1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* Request a key from userspace 3 * 4 * Copyright (C) 2004-2007 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 * 7 * See Documentation/security/keys/request-key.rst 8 */ 9 10 #include <linux/export.h> 11 #include <linux/sched.h> 12 #include <linux/kmod.h> 13 #include <linux/err.h> 14 #include <linux/keyctl.h> 15 #include <linux/slab.h> 16 #include <net/net_namespace.h> 17 #include "internal.h" 18 #include <keys/request_key_auth-type.h> 19 20 #define key_negative_timeout 60 /* default timeout on a negative key's existence */ 21 22 static struct key *check_cached_key(struct keyring_search_context *ctx) 23 { 24 #ifdef CONFIG_KEYS_REQUEST_CACHE 25 struct key *key = current->cached_requested_key; 26 27 if (key && 28 ctx->match_data.cmp(key, &ctx->match_data) && 29 !(key->flags & ((1 << KEY_FLAG_INVALIDATED) | 30 (1 << KEY_FLAG_REVOKED)))) 31 return key_get(key); 32 #endif 33 return NULL; 34 } 35 36 static void cache_requested_key(struct key *key) 37 { 38 #ifdef CONFIG_KEYS_REQUEST_CACHE 39 struct task_struct *t = current; 40 41 key_put(t->cached_requested_key); 42 t->cached_requested_key = key_get(key); 43 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME); 44 #endif 45 } 46 47 /** 48 * complete_request_key - Complete the construction of a key. 49 * @authkey: The authorisation key. 50 * @error: The success or failute of the construction. 51 * 52 * Complete the attempt to construct a key. The key will be negated 53 * if an error is indicated. The authorisation key will be revoked 54 * unconditionally. 55 */ 56 void complete_request_key(struct key *authkey, int error) 57 { 58 struct request_key_auth *rka = get_request_key_auth(authkey); 59 struct key *key = rka->target_key; 60 61 kenter("%d{%d},%d", authkey->serial, key->serial, error); 62 63 if (error < 0) 64 key_negate_and_link(key, key_negative_timeout, NULL, authkey); 65 else 66 key_revoke(authkey); 67 } 68 EXPORT_SYMBOL(complete_request_key); 69 70 /* 71 * Initialise a usermode helper that is going to have a specific session 72 * keyring. 73 * 74 * This is called in context of freshly forked kthread before kernel_execve(), 75 * so we can simply install the desired session_keyring at this point. 76 */ 77 static int umh_keys_init(struct subprocess_info *info, struct cred *cred) 78 { 79 struct key *keyring = info->data; 80 81 return install_session_keyring_to_cred(cred, keyring); 82 } 83 84 /* 85 * Clean up a usermode helper with session keyring. 86 */ 87 static void umh_keys_cleanup(struct subprocess_info *info) 88 { 89 struct key *keyring = info->data; 90 key_put(keyring); 91 } 92 93 /* 94 * Call a usermode helper with a specific session keyring. 95 */ 96 static int call_usermodehelper_keys(const char *path, char **argv, char **envp, 97 struct key *session_keyring, int wait) 98 { 99 struct subprocess_info *info; 100 101 info = call_usermodehelper_setup(path, argv, envp, GFP_KERNEL, 102 umh_keys_init, umh_keys_cleanup, 103 session_keyring); 104 if (!info) 105 return -ENOMEM; 106 107 key_get(session_keyring); 108 return call_usermodehelper_exec(info, wait); 109 } 110 111 /* 112 * Request userspace finish the construction of a key 113 * - execute "/sbin/request-key <op> <key> <uid> <gid> <keyring> <keyring> <keyring>" 114 */ 115 static int call_sbin_request_key(struct key *authkey, void *aux) 116 { 117 static char const request_key[] = "/sbin/request-key"; 118 struct request_key_auth *rka = get_request_key_auth(authkey); 119 const struct cred *cred = current_cred(); 120 key_serial_t prkey, sskey; 121 struct key *key = rka->target_key, *keyring, *session, *user_session; 122 char *argv[9], *envp[3], uid_str[12], gid_str[12]; 123 char key_str[12], keyring_str[3][12]; 124 char desc[20]; 125 int ret, i; 126 127 kenter("{%d},{%d},%s", key->serial, authkey->serial, rka->op); 128 129 ret = look_up_user_keyrings(NULL, &user_session); 130 if (ret < 0) 131 goto error_us; 132 133 /* allocate a new session keyring */ 134 sprintf(desc, "_req.%u", key->serial); 135 136 cred = get_current_cred(); 137 keyring = keyring_alloc(desc, cred->fsuid, cred->fsgid, cred, 138 KEY_POS_ALL | KEY_USR_VIEW | KEY_USR_READ, 139 KEY_ALLOC_QUOTA_OVERRUN, NULL, NULL); 140 put_cred(cred); 141 if (IS_ERR(keyring)) { 142 ret = PTR_ERR(keyring); 143 goto error_alloc; 144 } 145 146 /* attach the auth key to the session keyring */ 147 ret = key_link(keyring, authkey); 148 if (ret < 0) 149 goto error_link; 150 151 /* record the UID and GID */ 152 sprintf(uid_str, "%d", from_kuid(&init_user_ns, cred->fsuid)); 153 sprintf(gid_str, "%d", from_kgid(&init_user_ns, cred->fsgid)); 154 155 /* we say which key is under construction */ 156 sprintf(key_str, "%d", key->serial); 157 158 /* we specify the process's default keyrings */ 159 sprintf(keyring_str[0], "%d", 160 cred->thread_keyring ? cred->thread_keyring->serial : 0); 161 162 prkey = 0; 163 if (cred->process_keyring) 164 prkey = cred->process_keyring->serial; 165 sprintf(keyring_str[1], "%d", prkey); 166 167 session = cred->session_keyring; 168 if (!session) 169 session = user_session; 170 sskey = session->serial; 171 172 sprintf(keyring_str[2], "%d", sskey); 173 174 /* set up a minimal environment */ 175 i = 0; 176 envp[i++] = "HOME=/"; 177 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; 178 envp[i] = NULL; 179 180 /* set up the argument list */ 181 i = 0; 182 argv[i++] = (char *)request_key; 183 argv[i++] = (char *)rka->op; 184 argv[i++] = key_str; 185 argv[i++] = uid_str; 186 argv[i++] = gid_str; 187 argv[i++] = keyring_str[0]; 188 argv[i++] = keyring_str[1]; 189 argv[i++] = keyring_str[2]; 190 argv[i] = NULL; 191 192 /* do it */ 193 ret = call_usermodehelper_keys(request_key, argv, envp, keyring, 194 UMH_WAIT_PROC); 195 kdebug("usermode -> 0x%x", ret); 196 if (ret >= 0) { 197 /* ret is the exit/wait code */ 198 if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags) || 199 key_validate(key) < 0) 200 ret = -ENOKEY; 201 else 202 /* ignore any errors from userspace if the key was 203 * instantiated */ 204 ret = 0; 205 } 206 207 error_link: 208 key_put(keyring); 209 210 error_alloc: 211 key_put(user_session); 212 error_us: 213 complete_request_key(authkey, ret); 214 kleave(" = %d", ret); 215 return ret; 216 } 217 218 /* 219 * Call out to userspace for key construction. 220 * 221 * Program failure is ignored in favour of key status. 222 */ 223 static int construct_key(struct key *key, const void *callout_info, 224 size_t callout_len, void *aux, 225 struct key *dest_keyring) 226 { 227 request_key_actor_t actor; 228 struct key *authkey; 229 int ret; 230 231 kenter("%d,%p,%zu,%p", key->serial, callout_info, callout_len, aux); 232 233 /* allocate an authorisation key */ 234 authkey = request_key_auth_new(key, "create", callout_info, callout_len, 235 dest_keyring); 236 if (IS_ERR(authkey)) 237 return PTR_ERR(authkey); 238 239 /* Make the call */ 240 actor = call_sbin_request_key; 241 if (key->type->request_key) 242 actor = key->type->request_key; 243 244 ret = actor(authkey, aux); 245 246 /* check that the actor called complete_request_key() prior to 247 * returning an error */ 248 WARN_ON(ret < 0 && 249 !test_bit(KEY_FLAG_INVALIDATED, &authkey->flags)); 250 251 key_put(authkey); 252 kleave(" = %d", ret); 253 return ret; 254 } 255 256 /* 257 * Get the appropriate destination keyring for the request. 258 * 259 * The keyring selected is returned with an extra reference upon it which the 260 * caller must release. 261 */ 262 static int construct_get_dest_keyring(struct key **_dest_keyring) 263 { 264 struct request_key_auth *rka; 265 const struct cred *cred = current_cred(); 266 struct key *dest_keyring = *_dest_keyring, *authkey; 267 int ret; 268 269 kenter("%p", dest_keyring); 270 271 /* find the appropriate keyring */ 272 if (dest_keyring) { 273 /* the caller supplied one */ 274 key_get(dest_keyring); 275 } else { 276 bool do_perm_check = true; 277 278 /* use a default keyring; falling through the cases until we 279 * find one that we actually have */ 280 switch (cred->jit_keyring) { 281 case KEY_REQKEY_DEFL_DEFAULT: 282 case KEY_REQKEY_DEFL_REQUESTOR_KEYRING: 283 if (cred->request_key_auth) { 284 authkey = cred->request_key_auth; 285 down_read(&authkey->sem); 286 rka = get_request_key_auth(authkey); 287 if (!test_bit(KEY_FLAG_REVOKED, 288 &authkey->flags)) 289 dest_keyring = 290 key_get(rka->dest_keyring); 291 up_read(&authkey->sem); 292 if (dest_keyring) { 293 do_perm_check = false; 294 break; 295 } 296 } 297 298 /* fall through */ 299 case KEY_REQKEY_DEFL_THREAD_KEYRING: 300 dest_keyring = key_get(cred->thread_keyring); 301 if (dest_keyring) 302 break; 303 304 /* fall through */ 305 case KEY_REQKEY_DEFL_PROCESS_KEYRING: 306 dest_keyring = key_get(cred->process_keyring); 307 if (dest_keyring) 308 break; 309 310 /* fall through */ 311 case KEY_REQKEY_DEFL_SESSION_KEYRING: 312 dest_keyring = key_get(cred->session_keyring); 313 314 if (dest_keyring) 315 break; 316 317 /* fall through */ 318 case KEY_REQKEY_DEFL_USER_SESSION_KEYRING: 319 ret = look_up_user_keyrings(NULL, &dest_keyring); 320 if (ret < 0) 321 return ret; 322 break; 323 324 case KEY_REQKEY_DEFL_USER_KEYRING: 325 ret = look_up_user_keyrings(&dest_keyring, NULL); 326 if (ret < 0) 327 return ret; 328 break; 329 330 case KEY_REQKEY_DEFL_GROUP_KEYRING: 331 default: 332 BUG(); 333 } 334 335 /* 336 * Require Write permission on the keyring. This is essential 337 * because the default keyring may be the session keyring, and 338 * joining a keyring only requires Search permission. 339 * 340 * However, this check is skipped for the "requestor keyring" so 341 * that /sbin/request-key can itself use request_key() to add 342 * keys to the original requestor's destination keyring. 343 */ 344 if (dest_keyring && do_perm_check) { 345 ret = key_permission(make_key_ref(dest_keyring, 1), 346 KEY_NEED_WRITE); 347 if (ret) { 348 key_put(dest_keyring); 349 return ret; 350 } 351 } 352 } 353 354 *_dest_keyring = dest_keyring; 355 kleave(" [dk %d]", key_serial(dest_keyring)); 356 return 0; 357 } 358 359 /* 360 * Allocate a new key in under-construction state and attempt to link it in to 361 * the requested keyring. 362 * 363 * May return a key that's already under construction instead if there was a 364 * race between two thread calling request_key(). 365 */ 366 static int construct_alloc_key(struct keyring_search_context *ctx, 367 struct key *dest_keyring, 368 unsigned long flags, 369 struct key_user *user, 370 struct key **_key) 371 { 372 struct assoc_array_edit *edit = NULL; 373 struct key *key; 374 key_perm_t perm; 375 key_ref_t key_ref; 376 int ret; 377 378 kenter("%s,%s,,,", 379 ctx->index_key.type->name, ctx->index_key.description); 380 381 *_key = NULL; 382 mutex_lock(&user->cons_lock); 383 384 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR; 385 perm |= KEY_USR_VIEW; 386 if (ctx->index_key.type->read) 387 perm |= KEY_POS_READ; 388 if (ctx->index_key.type == &key_type_keyring || 389 ctx->index_key.type->update) 390 perm |= KEY_POS_WRITE; 391 392 key = key_alloc(ctx->index_key.type, ctx->index_key.description, 393 ctx->cred->fsuid, ctx->cred->fsgid, ctx->cred, 394 perm, flags, NULL); 395 if (IS_ERR(key)) 396 goto alloc_failed; 397 398 set_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags); 399 400 if (dest_keyring) { 401 ret = __key_link_lock(dest_keyring, &ctx->index_key); 402 if (ret < 0) 403 goto link_lock_failed; 404 ret = __key_link_begin(dest_keyring, &ctx->index_key, &edit); 405 if (ret < 0) 406 goto link_prealloc_failed; 407 } 408 409 /* attach the key to the destination keyring under lock, but we do need 410 * to do another check just in case someone beat us to it whilst we 411 * waited for locks */ 412 mutex_lock(&key_construction_mutex); 413 414 rcu_read_lock(); 415 key_ref = search_process_keyrings_rcu(ctx); 416 rcu_read_unlock(); 417 if (!IS_ERR(key_ref)) 418 goto key_already_present; 419 420 if (dest_keyring) 421 __key_link(dest_keyring, key, &edit); 422 423 mutex_unlock(&key_construction_mutex); 424 if (dest_keyring) 425 __key_link_end(dest_keyring, &ctx->index_key, edit); 426 mutex_unlock(&user->cons_lock); 427 *_key = key; 428 kleave(" = 0 [%d]", key_serial(key)); 429 return 0; 430 431 /* the key is now present - we tell the caller that we found it by 432 * returning -EINPROGRESS */ 433 key_already_present: 434 key_put(key); 435 mutex_unlock(&key_construction_mutex); 436 key = key_ref_to_ptr(key_ref); 437 if (dest_keyring) { 438 ret = __key_link_check_live_key(dest_keyring, key); 439 if (ret == 0) 440 __key_link(dest_keyring, key, &edit); 441 __key_link_end(dest_keyring, &ctx->index_key, edit); 442 if (ret < 0) 443 goto link_check_failed; 444 } 445 mutex_unlock(&user->cons_lock); 446 *_key = key; 447 kleave(" = -EINPROGRESS [%d]", key_serial(key)); 448 return -EINPROGRESS; 449 450 link_check_failed: 451 mutex_unlock(&user->cons_lock); 452 key_put(key); 453 kleave(" = %d [linkcheck]", ret); 454 return ret; 455 456 link_prealloc_failed: 457 __key_link_end(dest_keyring, &ctx->index_key, edit); 458 link_lock_failed: 459 mutex_unlock(&user->cons_lock); 460 key_put(key); 461 kleave(" = %d [prelink]", ret); 462 return ret; 463 464 alloc_failed: 465 mutex_unlock(&user->cons_lock); 466 kleave(" = %ld", PTR_ERR(key)); 467 return PTR_ERR(key); 468 } 469 470 /* 471 * Commence key construction. 472 */ 473 static struct key *construct_key_and_link(struct keyring_search_context *ctx, 474 const char *callout_info, 475 size_t callout_len, 476 void *aux, 477 struct key *dest_keyring, 478 unsigned long flags) 479 { 480 struct key_user *user; 481 struct key *key; 482 int ret; 483 484 kenter(""); 485 486 if (ctx->index_key.type == &key_type_keyring) 487 return ERR_PTR(-EPERM); 488 489 ret = construct_get_dest_keyring(&dest_keyring); 490 if (ret) 491 goto error; 492 493 user = key_user_lookup(current_fsuid()); 494 if (!user) { 495 ret = -ENOMEM; 496 goto error_put_dest_keyring; 497 } 498 499 ret = construct_alloc_key(ctx, dest_keyring, flags, user, &key); 500 key_user_put(user); 501 502 if (ret == 0) { 503 ret = construct_key(key, callout_info, callout_len, aux, 504 dest_keyring); 505 if (ret < 0) { 506 kdebug("cons failed"); 507 goto construction_failed; 508 } 509 } else if (ret == -EINPROGRESS) { 510 ret = 0; 511 } else { 512 goto error_put_dest_keyring; 513 } 514 515 key_put(dest_keyring); 516 kleave(" = key %d", key_serial(key)); 517 return key; 518 519 construction_failed: 520 key_negate_and_link(key, key_negative_timeout, NULL, NULL); 521 key_put(key); 522 error_put_dest_keyring: 523 key_put(dest_keyring); 524 error: 525 kleave(" = %d", ret); 526 return ERR_PTR(ret); 527 } 528 529 /** 530 * request_key_and_link - Request a key and cache it in a keyring. 531 * @type: The type of key we want. 532 * @description: The searchable description of the key. 533 * @domain_tag: The domain in which the key operates. 534 * @callout_info: The data to pass to the instantiation upcall (or NULL). 535 * @callout_len: The length of callout_info. 536 * @aux: Auxiliary data for the upcall. 537 * @dest_keyring: Where to cache the key. 538 * @flags: Flags to key_alloc(). 539 * 540 * A key matching the specified criteria (type, description, domain_tag) is 541 * searched for in the process's keyrings and returned with its usage count 542 * incremented if found. Otherwise, if callout_info is not NULL, a key will be 543 * allocated and some service (probably in userspace) will be asked to 544 * instantiate it. 545 * 546 * If successfully found or created, the key will be linked to the destination 547 * keyring if one is provided. 548 * 549 * Returns a pointer to the key if successful; -EACCES, -ENOKEY, -EKEYREVOKED 550 * or -EKEYEXPIRED if an inaccessible, negative, revoked or expired key was 551 * found; -ENOKEY if no key was found and no @callout_info was given; -EDQUOT 552 * if insufficient key quota was available to create a new key; or -ENOMEM if 553 * insufficient memory was available. 554 * 555 * If the returned key was created, then it may still be under construction, 556 * and wait_for_key_construction() should be used to wait for that to complete. 557 */ 558 struct key *request_key_and_link(struct key_type *type, 559 const char *description, 560 struct key_tag *domain_tag, 561 const void *callout_info, 562 size_t callout_len, 563 void *aux, 564 struct key *dest_keyring, 565 unsigned long flags) 566 { 567 struct keyring_search_context ctx = { 568 .index_key.type = type, 569 .index_key.domain_tag = domain_tag, 570 .index_key.description = description, 571 .index_key.desc_len = strlen(description), 572 .cred = current_cred(), 573 .match_data.cmp = key_default_cmp, 574 .match_data.raw_data = description, 575 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT, 576 .flags = (KEYRING_SEARCH_DO_STATE_CHECK | 577 KEYRING_SEARCH_SKIP_EXPIRED | 578 KEYRING_SEARCH_RECURSE), 579 }; 580 struct key *key; 581 key_ref_t key_ref; 582 int ret; 583 584 kenter("%s,%s,%p,%zu,%p,%p,%lx", 585 ctx.index_key.type->name, ctx.index_key.description, 586 callout_info, callout_len, aux, dest_keyring, flags); 587 588 if (type->match_preparse) { 589 ret = type->match_preparse(&ctx.match_data); 590 if (ret < 0) { 591 key = ERR_PTR(ret); 592 goto error; 593 } 594 } 595 596 key = check_cached_key(&ctx); 597 if (key) 598 goto error_free; 599 600 /* search all the process keyrings for a key */ 601 rcu_read_lock(); 602 key_ref = search_process_keyrings_rcu(&ctx); 603 rcu_read_unlock(); 604 605 if (!IS_ERR(key_ref)) { 606 if (dest_keyring) { 607 ret = key_task_permission(key_ref, current_cred(), 608 KEY_NEED_LINK); 609 if (ret < 0) { 610 key_ref_put(key_ref); 611 key = ERR_PTR(ret); 612 goto error_free; 613 } 614 } 615 616 key = key_ref_to_ptr(key_ref); 617 if (dest_keyring) { 618 ret = key_link(dest_keyring, key); 619 if (ret < 0) { 620 key_put(key); 621 key = ERR_PTR(ret); 622 goto error_free; 623 } 624 } 625 626 /* Only cache the key on immediate success */ 627 cache_requested_key(key); 628 } else if (PTR_ERR(key_ref) != -EAGAIN) { 629 key = ERR_CAST(key_ref); 630 } else { 631 /* the search failed, but the keyrings were searchable, so we 632 * should consult userspace if we can */ 633 key = ERR_PTR(-ENOKEY); 634 if (!callout_info) 635 goto error_free; 636 637 key = construct_key_and_link(&ctx, callout_info, callout_len, 638 aux, dest_keyring, flags); 639 } 640 641 error_free: 642 if (type->match_free) 643 type->match_free(&ctx.match_data); 644 error: 645 kleave(" = %p", key); 646 return key; 647 } 648 649 /** 650 * wait_for_key_construction - Wait for construction of a key to complete 651 * @key: The key being waited for. 652 * @intr: Whether to wait interruptibly. 653 * 654 * Wait for a key to finish being constructed. 655 * 656 * Returns 0 if successful; -ERESTARTSYS if the wait was interrupted; -ENOKEY 657 * if the key was negated; or -EKEYREVOKED or -EKEYEXPIRED if the key was 658 * revoked or expired. 659 */ 660 int wait_for_key_construction(struct key *key, bool intr) 661 { 662 int ret; 663 664 ret = wait_on_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT, 665 intr ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE); 666 if (ret) 667 return -ERESTARTSYS; 668 ret = key_read_state(key); 669 if (ret < 0) 670 return ret; 671 return key_validate(key); 672 } 673 EXPORT_SYMBOL(wait_for_key_construction); 674 675 /** 676 * request_key_tag - Request a key and wait for construction 677 * @type: Type of key. 678 * @description: The searchable description of the key. 679 * @domain_tag: The domain in which the key operates. 680 * @callout_info: The data to pass to the instantiation upcall (or NULL). 681 * 682 * As for request_key_and_link() except that it does not add the returned key 683 * to a keyring if found, new keys are always allocated in the user's quota, 684 * the callout_info must be a NUL-terminated string and no auxiliary data can 685 * be passed. 686 * 687 * Furthermore, it then works as wait_for_key_construction() to wait for the 688 * completion of keys undergoing construction with a non-interruptible wait. 689 */ 690 struct key *request_key_tag(struct key_type *type, 691 const char *description, 692 struct key_tag *domain_tag, 693 const char *callout_info) 694 { 695 struct key *key; 696 size_t callout_len = 0; 697 int ret; 698 699 if (callout_info) 700 callout_len = strlen(callout_info); 701 key = request_key_and_link(type, description, domain_tag, 702 callout_info, callout_len, 703 NULL, NULL, KEY_ALLOC_IN_QUOTA); 704 if (!IS_ERR(key)) { 705 ret = wait_for_key_construction(key, false); 706 if (ret < 0) { 707 key_put(key); 708 return ERR_PTR(ret); 709 } 710 } 711 return key; 712 } 713 EXPORT_SYMBOL(request_key_tag); 714 715 /** 716 * request_key_with_auxdata - Request a key with auxiliary data for the upcaller 717 * @type: The type of key we want. 718 * @description: The searchable description of the key. 719 * @domain_tag: The domain in which the key operates. 720 * @callout_info: The data to pass to the instantiation upcall (or NULL). 721 * @callout_len: The length of callout_info. 722 * @aux: Auxiliary data for the upcall. 723 * 724 * As for request_key_and_link() except that it does not add the returned key 725 * to a keyring if found and new keys are always allocated in the user's quota. 726 * 727 * Furthermore, it then works as wait_for_key_construction() to wait for the 728 * completion of keys undergoing construction with a non-interruptible wait. 729 */ 730 struct key *request_key_with_auxdata(struct key_type *type, 731 const char *description, 732 struct key_tag *domain_tag, 733 const void *callout_info, 734 size_t callout_len, 735 void *aux) 736 { 737 struct key *key; 738 int ret; 739 740 key = request_key_and_link(type, description, domain_tag, 741 callout_info, callout_len, 742 aux, NULL, KEY_ALLOC_IN_QUOTA); 743 if (!IS_ERR(key)) { 744 ret = wait_for_key_construction(key, false); 745 if (ret < 0) { 746 key_put(key); 747 return ERR_PTR(ret); 748 } 749 } 750 return key; 751 } 752 EXPORT_SYMBOL(request_key_with_auxdata); 753 754 /** 755 * request_key_rcu - Request key from RCU-read-locked context 756 * @type: The type of key we want. 757 * @description: The name of the key we want. 758 * @domain_tag: The domain in which the key operates. 759 * 760 * Request a key from a context that we may not sleep in (such as RCU-mode 761 * pathwalk). Keys under construction are ignored. 762 * 763 * Return a pointer to the found key if successful, -ENOKEY if we couldn't find 764 * a key or some other error if the key found was unsuitable or inaccessible. 765 */ 766 struct key *request_key_rcu(struct key_type *type, 767 const char *description, 768 struct key_tag *domain_tag) 769 { 770 struct keyring_search_context ctx = { 771 .index_key.type = type, 772 .index_key.domain_tag = domain_tag, 773 .index_key.description = description, 774 .index_key.desc_len = strlen(description), 775 .cred = current_cred(), 776 .match_data.cmp = key_default_cmp, 777 .match_data.raw_data = description, 778 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT, 779 .flags = (KEYRING_SEARCH_DO_STATE_CHECK | 780 KEYRING_SEARCH_SKIP_EXPIRED), 781 }; 782 struct key *key; 783 key_ref_t key_ref; 784 785 kenter("%s,%s", type->name, description); 786 787 key = check_cached_key(&ctx); 788 if (key) 789 return key; 790 791 /* search all the process keyrings for a key */ 792 key_ref = search_process_keyrings_rcu(&ctx); 793 if (IS_ERR(key_ref)) { 794 key = ERR_CAST(key_ref); 795 if (PTR_ERR(key_ref) == -EAGAIN) 796 key = ERR_PTR(-ENOKEY); 797 } else { 798 key = key_ref_to_ptr(key_ref); 799 cache_requested_key(key); 800 } 801 802 kleave(" = %p", key); 803 return key; 804 } 805 EXPORT_SYMBOL(request_key_rcu); 806