, uid, gid); 1255 } 1256 1257 int security_path_chroot(const struct path *path) 1258 { 1259 return call_int_hook(path_chroot, 0, path); 1260 } 1261 #endif 1262 1263 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 1264 { 1265 if (unlikely(IS_PRIVATE(dir))) 1266 return 0; 1267 return call_int_hook(inode_create, 0, dir, dentry, mode); 1268 } 1269 EXPORT_SYMBOL_GPL(security_inode_create); 1270 1271 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 1272 struct dentry *new_dentry) 1273 { 1274 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1275 return 0; 1276 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry); 1277 } 1278 1279 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 1280 { 1281 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1282 return 0; 1283 return call_int_hook(inode_unlink, 0, dir, dentry); 1284 } 1285 1286 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 1287 const char *old_name) 1288 { 1289 if (unlikely(IS_PRIVATE(dir))) 1290 return 0; 1291 return call_int_hook(inode_symlink, 0, dir, dentry, old_name); 1292 } 1293 1294 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1295 { 1296 if (unlikely(IS_PRIVATE(dir))) 1297 return 0; 1298 return call_int_hook(inode_mkdir, 0, dir, dentry, mode); 1299 } 1300 EXPORT_SYMBOL_GPL(security_inode_mkdir); 1301 1302 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 1303 { 1304 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1305 return 0; 1306 return call_int_hook(inode_rmdir, 0, dir, dentry); 1307 } 1308 1309 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 1310 { 1311 if (unlikely(IS_PRIVATE(dir))) 1312 return 0; 1313 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev); 1314 } 1315 1316 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 1317 struct inode *new_dir, struct dentry *new_dentry, 1318 unsigned int flags) 1319 { 1320 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1321 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1322 return 0; 1323 1324 if (flags & RENAME_EXCHANGE) { 1325 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry, 1326 old_dir, old_dentry); 1327 if (err) 1328 return err; 1329 } 1330 1331 return call_int_hook(inode_rename, 0, old_dir, old_dentry, 1332 new_dir, new_dentry); 1333 } 1334 1335 int security_inode_readlink(struct dentry *dentry) 1336 { 1337 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1338 return 0; 1339 return call_int_hook(inode_readlink, 0, dentry); 1340 } 1341 1342 int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 1343 bool rcu) 1344 { 1345 if (unlikely(IS_PRIVATE(inode))) 1346 return 0; 1347 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu); 1348 } 1349 1350 int security_inode_permission(struct inode *inode, int mask) 1351 { 1352 if (unlikely(IS_PRIVATE(inode))) 1353 return 0; 1354 return call_int_hook(inode_permission, 0, inode, mask); 1355 } 1356 1357 int security_inode_setattr(struct user_namespace *mnt_userns, 1358 struct dentry *dentry, struct iattr *attr) 1359 { 1360 int ret; 1361 1362 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1363 return 0; 1364 ret = call_int_hook(inode_setattr, 0, dentry, attr); 1365 if (ret) 1366 return ret; 1367 return evm_inode_setattr(mnt_userns, dentry, attr); 1368 } 1369 EXPORT_SYMBOL_GPL(security_inode_setattr); 1370 1371 int security_inode_getattr(const struct path *path) 1372 { 1373 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1374 return 0; 1375 return call_int_hook(inode_getattr, 0, path); 1376 } 1377 1378 int security_inode_setxattr(struct user_namespace *mnt_userns, 1379 struct dentry *dentry, const char *name, 1380 const void *value, size_t size, int flags) 1381 { 1382 int ret; 1383 1384 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1385 return 0; 1386 /* 1387 * SELinux and Smack integrate the cap call, 1388 * so assume that all LSMs supplying this call do so. 1389 */ 1390 ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value, 1391 size, flags); 1392 1393 if (ret == 1) 1394 ret = cap_inode_setxattr(dentry, name, value, size, flags); 1395 if (ret) 1396 return ret; 1397 ret = ima_inode_setxattr(dentry, name, value, size); 1398 if (ret) 1399 return ret; 1400 return evm_inode_setxattr(mnt_userns, dentry, name, value, size); 1401 } 1402 1403 int security_inode_set_acl(struct user_namespace *mnt_userns, 1404 struct dentry *dentry, const char *acl_name, 1405 struct posix_acl *kacl) 1406 { 1407 int ret; 1408 1409 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1410 return 0; 1411 ret = call_int_hook(inode_set_acl, 0, mnt_userns, dentry, acl_name, 1412 kacl); 1413 if (ret) 1414 return ret; 1415 ret = ima_inode_set_acl(mnt_userns, dentry, acl_name, kacl); 1416 if (ret) 1417 return ret; 1418 return evm_inode_set_acl(mnt_userns, dentry, acl_name, kacl); 1419 } 1420 1421 int security_inode_get_acl(struct user_namespace *mnt_userns, 1422 struct dentry *dentry, const char *acl_name) 1423 { 1424 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1425 return 0; 1426 return call_int_hook(inode_get_acl, 0, mnt_userns, dentry, acl_name); 1427 } 1428 1429 int security_inode_remove_acl(struct user_namespace *mnt_userns, 1430 struct dentry *dentry, const char *acl_name) 1431 { 1432 int ret; 1433 1434 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1435 return 0; 1436 ret = call_int_hook(inode_remove_acl, 0, mnt_userns, dentry, acl_name); 1437 if (ret) 1438 return ret; 1439 ret = ima_inode_remove_acl(mnt_userns, dentry, acl_name); 1440 if (ret) 1441 return ret; 1442 return evm_inode_remove_acl(mnt_userns, dentry, acl_name); 1443 } 1444 1445 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 1446 const void *value, size_t size, int flags) 1447 { 1448 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1449 return; 1450 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 1451 evm_inode_post_setxattr(dentry, name, value, size); 1452 } 1453 1454 int security_inode_getxattr(struct dentry *dentry, const char *name) 1455 { 1456 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1457 return 0; 1458 return call_int_hook(inode_getxattr, 0, dentry, name); 1459 } 1460 1461 int security_inode_listxattr(struct dentry *dentry) 1462 { 1463 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1464 return 0; 1465 return call_int_hook(inode_listxattr, 0, dentry); 1466 } 1467 1468 int security_inode_removexattr(struct user_namespace *mnt_userns, 1469 struct dentry *dentry, const char *name) 1470 { 1471 int ret; 1472 1473 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1474 return 0; 1475 /* 1476 * SELinux and Smack integrate the cap call, 1477 * so assume that all LSMs supplying this call do so. 1478 */ 1479 ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name); 1480 if (ret == 1) 1481 ret = cap_inode_removexattr(mnt_userns, dentry, name); 1482 if (ret) 1483 return ret; 1484 ret = ima_inode_removexattr(dentry, name); 1485 if (ret) 1486 return ret; 1487 return evm_inode_removexattr(mnt_userns, dentry, name); 1488 } 1489 1490 int security_inode_need_killpriv(struct dentry *dentry) 1491 { 1492 return call_int_hook(inode_need_killpriv, 0, dentry); 1493 } 1494 1495 int security_inode_killpriv(struct user_namespace *mnt_userns, 1496 struct dentry *dentry) 1497 { 1498 return call_int_hook(inode_killpriv, 0, mnt_userns, dentry); 1499 } 1500 1501 int security_inode_getsecurity(struct user_namespace *mnt_userns, 1502 struct inode *inode, const char *name, 1503 void **buffer, bool alloc) 1504 { 1505 struct security_hook_list *hp; 1506 int rc; 1507 1508 if (unlikely(IS_PRIVATE(inode))) 1509 return LSM_RET_DEFAULT(inode_getsecurity); 1510 /* 1511 * Only one module will provide an attribute with a given name. 1512 */ 1513 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) { 1514 rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc); 1515 if (rc != LSM_RET_DEFAULT(inode_getsecurity)) 1516 return rc; 1517 } 1518 return LSM_RET_DEFAULT(inode_getsecurity); 1519 } 1520 1521 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 1522 { 1523 struct security_hook_list *hp; 1524 int rc; 1525 1526 if (unlikely(IS_PRIVATE(inode))) 1527 return LSM_RET_DEFAULT(inode_setsecurity); 1528 /* 1529 * Only one module will provide an attribute with a given name. 1530 */ 1531 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) { 1532 rc = hp->hook.inode_setsecurity(inode, name, value, size, 1533 flags); 1534 if (rc != LSM_RET_DEFAULT(inode_setsecurity)) 1535 return rc; 1536 } 1537 return LSM_RET_DEFAULT(inode_setsecurity); 1538 } 1539 1540 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 1541 { 1542 if (unlikely(IS_PRIVATE(inode))) 1543 return 0; 1544 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size); 1545 } 1546 EXPORT_SYMBOL(security_inode_listsecurity); 1547 1548 void security_inode_getsecid(struct inode *inode, u32 *secid) 1549 { 1550 call_void_hook(inode_getsecid, inode, secid); 1551 } 1552 1553 int security_inode_copy_up(struct dentry *src, struct cred **new) 1554 { 1555 return call_int_hook(inode_copy_up, 0, src, new); 1556 } 1557 EXPORT_SYMBOL(security_inode_copy_up); 1558 1559 int security_inode_copy_up_xattr(const char *name) 1560 { 1561 struct security_hook_list *hp; 1562 int rc; 1563 1564 /* 1565 * The implementation can return 0 (accept the xattr), 1 (discard the 1566 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or 1567 * any other error code incase of an error. 1568 */ 1569 hlist_for_each_entry(hp, 1570 &security_hook_heads.inode_copy_up_xattr, list) { 1571 rc = hp->hook.inode_copy_up_xattr(name); 1572 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr)) 1573 return rc; 1574 } 1575 1576 return LSM_RET_DEFAULT(inode_copy_up_xattr); 1577 } 1578 EXPORT_SYMBOL(security_inode_copy_up_xattr); 1579 1580 int security_kernfs_init_security(struct kernfs_node *kn_dir, 1581 struct kernfs_node *kn) 1582 { 1583 return call_int_hook(kernfs_init_security, 0, kn_dir, kn); 1584 } 1585 1586 int security_file_permission(struct file *file, int mask) 1587 { 1588 int ret; 1589 1590 ret = call_int_hook(file_permission, 0, file, mask); 1591 if (ret) 1592 return ret; 1593 1594 return fsnotify_perm(file, mask); 1595 } 1596 1597 int security_file_alloc(struct file *file) 1598 { 1599 int rc = lsm_file_alloc(file); 1600 1601 if (rc) 1602 return rc; 1603 rc = call_int_hook(file_alloc_security, 0, file); 1604 if (unlikely(rc)) 1605 security_file_free(file); 1606 return rc; 1607 } 1608 1609 void security_file_free(struct file *file) 1610 { 1611 void *blob; 1612 1613 call_void_hook(file_free_security, file); 1614 1615 blob = file->f_security; 1616 if (blob) { 1617 file->f_security = NULL; 1618 kmem_cache_free(lsm_file_cache, blob); 1619 } 1620 } 1621 1622 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1623 { 1624 return call_int_hook(file_ioctl, 0, file, cmd, arg); 1625 } 1626 EXPORT_SYMBOL_GPL(security_file_ioctl); 1627 1628 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 1629 { 1630 /* 1631 * Does we have PROT_READ and does the application expect 1632 * it to imply PROT_EXEC? If not, nothing to talk about... 1633 */ 1634 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 1635 return prot; 1636 if (!(current->personality & READ_IMPLIES_EXEC)) 1637 return prot; 1638 /* 1639 * if that's an anonymous mapping, let it. 1640 */ 1641 if (!file) 1642 return prot | PROT_EXEC; 1643 /* 1644 * ditto if it's not on noexec mount, except that on !MMU we need 1645 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 1646 */ 1647 if (!path_noexec(&file->f_path)) { 1648 #ifndef CONFIG_MMU 1649 if (file->f_op->mmap_capabilities) { 1650 unsigned caps = file->f_op->mmap_capabilities(file); 1651 if (!(caps & NOMMU_MAP_EXEC)) 1652 return prot; 1653 } 1654 #endif 1655 return prot | PROT_EXEC; 1656 } 1657 /* anything on noexec mount won't get PROT_EXEC */ 1658 return prot; 1659 } 1660 1661 int security_mmap_file(struct file *file, unsigned long prot, 1662 unsigned long flags) 1663 { 1664 int ret; 1665 ret = call_int_hook(mmap_file, 0, file, prot, 1666 mmap_prot(file, prot), flags); 1667 if (ret) 1668 return ret; 1669 return ima_file_mmap(file, prot); 1670 } 1671 1672 int security_mmap_addr(unsigned long addr) 1673 { 1674 return call_int_hook(mmap_addr, 0, addr); 1675 } 1676 1677 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 1678 unsigned long prot) 1679 { 1680 int ret; 1681 1682 ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot); 1683 if (ret) 1684 return ret; 1685 return ima_file_mprotect(vma, prot); 1686 } 1687 1688 int security_file_lock(struct file *file, unsigned int cmd) 1689 { 1690 return call_int_hook(file_lock, 0, file, cmd); 1691 } 1692 1693 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 1694 { 1695 return call_int_hook(file_fcntl, 0, file, cmd, arg); 1696 } 1697 1698 void security_file_set_fowner(struct file *file) 1699 { 1700 call_void_hook(file_set_fowner, file); 1701 } 1702 1703 int security_file_send_sigiotask(struct task_struct *tsk, 1704 struct fown_struct *fown, int sig) 1705 { 1706 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig); 1707 } 1708 1709 int security_file_receive(struct file *file) 1710 { 1711 return call_int_hook(file_receive, 0, file); 1712 } 1713 1714 int security_file_open(struct file *file) 1715 { 1716 int ret; 1717 1718 ret = call_int_hook(file_open, 0, file); 1719 if (ret) 1720 return ret; 1721 1722 return fsnotify_perm(file, MAY_OPEN); 1723 } 1724 1725 int security_file_truncate(struct file *file) 1726 { 1727 return call_int_hook(file_truncate, 0, file); 1728 } 1729 1730 int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 1731 { 1732 int rc = lsm_task_alloc(task); 1733 1734 if (rc) 1735 return rc; 1736 rc = call_int_hook(task_alloc, 0, task, clone_flags); 1737 if (unlikely(rc)) 1738 security_task_free(task); 1739 return rc; 1740 } 1741 1742 void security_task_free(struct task_struct *task) 1743 { 1744 call_void_hook(task_free, task); 1745 1746 kfree(task->security); 1747 task->security = NULL; 1748 } 1749 1750 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 1751 { 1752 int rc = lsm_cred_alloc(cred, gfp); 1753 1754 if (rc) 1755 return rc; 1756 1757 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp); 1758 if (unlikely(rc)) 1759 security_cred_free(cred); 1760 return rc; 1761 } 1762 1763 void security_cred_free(struct cred *cred) 1764 { 1765 /* 1766 * There is a failure case in prepare_creds() that 1767 * may result in a call here with ->security being NULL. 1768 */ 1769 if (unlikely(cred->security == NULL)) 1770 return; 1771 1772 call_void_hook(cred_free, cred); 1773 1774 kfree(cred->security); 1775 cred->security = NULL; 1776 } 1777 1778 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 1779 { 1780 int rc = lsm_cred_alloc(new, gfp); 1781 1782 if (rc) 1783 return rc; 1784 1785 rc = call_int_hook(cred_prepare, 0, new, old, gfp); 1786 if (unlikely(rc)) 1787 security_cred_free(new); 1788 return rc; 1789 } 1790 1791 void security_transfer_creds(struct cred *new, const struct cred *old) 1792 { 1793 call_void_hook(cred_transfer, new, old); 1794 } 1795 1796 void security_cred_getsecid(const struct cred *c, u32 *secid) 1797 { 1798 *secid = 0; 1799 call_void_hook(cred_getsecid, c, secid); 1800 } 1801 EXPORT_SYMBOL(security_cred_getsecid); 1802 1803 int security_kernel_act_as(struct cred *new, u32 secid) 1804 { 1805 return call_int_hook(kernel_act_as, 0, new, secid); 1806 } 1807 1808 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 1809 { 1810 return call_int_hook(kernel_create_files_as, 0, new, inode); 1811 } 1812 1813 int security_kernel_module_request(char *kmod_name) 1814 { 1815 int ret; 1816 1817 ret = call_int_hook(kernel_module_request, 0, kmod_name); 1818 if (ret) 1819 return ret; 1820 return integrity_kernel_module_request(kmod_name); 1821 } 1822 1823 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id, 1824 bool contents) 1825 { 1826 int ret; 1827 1828 ret = call_int_hook(kernel_read_file, 0, file, id, contents); 1829 if (ret) 1830 return ret; 1831 return ima_read_file(file, id, contents); 1832 } 1833 EXPORT_SYMBOL_GPL(security_kernel_read_file); 1834 1835 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 1836 enum kernel_read_file_id id) 1837 { 1838 int ret; 1839 1840 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id); 1841 if (ret) 1842 return ret; 1843 return ima_post_read_file(file, buf, size, id); 1844 } 1845 EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 1846 1847 int security_kernel_load_data(enum kernel_load_data_id id, bool contents) 1848 { 1849 int ret; 1850 1851 ret = call_int_hook(kernel_load_data, 0, id, contents); 1852 if (ret) 1853 return ret; 1854 return ima_load_data(id, contents); 1855 } 1856 EXPORT_SYMBOL_GPL(security_kernel_load_data); 1857 1858 int security_kernel_post_load_data(char *buf, loff_t size, 1859 enum kernel_load_data_id id, 1860 char *description) 1861 { 1862 int ret; 1863 1864 ret = call_int_hook(kernel_post_load_data, 0, buf, size, id, 1865 description); 1866 if (ret) 1867 return ret; 1868 return ima_post_load_data(buf, size, id, description); 1869 } 1870 EXPORT_SYMBOL_GPL(security_kernel_post_load_data); 1871 1872 int security_task_fix_setuid(struct cred *new, const struct cred *old, 1873 int flags) 1874 { 1875 return call_int_hook(task_fix_setuid, 0, new, old, flags); 1876 } 1877 1878 int security_task_fix_setgid(struct cred *new, const struct cred *old, 1879 int flags) 1880 { 1881 return call_int_hook(task_fix_setgid, 0, new, old, flags); 1882 } 1883 1884 int security_task_fix_setgroups(struct cred *new, const struct cred *old) 1885 { 1886 return call_int_hook(task_fix_setgroups, 0, new, old); 1887 } 1888 1889 int security_task_setpgid(struct task_struct *p, pid_t pgid) 1890 { 1891 return call_int_hook(task_setpgid, 0, p, pgid); 1892 } 1893 1894 int security_task_getpgid(struct task_struct *p) 1895 { 1896 return call_int_hook(task_getpgid, 0, p); 1897 } 1898 1899 int security_task_getsid(struct task_struct *p) 1900 { 1901 return call_int_hook(task_getsid, 0, p); 1902 } 1903 1904 void security_current_getsecid_subj(u32 *secid) 1905 { 1906 *secid = 0; 1907 call_void_hook(current_getsecid_subj, secid); 1908 } 1909 EXPORT_SYMBOL(security_current_getsecid_subj); 1910 1911 void security_task_getsecid_obj(struct task_struct *p, u32 *secid) 1912 { 1913 *secid = 0; 1914 call_void_hook(task_getsecid_obj, p, secid); 1915 } 1916 EXPORT_SYMBOL(security_task_getsecid_obj); 1917 1918 int security_task_setnice(struct task_struct *p, int nice) 1919 { 1920 return call_int_hook(task_setnice, 0, p, nice); 1921 } 1922 1923 int security_task_setioprio(struct task_struct *p, int ioprio) 1924 { 1925 return call_int_hook(task_setioprio, 0, p, ioprio); 1926 } 1927 1928 int security_task_getioprio(struct task_struct *p) 1929 { 1930 return call_int_hook(task_getioprio, 0, p); 1931 } 1932 1933 int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 1934 unsigned int flags) 1935 { 1936 return call_int_hook(task_prlimit, 0, cred, tcred, flags); 1937 } 1938 1939 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 1940 struct rlimit *new_rlim) 1941 { 1942 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim); 1943 } 1944 1945 int security_task_setscheduler(struct task_struct *p) 1946 { 1947 return call_int_hook(task_setscheduler, 0, p); 1948 } 1949 1950 int security_task_getscheduler(struct task_struct *p) 1951 { 1952 return call_int_hook(task_getscheduler, 0, p); 1953 } 1954 1955 int security_task_movememory(struct task_struct *p) 1956 { 1957 return call_int_hook(task_movememory, 0, p); 1958 } 1959 1960 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, 1961 int sig, const struct cred *cred) 1962 { 1963 return call_int_hook(task_kill, 0, p, info, sig, cred); 1964 } 1965 1966 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 1967 unsigned long arg4, unsigned long arg5) 1968 { 1969 int thisrc; 1970 int rc = LSM_RET_DEFAULT(task_prctl); 1971 struct security_hook_list *hp; 1972 1973 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 1974 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 1975 if (thisrc != LSM_RET_DEFAULT(task_prctl)) { 1976 rc = thisrc; 1977 if (thisrc != 0) 1978 break; 1979 } 1980 } 1981 return rc; 1982 } 1983 1984 void security_task_to_inode(struct task_struct *p, struct inode *inode) 1985 { 1986 call_void_hook(task_to_inode, p, inode); 1987 } 1988 1989 int security_create_user_ns(const struct cred *cred) 1990 { 1991 return call_int_hook(userns_create, 0, cred); 1992 } 1993 1994 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 1995 { 1996 return call_int_hook(ipc_permission, 0, ipcp, flag); 1997 } 1998 1999 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 2000 { 2001 *secid = 0; 2002 call_void_hook(ipc_getsecid, ipcp, secid); 2003 } 2004 2005 int security_msg_msg_alloc(struct msg_msg *msg) 2006 { 2007 int rc = lsm_msg_msg_alloc(msg); 2008 2009 if (unlikely(rc)) 2010 return rc; 2011 rc = call_int_hook(msg_msg_alloc_security, 0, msg); 2012 if (unlikely(rc)) 2013 security_msg_msg_free(msg); 2014 return rc; 2015 } 2016 2017 void security_msg_msg_free(struct msg_msg *msg) 2018 { 2019 call_void_hook(msg_msg_free_security, msg); 2020 kfree(msg->security); 2021 msg->security = NULL; 2022 } 2023 2024 int security_msg_queue_alloc(struct kern_ipc_perm *msq) 2025 { 2026 int rc = lsm_ipc_alloc(msq); 2027 2028 if (unlikely(rc)) 2029 return rc; 2030 rc = call_int_hook(msg_queue_alloc_security, 0, msq); 2031 if (unlikely(rc)) 2032 security_msg_queue_free(msq); 2033 return rc; 2034 } 2035 2036 void security_msg_queue_free(struct kern_ipc_perm *msq) 2037 { 2038 call_void_hook(msg_queue_free_security, msq); 2039 kfree(msq->security); 2040 msq->security = NULL; 2041 } 2042 2043 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 2044 { 2045 return call_int_hook(msg_queue_associate, 0, msq, msqflg); 2046 } 2047 2048 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 2049 { 2050 return call_int_hook(msg_queue_msgctl, 0, msq, cmd); 2051 } 2052 2053 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 2054 struct msg_msg *msg, int msqflg) 2055 { 2056 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg); 2057 } 2058 2059 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 2060 struct task_struct *target, long type, int mode) 2061 { 2062 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode); 2063 } 2064 2065 int security_shm_alloc(struct kern_ipc_perm *shp) 2066 { 2067 int rc = lsm_ipc_alloc(shp); 2068 2069 if (unlikely(rc)) 2070 return rc; 2071 rc = call_int_hook(shm_alloc_security, 0, shp); 2072 if (unlikely(rc)) 2073 security_shm_free(shp); 2074 return rc; 2075 } 2076 2077 void security_shm_free(struct kern_ipc_perm *shp) 2078 { 2079 call_void_hook(shm_free_security, shp); 2080 kfree(shp->security); 2081 shp->security = NULL; 2082 } 2083 2084 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 2085 { 2086 return call_int_hook(shm_associate, 0, shp, shmflg); 2087 } 2088 2089 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 2090 { 2091 return call_int_hook(shm_shmctl, 0, shp, cmd); 2092 } 2093 2094 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg) 2095 { 2096 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg); 2097 } 2098 2099 int security_sem_alloc(struct kern_ipc_perm *sma) 2100 { 2101 int rc = lsm_ipc_alloc(sma); 2102 2103 if (unlikely(rc)) 2104 return rc; 2105 rc = call_int_hook(sem_alloc_security, 0, sma); 2106 if (unlikely(rc)) 2107 security_sem_free(sma); 2108 return rc; 2109 } 2110 2111 void security_sem_free(struct kern_ipc_perm *sma) 2112 { 2113 call_void_hook(sem_free_security, sma); 2114 kfree(sma->security); 2115 sma->security = NULL; 2116 } 2117 2118 int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 2119 { 2120 return call_int_hook(sem_associate, 0, sma, semflg); 2121 } 2122 2123 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 2124 { 2125 return call_int_hook(sem_semctl, 0, sma, cmd); 2126 } 2127 2128 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 2129 unsigned nsops, int alter) 2130 { 2131 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter); 2132 } 2133 2134 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 2135 { 2136 if (unlikely(inode && IS_PRIVATE(inode))) 2137 return; 2138 call_void_hook(d_instantiate, dentry, inode); 2139 } 2140 EXPORT_SYMBOL(security_d_instantiate); 2141 2142 int security_getprocattr(struct task_struct *p, const char *lsm, 2143 const char *name, char **value) 2144 { 2145 struct security_hook_list *hp; 2146 2147 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) { 2148 if (lsm != NULL && strcmp(lsm, hp->lsm)) 2149 continue; 2150 return hp->hook.getprocattr(p, name, value); 2151 } 2152 return LSM_RET_DEFAULT(getprocattr); 2153 } 2154 2155 int security_setprocattr(const char *lsm, const char *name, void *value, 2156 size_t size) 2157 { 2158 struct security_hook_list *hp; 2159 2160 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) { 2161 if (lsm != NULL && strcmp(lsm, hp->lsm)) 2162 continue; 2163 return hp->hook.setprocattr(name, value, size); 2164 } 2165 return LSM_RET_DEFAULT(setprocattr); 2166 } 2167 2168 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 2169 { 2170 return call_int_hook(netlink_send, 0, sk, skb); 2171 } 2172 2173 int security_ismaclabel(const char *name) 2174 { 2175 return call_int_hook(ismaclabel, 0, name); 2176 } 2177 EXPORT_SYMBOL(security_ismaclabel); 2178 2179 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 2180 { 2181 struct security_hook_list *hp; 2182 int rc; 2183 2184 /* 2185 * Currently, only one LSM can implement secid_to_secctx (i.e this 2186 * LSM hook is not "stackable"). 2187 */ 2188 hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) { 2189 rc = hp->hook.secid_to_secctx(secid, secdata, seclen); 2190 if (rc != LSM_RET_DEFAULT(secid_to_secctx)) 2191 return rc; 2192 } 2193 2194 return LSM_RET_DEFAULT(secid_to_secctx); 2195 } 2196 EXPORT_SYMBOL(security_secid_to_secctx); 2197 2198 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 2199 { 2200 *secid = 0; 2201 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid); 2202 } 2203 EXPORT_SYMBOL(security_secctx_to_secid); 2204 2205 void security_release_secctx(char *secdata, u32 seclen) 2206 { 2207 call_void_hook(release_secctx, secdata, seclen); 2208 } 2209 EXPORT_SYMBOL(security_release_secctx); 2210 2211 void security_inode_invalidate_secctx(struct inode *inode) 2212 { 2213 call_void_hook(inode_invalidate_secctx, inode); 2214 } 2215 EXPORT_SYMBOL(security_inode_invalidate_secctx); 2216 2217 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 2218 { 2219 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen); 2220 } 2221 EXPORT_SYMBOL(security_inode_notifysecctx); 2222 2223 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 2224 { 2225 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen); 2226 } 2227 EXPORT_SYMBOL(security_inode_setsecctx); 2228 2229 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 2230 { 2231 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen); 2232 } 2233 EXPORT_SYMBOL(security_inode_getsecctx); 2234 2235 #ifdef CONFIG_WATCH_QUEUE 2236 int security_post_notification(const struct cred *w_cred, 2237 const struct cred *cred, 2238 struct watch_notification *n) 2239 { 2240 return call_int_hook(post_notification, 0, w_cred, cred, n); 2241 } 2242 #endif /* CONFIG_WATCH_QUEUE */ 2243 2244 #ifdef CONFIG_KEY_NOTIFICATIONS 2245 int security_watch_key(struct key *key) 2246 { 2247 return call_int_hook(watch_key, 0, key); 2248 } 2249 #endif 2250 2251 #ifdef CONFIG_SECURITY_NETWORK 2252 2253 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 2254 { 2255 return call_int_hook(unix_stream_connect, 0, sock, other, newsk); 2256 } 2257 EXPORT_SYMBOL(security_unix_stream_connect); 2258 2259 int security_unix_may_send(struct socket *sock, struct socket *other) 2260 { 2261 return call_int_hook(unix_may_send, 0, sock, other); 2262 } 2263 EXPORT_SYMBOL(security_unix_may_send); 2264 2265 int security_socket_create(int family, int type, int protocol, int kern) 2266 { 2267 return call_int_hook(socket_create, 0, family, type, protocol, kern); 2268 } 2269 2270 int security_socket_post_create(struct socket *sock, int family, 2271 int type, int protocol, int kern) 2272 { 2273 return call_int_hook(socket_post_create, 0, sock, family, type, 2274 protocol, kern); 2275 } 2276 2277 int security_socket_socketpair(struct socket *socka, struct socket *sockb) 2278 { 2279 return call_int_hook(socket_socketpair, 0, socka, sockb); 2280 } 2281 EXPORT_SYMBOL(security_socket_socketpair); 2282 2283 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 2284 { 2285 return call_int_hook(socket_bind, 0, sock, address, addrlen); 2286 } 2287 2288 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 2289 { 2290 return call_int_hook(socket_connect, 0, sock, address, addrlen); 2291 } 2292 2293 int security_socket_listen(struct socket *sock, int backlog) 2294 { 2295 return call_int_hook(socket_listen, 0, sock, backlog); 2296 } 2297 2298 int security_socket_accept(struct socket *sock, struct socket *newsock) 2299 { 2300 return call_int_hook(socket_accept, 0, sock, newsock); 2301 } 2302 2303 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 2304 { 2305 return call_int_hook(socket_sendmsg, 0, sock, msg, size); 2306 } 2307 2308 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 2309 int size, int flags) 2310 { 2311 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags); 2312 } 2313 2314 int security_socket_getsockname(struct socket *sock) 2315 { 2316 return call_int_hook(socket_getsockname, 0, sock); 2317 } 2318 2319 int security_socket_getpeername(struct socket *sock) 2320 { 2321 return call_int_hook(socket_getpeername, 0, sock); 2322 } 2323 2324 int security_socket_getsockopt(struct socket *sock, int level, int optname) 2325 { 2326 return call_int_hook(socket_getsockopt, 0, sock, level, optname); 2327 } 2328 2329 int security_socket_setsockopt(struct socket *sock, int level, int optname) 2330 { 2331 return call_int_hook(socket_setsockopt, 0, sock, level, optname); 2332 } 2333 2334 int security_socket_shutdown(struct socket *sock, int how) 2335 { 2336 return call_int_hook(socket_shutdown, 0, sock, how); 2337 } 2338 2339 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 2340 { 2341 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb); 2342 } 2343 EXPORT_SYMBOL(security_sock_rcv_skb); 2344 2345 int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval, 2346 sockptr_t optlen, unsigned int len) 2347 { 2348 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock, 2349 optval, optlen, len); 2350 } 2351 2352 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 2353 { 2354 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock, 2355 skb, secid); 2356 } 2357 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 2358 2359 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 2360 { 2361 return call_int_hook(sk_alloc_security, 0, sk, family, priority); 2362 } 2363 2364 void security_sk_free(struct sock *sk) 2365 { 2366 call_void_hook(sk_free_security, sk); 2367 } 2368 2369 void security_sk_clone(const struct sock *sk, struct sock *newsk) 2370 { 2371 call_void_hook(sk_clone_security, sk, newsk); 2372 } 2373 EXPORT_SYMBOL(security_sk_clone); 2374 2375 void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic) 2376 { 2377 call_void_hook(sk_getsecid, sk, &flic->flowic_secid); 2378 } 2379 EXPORT_SYMBOL(security_sk_classify_flow); 2380 2381 void security_req_classify_flow(const struct request_sock *req, 2382 struct flowi_common *flic) 2383 { 2384 call_void_hook(req_classify_flow, req, flic); 2385 } 2386 EXPORT_SYMBOL(security_req_classify_flow); 2387 2388 void security_sock_graft(struct sock *sk, struct socket *parent) 2389 { 2390 call_void_hook(sock_graft, sk, parent); 2391 } 2392 EXPORT_SYMBOL(security_sock_graft); 2393 2394 int security_inet_conn_request(const struct sock *sk, 2395 struct sk_buff *skb, struct request_sock *req) 2396 { 2397 return call_int_hook(inet_conn_request, 0, sk, skb, req); 2398 } 2399 EXPORT_SYMBOL(security_inet_conn_request); 2400 2401 void security_inet_csk_clone(struct sock *newsk, 2402 const struct request_sock *req) 2403 { 2404 call_void_hook(inet_csk_clone, newsk, req); 2405 } 2406 2407 void security_inet_conn_established(struct sock *sk, 2408 struct sk_buff *skb) 2409 { 2410 call_void_hook(inet_conn_established, sk, skb); 2411 } 2412 EXPORT_SYMBOL(security_inet_conn_established); 2413 2414 int security_secmark_relabel_packet(u32 secid) 2415 { 2416 return call_int_hook(secmark_relabel_packet, 0, secid); 2417 } 2418 EXPORT_SYMBOL(security_secmark_relabel_packet); 2419 2420 void security_secmark_refcount_inc(void) 2421 { 2422 call_void_hook(secmark_refcount_inc); 2423 } 2424 EXPORT_SYMBOL(security_secmark_refcount_inc); 2425 2426 void security_secmark_refcount_dec(void) 2427 { 2428 call_void_hook(secmark_refcount_dec); 2429 } 2430 EXPORT_SYMBOL(security_secmark_refcount_dec); 2431 2432 int security_tun_dev_alloc_security(void **security) 2433 { 2434 return call_int_hook(tun_dev_alloc_security, 0, security); 2435 } 2436 EXPORT_SYMBOL(security_tun_dev_alloc_security); 2437 2438 void security_tun_dev_free_security(void *security) 2439 { 2440 call_void_hook(tun_dev_free_security, security); 2441 } 2442 EXPORT_SYMBOL(security_tun_dev_free_security); 2443 2444 int security_tun_dev_create(void) 2445 { 2446 return call_int_hook(tun_dev_create, 0); 2447 } 2448 EXPORT_SYMBOL(security_tun_dev_create); 2449 2450 int security_tun_dev_attach_queue(void *security) 2451 { 2452 return call_int_hook(tun_dev_attach_queue, 0, security); 2453 } 2454 EXPORT_SYMBOL(security_tun_dev_attach_queue); 2455 2456 int security_tun_dev_attach(struct sock *sk, void *security) 2457 { 2458 return call_int_hook(tun_dev_attach, 0, sk, security); 2459 } 2460 EXPORT_SYMBOL(security_tun_dev_attach); 2461 2462 int security_tun_dev_open(void *security) 2463 { 2464 return call_int_hook(tun_dev_open, 0, security); 2465 } 2466 EXPORT_SYMBOL(security_tun_dev_open); 2467 2468 int security_sctp_assoc_request(struct sctp_association *asoc, struct sk_buff *skb) 2469 { 2470 return call_int_hook(sctp_assoc_request, 0, asoc, skb); 2471 } 2472 EXPORT_SYMBOL(security_sctp_assoc_request); 2473 2474 int security_sctp_bind_connect(struct sock *sk, int optname, 2475 struct sockaddr *address, int addrlen) 2476 { 2477 return call_int_hook(sctp_bind_connect, 0, sk, optname, 2478 address, addrlen); 2479 } 2480 EXPORT_SYMBOL(security_sctp_bind_connect); 2481 2482 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk, 2483 struct sock *newsk) 2484 { 2485 call_void_hook(sctp_sk_clone, asoc, sk, newsk); 2486 } 2487 EXPORT_SYMBOL(security_sctp_sk_clone); 2488 2489 int security_sctp_assoc_established(struct sctp_association *asoc, 2490 struct sk_buff *skb) 2491 { 2492 return call_int_hook(sctp_assoc_established, 0, asoc, skb); 2493 } 2494 EXPORT_SYMBOL(security_sctp_assoc_established); 2495 2496 #endif /* CONFIG_SECURITY_NETWORK */ 2497 2498 #ifdef CONFIG_SECURITY_INFINIBAND 2499 2500 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 2501 { 2502 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey); 2503 } 2504 EXPORT_SYMBOL(security_ib_pkey_access); 2505 2506 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num) 2507 { 2508 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num); 2509 } 2510 EXPORT_SYMBOL(security_ib_endport_manage_subnet); 2511 2512 int security_ib_alloc_security(void **sec) 2513 { 2514 return call_int_hook(ib_alloc_security, 0, sec); 2515 } 2516 EXPORT_SYMBOL(security_ib_alloc_security); 2517 2518 void security_ib_free_security(void *sec) 2519 { 2520 call_void_hook(ib_free_security, sec); 2521 } 2522 EXPORT_SYMBOL(security_ib_free_security); 2523 #endif /* CONFIG_SECURITY_INFINIBAND */ 2524 2525 #ifdef CONFIG_SECURITY_NETWORK_XFRM 2526 2527 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 2528 struct xfrm_user_sec_ctx *sec_ctx, 2529 gfp_t gfp) 2530 { 2531 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp); 2532 } 2533 EXPORT_SYMBOL(security_xfrm_policy_alloc); 2534 2535 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 2536 struct xfrm_sec_ctx **new_ctxp) 2537 { 2538 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp); 2539 } 2540 2541 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 2542 { 2543 call_void_hook(xfrm_policy_free_security, ctx); 2544 } 2545 EXPORT_SYMBOL(security_xfrm_policy_free); 2546 2547 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 2548 { 2549 return call_int_hook(xfrm_policy_delete_security, 0, ctx); 2550 } 2551 2552 int security_xfrm_state_alloc(struct xfrm_state *x, 2553 struct xfrm_user_sec_ctx *sec_ctx) 2554 { 2555 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx); 2556 } 2557 EXPORT_SYMBOL(security_xfrm_state_alloc); 2558 2559 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 2560 struct xfrm_sec_ctx *polsec, u32 secid) 2561 { 2562 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid); 2563 } 2564 2565 int security_xfrm_state_delete(struct xfrm_state *x) 2566 { 2567 return call_int_hook(xfrm_state_delete_security, 0, x); 2568 } 2569 EXPORT_SYMBOL(security_xfrm_state_delete); 2570 2571 void security_xfrm_state_free(struct xfrm_state *x) 2572 { 2573 call_void_hook(xfrm_state_free_security, x); 2574 } 2575 2576 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid) 2577 { 2578 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid); 2579 } 2580 2581 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 2582 struct xfrm_policy *xp, 2583 const struct flowi_common *flic) 2584 { 2585 struct security_hook_list *hp; 2586 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match); 2587 2588 /* 2589 * Since this function is expected to return 0 or 1, the judgment 2590 * becomes difficult if multiple LSMs supply this call. Fortunately, 2591 * we can use the first LSM's judgment because currently only SELinux 2592 * supplies this call. 2593 * 2594 * For speed optimization, we explicitly break the loop rather than 2595 * using the macro 2596 */ 2597 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 2598 list) { 2599 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic); 2600 break; 2601 } 2602 return rc; 2603 } 2604 2605 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 2606 { 2607 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1); 2608 } 2609 2610 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic) 2611 { 2612 int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid, 2613 0); 2614 2615 BUG_ON(rc); 2616 } 2617 EXPORT_SYMBOL(security_skb_classify_flow); 2618 2619 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 2620 2621 #ifdef CONFIG_KEYS 2622 2623 int security_key_alloc(struct key *key, const struct cred *cred, 2624 unsigned long flags) 2625 { 2626 return call_int_hook(key_alloc, 0, key, cred, flags); 2627 } 2628 2629 void security_key_free(struct key *key) 2630 { 2631 call_void_hook(key_free, key); 2632 } 2633 2634 int security_key_permission(key_ref_t key_ref, const struct cred *cred, 2635 enum key_need_perm need_perm) 2636 { 2637 return call_int_hook(key_permission, 0, key_ref, cred, need_perm); 2638 } 2639 2640 int security_key_getsecurity(struct key *key, char **_buffer) 2641 { 2642 *_buffer = NULL; 2643 return call_int_hook(key_getsecurity, 0, key, _buffer); 2644 } 2645 2646 #endif /* CONFIG_KEYS */ 2647 2648 #ifdef CONFIG_AUDIT 2649 2650 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 2651 { 2652 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule); 2653 } 2654 2655 int security_audit_rule_known(struct audit_krule *krule) 2656 { 2657 return call_int_hook(audit_rule_known, 0, krule); 2658 } 2659 2660 void security_audit_rule_free(void *lsmrule) 2661 { 2662 call_void_hook(audit_rule_free, lsmrule); 2663 } 2664 2665 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule) 2666 { 2667 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule); 2668 } 2669 #endif /* CONFIG_AUDIT */ 2670 2671 #ifdef CONFIG_BPF_SYSCALL 2672 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 2673 { 2674 return call_int_hook(bpf, 0, cmd, attr, size); 2675 } 2676 int security_bpf_map(struct bpf_map *map, fmode_t fmode) 2677 { 2678 return call_int_hook(bpf_map, 0, map, fmode); 2679 } 2680 int security_bpf_prog(struct bpf_prog *prog) 2681 { 2682 return call_int_hook(bpf_prog, 0, prog); 2683 } 2684 int security_bpf_map_alloc(struct bpf_map *map) 2685 { 2686 return call_int_hook(bpf_map_alloc_security, 0, map); 2687 } 2688 int security_bpf_prog_alloc(struct bpf_prog_aux *aux) 2689 { 2690 return call_int_hook(bpf_prog_alloc_security, 0, aux); 2691 } 2692 void security_bpf_map_free(struct bpf_map *map) 2693 { 2694 call_void_hook(bpf_map_free_security, map); 2695 } 2696 void security_bpf_prog_free(struct bpf_prog_aux *aux) 2697 { 2698 call_void_hook(bpf_prog_free_security, aux); 2699 } 2700 #endif /* CONFIG_BPF_SYSCALL */ 2701 2702 int security_locked_down(enum lockdown_reason what) 2703 { 2704 return call_int_hook(locked_down, 0, what); 2705 } 2706 EXPORT_SYMBOL(security_locked_down); 2707 2708 #ifdef CONFIG_PERF_EVENTS 2709 int security_perf_event_open(struct perf_event_attr *attr, int type) 2710 { 2711 return call_int_hook(perf_event_open, 0, attr, type); 2712 } 2713 2714 int security_perf_event_alloc(struct perf_event *event) 2715 { 2716 return call_int_hook(perf_event_alloc, 0, event); 2717 } 2718 2719 void security_perf_event_free(struct perf_event *event) 2720 { 2721 call_void_hook(perf_event_free, event); 2722 } 2723 2724 int security_perf_event_read(struct perf_event *event) 2725 { 2726 return call_int_hook(perf_event_read, 0, event); 2727 } 2728 2729 int security_perf_event_write(struct perf_event *event) 2730 { 2731 return call_int_hook(perf_event_write, 0, event); 2732 } 2733 #endif /* CONFIG_PERF_EVENTS */ 2734 2735 #ifdef CONFIG_IO_URING 2736 int security_uring_override_creds(const struct cred *new) 2737 { 2738 return call_int_hook(uring_override_creds, 0, new); 2739 } 2740 2741 int security_uring_sqpoll(void) 2742 { 2743 return call_int_hook(uring_sqpoll, 0); 2744 } 2745 int security_uring_cmd(struct io_uring_cmd *ioucmd) 2746 { 2747 return call_int_hook(uring_cmd, 0, ioucmd); 2748 } 2749 #endif /* CONFIG_IO_URING */ 2750