1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * common LSM auditing functions 4 * 5 * Based on code written for SELinux by : 6 * Stephen Smalley, <sds@tycho.nsa.gov> 7 * James Morris <jmorris@redhat.com> 8 * Author : Etienne Basset, <etienne.basset@ensta.org> 9 */ 10 11 #include <linux/types.h> 12 #include <linux/stddef.h> 13 #include <linux/kernel.h> 14 #include <linux/gfp.h> 15 #include <linux/fs.h> 16 #include <linux/init.h> 17 #include <net/sock.h> 18 #include <linux/un.h> 19 #include <net/af_unix.h> 20 #include <linux/audit.h> 21 #include <linux/ipv6.h> 22 #include <linux/ip.h> 23 #include <net/ip.h> 24 #include <net/ipv6.h> 25 #include <linux/tcp.h> 26 #include <linux/udp.h> 27 #include <linux/dccp.h> 28 #include <linux/sctp.h> 29 #include <linux/lsm_audit.h> 30 #include <linux/security.h> 31 32 /** 33 * ipv4_skb_to_auditdata : fill auditdata from skb 34 * @skb : the skb 35 * @ad : the audit data to fill 36 * @proto : the layer 4 protocol 37 * 38 * return 0 on success 39 */ 40 int ipv4_skb_to_auditdata(struct sk_buff *skb, 41 struct common_audit_data *ad, u8 *proto) 42 { 43 int ret = 0; 44 struct iphdr *ih; 45 46 ih = ip_hdr(skb); 47 if (ih == NULL) 48 return -EINVAL; 49 50 ad->u.net->v4info.saddr = ih->saddr; 51 ad->u.net->v4info.daddr = ih->daddr; 52 53 if (proto) 54 *proto = ih->protocol; 55 /* non initial fragment */ 56 if (ntohs(ih->frag_off) & IP_OFFSET) 57 return 0; 58 59 switch (ih->protocol) { 60 case IPPROTO_TCP: { 61 struct tcphdr *th = tcp_hdr(skb); 62 if (th == NULL) 63 break; 64 65 ad->u.net->sport = th->source; 66 ad->u.net->dport = th->dest; 67 break; 68 } 69 case IPPROTO_UDP: { 70 struct udphdr *uh = udp_hdr(skb); 71 if (uh == NULL) 72 break; 73 74 ad->u.net->sport = uh->source; 75 ad->u.net->dport = uh->dest; 76 break; 77 } 78 case IPPROTO_DCCP: { 79 struct dccp_hdr *dh = dccp_hdr(skb); 80 if (dh == NULL) 81 break; 82 83 ad->u.net->sport = dh->dccph_sport; 84 ad->u.net->dport = dh->dccph_dport; 85 break; 86 } 87 case IPPROTO_SCTP: { 88 struct sctphdr *sh = sctp_hdr(skb); 89 if (sh == NULL) 90 break; 91 ad->u.net->sport = sh->source; 92 ad->u.net->dport = sh->dest; 93 break; 94 } 95 default: 96 ret = -EINVAL; 97 } 98 return ret; 99 } 100 #if IS_ENABLED(CONFIG_IPV6) 101 /** 102 * ipv6_skb_to_auditdata : fill auditdata from skb 103 * @skb : the skb 104 * @ad : the audit data to fill 105 * @proto : the layer 4 protocol 106 * 107 * return 0 on success 108 */ 109 int ipv6_skb_to_auditdata(struct sk_buff *skb, 110 struct common_audit_data *ad, u8 *proto) 111 { 112 int offset, ret = 0; 113 struct ipv6hdr *ip6; 114 u8 nexthdr; 115 __be16 frag_off; 116 117 ip6 = ipv6_hdr(skb); 118 if (ip6 == NULL) 119 return -EINVAL; 120 ad->u.net->v6info.saddr = ip6->saddr; 121 ad->u.net->v6info.daddr = ip6->daddr; 122 ret = 0; 123 /* IPv6 can have several extension header before the Transport header 124 * skip them */ 125 offset = skb_network_offset(skb); 126 offset += sizeof(*ip6); 127 nexthdr = ip6->nexthdr; 128 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off); 129 if (offset < 0) 130 return 0; 131 if (proto) 132 *proto = nexthdr; 133 switch (nexthdr) { 134 case IPPROTO_TCP: { 135 struct tcphdr _tcph, *th; 136 137 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 138 if (th == NULL) 139 break; 140 141 ad->u.net->sport = th->source; 142 ad->u.net->dport = th->dest; 143 break; 144 } 145 case IPPROTO_UDP: { 146 struct udphdr _udph, *uh; 147 148 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 149 if (uh == NULL) 150 break; 151 152 ad->u.net->sport = uh->source; 153 ad->u.net->dport = uh->dest; 154 break; 155 } 156 case IPPROTO_DCCP: { 157 struct dccp_hdr _dccph, *dh; 158 159 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 160 if (dh == NULL) 161 break; 162 163 ad->u.net->sport = dh->dccph_sport; 164 ad->u.net->dport = dh->dccph_dport; 165 break; 166 } 167 case IPPROTO_SCTP: { 168 struct sctphdr _sctph, *sh; 169 170 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph); 171 if (sh == NULL) 172 break; 173 ad->u.net->sport = sh->source; 174 ad->u.net->dport = sh->dest; 175 break; 176 } 177 default: 178 ret = -EINVAL; 179 } 180 return ret; 181 } 182 #endif 183 184 185 static inline void print_ipv6_addr(struct audit_buffer *ab, 186 const struct in6_addr *addr, __be16 port, 187 char *name1, char *name2) 188 { 189 if (!ipv6_addr_any(addr)) 190 audit_log_format(ab, " %s=%pI6c", name1, addr); 191 if (port) 192 audit_log_format(ab, " %s=%d", name2, ntohs(port)); 193 } 194 195 static inline void print_ipv4_addr(struct audit_buffer *ab, __be32 addr, 196 __be16 port, char *name1, char *name2) 197 { 198 if (addr) 199 audit_log_format(ab, " %s=%pI4", name1, &addr); 200 if (port) 201 audit_log_format(ab, " %s=%d", name2, ntohs(port)); 202 } 203 204 /** 205 * dump_common_audit_data - helper to dump common audit data 206 * @a : common audit data 207 * 208 */ 209 static void dump_common_audit_data(struct audit_buffer *ab, 210 struct common_audit_data *a) 211 { 212 char comm[sizeof(current->comm)]; 213 214 /* 215 * To keep stack sizes in check force programers to notice if they 216 * start making this union too large! See struct lsm_network_audit 217 * as an example of how to deal with large data. 218 */ 219 BUILD_BUG_ON(sizeof(a->u) > sizeof(void *)*2); 220 221 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current)); 222 audit_log_untrustedstring(ab, memcpy(comm, current->comm, sizeof(comm))); 223 224 switch (a->type) { 225 case LSM_AUDIT_DATA_NONE: 226 return; 227 case LSM_AUDIT_DATA_IPC: 228 audit_log_format(ab, " key=%d ", a->u.ipc_id); 229 break; 230 case LSM_AUDIT_DATA_CAP: 231 audit_log_format(ab, " capability=%d ", a->u.cap); 232 break; 233 case LSM_AUDIT_DATA_PATH: { 234 struct inode *inode; 235 236 audit_log_d_path(ab, " path=", &a->u.path); 237 238 inode = d_backing_inode(a->u.path.dentry); 239 if (inode) { 240 audit_log_format(ab, " dev="); 241 audit_log_untrustedstring(ab, inode->i_sb->s_id); 242 audit_log_format(ab, " ino=%lu", inode->i_ino); 243 } 244 break; 245 } 246 case LSM_AUDIT_DATA_FILE: { 247 struct inode *inode; 248 249 audit_log_d_path(ab, " path=", &a->u.file->f_path); 250 251 inode = file_inode(a->u.file); 252 if (inode) { 253 audit_log_format(ab, " dev="); 254 audit_log_untrustedstring(ab, inode->i_sb->s_id); 255 audit_log_format(ab, " ino=%lu", inode->i_ino); 256 } 257 break; 258 } 259 case LSM_AUDIT_DATA_IOCTL_OP: { 260 struct inode *inode; 261 262 audit_log_d_path(ab, " path=", &a->u.op->path); 263 264 inode = a->u.op->path.dentry->d_inode; 265 if (inode) { 266 audit_log_format(ab, " dev="); 267 audit_log_untrustedstring(ab, inode->i_sb->s_id); 268 audit_log_format(ab, " ino=%lu", inode->i_ino); 269 } 270 271 audit_log_format(ab, " ioctlcmd=0x%hx", a->u.op->cmd); 272 break; 273 } 274 case LSM_AUDIT_DATA_DENTRY: { 275 struct inode *inode; 276 277 audit_log_format(ab, " name="); 278 spin_lock(&a->u.dentry->d_lock); 279 audit_log_untrustedstring(ab, a->u.dentry->d_name.name); 280 spin_unlock(&a->u.dentry->d_lock); 281 282 inode = d_backing_inode(a->u.dentry); 283 if (inode) { 284 audit_log_format(ab, " dev="); 285 audit_log_untrustedstring(ab, inode->i_sb->s_id); 286 audit_log_format(ab, " ino=%lu", inode->i_ino); 287 } 288 break; 289 } 290 case LSM_AUDIT_DATA_INODE: { 291 struct dentry *dentry; 292 struct inode *inode; 293 294 rcu_read_lock(); 295 inode = a->u.inode; 296 dentry = d_find_alias_rcu(inode); 297 if (dentry) { 298 audit_log_format(ab, " name="); 299 spin_lock(&dentry->d_lock); 300 audit_log_untrustedstring(ab, dentry->d_name.name); 301 spin_unlock(&dentry->d_lock); 302 } 303 audit_log_format(ab, " dev="); 304 audit_log_untrustedstring(ab, inode->i_sb->s_id); 305 audit_log_format(ab, " ino=%lu", inode->i_ino); 306 rcu_read_unlock(); 307 break; 308 } 309 case LSM_AUDIT_DATA_TASK: { 310 struct task_struct *tsk = a->u.tsk; 311 if (tsk) { 312 pid_t pid = task_tgid_nr(tsk); 313 if (pid) { 314 char comm[sizeof(tsk->comm)]; 315 audit_log_format(ab, " opid=%d ocomm=", pid); 316 audit_log_untrustedstring(ab, 317 memcpy(comm, tsk->comm, sizeof(comm))); 318 } 319 } 320 break; 321 } 322 case LSM_AUDIT_DATA_NET: 323 if (a->u.net->sk) { 324 const struct sock *sk = a->u.net->sk; 325 struct unix_sock *u; 326 struct unix_address *addr; 327 int len = 0; 328 char *p = NULL; 329 330 switch (sk->sk_family) { 331 case AF_INET: { 332 struct inet_sock *inet = inet_sk(sk); 333 334 print_ipv4_addr(ab, inet->inet_rcv_saddr, 335 inet->inet_sport, 336 "laddr", "lport"); 337 print_ipv4_addr(ab, inet->inet_daddr, 338 inet->inet_dport, 339 "faddr", "fport"); 340 break; 341 } 342 #if IS_ENABLED(CONFIG_IPV6) 343 case AF_INET6: { 344 struct inet_sock *inet = inet_sk(sk); 345 346 print_ipv6_addr(ab, &sk->sk_v6_rcv_saddr, 347 inet->inet_sport, 348 "laddr", "lport"); 349 print_ipv6_addr(ab, &sk->sk_v6_daddr, 350 inet->inet_dport, 351 "faddr", "fport"); 352 break; 353 } 354 #endif 355 case AF_UNIX: 356 u = unix_sk(sk); 357 addr = smp_load_acquire(&u->addr); 358 if (!addr) 359 break; 360 if (u->path.dentry) { 361 audit_log_d_path(ab, " path=", &u->path); 362 break; 363 } 364 len = addr->len-sizeof(short); 365 p = &addr->name->sun_path[0]; 366 audit_log_format(ab, " path="); 367 if (*p) 368 audit_log_untrustedstring(ab, p); 369 else 370 audit_log_n_hex(ab, p, len); 371 break; 372 } 373 } 374 375 switch (a->u.net->family) { 376 case AF_INET: 377 print_ipv4_addr(ab, a->u.net->v4info.saddr, 378 a->u.net->sport, 379 "saddr", "src"); 380 print_ipv4_addr(ab, a->u.net->v4info.daddr, 381 a->u.net->dport, 382 "daddr", "dest"); 383 break; 384 case AF_INET6: 385 print_ipv6_addr(ab, &a->u.net->v6info.saddr, 386 a->u.net->sport, 387 "saddr", "src"); 388 print_ipv6_addr(ab, &a->u.net->v6info.daddr, 389 a->u.net->dport, 390 "daddr", "dest"); 391 break; 392 } 393 if (a->u.net->netif > 0) { 394 struct net_device *dev; 395 396 /* NOTE: we always use init's namespace */ 397 dev = dev_get_by_index(&init_net, a->u.net->netif); 398 if (dev) { 399 audit_log_format(ab, " netif=%s", dev->name); 400 dev_put(dev); 401 } 402 } 403 break; 404 #ifdef CONFIG_KEYS 405 case LSM_AUDIT_DATA_KEY: 406 audit_log_format(ab, " key_serial=%u", a->u.key_struct.key); 407 if (a->u.key_struct.key_desc) { 408 audit_log_format(ab, " key_desc="); 409 audit_log_untrustedstring(ab, a->u.key_struct.key_desc); 410 } 411 break; 412 #endif 413 case LSM_AUDIT_DATA_KMOD: 414 audit_log_format(ab, " kmod="); 415 audit_log_untrustedstring(ab, a->u.kmod_name); 416 break; 417 case LSM_AUDIT_DATA_IBPKEY: { 418 struct in6_addr sbn_pfx; 419 420 memset(&sbn_pfx.s6_addr, 0, 421 sizeof(sbn_pfx.s6_addr)); 422 memcpy(&sbn_pfx.s6_addr, &a->u.ibpkey->subnet_prefix, 423 sizeof(a->u.ibpkey->subnet_prefix)); 424 audit_log_format(ab, " pkey=0x%x subnet_prefix=%pI6c", 425 a->u.ibpkey->pkey, &sbn_pfx); 426 break; 427 } 428 case LSM_AUDIT_DATA_IBENDPORT: 429 audit_log_format(ab, " device=%s port_num=%u", 430 a->u.ibendport->dev_name, 431 a->u.ibendport->port); 432 break; 433 case LSM_AUDIT_DATA_LOCKDOWN: 434 audit_log_format(ab, " lockdown_reason=\"%s\"", 435 lockdown_reasons[a->u.reason]); 436 break; 437 } /* switch (a->type) */ 438 } 439 440 /** 441 * common_lsm_audit - generic LSM auditing function 442 * @a: auxiliary audit data 443 * @pre_audit: lsm-specific pre-audit callback 444 * @post_audit: lsm-specific post-audit callback 445 * 446 * setup the audit buffer for common security information 447 * uses callback to print LSM specific information 448 */ 449 void common_lsm_audit(struct common_audit_data *a, 450 void (*pre_audit)(struct audit_buffer *, void *), 451 void (*post_audit)(struct audit_buffer *, void *)) 452 { 453 struct audit_buffer *ab; 454 455 if (a == NULL) 456 return; 457 /* we use GFP_ATOMIC so we won't sleep */ 458 ab = audit_log_start(audit_context(), GFP_ATOMIC | __GFP_NOWARN, 459 AUDIT_AVC); 460 461 if (ab == NULL) 462 return; 463 464 if (pre_audit) 465 pre_audit(ab, a); 466 467 dump_common_audit_data(ab, a); 468 469 if (post_audit) 470 post_audit(ab, a); 471 472 audit_log_end(ab); 473 } 474