xref: /openbmc/linux/security/landlock/fs.c (revision 54f514a0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Landlock LSM - Filesystem management and hooks
4  *
5  * Copyright © 2016-2020 Mickaël Salaün <mic@digikod.net>
6  * Copyright © 2018-2020 ANSSI
7  * Copyright © 2021-2022 Microsoft Corporation
8  */
9 
10 #include <linux/atomic.h>
11 #include <linux/bitops.h>
12 #include <linux/bits.h>
13 #include <linux/compiler_types.h>
14 #include <linux/dcache.h>
15 #include <linux/err.h>
16 #include <linux/fs.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/limits.h>
20 #include <linux/list.h>
21 #include <linux/lsm_hooks.h>
22 #include <linux/mount.h>
23 #include <linux/namei.h>
24 #include <linux/path.h>
25 #include <linux/rcupdate.h>
26 #include <linux/spinlock.h>
27 #include <linux/stat.h>
28 #include <linux/types.h>
29 #include <linux/wait_bit.h>
30 #include <linux/workqueue.h>
31 #include <uapi/linux/landlock.h>
32 
33 #include "common.h"
34 #include "cred.h"
35 #include "fs.h"
36 #include "limits.h"
37 #include "object.h"
38 #include "ruleset.h"
39 #include "setup.h"
40 
41 /* Underlying object management */
42 
43 static void release_inode(struct landlock_object *const object)
44 	__releases(object->lock)
45 {
46 	struct inode *const inode = object->underobj;
47 	struct super_block *sb;
48 
49 	if (!inode) {
50 		spin_unlock(&object->lock);
51 		return;
52 	}
53 
54 	/*
55 	 * Protects against concurrent use by hook_sb_delete() of the reference
56 	 * to the underlying inode.
57 	 */
58 	object->underobj = NULL;
59 	/*
60 	 * Makes sure that if the filesystem is concurrently unmounted,
61 	 * hook_sb_delete() will wait for us to finish iput().
62 	 */
63 	sb = inode->i_sb;
64 	atomic_long_inc(&landlock_superblock(sb)->inode_refs);
65 	spin_unlock(&object->lock);
66 	/*
67 	 * Because object->underobj was not NULL, hook_sb_delete() and
68 	 * get_inode_object() guarantee that it is safe to reset
69 	 * landlock_inode(inode)->object while it is not NULL.  It is therefore
70 	 * not necessary to lock inode->i_lock.
71 	 */
72 	rcu_assign_pointer(landlock_inode(inode)->object, NULL);
73 	/*
74 	 * Now, new rules can safely be tied to @inode with get_inode_object().
75 	 */
76 
77 	iput(inode);
78 	if (atomic_long_dec_and_test(&landlock_superblock(sb)->inode_refs))
79 		wake_up_var(&landlock_superblock(sb)->inode_refs);
80 }
81 
82 static const struct landlock_object_underops landlock_fs_underops = {
83 	.release = release_inode
84 };
85 
86 /* Ruleset management */
87 
88 static struct landlock_object *get_inode_object(struct inode *const inode)
89 {
90 	struct landlock_object *object, *new_object;
91 	struct landlock_inode_security *inode_sec = landlock_inode(inode);
92 
93 	rcu_read_lock();
94 retry:
95 	object = rcu_dereference(inode_sec->object);
96 	if (object) {
97 		if (likely(refcount_inc_not_zero(&object->usage))) {
98 			rcu_read_unlock();
99 			return object;
100 		}
101 		/*
102 		 * We are racing with release_inode(), the object is going
103 		 * away.  Wait for release_inode(), then retry.
104 		 */
105 		spin_lock(&object->lock);
106 		spin_unlock(&object->lock);
107 		goto retry;
108 	}
109 	rcu_read_unlock();
110 
111 	/*
112 	 * If there is no object tied to @inode, then create a new one (without
113 	 * holding any locks).
114 	 */
115 	new_object = landlock_create_object(&landlock_fs_underops, inode);
116 	if (IS_ERR(new_object))
117 		return new_object;
118 
119 	/*
120 	 * Protects against concurrent calls to get_inode_object() or
121 	 * hook_sb_delete().
122 	 */
123 	spin_lock(&inode->i_lock);
124 	if (unlikely(rcu_access_pointer(inode_sec->object))) {
125 		/* Someone else just created the object, bail out and retry. */
126 		spin_unlock(&inode->i_lock);
127 		kfree(new_object);
128 
129 		rcu_read_lock();
130 		goto retry;
131 	}
132 
133 	/*
134 	 * @inode will be released by hook_sb_delete() on its superblock
135 	 * shutdown, or by release_inode() when no more ruleset references the
136 	 * related object.
137 	 */
138 	ihold(inode);
139 	rcu_assign_pointer(inode_sec->object, new_object);
140 	spin_unlock(&inode->i_lock);
141 	return new_object;
142 }
143 
144 /* All access rights that can be tied to files. */
145 /* clang-format off */
146 #define ACCESS_FILE ( \
147 	LANDLOCK_ACCESS_FS_EXECUTE | \
148 	LANDLOCK_ACCESS_FS_WRITE_FILE | \
149 	LANDLOCK_ACCESS_FS_READ_FILE | \
150 	LANDLOCK_ACCESS_FS_TRUNCATE)
151 /* clang-format on */
152 
153 /*
154  * All access rights that are denied by default whether they are handled or not
155  * by a ruleset/layer.  This must be ORed with all ruleset->fs_access_masks[]
156  * entries when we need to get the absolute handled access masks.
157  */
158 /* clang-format off */
159 #define ACCESS_INITIALLY_DENIED ( \
160 	LANDLOCK_ACCESS_FS_REFER)
161 /* clang-format on */
162 
163 /*
164  * @path: Should have been checked by get_path_from_fd().
165  */
166 int landlock_append_fs_rule(struct landlock_ruleset *const ruleset,
167 			    const struct path *const path,
168 			    access_mask_t access_rights)
169 {
170 	int err;
171 	struct landlock_object *object;
172 
173 	/* Files only get access rights that make sense. */
174 	if (!d_is_dir(path->dentry) &&
175 	    (access_rights | ACCESS_FILE) != ACCESS_FILE)
176 		return -EINVAL;
177 	if (WARN_ON_ONCE(ruleset->num_layers != 1))
178 		return -EINVAL;
179 
180 	/* Transforms relative access rights to absolute ones. */
181 	access_rights |=
182 		LANDLOCK_MASK_ACCESS_FS &
183 		~(ruleset->fs_access_masks[0] | ACCESS_INITIALLY_DENIED);
184 	object = get_inode_object(d_backing_inode(path->dentry));
185 	if (IS_ERR(object))
186 		return PTR_ERR(object);
187 	mutex_lock(&ruleset->lock);
188 	err = landlock_insert_rule(ruleset, object, access_rights);
189 	mutex_unlock(&ruleset->lock);
190 	/*
191 	 * No need to check for an error because landlock_insert_rule()
192 	 * increments the refcount for the new object if needed.
193 	 */
194 	landlock_put_object(object);
195 	return err;
196 }
197 
198 /* Access-control management */
199 
200 /*
201  * The lifetime of the returned rule is tied to @domain.
202  *
203  * Returns NULL if no rule is found or if @dentry is negative.
204  */
205 static inline const struct landlock_rule *
206 find_rule(const struct landlock_ruleset *const domain,
207 	  const struct dentry *const dentry)
208 {
209 	const struct landlock_rule *rule;
210 	const struct inode *inode;
211 
212 	/* Ignores nonexistent leafs. */
213 	if (d_is_negative(dentry))
214 		return NULL;
215 
216 	inode = d_backing_inode(dentry);
217 	rcu_read_lock();
218 	rule = landlock_find_rule(
219 		domain, rcu_dereference(landlock_inode(inode)->object));
220 	rcu_read_unlock();
221 	return rule;
222 }
223 
224 /*
225  * @layer_masks is read and may be updated according to the access request and
226  * the matching rule.
227  *
228  * Returns true if the request is allowed (i.e. relevant layer masks for the
229  * request are empty).
230  */
231 static inline bool
232 unmask_layers(const struct landlock_rule *const rule,
233 	      const access_mask_t access_request,
234 	      layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS])
235 {
236 	size_t layer_level;
237 
238 	if (!access_request || !layer_masks)
239 		return true;
240 	if (!rule)
241 		return false;
242 
243 	/*
244 	 * An access is granted if, for each policy layer, at least one rule
245 	 * encountered on the pathwalk grants the requested access,
246 	 * regardless of its position in the layer stack.  We must then check
247 	 * the remaining layers for each inode, from the first added layer to
248 	 * the last one.  When there is multiple requested accesses, for each
249 	 * policy layer, the full set of requested accesses may not be granted
250 	 * by only one rule, but by the union (binary OR) of multiple rules.
251 	 * E.g. /a/b <execute> + /a <read> => /a/b <execute + read>
252 	 */
253 	for (layer_level = 0; layer_level < rule->num_layers; layer_level++) {
254 		const struct landlock_layer *const layer =
255 			&rule->layers[layer_level];
256 		const layer_mask_t layer_bit = BIT_ULL(layer->level - 1);
257 		const unsigned long access_req = access_request;
258 		unsigned long access_bit;
259 		bool is_empty;
260 
261 		/*
262 		 * Records in @layer_masks which layer grants access to each
263 		 * requested access.
264 		 */
265 		is_empty = true;
266 		for_each_set_bit(access_bit, &access_req,
267 				 ARRAY_SIZE(*layer_masks)) {
268 			if (layer->access & BIT_ULL(access_bit))
269 				(*layer_masks)[access_bit] &= ~layer_bit;
270 			is_empty = is_empty && !(*layer_masks)[access_bit];
271 		}
272 		if (is_empty)
273 			return true;
274 	}
275 	return false;
276 }
277 
278 /*
279  * Allows access to pseudo filesystems that will never be mountable (e.g.
280  * sockfs, pipefs), but can still be reachable through
281  * /proc/<pid>/fd/<file-descriptor>
282  */
283 static inline bool is_nouser_or_private(const struct dentry *dentry)
284 {
285 	return (dentry->d_sb->s_flags & SB_NOUSER) ||
286 	       (d_is_positive(dentry) &&
287 		unlikely(IS_PRIVATE(d_backing_inode(dentry))));
288 }
289 
290 static inline access_mask_t
291 get_handled_accesses(const struct landlock_ruleset *const domain)
292 {
293 	access_mask_t access_dom = ACCESS_INITIALLY_DENIED;
294 	size_t layer_level;
295 
296 	for (layer_level = 0; layer_level < domain->num_layers; layer_level++)
297 		access_dom |= domain->fs_access_masks[layer_level];
298 	return access_dom & LANDLOCK_MASK_ACCESS_FS;
299 }
300 
301 /**
302  * init_layer_masks - Initialize layer masks from an access request
303  *
304  * Populates @layer_masks such that for each access right in @access_request,
305  * the bits for all the layers are set where this access right is handled.
306  *
307  * @domain: The domain that defines the current restrictions.
308  * @access_request: The requested access rights to check.
309  * @layer_masks: The layer masks to populate.
310  *
311  * Returns: An access mask where each access right bit is set which is handled
312  * in any of the active layers in @domain.
313  */
314 static inline access_mask_t
315 init_layer_masks(const struct landlock_ruleset *const domain,
316 		 const access_mask_t access_request,
317 		 layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS])
318 {
319 	access_mask_t handled_accesses = 0;
320 	size_t layer_level;
321 
322 	memset(layer_masks, 0, sizeof(*layer_masks));
323 	/* An empty access request can happen because of O_WRONLY | O_RDWR. */
324 	if (!access_request)
325 		return 0;
326 
327 	/* Saves all handled accesses per layer. */
328 	for (layer_level = 0; layer_level < domain->num_layers; layer_level++) {
329 		const unsigned long access_req = access_request;
330 		unsigned long access_bit;
331 
332 		for_each_set_bit(access_bit, &access_req,
333 				 ARRAY_SIZE(*layer_masks)) {
334 			/*
335 			 * Artificially handles all initially denied by default
336 			 * access rights.
337 			 */
338 			if (BIT_ULL(access_bit) &
339 			    (domain->fs_access_masks[layer_level] |
340 			     ACCESS_INITIALLY_DENIED)) {
341 				(*layer_masks)[access_bit] |=
342 					BIT_ULL(layer_level);
343 				handled_accesses |= BIT_ULL(access_bit);
344 			}
345 		}
346 	}
347 	return handled_accesses;
348 }
349 
350 /*
351  * Check that a destination file hierarchy has more restrictions than a source
352  * file hierarchy.  This is only used for link and rename actions.
353  *
354  * @layer_masks_child2: Optional child masks.
355  */
356 static inline bool no_more_access(
357 	const layer_mask_t (*const layer_masks_parent1)[LANDLOCK_NUM_ACCESS_FS],
358 	const layer_mask_t (*const layer_masks_child1)[LANDLOCK_NUM_ACCESS_FS],
359 	const bool child1_is_directory,
360 	const layer_mask_t (*const layer_masks_parent2)[LANDLOCK_NUM_ACCESS_FS],
361 	const layer_mask_t (*const layer_masks_child2)[LANDLOCK_NUM_ACCESS_FS],
362 	const bool child2_is_directory)
363 {
364 	unsigned long access_bit;
365 
366 	for (access_bit = 0; access_bit < ARRAY_SIZE(*layer_masks_parent2);
367 	     access_bit++) {
368 		/* Ignores accesses that only make sense for directories. */
369 		const bool is_file_access =
370 			!!(BIT_ULL(access_bit) & ACCESS_FILE);
371 
372 		if (child1_is_directory || is_file_access) {
373 			/*
374 			 * Checks if the destination restrictions are a
375 			 * superset of the source ones (i.e. inherited access
376 			 * rights without child exceptions):
377 			 * restrictions(parent2) >= restrictions(child1)
378 			 */
379 			if ((((*layer_masks_parent1)[access_bit] &
380 			      (*layer_masks_child1)[access_bit]) |
381 			     (*layer_masks_parent2)[access_bit]) !=
382 			    (*layer_masks_parent2)[access_bit])
383 				return false;
384 		}
385 
386 		if (!layer_masks_child2)
387 			continue;
388 		if (child2_is_directory || is_file_access) {
389 			/*
390 			 * Checks inverted restrictions for RENAME_EXCHANGE:
391 			 * restrictions(parent1) >= restrictions(child2)
392 			 */
393 			if ((((*layer_masks_parent2)[access_bit] &
394 			      (*layer_masks_child2)[access_bit]) |
395 			     (*layer_masks_parent1)[access_bit]) !=
396 			    (*layer_masks_parent1)[access_bit])
397 				return false;
398 		}
399 	}
400 	return true;
401 }
402 
403 /*
404  * Removes @layer_masks accesses that are not requested.
405  *
406  * Returns true if the request is allowed, false otherwise.
407  */
408 static inline bool
409 scope_to_request(const access_mask_t access_request,
410 		 layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS])
411 {
412 	const unsigned long access_req = access_request;
413 	unsigned long access_bit;
414 
415 	if (WARN_ON_ONCE(!layer_masks))
416 		return true;
417 
418 	for_each_clear_bit(access_bit, &access_req, ARRAY_SIZE(*layer_masks))
419 		(*layer_masks)[access_bit] = 0;
420 	return !memchr_inv(layer_masks, 0, sizeof(*layer_masks));
421 }
422 
423 /*
424  * Returns true if there is at least one access right different than
425  * LANDLOCK_ACCESS_FS_REFER.
426  */
427 static inline bool
428 is_eacces(const layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS],
429 	  const access_mask_t access_request)
430 {
431 	unsigned long access_bit;
432 	/* LANDLOCK_ACCESS_FS_REFER alone must return -EXDEV. */
433 	const unsigned long access_check = access_request &
434 					   ~LANDLOCK_ACCESS_FS_REFER;
435 
436 	if (!layer_masks)
437 		return false;
438 
439 	for_each_set_bit(access_bit, &access_check, ARRAY_SIZE(*layer_masks)) {
440 		if ((*layer_masks)[access_bit])
441 			return true;
442 	}
443 	return false;
444 }
445 
446 /**
447  * is_access_to_paths_allowed - Check accesses for requests with a common path
448  *
449  * @domain: Domain to check against.
450  * @path: File hierarchy to walk through.
451  * @access_request_parent1: Accesses to check, once @layer_masks_parent1 is
452  *     equal to @layer_masks_parent2 (if any).  This is tied to the unique
453  *     requested path for most actions, or the source in case of a refer action
454  *     (i.e. rename or link), or the source and destination in case of
455  *     RENAME_EXCHANGE.
456  * @layer_masks_parent1: Pointer to a matrix of layer masks per access
457  *     masks, identifying the layers that forbid a specific access.  Bits from
458  *     this matrix can be unset according to the @path walk.  An empty matrix
459  *     means that @domain allows all possible Landlock accesses (i.e. not only
460  *     those identified by @access_request_parent1).  This matrix can
461  *     initially refer to domain layer masks and, when the accesses for the
462  *     destination and source are the same, to requested layer masks.
463  * @dentry_child1: Dentry to the initial child of the parent1 path.  This
464  *     pointer must be NULL for non-refer actions (i.e. not link nor rename).
465  * @access_request_parent2: Similar to @access_request_parent1 but for a
466  *     request involving a source and a destination.  This refers to the
467  *     destination, except in case of RENAME_EXCHANGE where it also refers to
468  *     the source.  Must be set to 0 when using a simple path request.
469  * @layer_masks_parent2: Similar to @layer_masks_parent1 but for a refer
470  *     action.  This must be NULL otherwise.
471  * @dentry_child2: Dentry to the initial child of the parent2 path.  This
472  *     pointer is only set for RENAME_EXCHANGE actions and must be NULL
473  *     otherwise.
474  *
475  * This helper first checks that the destination has a superset of restrictions
476  * compared to the source (if any) for a common path.  Because of
477  * RENAME_EXCHANGE actions, source and destinations may be swapped.  It then
478  * checks that the collected accesses and the remaining ones are enough to
479  * allow the request.
480  *
481  * Returns:
482  * - true if the access request is granted;
483  * - false otherwise.
484  */
485 static bool is_access_to_paths_allowed(
486 	const struct landlock_ruleset *const domain,
487 	const struct path *const path,
488 	const access_mask_t access_request_parent1,
489 	layer_mask_t (*const layer_masks_parent1)[LANDLOCK_NUM_ACCESS_FS],
490 	const struct dentry *const dentry_child1,
491 	const access_mask_t access_request_parent2,
492 	layer_mask_t (*const layer_masks_parent2)[LANDLOCK_NUM_ACCESS_FS],
493 	const struct dentry *const dentry_child2)
494 {
495 	bool allowed_parent1 = false, allowed_parent2 = false, is_dom_check,
496 	     child1_is_directory = true, child2_is_directory = true;
497 	struct path walker_path;
498 	access_mask_t access_masked_parent1, access_masked_parent2;
499 	layer_mask_t _layer_masks_child1[LANDLOCK_NUM_ACCESS_FS],
500 		_layer_masks_child2[LANDLOCK_NUM_ACCESS_FS];
501 	layer_mask_t(*layer_masks_child1)[LANDLOCK_NUM_ACCESS_FS] = NULL,
502 	(*layer_masks_child2)[LANDLOCK_NUM_ACCESS_FS] = NULL;
503 
504 	if (!access_request_parent1 && !access_request_parent2)
505 		return true;
506 	if (WARN_ON_ONCE(!domain || !path))
507 		return true;
508 	if (is_nouser_or_private(path->dentry))
509 		return true;
510 	if (WARN_ON_ONCE(domain->num_layers < 1 || !layer_masks_parent1))
511 		return false;
512 
513 	if (unlikely(layer_masks_parent2)) {
514 		if (WARN_ON_ONCE(!dentry_child1))
515 			return false;
516 		/*
517 		 * For a double request, first check for potential privilege
518 		 * escalation by looking at domain handled accesses (which are
519 		 * a superset of the meaningful requested accesses).
520 		 */
521 		access_masked_parent1 = access_masked_parent2 =
522 			get_handled_accesses(domain);
523 		is_dom_check = true;
524 	} else {
525 		if (WARN_ON_ONCE(dentry_child1 || dentry_child2))
526 			return false;
527 		/* For a simple request, only check for requested accesses. */
528 		access_masked_parent1 = access_request_parent1;
529 		access_masked_parent2 = access_request_parent2;
530 		is_dom_check = false;
531 	}
532 
533 	if (unlikely(dentry_child1)) {
534 		unmask_layers(find_rule(domain, dentry_child1),
535 			      init_layer_masks(domain, LANDLOCK_MASK_ACCESS_FS,
536 					       &_layer_masks_child1),
537 			      &_layer_masks_child1);
538 		layer_masks_child1 = &_layer_masks_child1;
539 		child1_is_directory = d_is_dir(dentry_child1);
540 	}
541 	if (unlikely(dentry_child2)) {
542 		unmask_layers(find_rule(domain, dentry_child2),
543 			      init_layer_masks(domain, LANDLOCK_MASK_ACCESS_FS,
544 					       &_layer_masks_child2),
545 			      &_layer_masks_child2);
546 		layer_masks_child2 = &_layer_masks_child2;
547 		child2_is_directory = d_is_dir(dentry_child2);
548 	}
549 
550 	walker_path = *path;
551 	path_get(&walker_path);
552 	/*
553 	 * We need to walk through all the hierarchy to not miss any relevant
554 	 * restriction.
555 	 */
556 	while (true) {
557 		struct dentry *parent_dentry;
558 		const struct landlock_rule *rule;
559 
560 		/*
561 		 * If at least all accesses allowed on the destination are
562 		 * already allowed on the source, respectively if there is at
563 		 * least as much as restrictions on the destination than on the
564 		 * source, then we can safely refer files from the source to
565 		 * the destination without risking a privilege escalation.
566 		 * This also applies in the case of RENAME_EXCHANGE, which
567 		 * implies checks on both direction.  This is crucial for
568 		 * standalone multilayered security policies.  Furthermore,
569 		 * this helps avoid policy writers to shoot themselves in the
570 		 * foot.
571 		 */
572 		if (unlikely(is_dom_check &&
573 			     no_more_access(
574 				     layer_masks_parent1, layer_masks_child1,
575 				     child1_is_directory, layer_masks_parent2,
576 				     layer_masks_child2,
577 				     child2_is_directory))) {
578 			allowed_parent1 = scope_to_request(
579 				access_request_parent1, layer_masks_parent1);
580 			allowed_parent2 = scope_to_request(
581 				access_request_parent2, layer_masks_parent2);
582 
583 			/* Stops when all accesses are granted. */
584 			if (allowed_parent1 && allowed_parent2)
585 				break;
586 
587 			/*
588 			 * Now, downgrades the remaining checks from domain
589 			 * handled accesses to requested accesses.
590 			 */
591 			is_dom_check = false;
592 			access_masked_parent1 = access_request_parent1;
593 			access_masked_parent2 = access_request_parent2;
594 		}
595 
596 		rule = find_rule(domain, walker_path.dentry);
597 		allowed_parent1 = unmask_layers(rule, access_masked_parent1,
598 						layer_masks_parent1);
599 		allowed_parent2 = unmask_layers(rule, access_masked_parent2,
600 						layer_masks_parent2);
601 
602 		/* Stops when a rule from each layer grants access. */
603 		if (allowed_parent1 && allowed_parent2)
604 			break;
605 
606 jump_up:
607 		if (walker_path.dentry == walker_path.mnt->mnt_root) {
608 			if (follow_up(&walker_path)) {
609 				/* Ignores hidden mount points. */
610 				goto jump_up;
611 			} else {
612 				/*
613 				 * Stops at the real root.  Denies access
614 				 * because not all layers have granted access.
615 				 */
616 				break;
617 			}
618 		}
619 		if (unlikely(IS_ROOT(walker_path.dentry))) {
620 			/*
621 			 * Stops at disconnected root directories.  Only allows
622 			 * access to internal filesystems (e.g. nsfs, which is
623 			 * reachable through /proc/<pid>/ns/<namespace>).
624 			 */
625 			allowed_parent1 = allowed_parent2 =
626 				!!(walker_path.mnt->mnt_flags & MNT_INTERNAL);
627 			break;
628 		}
629 		parent_dentry = dget_parent(walker_path.dentry);
630 		dput(walker_path.dentry);
631 		walker_path.dentry = parent_dentry;
632 	}
633 	path_put(&walker_path);
634 
635 	return allowed_parent1 && allowed_parent2;
636 }
637 
638 static inline int check_access_path(const struct landlock_ruleset *const domain,
639 				    const struct path *const path,
640 				    access_mask_t access_request)
641 {
642 	layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {};
643 
644 	access_request = init_layer_masks(domain, access_request, &layer_masks);
645 	if (is_access_to_paths_allowed(domain, path, access_request,
646 				       &layer_masks, NULL, 0, NULL, NULL))
647 		return 0;
648 	return -EACCES;
649 }
650 
651 static inline int current_check_access_path(const struct path *const path,
652 					    const access_mask_t access_request)
653 {
654 	const struct landlock_ruleset *const dom =
655 		landlock_get_current_domain();
656 
657 	if (!dom)
658 		return 0;
659 	return check_access_path(dom, path, access_request);
660 }
661 
662 static inline access_mask_t get_mode_access(const umode_t mode)
663 {
664 	switch (mode & S_IFMT) {
665 	case S_IFLNK:
666 		return LANDLOCK_ACCESS_FS_MAKE_SYM;
667 	case 0:
668 		/* A zero mode translates to S_IFREG. */
669 	case S_IFREG:
670 		return LANDLOCK_ACCESS_FS_MAKE_REG;
671 	case S_IFDIR:
672 		return LANDLOCK_ACCESS_FS_MAKE_DIR;
673 	case S_IFCHR:
674 		return LANDLOCK_ACCESS_FS_MAKE_CHAR;
675 	case S_IFBLK:
676 		return LANDLOCK_ACCESS_FS_MAKE_BLOCK;
677 	case S_IFIFO:
678 		return LANDLOCK_ACCESS_FS_MAKE_FIFO;
679 	case S_IFSOCK:
680 		return LANDLOCK_ACCESS_FS_MAKE_SOCK;
681 	default:
682 		WARN_ON_ONCE(1);
683 		return 0;
684 	}
685 }
686 
687 static inline access_mask_t maybe_remove(const struct dentry *const dentry)
688 {
689 	if (d_is_negative(dentry))
690 		return 0;
691 	return d_is_dir(dentry) ? LANDLOCK_ACCESS_FS_REMOVE_DIR :
692 				  LANDLOCK_ACCESS_FS_REMOVE_FILE;
693 }
694 
695 /**
696  * collect_domain_accesses - Walk through a file path and collect accesses
697  *
698  * @domain: Domain to check against.
699  * @mnt_root: Last directory to check.
700  * @dir: Directory to start the walk from.
701  * @layer_masks_dom: Where to store the collected accesses.
702  *
703  * This helper is useful to begin a path walk from the @dir directory to a
704  * @mnt_root directory used as a mount point.  This mount point is the common
705  * ancestor between the source and the destination of a renamed and linked
706  * file.  While walking from @dir to @mnt_root, we record all the domain's
707  * allowed accesses in @layer_masks_dom.
708  *
709  * This is similar to is_access_to_paths_allowed() but much simpler because it
710  * only handles walking on the same mount point and only checks one set of
711  * accesses.
712  *
713  * Returns:
714  * - true if all the domain access rights are allowed for @dir;
715  * - false if the walk reached @mnt_root.
716  */
717 static bool collect_domain_accesses(
718 	const struct landlock_ruleset *const domain,
719 	const struct dentry *const mnt_root, struct dentry *dir,
720 	layer_mask_t (*const layer_masks_dom)[LANDLOCK_NUM_ACCESS_FS])
721 {
722 	unsigned long access_dom;
723 	bool ret = false;
724 
725 	if (WARN_ON_ONCE(!domain || !mnt_root || !dir || !layer_masks_dom))
726 		return true;
727 	if (is_nouser_or_private(dir))
728 		return true;
729 
730 	access_dom = init_layer_masks(domain, LANDLOCK_MASK_ACCESS_FS,
731 				      layer_masks_dom);
732 
733 	dget(dir);
734 	while (true) {
735 		struct dentry *parent_dentry;
736 
737 		/* Gets all layers allowing all domain accesses. */
738 		if (unmask_layers(find_rule(domain, dir), access_dom,
739 				  layer_masks_dom)) {
740 			/*
741 			 * Stops when all handled accesses are allowed by at
742 			 * least one rule in each layer.
743 			 */
744 			ret = true;
745 			break;
746 		}
747 
748 		/* We should not reach a root other than @mnt_root. */
749 		if (dir == mnt_root || WARN_ON_ONCE(IS_ROOT(dir)))
750 			break;
751 
752 		parent_dentry = dget_parent(dir);
753 		dput(dir);
754 		dir = parent_dentry;
755 	}
756 	dput(dir);
757 	return ret;
758 }
759 
760 /**
761  * current_check_refer_path - Check if a rename or link action is allowed
762  *
763  * @old_dentry: File or directory requested to be moved or linked.
764  * @new_dir: Destination parent directory.
765  * @new_dentry: Destination file or directory.
766  * @removable: Sets to true if it is a rename operation.
767  * @exchange: Sets to true if it is a rename operation with RENAME_EXCHANGE.
768  *
769  * Because of its unprivileged constraints, Landlock relies on file hierarchies
770  * (and not only inodes) to tie access rights to files.  Being able to link or
771  * rename a file hierarchy brings some challenges.  Indeed, moving or linking a
772  * file (i.e. creating a new reference to an inode) can have an impact on the
773  * actions allowed for a set of files if it would change its parent directory
774  * (i.e. reparenting).
775  *
776  * To avoid trivial access right bypasses, Landlock first checks if the file or
777  * directory requested to be moved would gain new access rights inherited from
778  * its new hierarchy.  Before returning any error, Landlock then checks that
779  * the parent source hierarchy and the destination hierarchy would allow the
780  * link or rename action.  If it is not the case, an error with EACCES is
781  * returned to inform user space that there is no way to remove or create the
782  * requested source file type.  If it should be allowed but the new inherited
783  * access rights would be greater than the source access rights, then the
784  * kernel returns an error with EXDEV.  Prioritizing EACCES over EXDEV enables
785  * user space to abort the whole operation if there is no way to do it, or to
786  * manually copy the source to the destination if this remains allowed, e.g.
787  * because file creation is allowed on the destination directory but not direct
788  * linking.
789  *
790  * To achieve this goal, the kernel needs to compare two file hierarchies: the
791  * one identifying the source file or directory (including itself), and the
792  * destination one.  This can be seen as a multilayer partial ordering problem.
793  * The kernel walks through these paths and collects in a matrix the access
794  * rights that are denied per layer.  These matrices are then compared to see
795  * if the destination one has more (or the same) restrictions as the source
796  * one.  If this is the case, the requested action will not return EXDEV, which
797  * doesn't mean the action is allowed.  The parent hierarchy of the source
798  * (i.e. parent directory), and the destination hierarchy must also be checked
799  * to verify that they explicitly allow such action (i.e.  referencing,
800  * creation and potentially removal rights).  The kernel implementation is then
801  * required to rely on potentially four matrices of access rights: one for the
802  * source file or directory (i.e. the child), a potentially other one for the
803  * other source/destination (in case of RENAME_EXCHANGE), one for the source
804  * parent hierarchy and a last one for the destination hierarchy.  These
805  * ephemeral matrices take some space on the stack, which limits the number of
806  * layers to a deemed reasonable number: 16.
807  *
808  * Returns:
809  * - 0 if access is allowed;
810  * - -EXDEV if @old_dentry would inherit new access rights from @new_dir;
811  * - -EACCES if file removal or creation is denied.
812  */
813 static int current_check_refer_path(struct dentry *const old_dentry,
814 				    const struct path *const new_dir,
815 				    struct dentry *const new_dentry,
816 				    const bool removable, const bool exchange)
817 {
818 	const struct landlock_ruleset *const dom =
819 		landlock_get_current_domain();
820 	bool allow_parent1, allow_parent2;
821 	access_mask_t access_request_parent1, access_request_parent2;
822 	struct path mnt_dir;
823 	struct dentry *old_parent;
824 	layer_mask_t layer_masks_parent1[LANDLOCK_NUM_ACCESS_FS] = {},
825 		     layer_masks_parent2[LANDLOCK_NUM_ACCESS_FS] = {};
826 
827 	if (!dom)
828 		return 0;
829 	if (WARN_ON_ONCE(dom->num_layers < 1))
830 		return -EACCES;
831 	if (unlikely(d_is_negative(old_dentry)))
832 		return -ENOENT;
833 	if (exchange) {
834 		if (unlikely(d_is_negative(new_dentry)))
835 			return -ENOENT;
836 		access_request_parent1 =
837 			get_mode_access(d_backing_inode(new_dentry)->i_mode);
838 	} else {
839 		access_request_parent1 = 0;
840 	}
841 	access_request_parent2 =
842 		get_mode_access(d_backing_inode(old_dentry)->i_mode);
843 	if (removable) {
844 		access_request_parent1 |= maybe_remove(old_dentry);
845 		access_request_parent2 |= maybe_remove(new_dentry);
846 	}
847 
848 	/* The mount points are the same for old and new paths, cf. EXDEV. */
849 	if (old_dentry->d_parent == new_dir->dentry) {
850 		/*
851 		 * The LANDLOCK_ACCESS_FS_REFER access right is not required
852 		 * for same-directory referer (i.e. no reparenting).
853 		 */
854 		access_request_parent1 = init_layer_masks(
855 			dom, access_request_parent1 | access_request_parent2,
856 			&layer_masks_parent1);
857 		if (is_access_to_paths_allowed(
858 			    dom, new_dir, access_request_parent1,
859 			    &layer_masks_parent1, NULL, 0, NULL, NULL))
860 			return 0;
861 		return -EACCES;
862 	}
863 
864 	access_request_parent1 |= LANDLOCK_ACCESS_FS_REFER;
865 	access_request_parent2 |= LANDLOCK_ACCESS_FS_REFER;
866 
867 	/* Saves the common mount point. */
868 	mnt_dir.mnt = new_dir->mnt;
869 	mnt_dir.dentry = new_dir->mnt->mnt_root;
870 
871 	/*
872 	 * old_dentry may be the root of the common mount point and
873 	 * !IS_ROOT(old_dentry) at the same time (e.g. with open_tree() and
874 	 * OPEN_TREE_CLONE).  We do not need to call dget(old_parent) because
875 	 * we keep a reference to old_dentry.
876 	 */
877 	old_parent = (old_dentry == mnt_dir.dentry) ? old_dentry :
878 						      old_dentry->d_parent;
879 
880 	/* new_dir->dentry is equal to new_dentry->d_parent */
881 	allow_parent1 = collect_domain_accesses(dom, mnt_dir.dentry, old_parent,
882 						&layer_masks_parent1);
883 	allow_parent2 = collect_domain_accesses(
884 		dom, mnt_dir.dentry, new_dir->dentry, &layer_masks_parent2);
885 
886 	if (allow_parent1 && allow_parent2)
887 		return 0;
888 
889 	/*
890 	 * To be able to compare source and destination domain access rights,
891 	 * take into account the @old_dentry access rights aggregated with its
892 	 * parent access rights.  This will be useful to compare with the
893 	 * destination parent access rights.
894 	 */
895 	if (is_access_to_paths_allowed(
896 		    dom, &mnt_dir, access_request_parent1, &layer_masks_parent1,
897 		    old_dentry, access_request_parent2, &layer_masks_parent2,
898 		    exchange ? new_dentry : NULL))
899 		return 0;
900 
901 	/*
902 	 * This prioritizes EACCES over EXDEV for all actions, including
903 	 * renames with RENAME_EXCHANGE.
904 	 */
905 	if (likely(is_eacces(&layer_masks_parent1, access_request_parent1) ||
906 		   is_eacces(&layer_masks_parent2, access_request_parent2)))
907 		return -EACCES;
908 
909 	/*
910 	 * Gracefully forbids reparenting if the destination directory
911 	 * hierarchy is not a superset of restrictions of the source directory
912 	 * hierarchy, or if LANDLOCK_ACCESS_FS_REFER is not allowed by the
913 	 * source or the destination.
914 	 */
915 	return -EXDEV;
916 }
917 
918 /* Inode hooks */
919 
920 static void hook_inode_free_security(struct inode *const inode)
921 {
922 	/*
923 	 * All inodes must already have been untied from their object by
924 	 * release_inode() or hook_sb_delete().
925 	 */
926 	WARN_ON_ONCE(landlock_inode(inode)->object);
927 }
928 
929 /* Super-block hooks */
930 
931 /*
932  * Release the inodes used in a security policy.
933  *
934  * Cf. fsnotify_unmount_inodes() and invalidate_inodes()
935  */
936 static void hook_sb_delete(struct super_block *const sb)
937 {
938 	struct inode *inode, *prev_inode = NULL;
939 
940 	if (!landlock_initialized)
941 		return;
942 
943 	spin_lock(&sb->s_inode_list_lock);
944 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
945 		struct landlock_object *object;
946 
947 		/* Only handles referenced inodes. */
948 		if (!atomic_read(&inode->i_count))
949 			continue;
950 
951 		/*
952 		 * Protects against concurrent modification of inode (e.g.
953 		 * from get_inode_object()).
954 		 */
955 		spin_lock(&inode->i_lock);
956 		/*
957 		 * Checks I_FREEING and I_WILL_FREE  to protect against a race
958 		 * condition when release_inode() just called iput(), which
959 		 * could lead to a NULL dereference of inode->security or a
960 		 * second call to iput() for the same Landlock object.  Also
961 		 * checks I_NEW because such inode cannot be tied to an object.
962 		 */
963 		if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) {
964 			spin_unlock(&inode->i_lock);
965 			continue;
966 		}
967 
968 		rcu_read_lock();
969 		object = rcu_dereference(landlock_inode(inode)->object);
970 		if (!object) {
971 			rcu_read_unlock();
972 			spin_unlock(&inode->i_lock);
973 			continue;
974 		}
975 		/* Keeps a reference to this inode until the next loop walk. */
976 		__iget(inode);
977 		spin_unlock(&inode->i_lock);
978 
979 		/*
980 		 * If there is no concurrent release_inode() ongoing, then we
981 		 * are in charge of calling iput() on this inode, otherwise we
982 		 * will just wait for it to finish.
983 		 */
984 		spin_lock(&object->lock);
985 		if (object->underobj == inode) {
986 			object->underobj = NULL;
987 			spin_unlock(&object->lock);
988 			rcu_read_unlock();
989 
990 			/*
991 			 * Because object->underobj was not NULL,
992 			 * release_inode() and get_inode_object() guarantee
993 			 * that it is safe to reset
994 			 * landlock_inode(inode)->object while it is not NULL.
995 			 * It is therefore not necessary to lock inode->i_lock.
996 			 */
997 			rcu_assign_pointer(landlock_inode(inode)->object, NULL);
998 			/*
999 			 * At this point, we own the ihold() reference that was
1000 			 * originally set up by get_inode_object() and the
1001 			 * __iget() reference that we just set in this loop
1002 			 * walk.  Therefore the following call to iput() will
1003 			 * not sleep nor drop the inode because there is now at
1004 			 * least two references to it.
1005 			 */
1006 			iput(inode);
1007 		} else {
1008 			spin_unlock(&object->lock);
1009 			rcu_read_unlock();
1010 		}
1011 
1012 		if (prev_inode) {
1013 			/*
1014 			 * At this point, we still own the __iget() reference
1015 			 * that we just set in this loop walk.  Therefore we
1016 			 * can drop the list lock and know that the inode won't
1017 			 * disappear from under us until the next loop walk.
1018 			 */
1019 			spin_unlock(&sb->s_inode_list_lock);
1020 			/*
1021 			 * We can now actually put the inode reference from the
1022 			 * previous loop walk, which is not needed anymore.
1023 			 */
1024 			iput(prev_inode);
1025 			cond_resched();
1026 			spin_lock(&sb->s_inode_list_lock);
1027 		}
1028 		prev_inode = inode;
1029 	}
1030 	spin_unlock(&sb->s_inode_list_lock);
1031 
1032 	/* Puts the inode reference from the last loop walk, if any. */
1033 	if (prev_inode)
1034 		iput(prev_inode);
1035 	/* Waits for pending iput() in release_inode(). */
1036 	wait_var_event(&landlock_superblock(sb)->inode_refs,
1037 		       !atomic_long_read(&landlock_superblock(sb)->inode_refs));
1038 }
1039 
1040 /*
1041  * Because a Landlock security policy is defined according to the filesystem
1042  * topology (i.e. the mount namespace), changing it may grant access to files
1043  * not previously allowed.
1044  *
1045  * To make it simple, deny any filesystem topology modification by landlocked
1046  * processes.  Non-landlocked processes may still change the namespace of a
1047  * landlocked process, but this kind of threat must be handled by a system-wide
1048  * access-control security policy.
1049  *
1050  * This could be lifted in the future if Landlock can safely handle mount
1051  * namespace updates requested by a landlocked process.  Indeed, we could
1052  * update the current domain (which is currently read-only) by taking into
1053  * account the accesses of the source and the destination of a new mount point.
1054  * However, it would also require to make all the child domains dynamically
1055  * inherit these new constraints.  Anyway, for backward compatibility reasons,
1056  * a dedicated user space option would be required (e.g. as a ruleset flag).
1057  */
1058 static int hook_sb_mount(const char *const dev_name,
1059 			 const struct path *const path, const char *const type,
1060 			 const unsigned long flags, void *const data)
1061 {
1062 	if (!landlock_get_current_domain())
1063 		return 0;
1064 	return -EPERM;
1065 }
1066 
1067 static int hook_move_mount(const struct path *const from_path,
1068 			   const struct path *const to_path)
1069 {
1070 	if (!landlock_get_current_domain())
1071 		return 0;
1072 	return -EPERM;
1073 }
1074 
1075 /*
1076  * Removing a mount point may reveal a previously hidden file hierarchy, which
1077  * may then grant access to files, which may have previously been forbidden.
1078  */
1079 static int hook_sb_umount(struct vfsmount *const mnt, const int flags)
1080 {
1081 	if (!landlock_get_current_domain())
1082 		return 0;
1083 	return -EPERM;
1084 }
1085 
1086 static int hook_sb_remount(struct super_block *const sb, void *const mnt_opts)
1087 {
1088 	if (!landlock_get_current_domain())
1089 		return 0;
1090 	return -EPERM;
1091 }
1092 
1093 /*
1094  * pivot_root(2), like mount(2), changes the current mount namespace.  It must
1095  * then be forbidden for a landlocked process.
1096  *
1097  * However, chroot(2) may be allowed because it only changes the relative root
1098  * directory of the current process.  Moreover, it can be used to restrict the
1099  * view of the filesystem.
1100  */
1101 static int hook_sb_pivotroot(const struct path *const old_path,
1102 			     const struct path *const new_path)
1103 {
1104 	if (!landlock_get_current_domain())
1105 		return 0;
1106 	return -EPERM;
1107 }
1108 
1109 /* Path hooks */
1110 
1111 static int hook_path_link(struct dentry *const old_dentry,
1112 			  const struct path *const new_dir,
1113 			  struct dentry *const new_dentry)
1114 {
1115 	return current_check_refer_path(old_dentry, new_dir, new_dentry, false,
1116 					false);
1117 }
1118 
1119 static int hook_path_rename(const struct path *const old_dir,
1120 			    struct dentry *const old_dentry,
1121 			    const struct path *const new_dir,
1122 			    struct dentry *const new_dentry,
1123 			    const unsigned int flags)
1124 {
1125 	/* old_dir refers to old_dentry->d_parent and new_dir->mnt */
1126 	return current_check_refer_path(old_dentry, new_dir, new_dentry, true,
1127 					!!(flags & RENAME_EXCHANGE));
1128 }
1129 
1130 static int hook_path_mkdir(const struct path *const dir,
1131 			   struct dentry *const dentry, const umode_t mode)
1132 {
1133 	return current_check_access_path(dir, LANDLOCK_ACCESS_FS_MAKE_DIR);
1134 }
1135 
1136 static int hook_path_mknod(const struct path *const dir,
1137 			   struct dentry *const dentry, const umode_t mode,
1138 			   const unsigned int dev)
1139 {
1140 	const struct landlock_ruleset *const dom =
1141 		landlock_get_current_domain();
1142 
1143 	if (!dom)
1144 		return 0;
1145 	return check_access_path(dom, dir, get_mode_access(mode));
1146 }
1147 
1148 static int hook_path_symlink(const struct path *const dir,
1149 			     struct dentry *const dentry,
1150 			     const char *const old_name)
1151 {
1152 	return current_check_access_path(dir, LANDLOCK_ACCESS_FS_MAKE_SYM);
1153 }
1154 
1155 static int hook_path_unlink(const struct path *const dir,
1156 			    struct dentry *const dentry)
1157 {
1158 	return current_check_access_path(dir, LANDLOCK_ACCESS_FS_REMOVE_FILE);
1159 }
1160 
1161 static int hook_path_rmdir(const struct path *const dir,
1162 			   struct dentry *const dentry)
1163 {
1164 	return current_check_access_path(dir, LANDLOCK_ACCESS_FS_REMOVE_DIR);
1165 }
1166 
1167 static int hook_path_truncate(const struct path *const path)
1168 {
1169 	return current_check_access_path(path, LANDLOCK_ACCESS_FS_TRUNCATE);
1170 }
1171 
1172 /* File hooks */
1173 
1174 /**
1175  * get_required_file_open_access - Get access needed to open a file
1176  *
1177  * @file: File being opened.
1178  *
1179  * Returns the access rights that are required for opening the given file,
1180  * depending on the file type and open mode.
1181  */
1182 static inline access_mask_t
1183 get_required_file_open_access(const struct file *const file)
1184 {
1185 	access_mask_t access = 0;
1186 
1187 	if (file->f_mode & FMODE_READ) {
1188 		/* A directory can only be opened in read mode. */
1189 		if (S_ISDIR(file_inode(file)->i_mode))
1190 			return LANDLOCK_ACCESS_FS_READ_DIR;
1191 		access = LANDLOCK_ACCESS_FS_READ_FILE;
1192 	}
1193 	if (file->f_mode & FMODE_WRITE)
1194 		access |= LANDLOCK_ACCESS_FS_WRITE_FILE;
1195 	/* __FMODE_EXEC is indeed part of f_flags, not f_mode. */
1196 	if (file->f_flags & __FMODE_EXEC)
1197 		access |= LANDLOCK_ACCESS_FS_EXECUTE;
1198 	return access;
1199 }
1200 
1201 static int hook_file_alloc_security(struct file *const file)
1202 {
1203 	/*
1204 	 * Grants all access rights, even if most of them are not checked later
1205 	 * on. It is more consistent.
1206 	 *
1207 	 * Notably, file descriptors for regular files can also be acquired
1208 	 * without going through the file_open hook, for example when using
1209 	 * memfd_create(2).
1210 	 */
1211 	landlock_file(file)->allowed_access = LANDLOCK_MASK_ACCESS_FS;
1212 	return 0;
1213 }
1214 
1215 static int hook_file_open(struct file *const file)
1216 {
1217 	layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {};
1218 	access_mask_t open_access_request, full_access_request, allowed_access;
1219 	const access_mask_t optional_access = LANDLOCK_ACCESS_FS_TRUNCATE;
1220 	const struct landlock_ruleset *const dom =
1221 		landlock_get_current_domain();
1222 
1223 	if (!dom)
1224 		return 0;
1225 
1226 	/*
1227 	 * Because a file may be opened with O_PATH, get_required_file_open_access()
1228 	 * may return 0.  This case will be handled with a future Landlock
1229 	 * evolution.
1230 	 */
1231 	open_access_request = get_required_file_open_access(file);
1232 
1233 	/*
1234 	 * We look up more access than what we immediately need for open(), so
1235 	 * that we can later authorize operations on opened files.
1236 	 */
1237 	full_access_request = open_access_request | optional_access;
1238 
1239 	if (is_access_to_paths_allowed(
1240 		    dom, &file->f_path,
1241 		    init_layer_masks(dom, full_access_request, &layer_masks),
1242 		    &layer_masks, NULL, 0, NULL, NULL)) {
1243 		allowed_access = full_access_request;
1244 	} else {
1245 		unsigned long access_bit;
1246 		const unsigned long access_req = full_access_request;
1247 
1248 		/*
1249 		 * Calculate the actual allowed access rights from layer_masks.
1250 		 * Add each access right to allowed_access which has not been
1251 		 * vetoed by any layer.
1252 		 */
1253 		allowed_access = 0;
1254 		for_each_set_bit(access_bit, &access_req,
1255 				 ARRAY_SIZE(layer_masks)) {
1256 			if (!layer_masks[access_bit])
1257 				allowed_access |= BIT_ULL(access_bit);
1258 		}
1259 	}
1260 
1261 	/*
1262 	 * For operations on already opened files (i.e. ftruncate()), it is the
1263 	 * access rights at the time of open() which decide whether the
1264 	 * operation is permitted. Therefore, we record the relevant subset of
1265 	 * file access rights in the opened struct file.
1266 	 */
1267 	landlock_file(file)->allowed_access = allowed_access;
1268 
1269 	if ((open_access_request & allowed_access) == open_access_request)
1270 		return 0;
1271 
1272 	return -EACCES;
1273 }
1274 
1275 static int hook_file_truncate(struct file *const file)
1276 {
1277 	/*
1278 	 * Allows truncation if the truncate right was available at the time of
1279 	 * opening the file, to get a consistent access check as for read, write
1280 	 * and execute operations.
1281 	 *
1282 	 * Note: For checks done based on the file's Landlock allowed access, we
1283 	 * enforce them independently of whether the current thread is in a
1284 	 * Landlock domain, so that open files passed between independent
1285 	 * processes retain their behaviour.
1286 	 */
1287 	if (landlock_file(file)->allowed_access & LANDLOCK_ACCESS_FS_TRUNCATE)
1288 		return 0;
1289 	return -EACCES;
1290 }
1291 
1292 static struct security_hook_list landlock_hooks[] __ro_after_init = {
1293 	LSM_HOOK_INIT(inode_free_security, hook_inode_free_security),
1294 
1295 	LSM_HOOK_INIT(sb_delete, hook_sb_delete),
1296 	LSM_HOOK_INIT(sb_mount, hook_sb_mount),
1297 	LSM_HOOK_INIT(move_mount, hook_move_mount),
1298 	LSM_HOOK_INIT(sb_umount, hook_sb_umount),
1299 	LSM_HOOK_INIT(sb_remount, hook_sb_remount),
1300 	LSM_HOOK_INIT(sb_pivotroot, hook_sb_pivotroot),
1301 
1302 	LSM_HOOK_INIT(path_link, hook_path_link),
1303 	LSM_HOOK_INIT(path_rename, hook_path_rename),
1304 	LSM_HOOK_INIT(path_mkdir, hook_path_mkdir),
1305 	LSM_HOOK_INIT(path_mknod, hook_path_mknod),
1306 	LSM_HOOK_INIT(path_symlink, hook_path_symlink),
1307 	LSM_HOOK_INIT(path_unlink, hook_path_unlink),
1308 	LSM_HOOK_INIT(path_rmdir, hook_path_rmdir),
1309 	LSM_HOOK_INIT(path_truncate, hook_path_truncate),
1310 
1311 	LSM_HOOK_INIT(file_alloc_security, hook_file_alloc_security),
1312 	LSM_HOOK_INIT(file_open, hook_file_open),
1313 	LSM_HOOK_INIT(file_truncate, hook_file_truncate),
1314 };
1315 
1316 __init void landlock_add_fs_hooks(void)
1317 {
1318 	security_add_hooks(landlock_hooks, ARRAY_SIZE(landlock_hooks),
1319 			   LANDLOCK_NAME);
1320 }
1321