xref: /openbmc/linux/security/security.c (revision 06d5d6b7f9948a89543e1160ef852d57892c750d)
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  * Copyright (C) 2016 Mellanox Technologies
8  *
9  *	This program is free software; you can redistribute it and/or modify
10  *	it under the terms of the GNU General Public License as published by
11  *	the Free Software Foundation; either version 2 of the License, or
12  *	(at your option) any later version.
13  */
14 
15 #define pr_fmt(fmt) "LSM: " fmt
16 
17 #include <linux/bpf.h>
18 #include <linux/capability.h>
19 #include <linux/dcache.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/lsm_hooks.h>
24 #include <linux/integrity.h>
25 #include <linux/ima.h>
26 #include <linux/evm.h>
27 #include <linux/fsnotify.h>
28 #include <linux/mman.h>
29 #include <linux/mount.h>
30 #include <linux/personality.h>
31 #include <linux/backing-dev.h>
32 #include <linux/string.h>
33 #include <linux/msg.h>
34 #include <net/flow.h>
35 
36 #define MAX_LSM_EVM_XATTR	2
37 
38 /* How many LSMs were built into the kernel? */
39 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
40 
41 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
42 static ATOMIC_NOTIFIER_HEAD(lsm_notifier_chain);
43 
44 static struct kmem_cache *lsm_file_cache;
45 static struct kmem_cache *lsm_inode_cache;
46 
47 char *lsm_names;
48 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
49 
50 /* Boot-time LSM user choice */
51 static __initdata const char *chosen_lsm_order;
52 static __initdata const char *chosen_major_lsm;
53 
54 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
55 
56 /* Ordered list of LSMs to initialize. */
57 static __initdata struct lsm_info **ordered_lsms;
58 static __initdata struct lsm_info *exclusive;
59 
60 static __initdata bool debug;
61 #define init_debug(...)						\
62 	do {							\
63 		if (debug)					\
64 			pr_info(__VA_ARGS__);			\
65 	} while (0)
66 
67 static bool __init is_enabled(struct lsm_info *lsm)
68 {
69 	if (!lsm->enabled)
70 		return false;
71 
72 	return *lsm->enabled;
73 }
74 
75 /* Mark an LSM's enabled flag. */
76 static int lsm_enabled_true __initdata = 1;
77 static int lsm_enabled_false __initdata = 0;
78 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
79 {
80 	/*
81 	 * When an LSM hasn't configured an enable variable, we can use
82 	 * a hard-coded location for storing the default enabled state.
83 	 */
84 	if (!lsm->enabled) {
85 		if (enabled)
86 			lsm->enabled = &lsm_enabled_true;
87 		else
88 			lsm->enabled = &lsm_enabled_false;
89 	} else if (lsm->enabled == &lsm_enabled_true) {
90 		if (!enabled)
91 			lsm->enabled = &lsm_enabled_false;
92 	} else if (lsm->enabled == &lsm_enabled_false) {
93 		if (enabled)
94 			lsm->enabled = &lsm_enabled_true;
95 	} else {
96 		*lsm->enabled = enabled;
97 	}
98 }
99 
100 /* Is an LSM already listed in the ordered LSMs list? */
101 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
102 {
103 	struct lsm_info **check;
104 
105 	for (check = ordered_lsms; *check; check++)
106 		if (*check == lsm)
107 			return true;
108 
109 	return false;
110 }
111 
112 /* Append an LSM to the list of ordered LSMs to initialize. */
113 static int last_lsm __initdata;
114 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
115 {
116 	/* Ignore duplicate selections. */
117 	if (exists_ordered_lsm(lsm))
118 		return;
119 
120 	if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
121 		return;
122 
123 	/* Enable this LSM, if it is not already set. */
124 	if (!lsm->enabled)
125 		lsm->enabled = &lsm_enabled_true;
126 	ordered_lsms[last_lsm++] = lsm;
127 
128 	init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
129 		   is_enabled(lsm) ? "en" : "dis");
130 }
131 
132 /* Is an LSM allowed to be initialized? */
133 static bool __init lsm_allowed(struct lsm_info *lsm)
134 {
135 	/* Skip if the LSM is disabled. */
136 	if (!is_enabled(lsm))
137 		return false;
138 
139 	/* Not allowed if another exclusive LSM already initialized. */
140 	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
141 		init_debug("exclusive disabled: %s\n", lsm->name);
142 		return false;
143 	}
144 
145 	return true;
146 }
147 
148 static void __init lsm_set_blob_size(int *need, int *lbs)
149 {
150 	int offset;
151 
152 	if (*need > 0) {
153 		offset = *lbs;
154 		*lbs += *need;
155 		*need = offset;
156 	}
157 }
158 
159 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
160 {
161 	if (!needed)
162 		return;
163 
164 	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
165 	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
166 	/*
167 	 * The inode blob gets an rcu_head in addition to
168 	 * what the modules might need.
169 	 */
170 	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
171 		blob_sizes.lbs_inode = sizeof(struct rcu_head);
172 	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
173 	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
174 	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
175 	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
176 }
177 
178 /* Prepare LSM for initialization. */
179 static void __init prepare_lsm(struct lsm_info *lsm)
180 {
181 	int enabled = lsm_allowed(lsm);
182 
183 	/* Record enablement (to handle any following exclusive LSMs). */
184 	set_enabled(lsm, enabled);
185 
186 	/* If enabled, do pre-initialization work. */
187 	if (enabled) {
188 		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
189 			exclusive = lsm;
190 			init_debug("exclusive chosen: %s\n", lsm->name);
191 		}
192 
193 		lsm_set_blob_sizes(lsm->blobs);
194 	}
195 }
196 
197 /* Initialize a given LSM, if it is enabled. */
198 static void __init initialize_lsm(struct lsm_info *lsm)
199 {
200 	if (is_enabled(lsm)) {
201 		int ret;
202 
203 		init_debug("initializing %s\n", lsm->name);
204 		ret = lsm->init();
205 		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
206 	}
207 }
208 
209 /* Populate ordered LSMs list from comma-separated LSM name list. */
210 static void __init ordered_lsm_parse(const char *order, const char *origin)
211 {
212 	struct lsm_info *lsm;
213 	char *sep, *name, *next;
214 
215 	/* LSM_ORDER_FIRST is always first. */
216 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
217 		if (lsm->order == LSM_ORDER_FIRST)
218 			append_ordered_lsm(lsm, "first");
219 	}
220 
221 	/* Process "security=", if given. */
222 	if (chosen_major_lsm) {
223 		struct lsm_info *major;
224 
225 		/*
226 		 * To match the original "security=" behavior, this
227 		 * explicitly does NOT fallback to another Legacy Major
228 		 * if the selected one was separately disabled: disable
229 		 * all non-matching Legacy Major LSMs.
230 		 */
231 		for (major = __start_lsm_info; major < __end_lsm_info;
232 		     major++) {
233 			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
234 			    strcmp(major->name, chosen_major_lsm) != 0) {
235 				set_enabled(major, false);
236 				init_debug("security=%s disabled: %s\n",
237 					   chosen_major_lsm, major->name);
238 			}
239 		}
240 	}
241 
242 	sep = kstrdup(order, GFP_KERNEL);
243 	next = sep;
244 	/* Walk the list, looking for matching LSMs. */
245 	while ((name = strsep(&next, ",")) != NULL) {
246 		bool found = false;
247 
248 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
249 			if (lsm->order == LSM_ORDER_MUTABLE &&
250 			    strcmp(lsm->name, name) == 0) {
251 				append_ordered_lsm(lsm, origin);
252 				found = true;
253 			}
254 		}
255 
256 		if (!found)
257 			init_debug("%s ignored: %s\n", origin, name);
258 	}
259 
260 	/* Process "security=", if given. */
261 	if (chosen_major_lsm) {
262 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
263 			if (exists_ordered_lsm(lsm))
264 				continue;
265 			if (strcmp(lsm->name, chosen_major_lsm) == 0)
266 				append_ordered_lsm(lsm, "security=");
267 		}
268 	}
269 
270 	/* Disable all LSMs not in the ordered list. */
271 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
272 		if (exists_ordered_lsm(lsm))
273 			continue;
274 		set_enabled(lsm, false);
275 		init_debug("%s disabled: %s\n", origin, lsm->name);
276 	}
277 
278 	kfree(sep);
279 }
280 
281 static void __init lsm_early_cred(struct cred *cred);
282 static void __init lsm_early_task(struct task_struct *task);
283 
284 static void __init ordered_lsm_init(void)
285 {
286 	struct lsm_info **lsm;
287 
288 	ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
289 				GFP_KERNEL);
290 
291 	if (chosen_lsm_order) {
292 		if (chosen_major_lsm) {
293 			pr_info("security= is ignored because it is superseded by lsm=\n");
294 			chosen_major_lsm = NULL;
295 		}
296 		ordered_lsm_parse(chosen_lsm_order, "cmdline");
297 	} else
298 		ordered_lsm_parse(builtin_lsm_order, "builtin");
299 
300 	for (lsm = ordered_lsms; *lsm; lsm++)
301 		prepare_lsm(*lsm);
302 
303 	init_debug("cred blob size     = %d\n", blob_sizes.lbs_cred);
304 	init_debug("file blob size     = %d\n", blob_sizes.lbs_file);
305 	init_debug("inode blob size    = %d\n", blob_sizes.lbs_inode);
306 	init_debug("ipc blob size      = %d\n", blob_sizes.lbs_ipc);
307 	init_debug("msg_msg blob size  = %d\n", blob_sizes.lbs_msg_msg);
308 	init_debug("task blob size     = %d\n", blob_sizes.lbs_task);
309 
310 	/*
311 	 * Create any kmem_caches needed for blobs
312 	 */
313 	if (blob_sizes.lbs_file)
314 		lsm_file_cache = kmem_cache_create("lsm_file_cache",
315 						   blob_sizes.lbs_file, 0,
316 						   SLAB_PANIC, NULL);
317 	if (blob_sizes.lbs_inode)
318 		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
319 						    blob_sizes.lbs_inode, 0,
320 						    SLAB_PANIC, NULL);
321 
322 	lsm_early_cred((struct cred *) current->cred);
323 	lsm_early_task(current);
324 	for (lsm = ordered_lsms; *lsm; lsm++)
325 		initialize_lsm(*lsm);
326 
327 	kfree(ordered_lsms);
328 }
329 
330 /**
331  * security_init - initializes the security framework
332  *
333  * This should be called early in the kernel initialization sequence.
334  */
335 int __init security_init(void)
336 {
337 	int i;
338 	struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
339 
340 	pr_info("Security Framework initializing\n");
341 
342 	for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
343 	     i++)
344 		INIT_HLIST_HEAD(&list[i]);
345 
346 	/* Load LSMs in specified order. */
347 	ordered_lsm_init();
348 
349 	return 0;
350 }
351 
352 /* Save user chosen LSM */
353 static int __init choose_major_lsm(char *str)
354 {
355 	chosen_major_lsm = str;
356 	return 1;
357 }
358 __setup("security=", choose_major_lsm);
359 
360 /* Explicitly choose LSM initialization order. */
361 static int __init choose_lsm_order(char *str)
362 {
363 	chosen_lsm_order = str;
364 	return 1;
365 }
366 __setup("lsm=", choose_lsm_order);
367 
368 /* Enable LSM order debugging. */
369 static int __init enable_debug(char *str)
370 {
371 	debug = true;
372 	return 1;
373 }
374 __setup("lsm.debug", enable_debug);
375 
376 static bool match_last_lsm(const char *list, const char *lsm)
377 {
378 	const char *last;
379 
380 	if (WARN_ON(!list || !lsm))
381 		return false;
382 	last = strrchr(list, ',');
383 	if (last)
384 		/* Pass the comma, strcmp() will check for '\0' */
385 		last++;
386 	else
387 		last = list;
388 	return !strcmp(last, lsm);
389 }
390 
391 static int lsm_append(char *new, char **result)
392 {
393 	char *cp;
394 
395 	if (*result == NULL) {
396 		*result = kstrdup(new, GFP_KERNEL);
397 		if (*result == NULL)
398 			return -ENOMEM;
399 	} else {
400 		/* Check if it is the last registered name */
401 		if (match_last_lsm(*result, new))
402 			return 0;
403 		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
404 		if (cp == NULL)
405 			return -ENOMEM;
406 		kfree(*result);
407 		*result = cp;
408 	}
409 	return 0;
410 }
411 
412 /**
413  * security_add_hooks - Add a modules hooks to the hook lists.
414  * @hooks: the hooks to add
415  * @count: the number of hooks to add
416  * @lsm: the name of the security module
417  *
418  * Each LSM has to register its hooks with the infrastructure.
419  */
420 void __init security_add_hooks(struct security_hook_list *hooks, int count,
421 				char *lsm)
422 {
423 	int i;
424 
425 	for (i = 0; i < count; i++) {
426 		hooks[i].lsm = lsm;
427 		hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
428 	}
429 	if (lsm_append(lsm, &lsm_names) < 0)
430 		panic("%s - Cannot get early memory.\n", __func__);
431 }
432 
433 int call_lsm_notifier(enum lsm_event event, void *data)
434 {
435 	return atomic_notifier_call_chain(&lsm_notifier_chain, event, data);
436 }
437 EXPORT_SYMBOL(call_lsm_notifier);
438 
439 int register_lsm_notifier(struct notifier_block *nb)
440 {
441 	return atomic_notifier_chain_register(&lsm_notifier_chain, nb);
442 }
443 EXPORT_SYMBOL(register_lsm_notifier);
444 
445 int unregister_lsm_notifier(struct notifier_block *nb)
446 {
447 	return atomic_notifier_chain_unregister(&lsm_notifier_chain, nb);
448 }
449 EXPORT_SYMBOL(unregister_lsm_notifier);
450 
451 /**
452  * lsm_cred_alloc - allocate a composite cred blob
453  * @cred: the cred that needs a blob
454  * @gfp: allocation type
455  *
456  * Allocate the cred blob for all the modules
457  *
458  * Returns 0, or -ENOMEM if memory can't be allocated.
459  */
460 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
461 {
462 	if (blob_sizes.lbs_cred == 0) {
463 		cred->security = NULL;
464 		return 0;
465 	}
466 
467 	cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
468 	if (cred->security == NULL)
469 		return -ENOMEM;
470 	return 0;
471 }
472 
473 /**
474  * lsm_early_cred - during initialization allocate a composite cred blob
475  * @cred: the cred that needs a blob
476  *
477  * Allocate the cred blob for all the modules
478  */
479 static void __init lsm_early_cred(struct cred *cred)
480 {
481 	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
482 
483 	if (rc)
484 		panic("%s: Early cred alloc failed.\n", __func__);
485 }
486 
487 /**
488  * lsm_file_alloc - allocate a composite file blob
489  * @file: the file that needs a blob
490  *
491  * Allocate the file blob for all the modules
492  *
493  * Returns 0, or -ENOMEM if memory can't be allocated.
494  */
495 static int lsm_file_alloc(struct file *file)
496 {
497 	if (!lsm_file_cache) {
498 		file->f_security = NULL;
499 		return 0;
500 	}
501 
502 	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
503 	if (file->f_security == NULL)
504 		return -ENOMEM;
505 	return 0;
506 }
507 
508 /**
509  * lsm_inode_alloc - allocate a composite inode blob
510  * @inode: the inode that needs a blob
511  *
512  * Allocate the inode blob for all the modules
513  *
514  * Returns 0, or -ENOMEM if memory can't be allocated.
515  */
516 int lsm_inode_alloc(struct inode *inode)
517 {
518 	if (!lsm_inode_cache) {
519 		inode->i_security = NULL;
520 		return 0;
521 	}
522 
523 	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
524 	if (inode->i_security == NULL)
525 		return -ENOMEM;
526 	return 0;
527 }
528 
529 /**
530  * lsm_task_alloc - allocate a composite task blob
531  * @task: the task that needs a blob
532  *
533  * Allocate the task blob for all the modules
534  *
535  * Returns 0, or -ENOMEM if memory can't be allocated.
536  */
537 static int lsm_task_alloc(struct task_struct *task)
538 {
539 	if (blob_sizes.lbs_task == 0) {
540 		task->security = NULL;
541 		return 0;
542 	}
543 
544 	task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
545 	if (task->security == NULL)
546 		return -ENOMEM;
547 	return 0;
548 }
549 
550 /**
551  * lsm_ipc_alloc - allocate a composite ipc blob
552  * @kip: the ipc that needs a blob
553  *
554  * Allocate the ipc blob for all the modules
555  *
556  * Returns 0, or -ENOMEM if memory can't be allocated.
557  */
558 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
559 {
560 	if (blob_sizes.lbs_ipc == 0) {
561 		kip->security = NULL;
562 		return 0;
563 	}
564 
565 	kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
566 	if (kip->security == NULL)
567 		return -ENOMEM;
568 	return 0;
569 }
570 
571 /**
572  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
573  * @mp: the msg_msg that needs a blob
574  *
575  * Allocate the ipc blob for all the modules
576  *
577  * Returns 0, or -ENOMEM if memory can't be allocated.
578  */
579 static int lsm_msg_msg_alloc(struct msg_msg *mp)
580 {
581 	if (blob_sizes.lbs_msg_msg == 0) {
582 		mp->security = NULL;
583 		return 0;
584 	}
585 
586 	mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
587 	if (mp->security == NULL)
588 		return -ENOMEM;
589 	return 0;
590 }
591 
592 /**
593  * lsm_early_task - during initialization allocate a composite task blob
594  * @task: the task that needs a blob
595  *
596  * Allocate the task blob for all the modules
597  */
598 static void __init lsm_early_task(struct task_struct *task)
599 {
600 	int rc = lsm_task_alloc(task);
601 
602 	if (rc)
603 		panic("%s: Early task alloc failed.\n", __func__);
604 }
605 
606 /*
607  * Hook list operation macros.
608  *
609  * call_void_hook:
610  *	This is a hook that does not return a value.
611  *
612  * call_int_hook:
613  *	This is a hook that returns a value.
614  */
615 
616 #define call_void_hook(FUNC, ...)				\
617 	do {							\
618 		struct security_hook_list *P;			\
619 								\
620 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
621 			P->hook.FUNC(__VA_ARGS__);		\
622 	} while (0)
623 
624 #define call_int_hook(FUNC, IRC, ...) ({			\
625 	int RC = IRC;						\
626 	do {							\
627 		struct security_hook_list *P;			\
628 								\
629 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
630 			RC = P->hook.FUNC(__VA_ARGS__);		\
631 			if (RC != 0)				\
632 				break;				\
633 		}						\
634 	} while (0);						\
635 	RC;							\
636 })
637 
638 /* Security operations */
639 
640 int security_binder_set_context_mgr(struct task_struct *mgr)
641 {
642 	return call_int_hook(binder_set_context_mgr, 0, mgr);
643 }
644 
645 int security_binder_transaction(struct task_struct *from,
646 				struct task_struct *to)
647 {
648 	return call_int_hook(binder_transaction, 0, from, to);
649 }
650 
651 int security_binder_transfer_binder(struct task_struct *from,
652 				    struct task_struct *to)
653 {
654 	return call_int_hook(binder_transfer_binder, 0, from, to);
655 }
656 
657 int security_binder_transfer_file(struct task_struct *from,
658 				  struct task_struct *to, struct file *file)
659 {
660 	return call_int_hook(binder_transfer_file, 0, from, to, file);
661 }
662 
663 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
664 {
665 	return call_int_hook(ptrace_access_check, 0, child, mode);
666 }
667 
668 int security_ptrace_traceme(struct task_struct *parent)
669 {
670 	return call_int_hook(ptrace_traceme, 0, parent);
671 }
672 
673 int security_capget(struct task_struct *target,
674 		     kernel_cap_t *effective,
675 		     kernel_cap_t *inheritable,
676 		     kernel_cap_t *permitted)
677 {
678 	return call_int_hook(capget, 0, target,
679 				effective, inheritable, permitted);
680 }
681 
682 int security_capset(struct cred *new, const struct cred *old,
683 		    const kernel_cap_t *effective,
684 		    const kernel_cap_t *inheritable,
685 		    const kernel_cap_t *permitted)
686 {
687 	return call_int_hook(capset, 0, new, old,
688 				effective, inheritable, permitted);
689 }
690 
691 int security_capable(const struct cred *cred,
692 		     struct user_namespace *ns,
693 		     int cap,
694 		     unsigned int opts)
695 {
696 	return call_int_hook(capable, 0, cred, ns, cap, opts);
697 }
698 
699 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
700 {
701 	return call_int_hook(quotactl, 0, cmds, type, id, sb);
702 }
703 
704 int security_quota_on(struct dentry *dentry)
705 {
706 	return call_int_hook(quota_on, 0, dentry);
707 }
708 
709 int security_syslog(int type)
710 {
711 	return call_int_hook(syslog, 0, type);
712 }
713 
714 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
715 {
716 	return call_int_hook(settime, 0, ts, tz);
717 }
718 
719 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
720 {
721 	struct security_hook_list *hp;
722 	int cap_sys_admin = 1;
723 	int rc;
724 
725 	/*
726 	 * The module will respond with a positive value if
727 	 * it thinks the __vm_enough_memory() call should be
728 	 * made with the cap_sys_admin set. If all of the modules
729 	 * agree that it should be set it will. If any module
730 	 * thinks it should not be set it won't.
731 	 */
732 	hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
733 		rc = hp->hook.vm_enough_memory(mm, pages);
734 		if (rc <= 0) {
735 			cap_sys_admin = 0;
736 			break;
737 		}
738 	}
739 	return __vm_enough_memory(mm, pages, cap_sys_admin);
740 }
741 
742 int security_bprm_set_creds(struct linux_binprm *bprm)
743 {
744 	return call_int_hook(bprm_set_creds, 0, bprm);
745 }
746 
747 int security_bprm_check(struct linux_binprm *bprm)
748 {
749 	int ret;
750 
751 	ret = call_int_hook(bprm_check_security, 0, bprm);
752 	if (ret)
753 		return ret;
754 	return ima_bprm_check(bprm);
755 }
756 
757 void security_bprm_committing_creds(struct linux_binprm *bprm)
758 {
759 	call_void_hook(bprm_committing_creds, bprm);
760 }
761 
762 void security_bprm_committed_creds(struct linux_binprm *bprm)
763 {
764 	call_void_hook(bprm_committed_creds, bprm);
765 }
766 
767 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
768 {
769 	return call_int_hook(fs_context_dup, 0, fc, src_fc);
770 }
771 
772 int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
773 {
774 	return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
775 }
776 
777 int security_sb_alloc(struct super_block *sb)
778 {
779 	return call_int_hook(sb_alloc_security, 0, sb);
780 }
781 
782 void security_sb_free(struct super_block *sb)
783 {
784 	call_void_hook(sb_free_security, sb);
785 }
786 
787 void security_free_mnt_opts(void **mnt_opts)
788 {
789 	if (!*mnt_opts)
790 		return;
791 	call_void_hook(sb_free_mnt_opts, *mnt_opts);
792 	*mnt_opts = NULL;
793 }
794 EXPORT_SYMBOL(security_free_mnt_opts);
795 
796 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
797 {
798 	return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
799 }
800 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
801 
802 int security_sb_remount(struct super_block *sb,
803 			void *mnt_opts)
804 {
805 	return call_int_hook(sb_remount, 0, sb, mnt_opts);
806 }
807 EXPORT_SYMBOL(security_sb_remount);
808 
809 int security_sb_kern_mount(struct super_block *sb)
810 {
811 	return call_int_hook(sb_kern_mount, 0, sb);
812 }
813 
814 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
815 {
816 	return call_int_hook(sb_show_options, 0, m, sb);
817 }
818 
819 int security_sb_statfs(struct dentry *dentry)
820 {
821 	return call_int_hook(sb_statfs, 0, dentry);
822 }
823 
824 int security_sb_mount(const char *dev_name, const struct path *path,
825                        const char *type, unsigned long flags, void *data)
826 {
827 	return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
828 }
829 
830 int security_sb_umount(struct vfsmount *mnt, int flags)
831 {
832 	return call_int_hook(sb_umount, 0, mnt, flags);
833 }
834 
835 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
836 {
837 	return call_int_hook(sb_pivotroot, 0, old_path, new_path);
838 }
839 
840 int security_sb_set_mnt_opts(struct super_block *sb,
841 				void *mnt_opts,
842 				unsigned long kern_flags,
843 				unsigned long *set_kern_flags)
844 {
845 	return call_int_hook(sb_set_mnt_opts,
846 				mnt_opts ? -EOPNOTSUPP : 0, sb,
847 				mnt_opts, kern_flags, set_kern_flags);
848 }
849 EXPORT_SYMBOL(security_sb_set_mnt_opts);
850 
851 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
852 				struct super_block *newsb,
853 				unsigned long kern_flags,
854 				unsigned long *set_kern_flags)
855 {
856 	return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
857 				kern_flags, set_kern_flags);
858 }
859 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
860 
861 int security_add_mnt_opt(const char *option, const char *val, int len,
862 			 void **mnt_opts)
863 {
864 	return call_int_hook(sb_add_mnt_opt, -EINVAL,
865 					option, val, len, mnt_opts);
866 }
867 EXPORT_SYMBOL(security_add_mnt_opt);
868 
869 int security_inode_alloc(struct inode *inode)
870 {
871 	int rc = lsm_inode_alloc(inode);
872 
873 	if (unlikely(rc))
874 		return rc;
875 	rc = call_int_hook(inode_alloc_security, 0, inode);
876 	if (unlikely(rc))
877 		security_inode_free(inode);
878 	return rc;
879 }
880 
881 static void inode_free_by_rcu(struct rcu_head *head)
882 {
883 	/*
884 	 * The rcu head is at the start of the inode blob
885 	 */
886 	kmem_cache_free(lsm_inode_cache, head);
887 }
888 
889 void security_inode_free(struct inode *inode)
890 {
891 	integrity_inode_free(inode);
892 	call_void_hook(inode_free_security, inode);
893 	/*
894 	 * The inode may still be referenced in a path walk and
895 	 * a call to security_inode_permission() can be made
896 	 * after inode_free_security() is called. Ideally, the VFS
897 	 * wouldn't do this, but fixing that is a much harder
898 	 * job. For now, simply free the i_security via RCU, and
899 	 * leave the current inode->i_security pointer intact.
900 	 * The inode will be freed after the RCU grace period too.
901 	 */
902 	if (inode->i_security)
903 		call_rcu((struct rcu_head *)inode->i_security,
904 				inode_free_by_rcu);
905 }
906 
907 int security_dentry_init_security(struct dentry *dentry, int mode,
908 					const struct qstr *name, void **ctx,
909 					u32 *ctxlen)
910 {
911 	return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
912 				name, ctx, ctxlen);
913 }
914 EXPORT_SYMBOL(security_dentry_init_security);
915 
916 int security_dentry_create_files_as(struct dentry *dentry, int mode,
917 				    struct qstr *name,
918 				    const struct cred *old, struct cred *new)
919 {
920 	return call_int_hook(dentry_create_files_as, 0, dentry, mode,
921 				name, old, new);
922 }
923 EXPORT_SYMBOL(security_dentry_create_files_as);
924 
925 int security_inode_init_security(struct inode *inode, struct inode *dir,
926 				 const struct qstr *qstr,
927 				 const initxattrs initxattrs, void *fs_data)
928 {
929 	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
930 	struct xattr *lsm_xattr, *evm_xattr, *xattr;
931 	int ret;
932 
933 	if (unlikely(IS_PRIVATE(inode)))
934 		return 0;
935 
936 	if (!initxattrs)
937 		return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
938 				     dir, qstr, NULL, NULL, NULL);
939 	memset(new_xattrs, 0, sizeof(new_xattrs));
940 	lsm_xattr = new_xattrs;
941 	ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
942 						&lsm_xattr->name,
943 						&lsm_xattr->value,
944 						&lsm_xattr->value_len);
945 	if (ret)
946 		goto out;
947 
948 	evm_xattr = lsm_xattr + 1;
949 	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
950 	if (ret)
951 		goto out;
952 	ret = initxattrs(inode, new_xattrs, fs_data);
953 out:
954 	for (xattr = new_xattrs; xattr->value != NULL; xattr++)
955 		kfree(xattr->value);
956 	return (ret == -EOPNOTSUPP) ? 0 : ret;
957 }
958 EXPORT_SYMBOL(security_inode_init_security);
959 
960 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
961 				     const struct qstr *qstr, const char **name,
962 				     void **value, size_t *len)
963 {
964 	if (unlikely(IS_PRIVATE(inode)))
965 		return -EOPNOTSUPP;
966 	return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
967 			     qstr, name, value, len);
968 }
969 EXPORT_SYMBOL(security_old_inode_init_security);
970 
971 #ifdef CONFIG_SECURITY_PATH
972 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
973 			unsigned int dev)
974 {
975 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
976 		return 0;
977 	return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
978 }
979 EXPORT_SYMBOL(security_path_mknod);
980 
981 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
982 {
983 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
984 		return 0;
985 	return call_int_hook(path_mkdir, 0, dir, dentry, mode);
986 }
987 EXPORT_SYMBOL(security_path_mkdir);
988 
989 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
990 {
991 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
992 		return 0;
993 	return call_int_hook(path_rmdir, 0, dir, dentry);
994 }
995 
996 int security_path_unlink(const struct path *dir, struct dentry *dentry)
997 {
998 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
999 		return 0;
1000 	return call_int_hook(path_unlink, 0, dir, dentry);
1001 }
1002 EXPORT_SYMBOL(security_path_unlink);
1003 
1004 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1005 			  const char *old_name)
1006 {
1007 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1008 		return 0;
1009 	return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1010 }
1011 
1012 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1013 		       struct dentry *new_dentry)
1014 {
1015 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1016 		return 0;
1017 	return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1018 }
1019 
1020 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1021 			 const struct path *new_dir, struct dentry *new_dentry,
1022 			 unsigned int flags)
1023 {
1024 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1025 		     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1026 		return 0;
1027 
1028 	if (flags & RENAME_EXCHANGE) {
1029 		int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1030 					old_dir, old_dentry);
1031 		if (err)
1032 			return err;
1033 	}
1034 
1035 	return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1036 				new_dentry);
1037 }
1038 EXPORT_SYMBOL(security_path_rename);
1039 
1040 int security_path_truncate(const struct path *path)
1041 {
1042 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1043 		return 0;
1044 	return call_int_hook(path_truncate, 0, path);
1045 }
1046 
1047 int security_path_chmod(const struct path *path, umode_t mode)
1048 {
1049 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1050 		return 0;
1051 	return call_int_hook(path_chmod, 0, path, mode);
1052 }
1053 
1054 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1055 {
1056 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1057 		return 0;
1058 	return call_int_hook(path_chown, 0, path, uid, gid);
1059 }
1060 
1061 int security_path_chroot(const struct path *path)
1062 {
1063 	return call_int_hook(path_chroot, 0, path);
1064 }
1065 #endif
1066 
1067 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1068 {
1069 	if (unlikely(IS_PRIVATE(dir)))
1070 		return 0;
1071 	return call_int_hook(inode_create, 0, dir, dentry, mode);
1072 }
1073 EXPORT_SYMBOL_GPL(security_inode_create);
1074 
1075 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1076 			 struct dentry *new_dentry)
1077 {
1078 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1079 		return 0;
1080 	return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1081 }
1082 
1083 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1084 {
1085 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1086 		return 0;
1087 	return call_int_hook(inode_unlink, 0, dir, dentry);
1088 }
1089 
1090 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1091 			    const char *old_name)
1092 {
1093 	if (unlikely(IS_PRIVATE(dir)))
1094 		return 0;
1095 	return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1096 }
1097 
1098 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1099 {
1100 	if (unlikely(IS_PRIVATE(dir)))
1101 		return 0;
1102 	return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1103 }
1104 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1105 
1106 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1107 {
1108 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1109 		return 0;
1110 	return call_int_hook(inode_rmdir, 0, dir, dentry);
1111 }
1112 
1113 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1114 {
1115 	if (unlikely(IS_PRIVATE(dir)))
1116 		return 0;
1117 	return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1118 }
1119 
1120 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1121 			   struct inode *new_dir, struct dentry *new_dentry,
1122 			   unsigned int flags)
1123 {
1124         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1125             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1126 		return 0;
1127 
1128 	if (flags & RENAME_EXCHANGE) {
1129 		int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1130 						     old_dir, old_dentry);
1131 		if (err)
1132 			return err;
1133 	}
1134 
1135 	return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1136 					   new_dir, new_dentry);
1137 }
1138 
1139 int security_inode_readlink(struct dentry *dentry)
1140 {
1141 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1142 		return 0;
1143 	return call_int_hook(inode_readlink, 0, dentry);
1144 }
1145 
1146 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1147 			       bool rcu)
1148 {
1149 	if (unlikely(IS_PRIVATE(inode)))
1150 		return 0;
1151 	return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1152 }
1153 
1154 int security_inode_permission(struct inode *inode, int mask)
1155 {
1156 	if (unlikely(IS_PRIVATE(inode)))
1157 		return 0;
1158 	return call_int_hook(inode_permission, 0, inode, mask);
1159 }
1160 
1161 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1162 {
1163 	int ret;
1164 
1165 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1166 		return 0;
1167 	ret = call_int_hook(inode_setattr, 0, dentry, attr);
1168 	if (ret)
1169 		return ret;
1170 	return evm_inode_setattr(dentry, attr);
1171 }
1172 EXPORT_SYMBOL_GPL(security_inode_setattr);
1173 
1174 int security_inode_getattr(const struct path *path)
1175 {
1176 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1177 		return 0;
1178 	return call_int_hook(inode_getattr, 0, path);
1179 }
1180 
1181 int security_inode_setxattr(struct dentry *dentry, const char *name,
1182 			    const void *value, size_t size, int flags)
1183 {
1184 	int ret;
1185 
1186 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1187 		return 0;
1188 	/*
1189 	 * SELinux and Smack integrate the cap call,
1190 	 * so assume that all LSMs supplying this call do so.
1191 	 */
1192 	ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
1193 				flags);
1194 
1195 	if (ret == 1)
1196 		ret = cap_inode_setxattr(dentry, name, value, size, flags);
1197 	if (ret)
1198 		return ret;
1199 	ret = ima_inode_setxattr(dentry, name, value, size);
1200 	if (ret)
1201 		return ret;
1202 	return evm_inode_setxattr(dentry, name, value, size);
1203 }
1204 
1205 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1206 				  const void *value, size_t size, int flags)
1207 {
1208 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1209 		return;
1210 	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1211 	evm_inode_post_setxattr(dentry, name, value, size);
1212 }
1213 
1214 int security_inode_getxattr(struct dentry *dentry, const char *name)
1215 {
1216 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1217 		return 0;
1218 	return call_int_hook(inode_getxattr, 0, dentry, name);
1219 }
1220 
1221 int security_inode_listxattr(struct dentry *dentry)
1222 {
1223 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1224 		return 0;
1225 	return call_int_hook(inode_listxattr, 0, dentry);
1226 }
1227 
1228 int security_inode_removexattr(struct dentry *dentry, const char *name)
1229 {
1230 	int ret;
1231 
1232 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1233 		return 0;
1234 	/*
1235 	 * SELinux and Smack integrate the cap call,
1236 	 * so assume that all LSMs supplying this call do so.
1237 	 */
1238 	ret = call_int_hook(inode_removexattr, 1, dentry, name);
1239 	if (ret == 1)
1240 		ret = cap_inode_removexattr(dentry, name);
1241 	if (ret)
1242 		return ret;
1243 	ret = ima_inode_removexattr(dentry, name);
1244 	if (ret)
1245 		return ret;
1246 	return evm_inode_removexattr(dentry, name);
1247 }
1248 
1249 int security_inode_need_killpriv(struct dentry *dentry)
1250 {
1251 	return call_int_hook(inode_need_killpriv, 0, dentry);
1252 }
1253 
1254 int security_inode_killpriv(struct dentry *dentry)
1255 {
1256 	return call_int_hook(inode_killpriv, 0, dentry);
1257 }
1258 
1259 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1260 {
1261 	struct security_hook_list *hp;
1262 	int rc;
1263 
1264 	if (unlikely(IS_PRIVATE(inode)))
1265 		return -EOPNOTSUPP;
1266 	/*
1267 	 * Only one module will provide an attribute with a given name.
1268 	 */
1269 	hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1270 		rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1271 		if (rc != -EOPNOTSUPP)
1272 			return rc;
1273 	}
1274 	return -EOPNOTSUPP;
1275 }
1276 
1277 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1278 {
1279 	struct security_hook_list *hp;
1280 	int rc;
1281 
1282 	if (unlikely(IS_PRIVATE(inode)))
1283 		return -EOPNOTSUPP;
1284 	/*
1285 	 * Only one module will provide an attribute with a given name.
1286 	 */
1287 	hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1288 		rc = hp->hook.inode_setsecurity(inode, name, value, size,
1289 								flags);
1290 		if (rc != -EOPNOTSUPP)
1291 			return rc;
1292 	}
1293 	return -EOPNOTSUPP;
1294 }
1295 
1296 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1297 {
1298 	if (unlikely(IS_PRIVATE(inode)))
1299 		return 0;
1300 	return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1301 }
1302 EXPORT_SYMBOL(security_inode_listsecurity);
1303 
1304 void security_inode_getsecid(struct inode *inode, u32 *secid)
1305 {
1306 	call_void_hook(inode_getsecid, inode, secid);
1307 }
1308 
1309 int security_inode_copy_up(struct dentry *src, struct cred **new)
1310 {
1311 	return call_int_hook(inode_copy_up, 0, src, new);
1312 }
1313 EXPORT_SYMBOL(security_inode_copy_up);
1314 
1315 int security_inode_copy_up_xattr(const char *name)
1316 {
1317 	return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
1318 }
1319 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1320 
1321 int security_file_permission(struct file *file, int mask)
1322 {
1323 	int ret;
1324 
1325 	ret = call_int_hook(file_permission, 0, file, mask);
1326 	if (ret)
1327 		return ret;
1328 
1329 	return fsnotify_perm(file, mask);
1330 }
1331 
1332 int security_file_alloc(struct file *file)
1333 {
1334 	int rc = lsm_file_alloc(file);
1335 
1336 	if (rc)
1337 		return rc;
1338 	rc = call_int_hook(file_alloc_security, 0, file);
1339 	if (unlikely(rc))
1340 		security_file_free(file);
1341 	return rc;
1342 }
1343 
1344 void security_file_free(struct file *file)
1345 {
1346 	void *blob;
1347 
1348 	call_void_hook(file_free_security, file);
1349 
1350 	blob = file->f_security;
1351 	if (blob) {
1352 		file->f_security = NULL;
1353 		kmem_cache_free(lsm_file_cache, blob);
1354 	}
1355 }
1356 
1357 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1358 {
1359 	return call_int_hook(file_ioctl, 0, file, cmd, arg);
1360 }
1361 
1362 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1363 {
1364 	/*
1365 	 * Does we have PROT_READ and does the application expect
1366 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
1367 	 */
1368 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1369 		return prot;
1370 	if (!(current->personality & READ_IMPLIES_EXEC))
1371 		return prot;
1372 	/*
1373 	 * if that's an anonymous mapping, let it.
1374 	 */
1375 	if (!file)
1376 		return prot | PROT_EXEC;
1377 	/*
1378 	 * ditto if it's not on noexec mount, except that on !MMU we need
1379 	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1380 	 */
1381 	if (!path_noexec(&file->f_path)) {
1382 #ifndef CONFIG_MMU
1383 		if (file->f_op->mmap_capabilities) {
1384 			unsigned caps = file->f_op->mmap_capabilities(file);
1385 			if (!(caps & NOMMU_MAP_EXEC))
1386 				return prot;
1387 		}
1388 #endif
1389 		return prot | PROT_EXEC;
1390 	}
1391 	/* anything on noexec mount won't get PROT_EXEC */
1392 	return prot;
1393 }
1394 
1395 int security_mmap_file(struct file *file, unsigned long prot,
1396 			unsigned long flags)
1397 {
1398 	int ret;
1399 	ret = call_int_hook(mmap_file, 0, file, prot,
1400 					mmap_prot(file, prot), flags);
1401 	if (ret)
1402 		return ret;
1403 	return ima_file_mmap(file, prot);
1404 }
1405 
1406 int security_mmap_addr(unsigned long addr)
1407 {
1408 	return call_int_hook(mmap_addr, 0, addr);
1409 }
1410 
1411 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1412 			    unsigned long prot)
1413 {
1414 	return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1415 }
1416 
1417 int security_file_lock(struct file *file, unsigned int cmd)
1418 {
1419 	return call_int_hook(file_lock, 0, file, cmd);
1420 }
1421 
1422 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1423 {
1424 	return call_int_hook(file_fcntl, 0, file, cmd, arg);
1425 }
1426 
1427 void security_file_set_fowner(struct file *file)
1428 {
1429 	call_void_hook(file_set_fowner, file);
1430 }
1431 
1432 int security_file_send_sigiotask(struct task_struct *tsk,
1433 				  struct fown_struct *fown, int sig)
1434 {
1435 	return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1436 }
1437 
1438 int security_file_receive(struct file *file)
1439 {
1440 	return call_int_hook(file_receive, 0, file);
1441 }
1442 
1443 int security_file_open(struct file *file)
1444 {
1445 	int ret;
1446 
1447 	ret = call_int_hook(file_open, 0, file);
1448 	if (ret)
1449 		return ret;
1450 
1451 	return fsnotify_perm(file, MAY_OPEN);
1452 }
1453 
1454 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1455 {
1456 	int rc = lsm_task_alloc(task);
1457 
1458 	if (rc)
1459 		return rc;
1460 	rc = call_int_hook(task_alloc, 0, task, clone_flags);
1461 	if (unlikely(rc))
1462 		security_task_free(task);
1463 	return rc;
1464 }
1465 
1466 void security_task_free(struct task_struct *task)
1467 {
1468 	call_void_hook(task_free, task);
1469 
1470 	kfree(task->security);
1471 	task->security = NULL;
1472 }
1473 
1474 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1475 {
1476 	int rc = lsm_cred_alloc(cred, gfp);
1477 
1478 	if (rc)
1479 		return rc;
1480 
1481 	rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1482 	if (unlikely(rc))
1483 		security_cred_free(cred);
1484 	return rc;
1485 }
1486 
1487 void security_cred_free(struct cred *cred)
1488 {
1489 	/*
1490 	 * There is a failure case in prepare_creds() that
1491 	 * may result in a call here with ->security being NULL.
1492 	 */
1493 	if (unlikely(cred->security == NULL))
1494 		return;
1495 
1496 	call_void_hook(cred_free, cred);
1497 
1498 	kfree(cred->security);
1499 	cred->security = NULL;
1500 }
1501 
1502 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1503 {
1504 	int rc = lsm_cred_alloc(new, gfp);
1505 
1506 	if (rc)
1507 		return rc;
1508 
1509 	rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1510 	if (unlikely(rc))
1511 		security_cred_free(new);
1512 	return rc;
1513 }
1514 
1515 void security_transfer_creds(struct cred *new, const struct cred *old)
1516 {
1517 	call_void_hook(cred_transfer, new, old);
1518 }
1519 
1520 void security_cred_getsecid(const struct cred *c, u32 *secid)
1521 {
1522 	*secid = 0;
1523 	call_void_hook(cred_getsecid, c, secid);
1524 }
1525 EXPORT_SYMBOL(security_cred_getsecid);
1526 
1527 int security_kernel_act_as(struct cred *new, u32 secid)
1528 {
1529 	return call_int_hook(kernel_act_as, 0, new, secid);
1530 }
1531 
1532 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1533 {
1534 	return call_int_hook(kernel_create_files_as, 0, new, inode);
1535 }
1536 
1537 int security_kernel_module_request(char *kmod_name)
1538 {
1539 	int ret;
1540 
1541 	ret = call_int_hook(kernel_module_request, 0, kmod_name);
1542 	if (ret)
1543 		return ret;
1544 	return integrity_kernel_module_request(kmod_name);
1545 }
1546 
1547 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1548 {
1549 	int ret;
1550 
1551 	ret = call_int_hook(kernel_read_file, 0, file, id);
1552 	if (ret)
1553 		return ret;
1554 	return ima_read_file(file, id);
1555 }
1556 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1557 
1558 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1559 				   enum kernel_read_file_id id)
1560 {
1561 	int ret;
1562 
1563 	ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1564 	if (ret)
1565 		return ret;
1566 	return ima_post_read_file(file, buf, size, id);
1567 }
1568 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1569 
1570 int security_kernel_load_data(enum kernel_load_data_id id)
1571 {
1572 	int ret;
1573 
1574 	ret = call_int_hook(kernel_load_data, 0, id);
1575 	if (ret)
1576 		return ret;
1577 	return ima_load_data(id);
1578 }
1579 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1580 
1581 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1582 			     int flags)
1583 {
1584 	return call_int_hook(task_fix_setuid, 0, new, old, flags);
1585 }
1586 
1587 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1588 {
1589 	return call_int_hook(task_setpgid, 0, p, pgid);
1590 }
1591 
1592 int security_task_getpgid(struct task_struct *p)
1593 {
1594 	return call_int_hook(task_getpgid, 0, p);
1595 }
1596 
1597 int security_task_getsid(struct task_struct *p)
1598 {
1599 	return call_int_hook(task_getsid, 0, p);
1600 }
1601 
1602 void security_task_getsecid(struct task_struct *p, u32 *secid)
1603 {
1604 	*secid = 0;
1605 	call_void_hook(task_getsecid, p, secid);
1606 }
1607 EXPORT_SYMBOL(security_task_getsecid);
1608 
1609 int security_task_setnice(struct task_struct *p, int nice)
1610 {
1611 	return call_int_hook(task_setnice, 0, p, nice);
1612 }
1613 
1614 int security_task_setioprio(struct task_struct *p, int ioprio)
1615 {
1616 	return call_int_hook(task_setioprio, 0, p, ioprio);
1617 }
1618 
1619 int security_task_getioprio(struct task_struct *p)
1620 {
1621 	return call_int_hook(task_getioprio, 0, p);
1622 }
1623 
1624 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1625 			  unsigned int flags)
1626 {
1627 	return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1628 }
1629 
1630 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1631 		struct rlimit *new_rlim)
1632 {
1633 	return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1634 }
1635 
1636 int security_task_setscheduler(struct task_struct *p)
1637 {
1638 	return call_int_hook(task_setscheduler, 0, p);
1639 }
1640 
1641 int security_task_getscheduler(struct task_struct *p)
1642 {
1643 	return call_int_hook(task_getscheduler, 0, p);
1644 }
1645 
1646 int security_task_movememory(struct task_struct *p)
1647 {
1648 	return call_int_hook(task_movememory, 0, p);
1649 }
1650 
1651 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1652 			int sig, const struct cred *cred)
1653 {
1654 	return call_int_hook(task_kill, 0, p, info, sig, cred);
1655 }
1656 
1657 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1658 			 unsigned long arg4, unsigned long arg5)
1659 {
1660 	int thisrc;
1661 	int rc = -ENOSYS;
1662 	struct security_hook_list *hp;
1663 
1664 	hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1665 		thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1666 		if (thisrc != -ENOSYS) {
1667 			rc = thisrc;
1668 			if (thisrc != 0)
1669 				break;
1670 		}
1671 	}
1672 	return rc;
1673 }
1674 
1675 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1676 {
1677 	call_void_hook(task_to_inode, p, inode);
1678 }
1679 
1680 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1681 {
1682 	return call_int_hook(ipc_permission, 0, ipcp, flag);
1683 }
1684 
1685 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1686 {
1687 	*secid = 0;
1688 	call_void_hook(ipc_getsecid, ipcp, secid);
1689 }
1690 
1691 int security_msg_msg_alloc(struct msg_msg *msg)
1692 {
1693 	int rc = lsm_msg_msg_alloc(msg);
1694 
1695 	if (unlikely(rc))
1696 		return rc;
1697 	rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1698 	if (unlikely(rc))
1699 		security_msg_msg_free(msg);
1700 	return rc;
1701 }
1702 
1703 void security_msg_msg_free(struct msg_msg *msg)
1704 {
1705 	call_void_hook(msg_msg_free_security, msg);
1706 	kfree(msg->security);
1707 	msg->security = NULL;
1708 }
1709 
1710 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1711 {
1712 	int rc = lsm_ipc_alloc(msq);
1713 
1714 	if (unlikely(rc))
1715 		return rc;
1716 	rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1717 	if (unlikely(rc))
1718 		security_msg_queue_free(msq);
1719 	return rc;
1720 }
1721 
1722 void security_msg_queue_free(struct kern_ipc_perm *msq)
1723 {
1724 	call_void_hook(msg_queue_free_security, msq);
1725 	kfree(msq->security);
1726 	msq->security = NULL;
1727 }
1728 
1729 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1730 {
1731 	return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1732 }
1733 
1734 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1735 {
1736 	return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1737 }
1738 
1739 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1740 			       struct msg_msg *msg, int msqflg)
1741 {
1742 	return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1743 }
1744 
1745 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1746 			       struct task_struct *target, long type, int mode)
1747 {
1748 	return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1749 }
1750 
1751 int security_shm_alloc(struct kern_ipc_perm *shp)
1752 {
1753 	int rc = lsm_ipc_alloc(shp);
1754 
1755 	if (unlikely(rc))
1756 		return rc;
1757 	rc = call_int_hook(shm_alloc_security, 0, shp);
1758 	if (unlikely(rc))
1759 		security_shm_free(shp);
1760 	return rc;
1761 }
1762 
1763 void security_shm_free(struct kern_ipc_perm *shp)
1764 {
1765 	call_void_hook(shm_free_security, shp);
1766 	kfree(shp->security);
1767 	shp->security = NULL;
1768 }
1769 
1770 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1771 {
1772 	return call_int_hook(shm_associate, 0, shp, shmflg);
1773 }
1774 
1775 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1776 {
1777 	return call_int_hook(shm_shmctl, 0, shp, cmd);
1778 }
1779 
1780 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1781 {
1782 	return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1783 }
1784 
1785 int security_sem_alloc(struct kern_ipc_perm *sma)
1786 {
1787 	int rc = lsm_ipc_alloc(sma);
1788 
1789 	if (unlikely(rc))
1790 		return rc;
1791 	rc = call_int_hook(sem_alloc_security, 0, sma);
1792 	if (unlikely(rc))
1793 		security_sem_free(sma);
1794 	return rc;
1795 }
1796 
1797 void security_sem_free(struct kern_ipc_perm *sma)
1798 {
1799 	call_void_hook(sem_free_security, sma);
1800 	kfree(sma->security);
1801 	sma->security = NULL;
1802 }
1803 
1804 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1805 {
1806 	return call_int_hook(sem_associate, 0, sma, semflg);
1807 }
1808 
1809 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1810 {
1811 	return call_int_hook(sem_semctl, 0, sma, cmd);
1812 }
1813 
1814 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1815 			unsigned nsops, int alter)
1816 {
1817 	return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1818 }
1819 
1820 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1821 {
1822 	if (unlikely(inode && IS_PRIVATE(inode)))
1823 		return;
1824 	call_void_hook(d_instantiate, dentry, inode);
1825 }
1826 EXPORT_SYMBOL(security_d_instantiate);
1827 
1828 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
1829 				char **value)
1830 {
1831 	struct security_hook_list *hp;
1832 
1833 	hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
1834 		if (lsm != NULL && strcmp(lsm, hp->lsm))
1835 			continue;
1836 		return hp->hook.getprocattr(p, name, value);
1837 	}
1838 	return -EINVAL;
1839 }
1840 
1841 int security_setprocattr(const char *lsm, const char *name, void *value,
1842 			 size_t size)
1843 {
1844 	struct security_hook_list *hp;
1845 
1846 	hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
1847 		if (lsm != NULL && strcmp(lsm, hp->lsm))
1848 			continue;
1849 		return hp->hook.setprocattr(name, value, size);
1850 	}
1851 	return -EINVAL;
1852 }
1853 
1854 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1855 {
1856 	return call_int_hook(netlink_send, 0, sk, skb);
1857 }
1858 
1859 int security_ismaclabel(const char *name)
1860 {
1861 	return call_int_hook(ismaclabel, 0, name);
1862 }
1863 EXPORT_SYMBOL(security_ismaclabel);
1864 
1865 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1866 {
1867 	return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1868 				seclen);
1869 }
1870 EXPORT_SYMBOL(security_secid_to_secctx);
1871 
1872 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1873 {
1874 	*secid = 0;
1875 	return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1876 }
1877 EXPORT_SYMBOL(security_secctx_to_secid);
1878 
1879 void security_release_secctx(char *secdata, u32 seclen)
1880 {
1881 	call_void_hook(release_secctx, secdata, seclen);
1882 }
1883 EXPORT_SYMBOL(security_release_secctx);
1884 
1885 void security_inode_invalidate_secctx(struct inode *inode)
1886 {
1887 	call_void_hook(inode_invalidate_secctx, inode);
1888 }
1889 EXPORT_SYMBOL(security_inode_invalidate_secctx);
1890 
1891 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1892 {
1893 	return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1894 }
1895 EXPORT_SYMBOL(security_inode_notifysecctx);
1896 
1897 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1898 {
1899 	return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
1900 }
1901 EXPORT_SYMBOL(security_inode_setsecctx);
1902 
1903 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1904 {
1905 	return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
1906 }
1907 EXPORT_SYMBOL(security_inode_getsecctx);
1908 
1909 #ifdef CONFIG_SECURITY_NETWORK
1910 
1911 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1912 {
1913 	return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
1914 }
1915 EXPORT_SYMBOL(security_unix_stream_connect);
1916 
1917 int security_unix_may_send(struct socket *sock,  struct socket *other)
1918 {
1919 	return call_int_hook(unix_may_send, 0, sock, other);
1920 }
1921 EXPORT_SYMBOL(security_unix_may_send);
1922 
1923 int security_socket_create(int family, int type, int protocol, int kern)
1924 {
1925 	return call_int_hook(socket_create, 0, family, type, protocol, kern);
1926 }
1927 
1928 int security_socket_post_create(struct socket *sock, int family,
1929 				int type, int protocol, int kern)
1930 {
1931 	return call_int_hook(socket_post_create, 0, sock, family, type,
1932 						protocol, kern);
1933 }
1934 
1935 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
1936 {
1937 	return call_int_hook(socket_socketpair, 0, socka, sockb);
1938 }
1939 EXPORT_SYMBOL(security_socket_socketpair);
1940 
1941 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1942 {
1943 	return call_int_hook(socket_bind, 0, sock, address, addrlen);
1944 }
1945 
1946 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1947 {
1948 	return call_int_hook(socket_connect, 0, sock, address, addrlen);
1949 }
1950 
1951 int security_socket_listen(struct socket *sock, int backlog)
1952 {
1953 	return call_int_hook(socket_listen, 0, sock, backlog);
1954 }
1955 
1956 int security_socket_accept(struct socket *sock, struct socket *newsock)
1957 {
1958 	return call_int_hook(socket_accept, 0, sock, newsock);
1959 }
1960 
1961 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1962 {
1963 	return call_int_hook(socket_sendmsg, 0, sock, msg, size);
1964 }
1965 
1966 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1967 			    int size, int flags)
1968 {
1969 	return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
1970 }
1971 
1972 int security_socket_getsockname(struct socket *sock)
1973 {
1974 	return call_int_hook(socket_getsockname, 0, sock);
1975 }
1976 
1977 int security_socket_getpeername(struct socket *sock)
1978 {
1979 	return call_int_hook(socket_getpeername, 0, sock);
1980 }
1981 
1982 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1983 {
1984 	return call_int_hook(socket_getsockopt, 0, sock, level, optname);
1985 }
1986 
1987 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1988 {
1989 	return call_int_hook(socket_setsockopt, 0, sock, level, optname);
1990 }
1991 
1992 int security_socket_shutdown(struct socket *sock, int how)
1993 {
1994 	return call_int_hook(socket_shutdown, 0, sock, how);
1995 }
1996 
1997 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1998 {
1999 	return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2000 }
2001 EXPORT_SYMBOL(security_sock_rcv_skb);
2002 
2003 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2004 				      int __user *optlen, unsigned len)
2005 {
2006 	return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2007 				optval, optlen, len);
2008 }
2009 
2010 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2011 {
2012 	return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2013 			     skb, secid);
2014 }
2015 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2016 
2017 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2018 {
2019 	return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2020 }
2021 
2022 void security_sk_free(struct sock *sk)
2023 {
2024 	call_void_hook(sk_free_security, sk);
2025 }
2026 
2027 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2028 {
2029 	call_void_hook(sk_clone_security, sk, newsk);
2030 }
2031 EXPORT_SYMBOL(security_sk_clone);
2032 
2033 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2034 {
2035 	call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
2036 }
2037 EXPORT_SYMBOL(security_sk_classify_flow);
2038 
2039 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2040 {
2041 	call_void_hook(req_classify_flow, req, fl);
2042 }
2043 EXPORT_SYMBOL(security_req_classify_flow);
2044 
2045 void security_sock_graft(struct sock *sk, struct socket *parent)
2046 {
2047 	call_void_hook(sock_graft, sk, parent);
2048 }
2049 EXPORT_SYMBOL(security_sock_graft);
2050 
2051 int security_inet_conn_request(struct sock *sk,
2052 			struct sk_buff *skb, struct request_sock *req)
2053 {
2054 	return call_int_hook(inet_conn_request, 0, sk, skb, req);
2055 }
2056 EXPORT_SYMBOL(security_inet_conn_request);
2057 
2058 void security_inet_csk_clone(struct sock *newsk,
2059 			const struct request_sock *req)
2060 {
2061 	call_void_hook(inet_csk_clone, newsk, req);
2062 }
2063 
2064 void security_inet_conn_established(struct sock *sk,
2065 			struct sk_buff *skb)
2066 {
2067 	call_void_hook(inet_conn_established, sk, skb);
2068 }
2069 EXPORT_SYMBOL(security_inet_conn_established);
2070 
2071 int security_secmark_relabel_packet(u32 secid)
2072 {
2073 	return call_int_hook(secmark_relabel_packet, 0, secid);
2074 }
2075 EXPORT_SYMBOL(security_secmark_relabel_packet);
2076 
2077 void security_secmark_refcount_inc(void)
2078 {
2079 	call_void_hook(secmark_refcount_inc);
2080 }
2081 EXPORT_SYMBOL(security_secmark_refcount_inc);
2082 
2083 void security_secmark_refcount_dec(void)
2084 {
2085 	call_void_hook(secmark_refcount_dec);
2086 }
2087 EXPORT_SYMBOL(security_secmark_refcount_dec);
2088 
2089 int security_tun_dev_alloc_security(void **security)
2090 {
2091 	return call_int_hook(tun_dev_alloc_security, 0, security);
2092 }
2093 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2094 
2095 void security_tun_dev_free_security(void *security)
2096 {
2097 	call_void_hook(tun_dev_free_security, security);
2098 }
2099 EXPORT_SYMBOL(security_tun_dev_free_security);
2100 
2101 int security_tun_dev_create(void)
2102 {
2103 	return call_int_hook(tun_dev_create, 0);
2104 }
2105 EXPORT_SYMBOL(security_tun_dev_create);
2106 
2107 int security_tun_dev_attach_queue(void *security)
2108 {
2109 	return call_int_hook(tun_dev_attach_queue, 0, security);
2110 }
2111 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2112 
2113 int security_tun_dev_attach(struct sock *sk, void *security)
2114 {
2115 	return call_int_hook(tun_dev_attach, 0, sk, security);
2116 }
2117 EXPORT_SYMBOL(security_tun_dev_attach);
2118 
2119 int security_tun_dev_open(void *security)
2120 {
2121 	return call_int_hook(tun_dev_open, 0, security);
2122 }
2123 EXPORT_SYMBOL(security_tun_dev_open);
2124 
2125 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2126 {
2127 	return call_int_hook(sctp_assoc_request, 0, ep, skb);
2128 }
2129 EXPORT_SYMBOL(security_sctp_assoc_request);
2130 
2131 int security_sctp_bind_connect(struct sock *sk, int optname,
2132 			       struct sockaddr *address, int addrlen)
2133 {
2134 	return call_int_hook(sctp_bind_connect, 0, sk, optname,
2135 			     address, addrlen);
2136 }
2137 EXPORT_SYMBOL(security_sctp_bind_connect);
2138 
2139 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2140 			    struct sock *newsk)
2141 {
2142 	call_void_hook(sctp_sk_clone, ep, sk, newsk);
2143 }
2144 EXPORT_SYMBOL(security_sctp_sk_clone);
2145 
2146 #endif	/* CONFIG_SECURITY_NETWORK */
2147 
2148 #ifdef CONFIG_SECURITY_INFINIBAND
2149 
2150 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2151 {
2152 	return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2153 }
2154 EXPORT_SYMBOL(security_ib_pkey_access);
2155 
2156 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2157 {
2158 	return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2159 }
2160 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2161 
2162 int security_ib_alloc_security(void **sec)
2163 {
2164 	return call_int_hook(ib_alloc_security, 0, sec);
2165 }
2166 EXPORT_SYMBOL(security_ib_alloc_security);
2167 
2168 void security_ib_free_security(void *sec)
2169 {
2170 	call_void_hook(ib_free_security, sec);
2171 }
2172 EXPORT_SYMBOL(security_ib_free_security);
2173 #endif	/* CONFIG_SECURITY_INFINIBAND */
2174 
2175 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2176 
2177 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2178 			       struct xfrm_user_sec_ctx *sec_ctx,
2179 			       gfp_t gfp)
2180 {
2181 	return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2182 }
2183 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2184 
2185 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2186 			      struct xfrm_sec_ctx **new_ctxp)
2187 {
2188 	return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2189 }
2190 
2191 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2192 {
2193 	call_void_hook(xfrm_policy_free_security, ctx);
2194 }
2195 EXPORT_SYMBOL(security_xfrm_policy_free);
2196 
2197 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2198 {
2199 	return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2200 }
2201 
2202 int security_xfrm_state_alloc(struct xfrm_state *x,
2203 			      struct xfrm_user_sec_ctx *sec_ctx)
2204 {
2205 	return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2206 }
2207 EXPORT_SYMBOL(security_xfrm_state_alloc);
2208 
2209 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2210 				      struct xfrm_sec_ctx *polsec, u32 secid)
2211 {
2212 	return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2213 }
2214 
2215 int security_xfrm_state_delete(struct xfrm_state *x)
2216 {
2217 	return call_int_hook(xfrm_state_delete_security, 0, x);
2218 }
2219 EXPORT_SYMBOL(security_xfrm_state_delete);
2220 
2221 void security_xfrm_state_free(struct xfrm_state *x)
2222 {
2223 	call_void_hook(xfrm_state_free_security, x);
2224 }
2225 
2226 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2227 {
2228 	return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2229 }
2230 
2231 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2232 				       struct xfrm_policy *xp,
2233 				       const struct flowi *fl)
2234 {
2235 	struct security_hook_list *hp;
2236 	int rc = 1;
2237 
2238 	/*
2239 	 * Since this function is expected to return 0 or 1, the judgment
2240 	 * becomes difficult if multiple LSMs supply this call. Fortunately,
2241 	 * we can use the first LSM's judgment because currently only SELinux
2242 	 * supplies this call.
2243 	 *
2244 	 * For speed optimization, we explicitly break the loop rather than
2245 	 * using the macro
2246 	 */
2247 	hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2248 				list) {
2249 		rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
2250 		break;
2251 	}
2252 	return rc;
2253 }
2254 
2255 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2256 {
2257 	return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2258 }
2259 
2260 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
2261 {
2262 	int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
2263 				0);
2264 
2265 	BUG_ON(rc);
2266 }
2267 EXPORT_SYMBOL(security_skb_classify_flow);
2268 
2269 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
2270 
2271 #ifdef CONFIG_KEYS
2272 
2273 int security_key_alloc(struct key *key, const struct cred *cred,
2274 		       unsigned long flags)
2275 {
2276 	return call_int_hook(key_alloc, 0, key, cred, flags);
2277 }
2278 
2279 void security_key_free(struct key *key)
2280 {
2281 	call_void_hook(key_free, key);
2282 }
2283 
2284 int security_key_permission(key_ref_t key_ref,
2285 			    const struct cred *cred, unsigned perm)
2286 {
2287 	return call_int_hook(key_permission, 0, key_ref, cred, perm);
2288 }
2289 
2290 int security_key_getsecurity(struct key *key, char **_buffer)
2291 {
2292 	*_buffer = NULL;
2293 	return call_int_hook(key_getsecurity, 0, key, _buffer);
2294 }
2295 
2296 #endif	/* CONFIG_KEYS */
2297 
2298 #ifdef CONFIG_AUDIT
2299 
2300 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2301 {
2302 	return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2303 }
2304 
2305 int security_audit_rule_known(struct audit_krule *krule)
2306 {
2307 	return call_int_hook(audit_rule_known, 0, krule);
2308 }
2309 
2310 void security_audit_rule_free(void *lsmrule)
2311 {
2312 	call_void_hook(audit_rule_free, lsmrule);
2313 }
2314 
2315 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2316 {
2317 	return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2318 }
2319 #endif /* CONFIG_AUDIT */
2320 
2321 #ifdef CONFIG_BPF_SYSCALL
2322 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2323 {
2324 	return call_int_hook(bpf, 0, cmd, attr, size);
2325 }
2326 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2327 {
2328 	return call_int_hook(bpf_map, 0, map, fmode);
2329 }
2330 int security_bpf_prog(struct bpf_prog *prog)
2331 {
2332 	return call_int_hook(bpf_prog, 0, prog);
2333 }
2334 int security_bpf_map_alloc(struct bpf_map *map)
2335 {
2336 	return call_int_hook(bpf_map_alloc_security, 0, map);
2337 }
2338 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2339 {
2340 	return call_int_hook(bpf_prog_alloc_security, 0, aux);
2341 }
2342 void security_bpf_map_free(struct bpf_map *map)
2343 {
2344 	call_void_hook(bpf_map_free_security, map);
2345 }
2346 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2347 {
2348 	call_void_hook(bpf_prog_free_security, aux);
2349 }
2350 #endif /* CONFIG_BPF_SYSCALL */
2351