1 /* Request a key from userspace 2 * 3 * Copyright (C) 2004-2007 Red Hat, Inc. All Rights Reserved. 4 * Written by David Howells (dhowells@redhat.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 * 11 * See Documentation/security/keys/request-key.rst 12 */ 13 14 #include <linux/export.h> 15 #include <linux/sched.h> 16 #include <linux/kmod.h> 17 #include <linux/err.h> 18 #include <linux/keyctl.h> 19 #include <linux/slab.h> 20 #include "internal.h" 21 #include <keys/request_key_auth-type.h> 22 23 #define key_negative_timeout 60 /* default timeout on a negative key's existence */ 24 25 /** 26 * complete_request_key - Complete the construction of a key. 27 * @auth_key: The authorisation key. 28 * @error: The success or failute of the construction. 29 * 30 * Complete the attempt to construct a key. The key will be negated 31 * if an error is indicated. The authorisation key will be revoked 32 * unconditionally. 33 */ 34 void complete_request_key(struct key *authkey, int error) 35 { 36 struct request_key_auth *rka = get_request_key_auth(authkey); 37 struct key *key = rka->target_key; 38 39 kenter("%d{%d},%d", authkey->serial, key->serial, error); 40 41 if (error < 0) 42 key_negate_and_link(key, key_negative_timeout, NULL, authkey); 43 else 44 key_revoke(authkey); 45 } 46 EXPORT_SYMBOL(complete_request_key); 47 48 /* 49 * Initialise a usermode helper that is going to have a specific session 50 * keyring. 51 * 52 * This is called in context of freshly forked kthread before kernel_execve(), 53 * so we can simply install the desired session_keyring at this point. 54 */ 55 static int umh_keys_init(struct subprocess_info *info, struct cred *cred) 56 { 57 struct key *keyring = info->data; 58 59 return install_session_keyring_to_cred(cred, keyring); 60 } 61 62 /* 63 * Clean up a usermode helper with session keyring. 64 */ 65 static void umh_keys_cleanup(struct subprocess_info *info) 66 { 67 struct key *keyring = info->data; 68 key_put(keyring); 69 } 70 71 /* 72 * Call a usermode helper with a specific session keyring. 73 */ 74 static int call_usermodehelper_keys(const char *path, char **argv, char **envp, 75 struct key *session_keyring, int wait) 76 { 77 struct subprocess_info *info; 78 79 info = call_usermodehelper_setup(path, argv, envp, GFP_KERNEL, 80 umh_keys_init, umh_keys_cleanup, 81 session_keyring); 82 if (!info) 83 return -ENOMEM; 84 85 key_get(session_keyring); 86 return call_usermodehelper_exec(info, wait); 87 } 88 89 /* 90 * Request userspace finish the construction of a key 91 * - execute "/sbin/request-key <op> <key> <uid> <gid> <keyring> <keyring> <keyring>" 92 */ 93 static int call_sbin_request_key(struct key *authkey, void *aux) 94 { 95 static char const request_key[] = "/sbin/request-key"; 96 struct request_key_auth *rka = get_request_key_auth(authkey); 97 const struct cred *cred = current_cred(); 98 key_serial_t prkey, sskey; 99 struct key *key = rka->target_key, *keyring, *session; 100 char *argv[9], *envp[3], uid_str[12], gid_str[12]; 101 char key_str[12], keyring_str[3][12]; 102 char desc[20]; 103 int ret, i; 104 105 kenter("{%d},{%d},%s", key->serial, authkey->serial, rka->op); 106 107 ret = install_user_keyrings(); 108 if (ret < 0) 109 goto error_alloc; 110 111 /* allocate a new session keyring */ 112 sprintf(desc, "_req.%u", key->serial); 113 114 cred = get_current_cred(); 115 keyring = keyring_alloc(desc, cred->fsuid, cred->fsgid, cred, 116 KEY_POS_ALL | KEY_USR_VIEW | KEY_USR_READ, 117 KEY_ALLOC_QUOTA_OVERRUN, NULL, NULL); 118 put_cred(cred); 119 if (IS_ERR(keyring)) { 120 ret = PTR_ERR(keyring); 121 goto error_alloc; 122 } 123 124 /* attach the auth key to the session keyring */ 125 ret = key_link(keyring, authkey); 126 if (ret < 0) 127 goto error_link; 128 129 /* record the UID and GID */ 130 sprintf(uid_str, "%d", from_kuid(&init_user_ns, cred->fsuid)); 131 sprintf(gid_str, "%d", from_kgid(&init_user_ns, cred->fsgid)); 132 133 /* we say which key is under construction */ 134 sprintf(key_str, "%d", key->serial); 135 136 /* we specify the process's default keyrings */ 137 sprintf(keyring_str[0], "%d", 138 cred->thread_keyring ? cred->thread_keyring->serial : 0); 139 140 prkey = 0; 141 if (cred->process_keyring) 142 prkey = cred->process_keyring->serial; 143 sprintf(keyring_str[1], "%d", prkey); 144 145 rcu_read_lock(); 146 session = rcu_dereference(cred->session_keyring); 147 if (!session) 148 session = cred->user->session_keyring; 149 sskey = session->serial; 150 rcu_read_unlock(); 151 152 sprintf(keyring_str[2], "%d", sskey); 153 154 /* set up a minimal environment */ 155 i = 0; 156 envp[i++] = "HOME=/"; 157 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; 158 envp[i] = NULL; 159 160 /* set up the argument list */ 161 i = 0; 162 argv[i++] = (char *)request_key; 163 argv[i++] = (char *)rka->op; 164 argv[i++] = key_str; 165 argv[i++] = uid_str; 166 argv[i++] = gid_str; 167 argv[i++] = keyring_str[0]; 168 argv[i++] = keyring_str[1]; 169 argv[i++] = keyring_str[2]; 170 argv[i] = NULL; 171 172 /* do it */ 173 ret = call_usermodehelper_keys(request_key, argv, envp, keyring, 174 UMH_WAIT_PROC); 175 kdebug("usermode -> 0x%x", ret); 176 if (ret >= 0) { 177 /* ret is the exit/wait code */ 178 if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags) || 179 key_validate(key) < 0) 180 ret = -ENOKEY; 181 else 182 /* ignore any errors from userspace if the key was 183 * instantiated */ 184 ret = 0; 185 } 186 187 error_link: 188 key_put(keyring); 189 190 error_alloc: 191 complete_request_key(authkey, ret); 192 kleave(" = %d", ret); 193 return ret; 194 } 195 196 /* 197 * Call out to userspace for key construction. 198 * 199 * Program failure is ignored in favour of key status. 200 */ 201 static int construct_key(struct key *key, const void *callout_info, 202 size_t callout_len, void *aux, 203 struct key *dest_keyring) 204 { 205 request_key_actor_t actor; 206 struct key *authkey; 207 int ret; 208 209 kenter("%d,%p,%zu,%p", key->serial, callout_info, callout_len, aux); 210 211 /* allocate an authorisation key */ 212 authkey = request_key_auth_new(key, "create", callout_info, callout_len, 213 dest_keyring); 214 if (IS_ERR(authkey)) 215 return PTR_ERR(authkey); 216 217 /* Make the call */ 218 actor = call_sbin_request_key; 219 if (key->type->request_key) 220 actor = key->type->request_key; 221 222 ret = actor(authkey, aux); 223 224 /* check that the actor called complete_request_key() prior to 225 * returning an error */ 226 WARN_ON(ret < 0 && 227 !test_bit(KEY_FLAG_REVOKED, &authkey->flags)); 228 229 key_put(authkey); 230 kleave(" = %d", ret); 231 return ret; 232 } 233 234 /* 235 * Get the appropriate destination keyring for the request. 236 * 237 * The keyring selected is returned with an extra reference upon it which the 238 * caller must release. 239 */ 240 static int construct_get_dest_keyring(struct key **_dest_keyring) 241 { 242 struct request_key_auth *rka; 243 const struct cred *cred = current_cred(); 244 struct key *dest_keyring = *_dest_keyring, *authkey; 245 int ret; 246 247 kenter("%p", dest_keyring); 248 249 /* find the appropriate keyring */ 250 if (dest_keyring) { 251 /* the caller supplied one */ 252 key_get(dest_keyring); 253 } else { 254 bool do_perm_check = true; 255 256 /* use a default keyring; falling through the cases until we 257 * find one that we actually have */ 258 switch (cred->jit_keyring) { 259 case KEY_REQKEY_DEFL_DEFAULT: 260 case KEY_REQKEY_DEFL_REQUESTOR_KEYRING: 261 if (cred->request_key_auth) { 262 authkey = cred->request_key_auth; 263 down_read(&authkey->sem); 264 rka = get_request_key_auth(authkey); 265 if (!test_bit(KEY_FLAG_REVOKED, 266 &authkey->flags)) 267 dest_keyring = 268 key_get(rka->dest_keyring); 269 up_read(&authkey->sem); 270 if (dest_keyring) { 271 do_perm_check = false; 272 break; 273 } 274 } 275 276 /* fall through */ 277 case KEY_REQKEY_DEFL_THREAD_KEYRING: 278 dest_keyring = key_get(cred->thread_keyring); 279 if (dest_keyring) 280 break; 281 282 /* fall through */ 283 case KEY_REQKEY_DEFL_PROCESS_KEYRING: 284 dest_keyring = key_get(cred->process_keyring); 285 if (dest_keyring) 286 break; 287 288 /* fall through */ 289 case KEY_REQKEY_DEFL_SESSION_KEYRING: 290 rcu_read_lock(); 291 dest_keyring = key_get( 292 rcu_dereference(cred->session_keyring)); 293 rcu_read_unlock(); 294 295 if (dest_keyring) 296 break; 297 298 /* fall through */ 299 case KEY_REQKEY_DEFL_USER_SESSION_KEYRING: 300 dest_keyring = 301 key_get(cred->user->session_keyring); 302 break; 303 304 case KEY_REQKEY_DEFL_USER_KEYRING: 305 dest_keyring = key_get(cred->user->uid_keyring); 306 break; 307 308 case KEY_REQKEY_DEFL_GROUP_KEYRING: 309 default: 310 BUG(); 311 } 312 313 /* 314 * Require Write permission on the keyring. This is essential 315 * because the default keyring may be the session keyring, and 316 * joining a keyring only requires Search permission. 317 * 318 * However, this check is skipped for the "requestor keyring" so 319 * that /sbin/request-key can itself use request_key() to add 320 * keys to the original requestor's destination keyring. 321 */ 322 if (dest_keyring && do_perm_check) { 323 ret = key_permission(make_key_ref(dest_keyring, 1), 324 KEY_NEED_WRITE); 325 if (ret) { 326 key_put(dest_keyring); 327 return ret; 328 } 329 } 330 } 331 332 *_dest_keyring = dest_keyring; 333 kleave(" [dk %d]", key_serial(dest_keyring)); 334 return 0; 335 } 336 337 /* 338 * Allocate a new key in under-construction state and attempt to link it in to 339 * the requested keyring. 340 * 341 * May return a key that's already under construction instead if there was a 342 * race between two thread calling request_key(). 343 */ 344 static int construct_alloc_key(struct keyring_search_context *ctx, 345 struct key *dest_keyring, 346 unsigned long flags, 347 struct key_user *user, 348 struct key **_key) 349 { 350 struct assoc_array_edit *edit; 351 struct key *key; 352 key_perm_t perm; 353 key_ref_t key_ref; 354 int ret; 355 356 kenter("%s,%s,,,", 357 ctx->index_key.type->name, ctx->index_key.description); 358 359 *_key = NULL; 360 mutex_lock(&user->cons_lock); 361 362 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR; 363 perm |= KEY_USR_VIEW; 364 if (ctx->index_key.type->read) 365 perm |= KEY_POS_READ; 366 if (ctx->index_key.type == &key_type_keyring || 367 ctx->index_key.type->update) 368 perm |= KEY_POS_WRITE; 369 370 key = key_alloc(ctx->index_key.type, ctx->index_key.description, 371 ctx->cred->fsuid, ctx->cred->fsgid, ctx->cred, 372 perm, flags, NULL); 373 if (IS_ERR(key)) 374 goto alloc_failed; 375 376 set_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags); 377 378 if (dest_keyring) { 379 ret = __key_link_begin(dest_keyring, &ctx->index_key, &edit); 380 if (ret < 0) 381 goto link_prealloc_failed; 382 } 383 384 /* attach the key to the destination keyring under lock, but we do need 385 * to do another check just in case someone beat us to it whilst we 386 * waited for locks */ 387 mutex_lock(&key_construction_mutex); 388 389 key_ref = search_process_keyrings(ctx); 390 if (!IS_ERR(key_ref)) 391 goto key_already_present; 392 393 if (dest_keyring) 394 __key_link(key, &edit); 395 396 mutex_unlock(&key_construction_mutex); 397 if (dest_keyring) 398 __key_link_end(dest_keyring, &ctx->index_key, edit); 399 mutex_unlock(&user->cons_lock); 400 *_key = key; 401 kleave(" = 0 [%d]", key_serial(key)); 402 return 0; 403 404 /* the key is now present - we tell the caller that we found it by 405 * returning -EINPROGRESS */ 406 key_already_present: 407 key_put(key); 408 mutex_unlock(&key_construction_mutex); 409 key = key_ref_to_ptr(key_ref); 410 if (dest_keyring) { 411 ret = __key_link_check_live_key(dest_keyring, key); 412 if (ret == 0) 413 __key_link(key, &edit); 414 __key_link_end(dest_keyring, &ctx->index_key, edit); 415 if (ret < 0) 416 goto link_check_failed; 417 } 418 mutex_unlock(&user->cons_lock); 419 *_key = key; 420 kleave(" = -EINPROGRESS [%d]", key_serial(key)); 421 return -EINPROGRESS; 422 423 link_check_failed: 424 mutex_unlock(&user->cons_lock); 425 key_put(key); 426 kleave(" = %d [linkcheck]", ret); 427 return ret; 428 429 link_prealloc_failed: 430 mutex_unlock(&user->cons_lock); 431 key_put(key); 432 kleave(" = %d [prelink]", ret); 433 return ret; 434 435 alloc_failed: 436 mutex_unlock(&user->cons_lock); 437 kleave(" = %ld", PTR_ERR(key)); 438 return PTR_ERR(key); 439 } 440 441 /* 442 * Commence key construction. 443 */ 444 static struct key *construct_key_and_link(struct keyring_search_context *ctx, 445 const char *callout_info, 446 size_t callout_len, 447 void *aux, 448 struct key *dest_keyring, 449 unsigned long flags) 450 { 451 struct key_user *user; 452 struct key *key; 453 int ret; 454 455 kenter(""); 456 457 if (ctx->index_key.type == &key_type_keyring) 458 return ERR_PTR(-EPERM); 459 460 ret = construct_get_dest_keyring(&dest_keyring); 461 if (ret) 462 goto error; 463 464 user = key_user_lookup(current_fsuid()); 465 if (!user) { 466 ret = -ENOMEM; 467 goto error_put_dest_keyring; 468 } 469 470 ret = construct_alloc_key(ctx, dest_keyring, flags, user, &key); 471 key_user_put(user); 472 473 if (ret == 0) { 474 ret = construct_key(key, callout_info, callout_len, aux, 475 dest_keyring); 476 if (ret < 0) { 477 kdebug("cons failed"); 478 goto construction_failed; 479 } 480 } else if (ret == -EINPROGRESS) { 481 ret = 0; 482 } else { 483 goto error_put_dest_keyring; 484 } 485 486 key_put(dest_keyring); 487 kleave(" = key %d", key_serial(key)); 488 return key; 489 490 construction_failed: 491 key_negate_and_link(key, key_negative_timeout, NULL, NULL); 492 key_put(key); 493 error_put_dest_keyring: 494 key_put(dest_keyring); 495 error: 496 kleave(" = %d", ret); 497 return ERR_PTR(ret); 498 } 499 500 /** 501 * request_key_and_link - Request a key and cache it in a keyring. 502 * @type: The type of key we want. 503 * @description: The searchable description of the key. 504 * @callout_info: The data to pass to the instantiation upcall (or NULL). 505 * @callout_len: The length of callout_info. 506 * @aux: Auxiliary data for the upcall. 507 * @dest_keyring: Where to cache the key. 508 * @flags: Flags to key_alloc(). 509 * 510 * A key matching the specified criteria is searched for in the process's 511 * keyrings and returned with its usage count incremented if found. Otherwise, 512 * if callout_info is not NULL, a key will be allocated and some service 513 * (probably in userspace) will be asked to instantiate it. 514 * 515 * If successfully found or created, the key will be linked to the destination 516 * keyring if one is provided. 517 * 518 * Returns a pointer to the key if successful; -EACCES, -ENOKEY, -EKEYREVOKED 519 * or -EKEYEXPIRED if an inaccessible, negative, revoked or expired key was 520 * found; -ENOKEY if no key was found and no @callout_info was given; -EDQUOT 521 * if insufficient key quota was available to create a new key; or -ENOMEM if 522 * insufficient memory was available. 523 * 524 * If the returned key was created, then it may still be under construction, 525 * and wait_for_key_construction() should be used to wait for that to complete. 526 */ 527 struct key *request_key_and_link(struct key_type *type, 528 const char *description, 529 const void *callout_info, 530 size_t callout_len, 531 void *aux, 532 struct key *dest_keyring, 533 unsigned long flags) 534 { 535 struct keyring_search_context ctx = { 536 .index_key.type = type, 537 .index_key.description = description, 538 .index_key.desc_len = strlen(description), 539 .cred = current_cred(), 540 .match_data.cmp = key_default_cmp, 541 .match_data.raw_data = description, 542 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT, 543 .flags = (KEYRING_SEARCH_DO_STATE_CHECK | 544 KEYRING_SEARCH_SKIP_EXPIRED), 545 }; 546 struct key *key; 547 key_ref_t key_ref; 548 int ret; 549 550 kenter("%s,%s,%p,%zu,%p,%p,%lx", 551 ctx.index_key.type->name, ctx.index_key.description, 552 callout_info, callout_len, aux, dest_keyring, flags); 553 554 if (type->match_preparse) { 555 ret = type->match_preparse(&ctx.match_data); 556 if (ret < 0) { 557 key = ERR_PTR(ret); 558 goto error; 559 } 560 } 561 562 /* search all the process keyrings for a key */ 563 key_ref = search_process_keyrings(&ctx); 564 565 if (!IS_ERR(key_ref)) { 566 key = key_ref_to_ptr(key_ref); 567 if (dest_keyring) { 568 ret = key_link(dest_keyring, key); 569 if (ret < 0) { 570 key_put(key); 571 key = ERR_PTR(ret); 572 goto error_free; 573 } 574 } 575 } else if (PTR_ERR(key_ref) != -EAGAIN) { 576 key = ERR_CAST(key_ref); 577 } else { 578 /* the search failed, but the keyrings were searchable, so we 579 * should consult userspace if we can */ 580 key = ERR_PTR(-ENOKEY); 581 if (!callout_info) 582 goto error_free; 583 584 key = construct_key_and_link(&ctx, callout_info, callout_len, 585 aux, dest_keyring, flags); 586 } 587 588 error_free: 589 if (type->match_free) 590 type->match_free(&ctx.match_data); 591 error: 592 kleave(" = %p", key); 593 return key; 594 } 595 596 /** 597 * wait_for_key_construction - Wait for construction of a key to complete 598 * @key: The key being waited for. 599 * @intr: Whether to wait interruptibly. 600 * 601 * Wait for a key to finish being constructed. 602 * 603 * Returns 0 if successful; -ERESTARTSYS if the wait was interrupted; -ENOKEY 604 * if the key was negated; or -EKEYREVOKED or -EKEYEXPIRED if the key was 605 * revoked or expired. 606 */ 607 int wait_for_key_construction(struct key *key, bool intr) 608 { 609 int ret; 610 611 ret = wait_on_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT, 612 intr ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE); 613 if (ret) 614 return -ERESTARTSYS; 615 ret = key_read_state(key); 616 if (ret < 0) 617 return ret; 618 return key_validate(key); 619 } 620 EXPORT_SYMBOL(wait_for_key_construction); 621 622 /** 623 * request_key - Request a key and wait for construction 624 * @type: Type of key. 625 * @description: The searchable description of the key. 626 * @callout_info: The data to pass to the instantiation upcall (or NULL). 627 * 628 * As for request_key_and_link() except that it does not add the returned key 629 * to a keyring if found, new keys are always allocated in the user's quota, 630 * the callout_info must be a NUL-terminated string and no auxiliary data can 631 * be passed. 632 * 633 * Furthermore, it then works as wait_for_key_construction() to wait for the 634 * completion of keys undergoing construction with a non-interruptible wait. 635 */ 636 struct key *request_key(struct key_type *type, 637 const char *description, 638 const char *callout_info) 639 { 640 struct key *key; 641 size_t callout_len = 0; 642 int ret; 643 644 if (callout_info) 645 callout_len = strlen(callout_info); 646 key = request_key_and_link(type, description, callout_info, callout_len, 647 NULL, NULL, KEY_ALLOC_IN_QUOTA); 648 if (!IS_ERR(key)) { 649 ret = wait_for_key_construction(key, false); 650 if (ret < 0) { 651 key_put(key); 652 return ERR_PTR(ret); 653 } 654 } 655 return key; 656 } 657 EXPORT_SYMBOL(request_key); 658 659 /** 660 * request_key_with_auxdata - Request a key with auxiliary data for the upcaller 661 * @type: The type of key we want. 662 * @description: The searchable description of the key. 663 * @callout_info: The data to pass to the instantiation upcall (or NULL). 664 * @callout_len: The length of callout_info. 665 * @aux: Auxiliary data for the upcall. 666 * 667 * As for request_key_and_link() except that it does not add the returned key 668 * to a keyring if found and new keys are always allocated in the user's quota. 669 * 670 * Furthermore, it then works as wait_for_key_construction() to wait for the 671 * completion of keys undergoing construction with a non-interruptible wait. 672 */ 673 struct key *request_key_with_auxdata(struct key_type *type, 674 const char *description, 675 const void *callout_info, 676 size_t callout_len, 677 void *aux) 678 { 679 struct key *key; 680 int ret; 681 682 key = request_key_and_link(type, description, callout_info, callout_len, 683 aux, NULL, KEY_ALLOC_IN_QUOTA); 684 if (!IS_ERR(key)) { 685 ret = wait_for_key_construction(key, false); 686 if (ret < 0) { 687 key_put(key); 688 return ERR_PTR(ret); 689 } 690 } 691 return key; 692 } 693 EXPORT_SYMBOL(request_key_with_auxdata); 694 695 /* 696 * request_key_async - Request a key (allow async construction) 697 * @type: Type of key. 698 * @description: The searchable description of the key. 699 * @callout_info: The data to pass to the instantiation upcall (or NULL). 700 * @callout_len: The length of callout_info. 701 * 702 * As for request_key_and_link() except that it does not add the returned key 703 * to a keyring if found, new keys are always allocated in the user's quota and 704 * no auxiliary data can be passed. 705 * 706 * The caller should call wait_for_key_construction() to wait for the 707 * completion of the returned key if it is still undergoing construction. 708 */ 709 struct key *request_key_async(struct key_type *type, 710 const char *description, 711 const void *callout_info, 712 size_t callout_len) 713 { 714 return request_key_and_link(type, description, callout_info, 715 callout_len, NULL, NULL, 716 KEY_ALLOC_IN_QUOTA); 717 } 718 EXPORT_SYMBOL(request_key_async); 719 720 /* 721 * request a key with auxiliary data for the upcaller (allow async construction) 722 * @type: Type of key. 723 * @description: The searchable description of the key. 724 * @callout_info: The data to pass to the instantiation upcall (or NULL). 725 * @callout_len: The length of callout_info. 726 * @aux: Auxiliary data for the upcall. 727 * 728 * As for request_key_and_link() except that it does not add the returned key 729 * to a keyring if found and new keys are always allocated in the user's quota. 730 * 731 * The caller should call wait_for_key_construction() to wait for the 732 * completion of the returned key if it is still undergoing construction. 733 */ 734 struct key *request_key_async_with_auxdata(struct key_type *type, 735 const char *description, 736 const void *callout_info, 737 size_t callout_len, 738 void *aux) 739 { 740 return request_key_and_link(type, description, callout_info, 741 callout_len, aux, NULL, KEY_ALLOC_IN_QUOTA); 742 } 743 EXPORT_SYMBOL(request_key_async_with_auxdata); 744