1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Landlock LSM - Filesystem management and hooks 4 * 5 * Copyright © 2016-2020 Mickaël Salaün <mic@digikod.net> 6 * Copyright © 2018-2020 ANSSI 7 * Copyright © 2021-2022 Microsoft Corporation 8 */ 9 10 #include <linux/atomic.h> 11 #include <linux/bitops.h> 12 #include <linux/bits.h> 13 #include <linux/compiler_types.h> 14 #include <linux/dcache.h> 15 #include <linux/err.h> 16 #include <linux/fs.h> 17 #include <linux/init.h> 18 #include <linux/kernel.h> 19 #include <linux/limits.h> 20 #include <linux/list.h> 21 #include <linux/lsm_hooks.h> 22 #include <linux/mount.h> 23 #include <linux/namei.h> 24 #include <linux/path.h> 25 #include <linux/rcupdate.h> 26 #include <linux/spinlock.h> 27 #include <linux/stat.h> 28 #include <linux/types.h> 29 #include <linux/wait_bit.h> 30 #include <linux/workqueue.h> 31 #include <uapi/linux/landlock.h> 32 33 #include "common.h" 34 #include "cred.h" 35 #include "fs.h" 36 #include "limits.h" 37 #include "object.h" 38 #include "ruleset.h" 39 #include "setup.h" 40 41 /* Underlying object management */ 42 43 static void release_inode(struct landlock_object *const object) 44 __releases(object->lock) 45 { 46 struct inode *const inode = object->underobj; 47 struct super_block *sb; 48 49 if (!inode) { 50 spin_unlock(&object->lock); 51 return; 52 } 53 54 /* 55 * Protects against concurrent use by hook_sb_delete() of the reference 56 * to the underlying inode. 57 */ 58 object->underobj = NULL; 59 /* 60 * Makes sure that if the filesystem is concurrently unmounted, 61 * hook_sb_delete() will wait for us to finish iput(). 62 */ 63 sb = inode->i_sb; 64 atomic_long_inc(&landlock_superblock(sb)->inode_refs); 65 spin_unlock(&object->lock); 66 /* 67 * Because object->underobj was not NULL, hook_sb_delete() and 68 * get_inode_object() guarantee that it is safe to reset 69 * landlock_inode(inode)->object while it is not NULL. It is therefore 70 * not necessary to lock inode->i_lock. 71 */ 72 rcu_assign_pointer(landlock_inode(inode)->object, NULL); 73 /* 74 * Now, new rules can safely be tied to @inode with get_inode_object(). 75 */ 76 77 iput(inode); 78 if (atomic_long_dec_and_test(&landlock_superblock(sb)->inode_refs)) 79 wake_up_var(&landlock_superblock(sb)->inode_refs); 80 } 81 82 static const struct landlock_object_underops landlock_fs_underops = { 83 .release = release_inode 84 }; 85 86 /* Ruleset management */ 87 88 static struct landlock_object *get_inode_object(struct inode *const inode) 89 { 90 struct landlock_object *object, *new_object; 91 struct landlock_inode_security *inode_sec = landlock_inode(inode); 92 93 rcu_read_lock(); 94 retry: 95 object = rcu_dereference(inode_sec->object); 96 if (object) { 97 if (likely(refcount_inc_not_zero(&object->usage))) { 98 rcu_read_unlock(); 99 return object; 100 } 101 /* 102 * We are racing with release_inode(), the object is going 103 * away. Wait for release_inode(), then retry. 104 */ 105 spin_lock(&object->lock); 106 spin_unlock(&object->lock); 107 goto retry; 108 } 109 rcu_read_unlock(); 110 111 /* 112 * If there is no object tied to @inode, then create a new one (without 113 * holding any locks). 114 */ 115 new_object = landlock_create_object(&landlock_fs_underops, inode); 116 if (IS_ERR(new_object)) 117 return new_object; 118 119 /* 120 * Protects against concurrent calls to get_inode_object() or 121 * hook_sb_delete(). 122 */ 123 spin_lock(&inode->i_lock); 124 if (unlikely(rcu_access_pointer(inode_sec->object))) { 125 /* Someone else just created the object, bail out and retry. */ 126 spin_unlock(&inode->i_lock); 127 kfree(new_object); 128 129 rcu_read_lock(); 130 goto retry; 131 } 132 133 /* 134 * @inode will be released by hook_sb_delete() on its superblock 135 * shutdown, or by release_inode() when no more ruleset references the 136 * related object. 137 */ 138 ihold(inode); 139 rcu_assign_pointer(inode_sec->object, new_object); 140 spin_unlock(&inode->i_lock); 141 return new_object; 142 } 143 144 /* All access rights that can be tied to files. */ 145 /* clang-format off */ 146 #define ACCESS_FILE ( \ 147 LANDLOCK_ACCESS_FS_EXECUTE | \ 148 LANDLOCK_ACCESS_FS_WRITE_FILE | \ 149 LANDLOCK_ACCESS_FS_READ_FILE | \ 150 LANDLOCK_ACCESS_FS_TRUNCATE) 151 /* clang-format on */ 152 153 /* 154 * All access rights that are denied by default whether they are handled or not 155 * by a ruleset/layer. This must be ORed with all ruleset->fs_access_masks[] 156 * entries when we need to get the absolute handled access masks. 157 */ 158 /* clang-format off */ 159 #define ACCESS_INITIALLY_DENIED ( \ 160 LANDLOCK_ACCESS_FS_REFER) 161 /* clang-format on */ 162 163 /* 164 * @path: Should have been checked by get_path_from_fd(). 165 */ 166 int landlock_append_fs_rule(struct landlock_ruleset *const ruleset, 167 const struct path *const path, 168 access_mask_t access_rights) 169 { 170 int err; 171 struct landlock_object *object; 172 173 /* Files only get access rights that make sense. */ 174 if (!d_is_dir(path->dentry) && 175 (access_rights | ACCESS_FILE) != ACCESS_FILE) 176 return -EINVAL; 177 if (WARN_ON_ONCE(ruleset->num_layers != 1)) 178 return -EINVAL; 179 180 /* Transforms relative access rights to absolute ones. */ 181 access_rights |= 182 LANDLOCK_MASK_ACCESS_FS & 183 ~(ruleset->fs_access_masks[0] | ACCESS_INITIALLY_DENIED); 184 object = get_inode_object(d_backing_inode(path->dentry)); 185 if (IS_ERR(object)) 186 return PTR_ERR(object); 187 mutex_lock(&ruleset->lock); 188 err = landlock_insert_rule(ruleset, object, access_rights); 189 mutex_unlock(&ruleset->lock); 190 /* 191 * No need to check for an error because landlock_insert_rule() 192 * increments the refcount for the new object if needed. 193 */ 194 landlock_put_object(object); 195 return err; 196 } 197 198 /* Access-control management */ 199 200 /* 201 * The lifetime of the returned rule is tied to @domain. 202 * 203 * Returns NULL if no rule is found or if @dentry is negative. 204 */ 205 static inline const struct landlock_rule * 206 find_rule(const struct landlock_ruleset *const domain, 207 const struct dentry *const dentry) 208 { 209 const struct landlock_rule *rule; 210 const struct inode *inode; 211 212 /* Ignores nonexistent leafs. */ 213 if (d_is_negative(dentry)) 214 return NULL; 215 216 inode = d_backing_inode(dentry); 217 rcu_read_lock(); 218 rule = landlock_find_rule( 219 domain, rcu_dereference(landlock_inode(inode)->object)); 220 rcu_read_unlock(); 221 return rule; 222 } 223 224 /* 225 * @layer_masks is read and may be updated according to the access request and 226 * the matching rule. 227 * 228 * Returns true if the request is allowed (i.e. relevant layer masks for the 229 * request are empty). 230 */ 231 static inline bool 232 unmask_layers(const struct landlock_rule *const rule, 233 const access_mask_t access_request, 234 layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS]) 235 { 236 size_t layer_level; 237 238 if (!access_request || !layer_masks) 239 return true; 240 if (!rule) 241 return false; 242 243 /* 244 * An access is granted if, for each policy layer, at least one rule 245 * encountered on the pathwalk grants the requested access, 246 * regardless of its position in the layer stack. We must then check 247 * the remaining layers for each inode, from the first added layer to 248 * the last one. When there is multiple requested accesses, for each 249 * policy layer, the full set of requested accesses may not be granted 250 * by only one rule, but by the union (binary OR) of multiple rules. 251 * E.g. /a/b <execute> + /a <read> => /a/b <execute + read> 252 */ 253 for (layer_level = 0; layer_level < rule->num_layers; layer_level++) { 254 const struct landlock_layer *const layer = 255 &rule->layers[layer_level]; 256 const layer_mask_t layer_bit = BIT_ULL(layer->level - 1); 257 const unsigned long access_req = access_request; 258 unsigned long access_bit; 259 bool is_empty; 260 261 /* 262 * Records in @layer_masks which layer grants access to each 263 * requested access. 264 */ 265 is_empty = true; 266 for_each_set_bit(access_bit, &access_req, 267 ARRAY_SIZE(*layer_masks)) { 268 if (layer->access & BIT_ULL(access_bit)) 269 (*layer_masks)[access_bit] &= ~layer_bit; 270 is_empty = is_empty && !(*layer_masks)[access_bit]; 271 } 272 if (is_empty) 273 return true; 274 } 275 return false; 276 } 277 278 /* 279 * Allows access to pseudo filesystems that will never be mountable (e.g. 280 * sockfs, pipefs), but can still be reachable through 281 * /proc/<pid>/fd/<file-descriptor> 282 */ 283 static inline bool is_nouser_or_private(const struct dentry *dentry) 284 { 285 return (dentry->d_sb->s_flags & SB_NOUSER) || 286 (d_is_positive(dentry) && 287 unlikely(IS_PRIVATE(d_backing_inode(dentry)))); 288 } 289 290 static inline access_mask_t 291 get_handled_accesses(const struct landlock_ruleset *const domain) 292 { 293 access_mask_t access_dom = ACCESS_INITIALLY_DENIED; 294 size_t layer_level; 295 296 for (layer_level = 0; layer_level < domain->num_layers; layer_level++) 297 access_dom |= domain->fs_access_masks[layer_level]; 298 return access_dom & LANDLOCK_MASK_ACCESS_FS; 299 } 300 301 /** 302 * init_layer_masks - Initialize layer masks from an access request 303 * 304 * Populates @layer_masks such that for each access right in @access_request, 305 * the bits for all the layers are set where this access right is handled. 306 * 307 * @domain: The domain that defines the current restrictions. 308 * @access_request: The requested access rights to check. 309 * @layer_masks: The layer masks to populate. 310 * 311 * Returns: An access mask where each access right bit is set which is handled 312 * in any of the active layers in @domain. 313 */ 314 static inline access_mask_t 315 init_layer_masks(const struct landlock_ruleset *const domain, 316 const access_mask_t access_request, 317 layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS]) 318 { 319 access_mask_t handled_accesses = 0; 320 size_t layer_level; 321 322 memset(layer_masks, 0, sizeof(*layer_masks)); 323 /* An empty access request can happen because of O_WRONLY | O_RDWR. */ 324 if (!access_request) 325 return 0; 326 327 /* Saves all handled accesses per layer. */ 328 for (layer_level = 0; layer_level < domain->num_layers; layer_level++) { 329 const unsigned long access_req = access_request; 330 unsigned long access_bit; 331 332 for_each_set_bit(access_bit, &access_req, 333 ARRAY_SIZE(*layer_masks)) { 334 /* 335 * Artificially handles all initially denied by default 336 * access rights. 337 */ 338 if (BIT_ULL(access_bit) & 339 (domain->fs_access_masks[layer_level] | 340 ACCESS_INITIALLY_DENIED)) { 341 (*layer_masks)[access_bit] |= 342 BIT_ULL(layer_level); 343 handled_accesses |= BIT_ULL(access_bit); 344 } 345 } 346 } 347 return handled_accesses; 348 } 349 350 /* 351 * Check that a destination file hierarchy has more restrictions than a source 352 * file hierarchy. This is only used for link and rename actions. 353 * 354 * @layer_masks_child2: Optional child masks. 355 */ 356 static inline bool no_more_access( 357 const layer_mask_t (*const layer_masks_parent1)[LANDLOCK_NUM_ACCESS_FS], 358 const layer_mask_t (*const layer_masks_child1)[LANDLOCK_NUM_ACCESS_FS], 359 const bool child1_is_directory, 360 const layer_mask_t (*const layer_masks_parent2)[LANDLOCK_NUM_ACCESS_FS], 361 const layer_mask_t (*const layer_masks_child2)[LANDLOCK_NUM_ACCESS_FS], 362 const bool child2_is_directory) 363 { 364 unsigned long access_bit; 365 366 for (access_bit = 0; access_bit < ARRAY_SIZE(*layer_masks_parent2); 367 access_bit++) { 368 /* Ignores accesses that only make sense for directories. */ 369 const bool is_file_access = 370 !!(BIT_ULL(access_bit) & ACCESS_FILE); 371 372 if (child1_is_directory || is_file_access) { 373 /* 374 * Checks if the destination restrictions are a 375 * superset of the source ones (i.e. inherited access 376 * rights without child exceptions): 377 * restrictions(parent2) >= restrictions(child1) 378 */ 379 if ((((*layer_masks_parent1)[access_bit] & 380 (*layer_masks_child1)[access_bit]) | 381 (*layer_masks_parent2)[access_bit]) != 382 (*layer_masks_parent2)[access_bit]) 383 return false; 384 } 385 386 if (!layer_masks_child2) 387 continue; 388 if (child2_is_directory || is_file_access) { 389 /* 390 * Checks inverted restrictions for RENAME_EXCHANGE: 391 * restrictions(parent1) >= restrictions(child2) 392 */ 393 if ((((*layer_masks_parent2)[access_bit] & 394 (*layer_masks_child2)[access_bit]) | 395 (*layer_masks_parent1)[access_bit]) != 396 (*layer_masks_parent1)[access_bit]) 397 return false; 398 } 399 } 400 return true; 401 } 402 403 /* 404 * Removes @layer_masks accesses that are not requested. 405 * 406 * Returns true if the request is allowed, false otherwise. 407 */ 408 static inline bool 409 scope_to_request(const access_mask_t access_request, 410 layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS]) 411 { 412 const unsigned long access_req = access_request; 413 unsigned long access_bit; 414 415 if (WARN_ON_ONCE(!layer_masks)) 416 return true; 417 418 for_each_clear_bit(access_bit, &access_req, ARRAY_SIZE(*layer_masks)) 419 (*layer_masks)[access_bit] = 0; 420 return !memchr_inv(layer_masks, 0, sizeof(*layer_masks)); 421 } 422 423 /* 424 * Returns true if there is at least one access right different than 425 * LANDLOCK_ACCESS_FS_REFER. 426 */ 427 static inline bool 428 is_eacces(const layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS], 429 const access_mask_t access_request) 430 { 431 unsigned long access_bit; 432 /* LANDLOCK_ACCESS_FS_REFER alone must return -EXDEV. */ 433 const unsigned long access_check = access_request & 434 ~LANDLOCK_ACCESS_FS_REFER; 435 436 if (!layer_masks) 437 return false; 438 439 for_each_set_bit(access_bit, &access_check, ARRAY_SIZE(*layer_masks)) { 440 if ((*layer_masks)[access_bit]) 441 return true; 442 } 443 return false; 444 } 445 446 /** 447 * is_access_to_paths_allowed - Check accesses for requests with a common path 448 * 449 * @domain: Domain to check against. 450 * @path: File hierarchy to walk through. 451 * @access_request_parent1: Accesses to check, once @layer_masks_parent1 is 452 * equal to @layer_masks_parent2 (if any). This is tied to the unique 453 * requested path for most actions, or the source in case of a refer action 454 * (i.e. rename or link), or the source and destination in case of 455 * RENAME_EXCHANGE. 456 * @layer_masks_parent1: Pointer to a matrix of layer masks per access 457 * masks, identifying the layers that forbid a specific access. Bits from 458 * this matrix can be unset according to the @path walk. An empty matrix 459 * means that @domain allows all possible Landlock accesses (i.e. not only 460 * those identified by @access_request_parent1). This matrix can 461 * initially refer to domain layer masks and, when the accesses for the 462 * destination and source are the same, to requested layer masks. 463 * @dentry_child1: Dentry to the initial child of the parent1 path. This 464 * pointer must be NULL for non-refer actions (i.e. not link nor rename). 465 * @access_request_parent2: Similar to @access_request_parent1 but for a 466 * request involving a source and a destination. This refers to the 467 * destination, except in case of RENAME_EXCHANGE where it also refers to 468 * the source. Must be set to 0 when using a simple path request. 469 * @layer_masks_parent2: Similar to @layer_masks_parent1 but for a refer 470 * action. This must be NULL otherwise. 471 * @dentry_child2: Dentry to the initial child of the parent2 path. This 472 * pointer is only set for RENAME_EXCHANGE actions and must be NULL 473 * otherwise. 474 * 475 * This helper first checks that the destination has a superset of restrictions 476 * compared to the source (if any) for a common path. Because of 477 * RENAME_EXCHANGE actions, source and destinations may be swapped. It then 478 * checks that the collected accesses and the remaining ones are enough to 479 * allow the request. 480 * 481 * Returns: 482 * - true if the access request is granted; 483 * - false otherwise. 484 */ 485 static bool is_access_to_paths_allowed( 486 const struct landlock_ruleset *const domain, 487 const struct path *const path, 488 const access_mask_t access_request_parent1, 489 layer_mask_t (*const layer_masks_parent1)[LANDLOCK_NUM_ACCESS_FS], 490 const struct dentry *const dentry_child1, 491 const access_mask_t access_request_parent2, 492 layer_mask_t (*const layer_masks_parent2)[LANDLOCK_NUM_ACCESS_FS], 493 const struct dentry *const dentry_child2) 494 { 495 bool allowed_parent1 = false, allowed_parent2 = false, is_dom_check, 496 child1_is_directory = true, child2_is_directory = true; 497 struct path walker_path; 498 access_mask_t access_masked_parent1, access_masked_parent2; 499 layer_mask_t _layer_masks_child1[LANDLOCK_NUM_ACCESS_FS], 500 _layer_masks_child2[LANDLOCK_NUM_ACCESS_FS]; 501 layer_mask_t(*layer_masks_child1)[LANDLOCK_NUM_ACCESS_FS] = NULL, 502 (*layer_masks_child2)[LANDLOCK_NUM_ACCESS_FS] = NULL; 503 504 if (!access_request_parent1 && !access_request_parent2) 505 return true; 506 if (WARN_ON_ONCE(!domain || !path)) 507 return true; 508 if (is_nouser_or_private(path->dentry)) 509 return true; 510 if (WARN_ON_ONCE(domain->num_layers < 1 || !layer_masks_parent1)) 511 return false; 512 513 if (unlikely(layer_masks_parent2)) { 514 if (WARN_ON_ONCE(!dentry_child1)) 515 return false; 516 /* 517 * For a double request, first check for potential privilege 518 * escalation by looking at domain handled accesses (which are 519 * a superset of the meaningful requested accesses). 520 */ 521 access_masked_parent1 = access_masked_parent2 = 522 get_handled_accesses(domain); 523 is_dom_check = true; 524 } else { 525 if (WARN_ON_ONCE(dentry_child1 || dentry_child2)) 526 return false; 527 /* For a simple request, only check for requested accesses. */ 528 access_masked_parent1 = access_request_parent1; 529 access_masked_parent2 = access_request_parent2; 530 is_dom_check = false; 531 } 532 533 if (unlikely(dentry_child1)) { 534 unmask_layers(find_rule(domain, dentry_child1), 535 init_layer_masks(domain, LANDLOCK_MASK_ACCESS_FS, 536 &_layer_masks_child1), 537 &_layer_masks_child1); 538 layer_masks_child1 = &_layer_masks_child1; 539 child1_is_directory = d_is_dir(dentry_child1); 540 } 541 if (unlikely(dentry_child2)) { 542 unmask_layers(find_rule(domain, dentry_child2), 543 init_layer_masks(domain, LANDLOCK_MASK_ACCESS_FS, 544 &_layer_masks_child2), 545 &_layer_masks_child2); 546 layer_masks_child2 = &_layer_masks_child2; 547 child2_is_directory = d_is_dir(dentry_child2); 548 } 549 550 walker_path = *path; 551 path_get(&walker_path); 552 /* 553 * We need to walk through all the hierarchy to not miss any relevant 554 * restriction. 555 */ 556 while (true) { 557 struct dentry *parent_dentry; 558 const struct landlock_rule *rule; 559 560 /* 561 * If at least all accesses allowed on the destination are 562 * already allowed on the source, respectively if there is at 563 * least as much as restrictions on the destination than on the 564 * source, then we can safely refer files from the source to 565 * the destination without risking a privilege escalation. 566 * This also applies in the case of RENAME_EXCHANGE, which 567 * implies checks on both direction. This is crucial for 568 * standalone multilayered security policies. Furthermore, 569 * this helps avoid policy writers to shoot themselves in the 570 * foot. 571 */ 572 if (unlikely(is_dom_check && 573 no_more_access( 574 layer_masks_parent1, layer_masks_child1, 575 child1_is_directory, layer_masks_parent2, 576 layer_masks_child2, 577 child2_is_directory))) { 578 allowed_parent1 = scope_to_request( 579 access_request_parent1, layer_masks_parent1); 580 allowed_parent2 = scope_to_request( 581 access_request_parent2, layer_masks_parent2); 582 583 /* Stops when all accesses are granted. */ 584 if (allowed_parent1 && allowed_parent2) 585 break; 586 587 /* 588 * Now, downgrades the remaining checks from domain 589 * handled accesses to requested accesses. 590 */ 591 is_dom_check = false; 592 access_masked_parent1 = access_request_parent1; 593 access_masked_parent2 = access_request_parent2; 594 } 595 596 rule = find_rule(domain, walker_path.dentry); 597 allowed_parent1 = unmask_layers(rule, access_masked_parent1, 598 layer_masks_parent1); 599 allowed_parent2 = unmask_layers(rule, access_masked_parent2, 600 layer_masks_parent2); 601 602 /* Stops when a rule from each layer grants access. */ 603 if (allowed_parent1 && allowed_parent2) 604 break; 605 606 jump_up: 607 if (walker_path.dentry == walker_path.mnt->mnt_root) { 608 if (follow_up(&walker_path)) { 609 /* Ignores hidden mount points. */ 610 goto jump_up; 611 } else { 612 /* 613 * Stops at the real root. Denies access 614 * because not all layers have granted access. 615 */ 616 break; 617 } 618 } 619 if (unlikely(IS_ROOT(walker_path.dentry))) { 620 /* 621 * Stops at disconnected root directories. Only allows 622 * access to internal filesystems (e.g. nsfs, which is 623 * reachable through /proc/<pid>/ns/<namespace>). 624 */ 625 allowed_parent1 = allowed_parent2 = 626 !!(walker_path.mnt->mnt_flags & MNT_INTERNAL); 627 break; 628 } 629 parent_dentry = dget_parent(walker_path.dentry); 630 dput(walker_path.dentry); 631 walker_path.dentry = parent_dentry; 632 } 633 path_put(&walker_path); 634 635 return allowed_parent1 && allowed_parent2; 636 } 637 638 static inline int check_access_path(const struct landlock_ruleset *const domain, 639 const struct path *const path, 640 access_mask_t access_request) 641 { 642 layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {}; 643 644 access_request = init_layer_masks(domain, access_request, &layer_masks); 645 if (is_access_to_paths_allowed(domain, path, access_request, 646 &layer_masks, NULL, 0, NULL, NULL)) 647 return 0; 648 return -EACCES; 649 } 650 651 static inline int current_check_access_path(const struct path *const path, 652 const access_mask_t access_request) 653 { 654 const struct landlock_ruleset *const dom = 655 landlock_get_current_domain(); 656 657 if (!dom) 658 return 0; 659 return check_access_path(dom, path, access_request); 660 } 661 662 static inline access_mask_t get_mode_access(const umode_t mode) 663 { 664 switch (mode & S_IFMT) { 665 case S_IFLNK: 666 return LANDLOCK_ACCESS_FS_MAKE_SYM; 667 case 0: 668 /* A zero mode translates to S_IFREG. */ 669 case S_IFREG: 670 return LANDLOCK_ACCESS_FS_MAKE_REG; 671 case S_IFDIR: 672 return LANDLOCK_ACCESS_FS_MAKE_DIR; 673 case S_IFCHR: 674 return LANDLOCK_ACCESS_FS_MAKE_CHAR; 675 case S_IFBLK: 676 return LANDLOCK_ACCESS_FS_MAKE_BLOCK; 677 case S_IFIFO: 678 return LANDLOCK_ACCESS_FS_MAKE_FIFO; 679 case S_IFSOCK: 680 return LANDLOCK_ACCESS_FS_MAKE_SOCK; 681 default: 682 WARN_ON_ONCE(1); 683 return 0; 684 } 685 } 686 687 static inline access_mask_t maybe_remove(const struct dentry *const dentry) 688 { 689 if (d_is_negative(dentry)) 690 return 0; 691 return d_is_dir(dentry) ? LANDLOCK_ACCESS_FS_REMOVE_DIR : 692 LANDLOCK_ACCESS_FS_REMOVE_FILE; 693 } 694 695 /** 696 * collect_domain_accesses - Walk through a file path and collect accesses 697 * 698 * @domain: Domain to check against. 699 * @mnt_root: Last directory to check. 700 * @dir: Directory to start the walk from. 701 * @layer_masks_dom: Where to store the collected accesses. 702 * 703 * This helper is useful to begin a path walk from the @dir directory to a 704 * @mnt_root directory used as a mount point. This mount point is the common 705 * ancestor between the source and the destination of a renamed and linked 706 * file. While walking from @dir to @mnt_root, we record all the domain's 707 * allowed accesses in @layer_masks_dom. 708 * 709 * This is similar to is_access_to_paths_allowed() but much simpler because it 710 * only handles walking on the same mount point and only checks one set of 711 * accesses. 712 * 713 * Returns: 714 * - true if all the domain access rights are allowed for @dir; 715 * - false if the walk reached @mnt_root. 716 */ 717 static bool collect_domain_accesses( 718 const struct landlock_ruleset *const domain, 719 const struct dentry *const mnt_root, struct dentry *dir, 720 layer_mask_t (*const layer_masks_dom)[LANDLOCK_NUM_ACCESS_FS]) 721 { 722 unsigned long access_dom; 723 bool ret = false; 724 725 if (WARN_ON_ONCE(!domain || !mnt_root || !dir || !layer_masks_dom)) 726 return true; 727 if (is_nouser_or_private(dir)) 728 return true; 729 730 access_dom = init_layer_masks(domain, LANDLOCK_MASK_ACCESS_FS, 731 layer_masks_dom); 732 733 dget(dir); 734 while (true) { 735 struct dentry *parent_dentry; 736 737 /* Gets all layers allowing all domain accesses. */ 738 if (unmask_layers(find_rule(domain, dir), access_dom, 739 layer_masks_dom)) { 740 /* 741 * Stops when all handled accesses are allowed by at 742 * least one rule in each layer. 743 */ 744 ret = true; 745 break; 746 } 747 748 /* We should not reach a root other than @mnt_root. */ 749 if (dir == mnt_root || WARN_ON_ONCE(IS_ROOT(dir))) 750 break; 751 752 parent_dentry = dget_parent(dir); 753 dput(dir); 754 dir = parent_dentry; 755 } 756 dput(dir); 757 return ret; 758 } 759 760 /** 761 * current_check_refer_path - Check if a rename or link action is allowed 762 * 763 * @old_dentry: File or directory requested to be moved or linked. 764 * @new_dir: Destination parent directory. 765 * @new_dentry: Destination file or directory. 766 * @removable: Sets to true if it is a rename operation. 767 * @exchange: Sets to true if it is a rename operation with RENAME_EXCHANGE. 768 * 769 * Because of its unprivileged constraints, Landlock relies on file hierarchies 770 * (and not only inodes) to tie access rights to files. Being able to link or 771 * rename a file hierarchy brings some challenges. Indeed, moving or linking a 772 * file (i.e. creating a new reference to an inode) can have an impact on the 773 * actions allowed for a set of files if it would change its parent directory 774 * (i.e. reparenting). 775 * 776 * To avoid trivial access right bypasses, Landlock first checks if the file or 777 * directory requested to be moved would gain new access rights inherited from 778 * its new hierarchy. Before returning any error, Landlock then checks that 779 * the parent source hierarchy and the destination hierarchy would allow the 780 * link or rename action. If it is not the case, an error with EACCES is 781 * returned to inform user space that there is no way to remove or create the 782 * requested source file type. If it should be allowed but the new inherited 783 * access rights would be greater than the source access rights, then the 784 * kernel returns an error with EXDEV. Prioritizing EACCES over EXDEV enables 785 * user space to abort the whole operation if there is no way to do it, or to 786 * manually copy the source to the destination if this remains allowed, e.g. 787 * because file creation is allowed on the destination directory but not direct 788 * linking. 789 * 790 * To achieve this goal, the kernel needs to compare two file hierarchies: the 791 * one identifying the source file or directory (including itself), and the 792 * destination one. This can be seen as a multilayer partial ordering problem. 793 * The kernel walks through these paths and collects in a matrix the access 794 * rights that are denied per layer. These matrices are then compared to see 795 * if the destination one has more (or the same) restrictions as the source 796 * one. If this is the case, the requested action will not return EXDEV, which 797 * doesn't mean the action is allowed. The parent hierarchy of the source 798 * (i.e. parent directory), and the destination hierarchy must also be checked 799 * to verify that they explicitly allow such action (i.e. referencing, 800 * creation and potentially removal rights). The kernel implementation is then 801 * required to rely on potentially four matrices of access rights: one for the 802 * source file or directory (i.e. the child), a potentially other one for the 803 * other source/destination (in case of RENAME_EXCHANGE), one for the source 804 * parent hierarchy and a last one for the destination hierarchy. These 805 * ephemeral matrices take some space on the stack, which limits the number of 806 * layers to a deemed reasonable number: 16. 807 * 808 * Returns: 809 * - 0 if access is allowed; 810 * - -EXDEV if @old_dentry would inherit new access rights from @new_dir; 811 * - -EACCES if file removal or creation is denied. 812 */ 813 static int current_check_refer_path(struct dentry *const old_dentry, 814 const struct path *const new_dir, 815 struct dentry *const new_dentry, 816 const bool removable, const bool exchange) 817 { 818 const struct landlock_ruleset *const dom = 819 landlock_get_current_domain(); 820 bool allow_parent1, allow_parent2; 821 access_mask_t access_request_parent1, access_request_parent2; 822 struct path mnt_dir; 823 struct dentry *old_parent; 824 layer_mask_t layer_masks_parent1[LANDLOCK_NUM_ACCESS_FS] = {}, 825 layer_masks_parent2[LANDLOCK_NUM_ACCESS_FS] = {}; 826 827 if (!dom) 828 return 0; 829 if (WARN_ON_ONCE(dom->num_layers < 1)) 830 return -EACCES; 831 if (unlikely(d_is_negative(old_dentry))) 832 return -ENOENT; 833 if (exchange) { 834 if (unlikely(d_is_negative(new_dentry))) 835 return -ENOENT; 836 access_request_parent1 = 837 get_mode_access(d_backing_inode(new_dentry)->i_mode); 838 } else { 839 access_request_parent1 = 0; 840 } 841 access_request_parent2 = 842 get_mode_access(d_backing_inode(old_dentry)->i_mode); 843 if (removable) { 844 access_request_parent1 |= maybe_remove(old_dentry); 845 access_request_parent2 |= maybe_remove(new_dentry); 846 } 847 848 /* The mount points are the same for old and new paths, cf. EXDEV. */ 849 if (old_dentry->d_parent == new_dir->dentry) { 850 /* 851 * The LANDLOCK_ACCESS_FS_REFER access right is not required 852 * for same-directory referer (i.e. no reparenting). 853 */ 854 access_request_parent1 = init_layer_masks( 855 dom, access_request_parent1 | access_request_parent2, 856 &layer_masks_parent1); 857 if (is_access_to_paths_allowed( 858 dom, new_dir, access_request_parent1, 859 &layer_masks_parent1, NULL, 0, NULL, NULL)) 860 return 0; 861 return -EACCES; 862 } 863 864 access_request_parent1 |= LANDLOCK_ACCESS_FS_REFER; 865 access_request_parent2 |= LANDLOCK_ACCESS_FS_REFER; 866 867 /* Saves the common mount point. */ 868 mnt_dir.mnt = new_dir->mnt; 869 mnt_dir.dentry = new_dir->mnt->mnt_root; 870 871 /* 872 * old_dentry may be the root of the common mount point and 873 * !IS_ROOT(old_dentry) at the same time (e.g. with open_tree() and 874 * OPEN_TREE_CLONE). We do not need to call dget(old_parent) because 875 * we keep a reference to old_dentry. 876 */ 877 old_parent = (old_dentry == mnt_dir.dentry) ? old_dentry : 878 old_dentry->d_parent; 879 880 /* new_dir->dentry is equal to new_dentry->d_parent */ 881 allow_parent1 = collect_domain_accesses(dom, mnt_dir.dentry, old_parent, 882 &layer_masks_parent1); 883 allow_parent2 = collect_domain_accesses( 884 dom, mnt_dir.dentry, new_dir->dentry, &layer_masks_parent2); 885 886 if (allow_parent1 && allow_parent2) 887 return 0; 888 889 /* 890 * To be able to compare source and destination domain access rights, 891 * take into account the @old_dentry access rights aggregated with its 892 * parent access rights. This will be useful to compare with the 893 * destination parent access rights. 894 */ 895 if (is_access_to_paths_allowed( 896 dom, &mnt_dir, access_request_parent1, &layer_masks_parent1, 897 old_dentry, access_request_parent2, &layer_masks_parent2, 898 exchange ? new_dentry : NULL)) 899 return 0; 900 901 /* 902 * This prioritizes EACCES over EXDEV for all actions, including 903 * renames with RENAME_EXCHANGE. 904 */ 905 if (likely(is_eacces(&layer_masks_parent1, access_request_parent1) || 906 is_eacces(&layer_masks_parent2, access_request_parent2))) 907 return -EACCES; 908 909 /* 910 * Gracefully forbids reparenting if the destination directory 911 * hierarchy is not a superset of restrictions of the source directory 912 * hierarchy, or if LANDLOCK_ACCESS_FS_REFER is not allowed by the 913 * source or the destination. 914 */ 915 return -EXDEV; 916 } 917 918 /* Inode hooks */ 919 920 static void hook_inode_free_security(struct inode *const inode) 921 { 922 /* 923 * All inodes must already have been untied from their object by 924 * release_inode() or hook_sb_delete(). 925 */ 926 WARN_ON_ONCE(landlock_inode(inode)->object); 927 } 928 929 /* Super-block hooks */ 930 931 /* 932 * Release the inodes used in a security policy. 933 * 934 * Cf. fsnotify_unmount_inodes() and invalidate_inodes() 935 */ 936 static void hook_sb_delete(struct super_block *const sb) 937 { 938 struct inode *inode, *prev_inode = NULL; 939 940 if (!landlock_initialized) 941 return; 942 943 spin_lock(&sb->s_inode_list_lock); 944 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 945 struct landlock_object *object; 946 947 /* Only handles referenced inodes. */ 948 if (!atomic_read(&inode->i_count)) 949 continue; 950 951 /* 952 * Protects against concurrent modification of inode (e.g. 953 * from get_inode_object()). 954 */ 955 spin_lock(&inode->i_lock); 956 /* 957 * Checks I_FREEING and I_WILL_FREE to protect against a race 958 * condition when release_inode() just called iput(), which 959 * could lead to a NULL dereference of inode->security or a 960 * second call to iput() for the same Landlock object. Also 961 * checks I_NEW because such inode cannot be tied to an object. 962 */ 963 if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) { 964 spin_unlock(&inode->i_lock); 965 continue; 966 } 967 968 rcu_read_lock(); 969 object = rcu_dereference(landlock_inode(inode)->object); 970 if (!object) { 971 rcu_read_unlock(); 972 spin_unlock(&inode->i_lock); 973 continue; 974 } 975 /* Keeps a reference to this inode until the next loop walk. */ 976 __iget(inode); 977 spin_unlock(&inode->i_lock); 978 979 /* 980 * If there is no concurrent release_inode() ongoing, then we 981 * are in charge of calling iput() on this inode, otherwise we 982 * will just wait for it to finish. 983 */ 984 spin_lock(&object->lock); 985 if (object->underobj == inode) { 986 object->underobj = NULL; 987 spin_unlock(&object->lock); 988 rcu_read_unlock(); 989 990 /* 991 * Because object->underobj was not NULL, 992 * release_inode() and get_inode_object() guarantee 993 * that it is safe to reset 994 * landlock_inode(inode)->object while it is not NULL. 995 * It is therefore not necessary to lock inode->i_lock. 996 */ 997 rcu_assign_pointer(landlock_inode(inode)->object, NULL); 998 /* 999 * At this point, we own the ihold() reference that was 1000 * originally set up by get_inode_object() and the 1001 * __iget() reference that we just set in this loop 1002 * walk. Therefore the following call to iput() will 1003 * not sleep nor drop the inode because there is now at 1004 * least two references to it. 1005 */ 1006 iput(inode); 1007 } else { 1008 spin_unlock(&object->lock); 1009 rcu_read_unlock(); 1010 } 1011 1012 if (prev_inode) { 1013 /* 1014 * At this point, we still own the __iget() reference 1015 * that we just set in this loop walk. Therefore we 1016 * can drop the list lock and know that the inode won't 1017 * disappear from under us until the next loop walk. 1018 */ 1019 spin_unlock(&sb->s_inode_list_lock); 1020 /* 1021 * We can now actually put the inode reference from the 1022 * previous loop walk, which is not needed anymore. 1023 */ 1024 iput(prev_inode); 1025 cond_resched(); 1026 spin_lock(&sb->s_inode_list_lock); 1027 } 1028 prev_inode = inode; 1029 } 1030 spin_unlock(&sb->s_inode_list_lock); 1031 1032 /* Puts the inode reference from the last loop walk, if any. */ 1033 if (prev_inode) 1034 iput(prev_inode); 1035 /* Waits for pending iput() in release_inode(). */ 1036 wait_var_event(&landlock_superblock(sb)->inode_refs, 1037 !atomic_long_read(&landlock_superblock(sb)->inode_refs)); 1038 } 1039 1040 /* 1041 * Because a Landlock security policy is defined according to the filesystem 1042 * topology (i.e. the mount namespace), changing it may grant access to files 1043 * not previously allowed. 1044 * 1045 * To make it simple, deny any filesystem topology modification by landlocked 1046 * processes. Non-landlocked processes may still change the namespace of a 1047 * landlocked process, but this kind of threat must be handled by a system-wide 1048 * access-control security policy. 1049 * 1050 * This could be lifted in the future if Landlock can safely handle mount 1051 * namespace updates requested by a landlocked process. Indeed, we could 1052 * update the current domain (which is currently read-only) by taking into 1053 * account the accesses of the source and the destination of a new mount point. 1054 * However, it would also require to make all the child domains dynamically 1055 * inherit these new constraints. Anyway, for backward compatibility reasons, 1056 * a dedicated user space option would be required (e.g. as a ruleset flag). 1057 */ 1058 static int hook_sb_mount(const char *const dev_name, 1059 const struct path *const path, const char *const type, 1060 const unsigned long flags, void *const data) 1061 { 1062 if (!landlock_get_current_domain()) 1063 return 0; 1064 return -EPERM; 1065 } 1066 1067 static int hook_move_mount(const struct path *const from_path, 1068 const struct path *const to_path) 1069 { 1070 if (!landlock_get_current_domain()) 1071 return 0; 1072 return -EPERM; 1073 } 1074 1075 /* 1076 * Removing a mount point may reveal a previously hidden file hierarchy, which 1077 * may then grant access to files, which may have previously been forbidden. 1078 */ 1079 static int hook_sb_umount(struct vfsmount *const mnt, const int flags) 1080 { 1081 if (!landlock_get_current_domain()) 1082 return 0; 1083 return -EPERM; 1084 } 1085 1086 static int hook_sb_remount(struct super_block *const sb, void *const mnt_opts) 1087 { 1088 if (!landlock_get_current_domain()) 1089 return 0; 1090 return -EPERM; 1091 } 1092 1093 /* 1094 * pivot_root(2), like mount(2), changes the current mount namespace. It must 1095 * then be forbidden for a landlocked process. 1096 * 1097 * However, chroot(2) may be allowed because it only changes the relative root 1098 * directory of the current process. Moreover, it can be used to restrict the 1099 * view of the filesystem. 1100 */ 1101 static int hook_sb_pivotroot(const struct path *const old_path, 1102 const struct path *const new_path) 1103 { 1104 if (!landlock_get_current_domain()) 1105 return 0; 1106 return -EPERM; 1107 } 1108 1109 /* Path hooks */ 1110 1111 static int hook_path_link(struct dentry *const old_dentry, 1112 const struct path *const new_dir, 1113 struct dentry *const new_dentry) 1114 { 1115 return current_check_refer_path(old_dentry, new_dir, new_dentry, false, 1116 false); 1117 } 1118 1119 static int hook_path_rename(const struct path *const old_dir, 1120 struct dentry *const old_dentry, 1121 const struct path *const new_dir, 1122 struct dentry *const new_dentry, 1123 const unsigned int flags) 1124 { 1125 /* old_dir refers to old_dentry->d_parent and new_dir->mnt */ 1126 return current_check_refer_path(old_dentry, new_dir, new_dentry, true, 1127 !!(flags & RENAME_EXCHANGE)); 1128 } 1129 1130 static int hook_path_mkdir(const struct path *const dir, 1131 struct dentry *const dentry, const umode_t mode) 1132 { 1133 return current_check_access_path(dir, LANDLOCK_ACCESS_FS_MAKE_DIR); 1134 } 1135 1136 static int hook_path_mknod(const struct path *const dir, 1137 struct dentry *const dentry, const umode_t mode, 1138 const unsigned int dev) 1139 { 1140 const struct landlock_ruleset *const dom = 1141 landlock_get_current_domain(); 1142 1143 if (!dom) 1144 return 0; 1145 return check_access_path(dom, dir, get_mode_access(mode)); 1146 } 1147 1148 static int hook_path_symlink(const struct path *const dir, 1149 struct dentry *const dentry, 1150 const char *const old_name) 1151 { 1152 return current_check_access_path(dir, LANDLOCK_ACCESS_FS_MAKE_SYM); 1153 } 1154 1155 static int hook_path_unlink(const struct path *const dir, 1156 struct dentry *const dentry) 1157 { 1158 return current_check_access_path(dir, LANDLOCK_ACCESS_FS_REMOVE_FILE); 1159 } 1160 1161 static int hook_path_rmdir(const struct path *const dir, 1162 struct dentry *const dentry) 1163 { 1164 return current_check_access_path(dir, LANDLOCK_ACCESS_FS_REMOVE_DIR); 1165 } 1166 1167 static int hook_path_truncate(const struct path *const path) 1168 { 1169 return current_check_access_path(path, LANDLOCK_ACCESS_FS_TRUNCATE); 1170 } 1171 1172 /* File hooks */ 1173 1174 /** 1175 * get_required_file_open_access - Get access needed to open a file 1176 * 1177 * @file: File being opened. 1178 * 1179 * Returns the access rights that are required for opening the given file, 1180 * depending on the file type and open mode. 1181 */ 1182 static inline access_mask_t 1183 get_required_file_open_access(const struct file *const file) 1184 { 1185 access_mask_t access = 0; 1186 1187 if (file->f_mode & FMODE_READ) { 1188 /* A directory can only be opened in read mode. */ 1189 if (S_ISDIR(file_inode(file)->i_mode)) 1190 return LANDLOCK_ACCESS_FS_READ_DIR; 1191 access = LANDLOCK_ACCESS_FS_READ_FILE; 1192 } 1193 if (file->f_mode & FMODE_WRITE) 1194 access |= LANDLOCK_ACCESS_FS_WRITE_FILE; 1195 /* __FMODE_EXEC is indeed part of f_flags, not f_mode. */ 1196 if (file->f_flags & __FMODE_EXEC) 1197 access |= LANDLOCK_ACCESS_FS_EXECUTE; 1198 return access; 1199 } 1200 1201 static int hook_file_alloc_security(struct file *const file) 1202 { 1203 /* 1204 * Grants all access rights, even if most of them are not checked later 1205 * on. It is more consistent. 1206 * 1207 * Notably, file descriptors for regular files can also be acquired 1208 * without going through the file_open hook, for example when using 1209 * memfd_create(2). 1210 */ 1211 landlock_file(file)->allowed_access = LANDLOCK_MASK_ACCESS_FS; 1212 return 0; 1213 } 1214 1215 static int hook_file_open(struct file *const file) 1216 { 1217 layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {}; 1218 access_mask_t open_access_request, full_access_request, allowed_access; 1219 const access_mask_t optional_access = LANDLOCK_ACCESS_FS_TRUNCATE; 1220 const struct landlock_ruleset *const dom = 1221 landlock_get_current_domain(); 1222 1223 if (!dom) 1224 return 0; 1225 1226 /* 1227 * Because a file may be opened with O_PATH, get_required_file_open_access() 1228 * may return 0. This case will be handled with a future Landlock 1229 * evolution. 1230 */ 1231 open_access_request = get_required_file_open_access(file); 1232 1233 /* 1234 * We look up more access than what we immediately need for open(), so 1235 * that we can later authorize operations on opened files. 1236 */ 1237 full_access_request = open_access_request | optional_access; 1238 1239 if (is_access_to_paths_allowed( 1240 dom, &file->f_path, 1241 init_layer_masks(dom, full_access_request, &layer_masks), 1242 &layer_masks, NULL, 0, NULL, NULL)) { 1243 allowed_access = full_access_request; 1244 } else { 1245 unsigned long access_bit; 1246 const unsigned long access_req = full_access_request; 1247 1248 /* 1249 * Calculate the actual allowed access rights from layer_masks. 1250 * Add each access right to allowed_access which has not been 1251 * vetoed by any layer. 1252 */ 1253 allowed_access = 0; 1254 for_each_set_bit(access_bit, &access_req, 1255 ARRAY_SIZE(layer_masks)) { 1256 if (!layer_masks[access_bit]) 1257 allowed_access |= BIT_ULL(access_bit); 1258 } 1259 } 1260 1261 /* 1262 * For operations on already opened files (i.e. ftruncate()), it is the 1263 * access rights at the time of open() which decide whether the 1264 * operation is permitted. Therefore, we record the relevant subset of 1265 * file access rights in the opened struct file. 1266 */ 1267 landlock_file(file)->allowed_access = allowed_access; 1268 1269 if ((open_access_request & allowed_access) == open_access_request) 1270 return 0; 1271 1272 return -EACCES; 1273 } 1274 1275 static int hook_file_truncate(struct file *const file) 1276 { 1277 /* 1278 * Allows truncation if the truncate right was available at the time of 1279 * opening the file, to get a consistent access check as for read, write 1280 * and execute operations. 1281 * 1282 * Note: For checks done based on the file's Landlock allowed access, we 1283 * enforce them independently of whether the current thread is in a 1284 * Landlock domain, so that open files passed between independent 1285 * processes retain their behaviour. 1286 */ 1287 if (landlock_file(file)->allowed_access & LANDLOCK_ACCESS_FS_TRUNCATE) 1288 return 0; 1289 return -EACCES; 1290 } 1291 1292 static struct security_hook_list landlock_hooks[] __ro_after_init = { 1293 LSM_HOOK_INIT(inode_free_security, hook_inode_free_security), 1294 1295 LSM_HOOK_INIT(sb_delete, hook_sb_delete), 1296 LSM_HOOK_INIT(sb_mount, hook_sb_mount), 1297 LSM_HOOK_INIT(move_mount, hook_move_mount), 1298 LSM_HOOK_INIT(sb_umount, hook_sb_umount), 1299 LSM_HOOK_INIT(sb_remount, hook_sb_remount), 1300 LSM_HOOK_INIT(sb_pivotroot, hook_sb_pivotroot), 1301 1302 LSM_HOOK_INIT(path_link, hook_path_link), 1303 LSM_HOOK_INIT(path_rename, hook_path_rename), 1304 LSM_HOOK_INIT(path_mkdir, hook_path_mkdir), 1305 LSM_HOOK_INIT(path_mknod, hook_path_mknod), 1306 LSM_HOOK_INIT(path_symlink, hook_path_symlink), 1307 LSM_HOOK_INIT(path_unlink, hook_path_unlink), 1308 LSM_HOOK_INIT(path_rmdir, hook_path_rmdir), 1309 LSM_HOOK_INIT(path_truncate, hook_path_truncate), 1310 1311 LSM_HOOK_INIT(file_alloc_security, hook_file_alloc_security), 1312 LSM_HOOK_INIT(file_open, hook_file_open), 1313 LSM_HOOK_INIT(file_truncate, hook_file_truncate), 1314 }; 1315 1316 __init void landlock_add_fs_hooks(void) 1317 { 1318 security_add_hooks(landlock_hooks, ARRAY_SIZE(landlock_hooks), 1319 LANDLOCK_NAME); 1320 } 1321