xref: /openbmc/linux/security/security.c (revision 03e1ad7b)
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *	This program is free software; you can redistribute it and/or modify
9  *	it under the terms of the GNU General Public License as published by
10  *	the Free Software Foundation; either version 2 of the License, or
11  *	(at your option) any later version.
12  */
13 
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 
20 
21 /* things that live in dummy.c */
22 extern struct security_operations dummy_security_ops;
23 extern void security_fixup_ops(struct security_operations *ops);
24 
25 struct security_operations *security_ops;	/* Initialized to NULL */
26 
27 /* amount of vm to protect from userspace access */
28 unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR;
29 
30 static inline int verify(struct security_operations *ops)
31 {
32 	/* verify the security_operations structure exists */
33 	if (!ops)
34 		return -EINVAL;
35 	security_fixup_ops(ops);
36 	return 0;
37 }
38 
39 static void __init do_security_initcalls(void)
40 {
41 	initcall_t *call;
42 	call = __security_initcall_start;
43 	while (call < __security_initcall_end) {
44 		(*call) ();
45 		call++;
46 	}
47 }
48 
49 /**
50  * security_init - initializes the security framework
51  *
52  * This should be called early in the kernel initialization sequence.
53  */
54 int __init security_init(void)
55 {
56 	printk(KERN_INFO "Security Framework initialized\n");
57 
58 	if (verify(&dummy_security_ops)) {
59 		printk(KERN_ERR "%s could not verify "
60 		       "dummy_security_ops structure.\n", __FUNCTION__);
61 		return -EIO;
62 	}
63 
64 	security_ops = &dummy_security_ops;
65 	do_security_initcalls();
66 
67 	return 0;
68 }
69 
70 /**
71  * register_security - registers a security framework with the kernel
72  * @ops: a pointer to the struct security_options that is to be registered
73  *
74  * This function is to allow a security module to register itself with the
75  * kernel security subsystem.  Some rudimentary checking is done on the @ops
76  * value passed to this function.
77  *
78  * If there is already a security module registered with the kernel,
79  * an error will be returned.  Otherwise 0 is returned on success.
80  */
81 int register_security(struct security_operations *ops)
82 {
83 	if (verify(ops)) {
84 		printk(KERN_DEBUG "%s could not verify "
85 		       "security_operations structure.\n", __FUNCTION__);
86 		return -EINVAL;
87 	}
88 
89 	if (security_ops != &dummy_security_ops)
90 		return -EAGAIN;
91 
92 	security_ops = ops;
93 
94 	return 0;
95 }
96 
97 /**
98  * mod_reg_security - allows security modules to be "stacked"
99  * @name: a pointer to a string with the name of the security_options to be registered
100  * @ops: a pointer to the struct security_options that is to be registered
101  *
102  * This function allows security modules to be stacked if the currently loaded
103  * security module allows this to happen.  It passes the @name and @ops to the
104  * register_security function of the currently loaded security module.
105  *
106  * The return value depends on the currently loaded security module, with 0 as
107  * success.
108  */
109 int mod_reg_security(const char *name, struct security_operations *ops)
110 {
111 	if (verify(ops)) {
112 		printk(KERN_INFO "%s could not verify "
113 		       "security operations.\n", __FUNCTION__);
114 		return -EINVAL;
115 	}
116 
117 	if (ops == security_ops) {
118 		printk(KERN_INFO "%s security operations "
119 		       "already registered.\n", __FUNCTION__);
120 		return -EINVAL;
121 	}
122 
123 	return security_ops->register_security(name, ops);
124 }
125 
126 /* Security operations */
127 
128 int security_ptrace(struct task_struct *parent, struct task_struct *child)
129 {
130 	return security_ops->ptrace(parent, child);
131 }
132 
133 int security_capget(struct task_struct *target,
134 		     kernel_cap_t *effective,
135 		     kernel_cap_t *inheritable,
136 		     kernel_cap_t *permitted)
137 {
138 	return security_ops->capget(target, effective, inheritable, permitted);
139 }
140 
141 int security_capset_check(struct task_struct *target,
142 			   kernel_cap_t *effective,
143 			   kernel_cap_t *inheritable,
144 			   kernel_cap_t *permitted)
145 {
146 	return security_ops->capset_check(target, effective, inheritable, permitted);
147 }
148 
149 void security_capset_set(struct task_struct *target,
150 			  kernel_cap_t *effective,
151 			  kernel_cap_t *inheritable,
152 			  kernel_cap_t *permitted)
153 {
154 	security_ops->capset_set(target, effective, inheritable, permitted);
155 }
156 
157 int security_capable(struct task_struct *tsk, int cap)
158 {
159 	return security_ops->capable(tsk, cap);
160 }
161 
162 int security_acct(struct file *file)
163 {
164 	return security_ops->acct(file);
165 }
166 
167 int security_sysctl(struct ctl_table *table, int op)
168 {
169 	return security_ops->sysctl(table, op);
170 }
171 
172 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
173 {
174 	return security_ops->quotactl(cmds, type, id, sb);
175 }
176 
177 int security_quota_on(struct dentry *dentry)
178 {
179 	return security_ops->quota_on(dentry);
180 }
181 
182 int security_syslog(int type)
183 {
184 	return security_ops->syslog(type);
185 }
186 
187 int security_settime(struct timespec *ts, struct timezone *tz)
188 {
189 	return security_ops->settime(ts, tz);
190 }
191 
192 int security_vm_enough_memory(long pages)
193 {
194 	return security_ops->vm_enough_memory(current->mm, pages);
195 }
196 
197 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
198 {
199 	return security_ops->vm_enough_memory(mm, pages);
200 }
201 
202 int security_bprm_alloc(struct linux_binprm *bprm)
203 {
204 	return security_ops->bprm_alloc_security(bprm);
205 }
206 
207 void security_bprm_free(struct linux_binprm *bprm)
208 {
209 	security_ops->bprm_free_security(bprm);
210 }
211 
212 void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
213 {
214 	security_ops->bprm_apply_creds(bprm, unsafe);
215 }
216 
217 void security_bprm_post_apply_creds(struct linux_binprm *bprm)
218 {
219 	security_ops->bprm_post_apply_creds(bprm);
220 }
221 
222 int security_bprm_set(struct linux_binprm *bprm)
223 {
224 	return security_ops->bprm_set_security(bprm);
225 }
226 
227 int security_bprm_check(struct linux_binprm *bprm)
228 {
229 	return security_ops->bprm_check_security(bprm);
230 }
231 
232 int security_bprm_secureexec(struct linux_binprm *bprm)
233 {
234 	return security_ops->bprm_secureexec(bprm);
235 }
236 
237 int security_sb_alloc(struct super_block *sb)
238 {
239 	return security_ops->sb_alloc_security(sb);
240 }
241 
242 void security_sb_free(struct super_block *sb)
243 {
244 	security_ops->sb_free_security(sb);
245 }
246 
247 int security_sb_copy_data(char *orig, char *copy)
248 {
249 	return security_ops->sb_copy_data(orig, copy);
250 }
251 EXPORT_SYMBOL(security_sb_copy_data);
252 
253 int security_sb_kern_mount(struct super_block *sb, void *data)
254 {
255 	return security_ops->sb_kern_mount(sb, data);
256 }
257 
258 int security_sb_statfs(struct dentry *dentry)
259 {
260 	return security_ops->sb_statfs(dentry);
261 }
262 
263 int security_sb_mount(char *dev_name, struct nameidata *nd,
264                        char *type, unsigned long flags, void *data)
265 {
266 	return security_ops->sb_mount(dev_name, nd, type, flags, data);
267 }
268 
269 int security_sb_check_sb(struct vfsmount *mnt, struct nameidata *nd)
270 {
271 	return security_ops->sb_check_sb(mnt, nd);
272 }
273 
274 int security_sb_umount(struct vfsmount *mnt, int flags)
275 {
276 	return security_ops->sb_umount(mnt, flags);
277 }
278 
279 void security_sb_umount_close(struct vfsmount *mnt)
280 {
281 	security_ops->sb_umount_close(mnt);
282 }
283 
284 void security_sb_umount_busy(struct vfsmount *mnt)
285 {
286 	security_ops->sb_umount_busy(mnt);
287 }
288 
289 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
290 {
291 	security_ops->sb_post_remount(mnt, flags, data);
292 }
293 
294 void security_sb_post_addmount(struct vfsmount *mnt, struct nameidata *mountpoint_nd)
295 {
296 	security_ops->sb_post_addmount(mnt, mountpoint_nd);
297 }
298 
299 int security_sb_pivotroot(struct nameidata *old_nd, struct nameidata *new_nd)
300 {
301 	return security_ops->sb_pivotroot(old_nd, new_nd);
302 }
303 
304 void security_sb_post_pivotroot(struct nameidata *old_nd, struct nameidata *new_nd)
305 {
306 	security_ops->sb_post_pivotroot(old_nd, new_nd);
307 }
308 
309 int security_sb_get_mnt_opts(const struct super_block *sb,
310 				struct security_mnt_opts *opts)
311 {
312 	return security_ops->sb_get_mnt_opts(sb, opts);
313 }
314 
315 int security_sb_set_mnt_opts(struct super_block *sb,
316 				struct security_mnt_opts *opts)
317 {
318 	return security_ops->sb_set_mnt_opts(sb, opts);
319 }
320 EXPORT_SYMBOL(security_sb_set_mnt_opts);
321 
322 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
323 				struct super_block *newsb)
324 {
325 	security_ops->sb_clone_mnt_opts(oldsb, newsb);
326 }
327 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
328 
329 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
330 {
331 	return security_ops->sb_parse_opts_str(options, opts);
332 }
333 EXPORT_SYMBOL(security_sb_parse_opts_str);
334 
335 int security_inode_alloc(struct inode *inode)
336 {
337 	inode->i_security = NULL;
338 	return security_ops->inode_alloc_security(inode);
339 }
340 
341 void security_inode_free(struct inode *inode)
342 {
343 	security_ops->inode_free_security(inode);
344 }
345 
346 int security_inode_init_security(struct inode *inode, struct inode *dir,
347 				  char **name, void **value, size_t *len)
348 {
349 	if (unlikely(IS_PRIVATE(inode)))
350 		return -EOPNOTSUPP;
351 	return security_ops->inode_init_security(inode, dir, name, value, len);
352 }
353 EXPORT_SYMBOL(security_inode_init_security);
354 
355 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
356 {
357 	if (unlikely(IS_PRIVATE(dir)))
358 		return 0;
359 	return security_ops->inode_create(dir, dentry, mode);
360 }
361 
362 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
363 			 struct dentry *new_dentry)
364 {
365 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
366 		return 0;
367 	return security_ops->inode_link(old_dentry, dir, new_dentry);
368 }
369 
370 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
371 {
372 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
373 		return 0;
374 	return security_ops->inode_unlink(dir, dentry);
375 }
376 
377 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
378 			    const char *old_name)
379 {
380 	if (unlikely(IS_PRIVATE(dir)))
381 		return 0;
382 	return security_ops->inode_symlink(dir, dentry, old_name);
383 }
384 
385 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
386 {
387 	if (unlikely(IS_PRIVATE(dir)))
388 		return 0;
389 	return security_ops->inode_mkdir(dir, dentry, mode);
390 }
391 
392 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
393 {
394 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
395 		return 0;
396 	return security_ops->inode_rmdir(dir, dentry);
397 }
398 
399 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
400 {
401 	if (unlikely(IS_PRIVATE(dir)))
402 		return 0;
403 	return security_ops->inode_mknod(dir, dentry, mode, dev);
404 }
405 
406 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
407 			   struct inode *new_dir, struct dentry *new_dentry)
408 {
409         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
410             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
411 		return 0;
412 	return security_ops->inode_rename(old_dir, old_dentry,
413 					   new_dir, new_dentry);
414 }
415 
416 int security_inode_readlink(struct dentry *dentry)
417 {
418 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
419 		return 0;
420 	return security_ops->inode_readlink(dentry);
421 }
422 
423 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
424 {
425 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
426 		return 0;
427 	return security_ops->inode_follow_link(dentry, nd);
428 }
429 
430 int security_inode_permission(struct inode *inode, int mask, struct nameidata *nd)
431 {
432 	if (unlikely(IS_PRIVATE(inode)))
433 		return 0;
434 	return security_ops->inode_permission(inode, mask, nd);
435 }
436 
437 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
438 {
439 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
440 		return 0;
441 	return security_ops->inode_setattr(dentry, attr);
442 }
443 
444 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
445 {
446 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
447 		return 0;
448 	return security_ops->inode_getattr(mnt, dentry);
449 }
450 
451 void security_inode_delete(struct inode *inode)
452 {
453 	if (unlikely(IS_PRIVATE(inode)))
454 		return;
455 	security_ops->inode_delete(inode);
456 }
457 
458 int security_inode_setxattr(struct dentry *dentry, char *name,
459 			     void *value, size_t size, int flags)
460 {
461 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
462 		return 0;
463 	return security_ops->inode_setxattr(dentry, name, value, size, flags);
464 }
465 
466 void security_inode_post_setxattr(struct dentry *dentry, char *name,
467 				   void *value, size_t size, int flags)
468 {
469 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
470 		return;
471 	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
472 }
473 
474 int security_inode_getxattr(struct dentry *dentry, char *name)
475 {
476 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
477 		return 0;
478 	return security_ops->inode_getxattr(dentry, name);
479 }
480 
481 int security_inode_listxattr(struct dentry *dentry)
482 {
483 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
484 		return 0;
485 	return security_ops->inode_listxattr(dentry);
486 }
487 
488 int security_inode_removexattr(struct dentry *dentry, char *name)
489 {
490 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
491 		return 0;
492 	return security_ops->inode_removexattr(dentry, name);
493 }
494 
495 int security_inode_need_killpriv(struct dentry *dentry)
496 {
497 	return security_ops->inode_need_killpriv(dentry);
498 }
499 
500 int security_inode_killpriv(struct dentry *dentry)
501 {
502 	return security_ops->inode_killpriv(dentry);
503 }
504 
505 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
506 {
507 	if (unlikely(IS_PRIVATE(inode)))
508 		return 0;
509 	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
510 }
511 
512 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
513 {
514 	if (unlikely(IS_PRIVATE(inode)))
515 		return 0;
516 	return security_ops->inode_setsecurity(inode, name, value, size, flags);
517 }
518 
519 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
520 {
521 	if (unlikely(IS_PRIVATE(inode)))
522 		return 0;
523 	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
524 }
525 
526 int security_file_permission(struct file *file, int mask)
527 {
528 	return security_ops->file_permission(file, mask);
529 }
530 
531 int security_file_alloc(struct file *file)
532 {
533 	return security_ops->file_alloc_security(file);
534 }
535 
536 void security_file_free(struct file *file)
537 {
538 	security_ops->file_free_security(file);
539 }
540 
541 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
542 {
543 	return security_ops->file_ioctl(file, cmd, arg);
544 }
545 
546 int security_file_mmap(struct file *file, unsigned long reqprot,
547 			unsigned long prot, unsigned long flags,
548 			unsigned long addr, unsigned long addr_only)
549 {
550 	return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
551 }
552 
553 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
554 			    unsigned long prot)
555 {
556 	return security_ops->file_mprotect(vma, reqprot, prot);
557 }
558 
559 int security_file_lock(struct file *file, unsigned int cmd)
560 {
561 	return security_ops->file_lock(file, cmd);
562 }
563 
564 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
565 {
566 	return security_ops->file_fcntl(file, cmd, arg);
567 }
568 
569 int security_file_set_fowner(struct file *file)
570 {
571 	return security_ops->file_set_fowner(file);
572 }
573 
574 int security_file_send_sigiotask(struct task_struct *tsk,
575 				  struct fown_struct *fown, int sig)
576 {
577 	return security_ops->file_send_sigiotask(tsk, fown, sig);
578 }
579 
580 int security_file_receive(struct file *file)
581 {
582 	return security_ops->file_receive(file);
583 }
584 
585 int security_dentry_open(struct file *file)
586 {
587 	return security_ops->dentry_open(file);
588 }
589 
590 int security_task_create(unsigned long clone_flags)
591 {
592 	return security_ops->task_create(clone_flags);
593 }
594 
595 int security_task_alloc(struct task_struct *p)
596 {
597 	return security_ops->task_alloc_security(p);
598 }
599 
600 void security_task_free(struct task_struct *p)
601 {
602 	security_ops->task_free_security(p);
603 }
604 
605 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
606 {
607 	return security_ops->task_setuid(id0, id1, id2, flags);
608 }
609 
610 int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
611 			       uid_t old_suid, int flags)
612 {
613 	return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags);
614 }
615 
616 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
617 {
618 	return security_ops->task_setgid(id0, id1, id2, flags);
619 }
620 
621 int security_task_setpgid(struct task_struct *p, pid_t pgid)
622 {
623 	return security_ops->task_setpgid(p, pgid);
624 }
625 
626 int security_task_getpgid(struct task_struct *p)
627 {
628 	return security_ops->task_getpgid(p);
629 }
630 
631 int security_task_getsid(struct task_struct *p)
632 {
633 	return security_ops->task_getsid(p);
634 }
635 
636 void security_task_getsecid(struct task_struct *p, u32 *secid)
637 {
638 	security_ops->task_getsecid(p, secid);
639 }
640 EXPORT_SYMBOL(security_task_getsecid);
641 
642 int security_task_setgroups(struct group_info *group_info)
643 {
644 	return security_ops->task_setgroups(group_info);
645 }
646 
647 int security_task_setnice(struct task_struct *p, int nice)
648 {
649 	return security_ops->task_setnice(p, nice);
650 }
651 
652 int security_task_setioprio(struct task_struct *p, int ioprio)
653 {
654 	return security_ops->task_setioprio(p, ioprio);
655 }
656 
657 int security_task_getioprio(struct task_struct *p)
658 {
659 	return security_ops->task_getioprio(p);
660 }
661 
662 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
663 {
664 	return security_ops->task_setrlimit(resource, new_rlim);
665 }
666 
667 int security_task_setscheduler(struct task_struct *p,
668 				int policy, struct sched_param *lp)
669 {
670 	return security_ops->task_setscheduler(p, policy, lp);
671 }
672 
673 int security_task_getscheduler(struct task_struct *p)
674 {
675 	return security_ops->task_getscheduler(p);
676 }
677 
678 int security_task_movememory(struct task_struct *p)
679 {
680 	return security_ops->task_movememory(p);
681 }
682 
683 int security_task_kill(struct task_struct *p, struct siginfo *info,
684 			int sig, u32 secid)
685 {
686 	return security_ops->task_kill(p, info, sig, secid);
687 }
688 
689 int security_task_wait(struct task_struct *p)
690 {
691 	return security_ops->task_wait(p);
692 }
693 
694 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
695 			 unsigned long arg4, unsigned long arg5)
696 {
697 	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
698 }
699 
700 void security_task_reparent_to_init(struct task_struct *p)
701 {
702 	security_ops->task_reparent_to_init(p);
703 }
704 
705 void security_task_to_inode(struct task_struct *p, struct inode *inode)
706 {
707 	security_ops->task_to_inode(p, inode);
708 }
709 
710 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
711 {
712 	return security_ops->ipc_permission(ipcp, flag);
713 }
714 
715 int security_msg_msg_alloc(struct msg_msg *msg)
716 {
717 	return security_ops->msg_msg_alloc_security(msg);
718 }
719 
720 void security_msg_msg_free(struct msg_msg *msg)
721 {
722 	security_ops->msg_msg_free_security(msg);
723 }
724 
725 int security_msg_queue_alloc(struct msg_queue *msq)
726 {
727 	return security_ops->msg_queue_alloc_security(msq);
728 }
729 
730 void security_msg_queue_free(struct msg_queue *msq)
731 {
732 	security_ops->msg_queue_free_security(msq);
733 }
734 
735 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
736 {
737 	return security_ops->msg_queue_associate(msq, msqflg);
738 }
739 
740 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
741 {
742 	return security_ops->msg_queue_msgctl(msq, cmd);
743 }
744 
745 int security_msg_queue_msgsnd(struct msg_queue *msq,
746 			       struct msg_msg *msg, int msqflg)
747 {
748 	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
749 }
750 
751 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
752 			       struct task_struct *target, long type, int mode)
753 {
754 	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
755 }
756 
757 int security_shm_alloc(struct shmid_kernel *shp)
758 {
759 	return security_ops->shm_alloc_security(shp);
760 }
761 
762 void security_shm_free(struct shmid_kernel *shp)
763 {
764 	security_ops->shm_free_security(shp);
765 }
766 
767 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
768 {
769 	return security_ops->shm_associate(shp, shmflg);
770 }
771 
772 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
773 {
774 	return security_ops->shm_shmctl(shp, cmd);
775 }
776 
777 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
778 {
779 	return security_ops->shm_shmat(shp, shmaddr, shmflg);
780 }
781 
782 int security_sem_alloc(struct sem_array *sma)
783 {
784 	return security_ops->sem_alloc_security(sma);
785 }
786 
787 void security_sem_free(struct sem_array *sma)
788 {
789 	security_ops->sem_free_security(sma);
790 }
791 
792 int security_sem_associate(struct sem_array *sma, int semflg)
793 {
794 	return security_ops->sem_associate(sma, semflg);
795 }
796 
797 int security_sem_semctl(struct sem_array *sma, int cmd)
798 {
799 	return security_ops->sem_semctl(sma, cmd);
800 }
801 
802 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
803 			unsigned nsops, int alter)
804 {
805 	return security_ops->sem_semop(sma, sops, nsops, alter);
806 }
807 
808 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
809 {
810 	if (unlikely(inode && IS_PRIVATE(inode)))
811 		return;
812 	security_ops->d_instantiate(dentry, inode);
813 }
814 EXPORT_SYMBOL(security_d_instantiate);
815 
816 int security_getprocattr(struct task_struct *p, char *name, char **value)
817 {
818 	return security_ops->getprocattr(p, name, value);
819 }
820 
821 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
822 {
823 	return security_ops->setprocattr(p, name, value, size);
824 }
825 
826 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
827 {
828 	return security_ops->netlink_send(sk, skb);
829 }
830 
831 int security_netlink_recv(struct sk_buff *skb, int cap)
832 {
833 	return security_ops->netlink_recv(skb, cap);
834 }
835 EXPORT_SYMBOL(security_netlink_recv);
836 
837 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
838 {
839 	return security_ops->secid_to_secctx(secid, secdata, seclen);
840 }
841 EXPORT_SYMBOL(security_secid_to_secctx);
842 
843 int security_secctx_to_secid(char *secdata, u32 seclen, u32 *secid)
844 {
845 	return security_ops->secctx_to_secid(secdata, seclen, secid);
846 }
847 EXPORT_SYMBOL(security_secctx_to_secid);
848 
849 void security_release_secctx(char *secdata, u32 seclen)
850 {
851 	return security_ops->release_secctx(secdata, seclen);
852 }
853 EXPORT_SYMBOL(security_release_secctx);
854 
855 #ifdef CONFIG_SECURITY_NETWORK
856 
857 int security_unix_stream_connect(struct socket *sock, struct socket *other,
858 				 struct sock *newsk)
859 {
860 	return security_ops->unix_stream_connect(sock, other, newsk);
861 }
862 EXPORT_SYMBOL(security_unix_stream_connect);
863 
864 int security_unix_may_send(struct socket *sock,  struct socket *other)
865 {
866 	return security_ops->unix_may_send(sock, other);
867 }
868 EXPORT_SYMBOL(security_unix_may_send);
869 
870 int security_socket_create(int family, int type, int protocol, int kern)
871 {
872 	return security_ops->socket_create(family, type, protocol, kern);
873 }
874 
875 int security_socket_post_create(struct socket *sock, int family,
876 				int type, int protocol, int kern)
877 {
878 	return security_ops->socket_post_create(sock, family, type,
879 						protocol, kern);
880 }
881 
882 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
883 {
884 	return security_ops->socket_bind(sock, address, addrlen);
885 }
886 
887 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
888 {
889 	return security_ops->socket_connect(sock, address, addrlen);
890 }
891 
892 int security_socket_listen(struct socket *sock, int backlog)
893 {
894 	return security_ops->socket_listen(sock, backlog);
895 }
896 
897 int security_socket_accept(struct socket *sock, struct socket *newsock)
898 {
899 	return security_ops->socket_accept(sock, newsock);
900 }
901 
902 void security_socket_post_accept(struct socket *sock, struct socket *newsock)
903 {
904 	security_ops->socket_post_accept(sock, newsock);
905 }
906 
907 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
908 {
909 	return security_ops->socket_sendmsg(sock, msg, size);
910 }
911 
912 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
913 			    int size, int flags)
914 {
915 	return security_ops->socket_recvmsg(sock, msg, size, flags);
916 }
917 
918 int security_socket_getsockname(struct socket *sock)
919 {
920 	return security_ops->socket_getsockname(sock);
921 }
922 
923 int security_socket_getpeername(struct socket *sock)
924 {
925 	return security_ops->socket_getpeername(sock);
926 }
927 
928 int security_socket_getsockopt(struct socket *sock, int level, int optname)
929 {
930 	return security_ops->socket_getsockopt(sock, level, optname);
931 }
932 
933 int security_socket_setsockopt(struct socket *sock, int level, int optname)
934 {
935 	return security_ops->socket_setsockopt(sock, level, optname);
936 }
937 
938 int security_socket_shutdown(struct socket *sock, int how)
939 {
940 	return security_ops->socket_shutdown(sock, how);
941 }
942 
943 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
944 {
945 	return security_ops->socket_sock_rcv_skb(sk, skb);
946 }
947 EXPORT_SYMBOL(security_sock_rcv_skb);
948 
949 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
950 				      int __user *optlen, unsigned len)
951 {
952 	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
953 }
954 
955 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
956 {
957 	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
958 }
959 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
960 
961 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
962 {
963 	return security_ops->sk_alloc_security(sk, family, priority);
964 }
965 
966 void security_sk_free(struct sock *sk)
967 {
968 	return security_ops->sk_free_security(sk);
969 }
970 
971 void security_sk_clone(const struct sock *sk, struct sock *newsk)
972 {
973 	return security_ops->sk_clone_security(sk, newsk);
974 }
975 
976 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
977 {
978 	security_ops->sk_getsecid(sk, &fl->secid);
979 }
980 EXPORT_SYMBOL(security_sk_classify_flow);
981 
982 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
983 {
984 	security_ops->req_classify_flow(req, fl);
985 }
986 EXPORT_SYMBOL(security_req_classify_flow);
987 
988 void security_sock_graft(struct sock *sk, struct socket *parent)
989 {
990 	security_ops->sock_graft(sk, parent);
991 }
992 EXPORT_SYMBOL(security_sock_graft);
993 
994 int security_inet_conn_request(struct sock *sk,
995 			struct sk_buff *skb, struct request_sock *req)
996 {
997 	return security_ops->inet_conn_request(sk, skb, req);
998 }
999 EXPORT_SYMBOL(security_inet_conn_request);
1000 
1001 void security_inet_csk_clone(struct sock *newsk,
1002 			const struct request_sock *req)
1003 {
1004 	security_ops->inet_csk_clone(newsk, req);
1005 }
1006 
1007 void security_inet_conn_established(struct sock *sk,
1008 			struct sk_buff *skb)
1009 {
1010 	security_ops->inet_conn_established(sk, skb);
1011 }
1012 
1013 #endif	/* CONFIG_SECURITY_NETWORK */
1014 
1015 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1016 
1017 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1018 {
1019 	return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1020 }
1021 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1022 
1023 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1024 			      struct xfrm_sec_ctx **new_ctxp)
1025 {
1026 	return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1027 }
1028 
1029 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1030 {
1031 	security_ops->xfrm_policy_free_security(ctx);
1032 }
1033 EXPORT_SYMBOL(security_xfrm_policy_free);
1034 
1035 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1036 {
1037 	return security_ops->xfrm_policy_delete_security(ctx);
1038 }
1039 
1040 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1041 {
1042 	return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1043 }
1044 EXPORT_SYMBOL(security_xfrm_state_alloc);
1045 
1046 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1047 				      struct xfrm_sec_ctx *polsec, u32 secid)
1048 {
1049 	if (!polsec)
1050 		return 0;
1051 	/*
1052 	 * We want the context to be taken from secid which is usually
1053 	 * from the sock.
1054 	 */
1055 	return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1056 }
1057 
1058 int security_xfrm_state_delete(struct xfrm_state *x)
1059 {
1060 	return security_ops->xfrm_state_delete_security(x);
1061 }
1062 EXPORT_SYMBOL(security_xfrm_state_delete);
1063 
1064 void security_xfrm_state_free(struct xfrm_state *x)
1065 {
1066 	security_ops->xfrm_state_free_security(x);
1067 }
1068 
1069 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1070 {
1071 	return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1072 }
1073 
1074 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1075 				       struct xfrm_policy *xp, struct flowi *fl)
1076 {
1077 	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1078 }
1079 
1080 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1081 {
1082 	return security_ops->xfrm_decode_session(skb, secid, 1);
1083 }
1084 
1085 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1086 {
1087 	int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1088 
1089 	BUG_ON(rc);
1090 }
1091 EXPORT_SYMBOL(security_skb_classify_flow);
1092 
1093 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1094 
1095 #ifdef CONFIG_KEYS
1096 
1097 int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags)
1098 {
1099 	return security_ops->key_alloc(key, tsk, flags);
1100 }
1101 
1102 void security_key_free(struct key *key)
1103 {
1104 	security_ops->key_free(key);
1105 }
1106 
1107 int security_key_permission(key_ref_t key_ref,
1108 			    struct task_struct *context, key_perm_t perm)
1109 {
1110 	return security_ops->key_permission(key_ref, context, perm);
1111 }
1112 
1113 #endif	/* CONFIG_KEYS */
1114