xref: /openbmc/linux/security/keys/request_key.c (revision b7019ac5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Request a key from userspace
3  *
4  * Copyright (C) 2004-2007 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  *
7  * See Documentation/security/keys/request-key.rst
8  */
9 
10 #include <linux/export.h>
11 #include <linux/sched.h>
12 #include <linux/kmod.h>
13 #include <linux/err.h>
14 #include <linux/keyctl.h>
15 #include <linux/slab.h>
16 #include "internal.h"
17 #include <keys/request_key_auth-type.h>
18 
19 #define key_negative_timeout	60	/* default timeout on a negative key's existence */
20 
21 /**
22  * complete_request_key - Complete the construction of a key.
23  * @auth_key: The authorisation key.
24  * @error: The success or failute of the construction.
25  *
26  * Complete the attempt to construct a key.  The key will be negated
27  * if an error is indicated.  The authorisation key will be revoked
28  * unconditionally.
29  */
30 void complete_request_key(struct key *authkey, int error)
31 {
32 	struct request_key_auth *rka = get_request_key_auth(authkey);
33 	struct key *key = rka->target_key;
34 
35 	kenter("%d{%d},%d", authkey->serial, key->serial, error);
36 
37 	if (error < 0)
38 		key_negate_and_link(key, key_negative_timeout, NULL, authkey);
39 	else
40 		key_revoke(authkey);
41 }
42 EXPORT_SYMBOL(complete_request_key);
43 
44 /*
45  * Initialise a usermode helper that is going to have a specific session
46  * keyring.
47  *
48  * This is called in context of freshly forked kthread before kernel_execve(),
49  * so we can simply install the desired session_keyring at this point.
50  */
51 static int umh_keys_init(struct subprocess_info *info, struct cred *cred)
52 {
53 	struct key *keyring = info->data;
54 
55 	return install_session_keyring_to_cred(cred, keyring);
56 }
57 
58 /*
59  * Clean up a usermode helper with session keyring.
60  */
61 static void umh_keys_cleanup(struct subprocess_info *info)
62 {
63 	struct key *keyring = info->data;
64 	key_put(keyring);
65 }
66 
67 /*
68  * Call a usermode helper with a specific session keyring.
69  */
70 static int call_usermodehelper_keys(const char *path, char **argv, char **envp,
71 					struct key *session_keyring, int wait)
72 {
73 	struct subprocess_info *info;
74 
75 	info = call_usermodehelper_setup(path, argv, envp, GFP_KERNEL,
76 					  umh_keys_init, umh_keys_cleanup,
77 					  session_keyring);
78 	if (!info)
79 		return -ENOMEM;
80 
81 	key_get(session_keyring);
82 	return call_usermodehelper_exec(info, wait);
83 }
84 
85 /*
86  * Request userspace finish the construction of a key
87  * - execute "/sbin/request-key <op> <key> <uid> <gid> <keyring> <keyring> <keyring>"
88  */
89 static int call_sbin_request_key(struct key *authkey, void *aux)
90 {
91 	static char const request_key[] = "/sbin/request-key";
92 	struct request_key_auth *rka = get_request_key_auth(authkey);
93 	const struct cred *cred = current_cred();
94 	key_serial_t prkey, sskey;
95 	struct key *key = rka->target_key, *keyring, *session;
96 	char *argv[9], *envp[3], uid_str[12], gid_str[12];
97 	char key_str[12], keyring_str[3][12];
98 	char desc[20];
99 	int ret, i;
100 
101 	kenter("{%d},{%d},%s", key->serial, authkey->serial, rka->op);
102 
103 	ret = install_user_keyrings();
104 	if (ret < 0)
105 		goto error_alloc;
106 
107 	/* allocate a new session keyring */
108 	sprintf(desc, "_req.%u", key->serial);
109 
110 	cred = get_current_cred();
111 	keyring = keyring_alloc(desc, cred->fsuid, cred->fsgid, cred,
112 				KEY_POS_ALL | KEY_USR_VIEW | KEY_USR_READ,
113 				KEY_ALLOC_QUOTA_OVERRUN, NULL, NULL);
114 	put_cred(cred);
115 	if (IS_ERR(keyring)) {
116 		ret = PTR_ERR(keyring);
117 		goto error_alloc;
118 	}
119 
120 	/* attach the auth key to the session keyring */
121 	ret = key_link(keyring, authkey);
122 	if (ret < 0)
123 		goto error_link;
124 
125 	/* record the UID and GID */
126 	sprintf(uid_str, "%d", from_kuid(&init_user_ns, cred->fsuid));
127 	sprintf(gid_str, "%d", from_kgid(&init_user_ns, cred->fsgid));
128 
129 	/* we say which key is under construction */
130 	sprintf(key_str, "%d", key->serial);
131 
132 	/* we specify the process's default keyrings */
133 	sprintf(keyring_str[0], "%d",
134 		cred->thread_keyring ? cred->thread_keyring->serial : 0);
135 
136 	prkey = 0;
137 	if (cred->process_keyring)
138 		prkey = cred->process_keyring->serial;
139 	sprintf(keyring_str[1], "%d", prkey);
140 
141 	session = cred->session_keyring;
142 	if (!session)
143 		session = cred->user->session_keyring;
144 	sskey = session->serial;
145 
146 	sprintf(keyring_str[2], "%d", sskey);
147 
148 	/* set up a minimal environment */
149 	i = 0;
150 	envp[i++] = "HOME=/";
151 	envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
152 	envp[i] = NULL;
153 
154 	/* set up the argument list */
155 	i = 0;
156 	argv[i++] = (char *)request_key;
157 	argv[i++] = (char *)rka->op;
158 	argv[i++] = key_str;
159 	argv[i++] = uid_str;
160 	argv[i++] = gid_str;
161 	argv[i++] = keyring_str[0];
162 	argv[i++] = keyring_str[1];
163 	argv[i++] = keyring_str[2];
164 	argv[i] = NULL;
165 
166 	/* do it */
167 	ret = call_usermodehelper_keys(request_key, argv, envp, keyring,
168 				       UMH_WAIT_PROC);
169 	kdebug("usermode -> 0x%x", ret);
170 	if (ret >= 0) {
171 		/* ret is the exit/wait code */
172 		if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags) ||
173 		    key_validate(key) < 0)
174 			ret = -ENOKEY;
175 		else
176 			/* ignore any errors from userspace if the key was
177 			 * instantiated */
178 			ret = 0;
179 	}
180 
181 error_link:
182 	key_put(keyring);
183 
184 error_alloc:
185 	complete_request_key(authkey, ret);
186 	kleave(" = %d", ret);
187 	return ret;
188 }
189 
190 /*
191  * Call out to userspace for key construction.
192  *
193  * Program failure is ignored in favour of key status.
194  */
195 static int construct_key(struct key *key, const void *callout_info,
196 			 size_t callout_len, void *aux,
197 			 struct key *dest_keyring)
198 {
199 	request_key_actor_t actor;
200 	struct key *authkey;
201 	int ret;
202 
203 	kenter("%d,%p,%zu,%p", key->serial, callout_info, callout_len, aux);
204 
205 	/* allocate an authorisation key */
206 	authkey = request_key_auth_new(key, "create", callout_info, callout_len,
207 				       dest_keyring);
208 	if (IS_ERR(authkey))
209 		return PTR_ERR(authkey);
210 
211 	/* Make the call */
212 	actor = call_sbin_request_key;
213 	if (key->type->request_key)
214 		actor = key->type->request_key;
215 
216 	ret = actor(authkey, aux);
217 
218 	/* check that the actor called complete_request_key() prior to
219 	 * returning an error */
220 	WARN_ON(ret < 0 &&
221 		!test_bit(KEY_FLAG_REVOKED, &authkey->flags));
222 
223 	key_put(authkey);
224 	kleave(" = %d", ret);
225 	return ret;
226 }
227 
228 /*
229  * Get the appropriate destination keyring for the request.
230  *
231  * The keyring selected is returned with an extra reference upon it which the
232  * caller must release.
233  */
234 static int construct_get_dest_keyring(struct key **_dest_keyring)
235 {
236 	struct request_key_auth *rka;
237 	const struct cred *cred = current_cred();
238 	struct key *dest_keyring = *_dest_keyring, *authkey;
239 	int ret;
240 
241 	kenter("%p", dest_keyring);
242 
243 	/* find the appropriate keyring */
244 	if (dest_keyring) {
245 		/* the caller supplied one */
246 		key_get(dest_keyring);
247 	} else {
248 		bool do_perm_check = true;
249 
250 		/* use a default keyring; falling through the cases until we
251 		 * find one that we actually have */
252 		switch (cred->jit_keyring) {
253 		case KEY_REQKEY_DEFL_DEFAULT:
254 		case KEY_REQKEY_DEFL_REQUESTOR_KEYRING:
255 			if (cred->request_key_auth) {
256 				authkey = cred->request_key_auth;
257 				down_read(&authkey->sem);
258 				rka = get_request_key_auth(authkey);
259 				if (!test_bit(KEY_FLAG_REVOKED,
260 					      &authkey->flags))
261 					dest_keyring =
262 						key_get(rka->dest_keyring);
263 				up_read(&authkey->sem);
264 				if (dest_keyring) {
265 					do_perm_check = false;
266 					break;
267 				}
268 			}
269 
270 			/* fall through */
271 		case KEY_REQKEY_DEFL_THREAD_KEYRING:
272 			dest_keyring = key_get(cred->thread_keyring);
273 			if (dest_keyring)
274 				break;
275 
276 			/* fall through */
277 		case KEY_REQKEY_DEFL_PROCESS_KEYRING:
278 			dest_keyring = key_get(cred->process_keyring);
279 			if (dest_keyring)
280 				break;
281 
282 			/* fall through */
283 		case KEY_REQKEY_DEFL_SESSION_KEYRING:
284 			dest_keyring = key_get(cred->session_keyring);
285 
286 			if (dest_keyring)
287 				break;
288 
289 			/* fall through */
290 		case KEY_REQKEY_DEFL_USER_SESSION_KEYRING:
291 			dest_keyring =
292 				key_get(READ_ONCE(cred->user->session_keyring));
293 			break;
294 
295 		case KEY_REQKEY_DEFL_USER_KEYRING:
296 			dest_keyring =
297 				key_get(READ_ONCE(cred->user->uid_keyring));
298 			break;
299 
300 		case KEY_REQKEY_DEFL_GROUP_KEYRING:
301 		default:
302 			BUG();
303 		}
304 
305 		/*
306 		 * Require Write permission on the keyring.  This is essential
307 		 * because the default keyring may be the session keyring, and
308 		 * joining a keyring only requires Search permission.
309 		 *
310 		 * However, this check is skipped for the "requestor keyring" so
311 		 * that /sbin/request-key can itself use request_key() to add
312 		 * keys to the original requestor's destination keyring.
313 		 */
314 		if (dest_keyring && do_perm_check) {
315 			ret = key_permission(make_key_ref(dest_keyring, 1),
316 					     KEY_NEED_WRITE);
317 			if (ret) {
318 				key_put(dest_keyring);
319 				return ret;
320 			}
321 		}
322 	}
323 
324 	*_dest_keyring = dest_keyring;
325 	kleave(" [dk %d]", key_serial(dest_keyring));
326 	return 0;
327 }
328 
329 /*
330  * Allocate a new key in under-construction state and attempt to link it in to
331  * the requested keyring.
332  *
333  * May return a key that's already under construction instead if there was a
334  * race between two thread calling request_key().
335  */
336 static int construct_alloc_key(struct keyring_search_context *ctx,
337 			       struct key *dest_keyring,
338 			       unsigned long flags,
339 			       struct key_user *user,
340 			       struct key **_key)
341 {
342 	struct assoc_array_edit *edit;
343 	struct key *key;
344 	key_perm_t perm;
345 	key_ref_t key_ref;
346 	int ret;
347 
348 	kenter("%s,%s,,,",
349 	       ctx->index_key.type->name, ctx->index_key.description);
350 
351 	*_key = NULL;
352 	mutex_lock(&user->cons_lock);
353 
354 	perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
355 	perm |= KEY_USR_VIEW;
356 	if (ctx->index_key.type->read)
357 		perm |= KEY_POS_READ;
358 	if (ctx->index_key.type == &key_type_keyring ||
359 	    ctx->index_key.type->update)
360 		perm |= KEY_POS_WRITE;
361 
362 	key = key_alloc(ctx->index_key.type, ctx->index_key.description,
363 			ctx->cred->fsuid, ctx->cred->fsgid, ctx->cred,
364 			perm, flags, NULL);
365 	if (IS_ERR(key))
366 		goto alloc_failed;
367 
368 	set_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags);
369 
370 	if (dest_keyring) {
371 		ret = __key_link_begin(dest_keyring, &ctx->index_key, &edit);
372 		if (ret < 0)
373 			goto link_prealloc_failed;
374 	}
375 
376 	/* attach the key to the destination keyring under lock, but we do need
377 	 * to do another check just in case someone beat us to it whilst we
378 	 * waited for locks */
379 	mutex_lock(&key_construction_mutex);
380 
381 	key_ref = search_process_keyrings(ctx);
382 	if (!IS_ERR(key_ref))
383 		goto key_already_present;
384 
385 	if (dest_keyring)
386 		__key_link(key, &edit);
387 
388 	mutex_unlock(&key_construction_mutex);
389 	if (dest_keyring)
390 		__key_link_end(dest_keyring, &ctx->index_key, edit);
391 	mutex_unlock(&user->cons_lock);
392 	*_key = key;
393 	kleave(" = 0 [%d]", key_serial(key));
394 	return 0;
395 
396 	/* the key is now present - we tell the caller that we found it by
397 	 * returning -EINPROGRESS  */
398 key_already_present:
399 	key_put(key);
400 	mutex_unlock(&key_construction_mutex);
401 	key = key_ref_to_ptr(key_ref);
402 	if (dest_keyring) {
403 		ret = __key_link_check_live_key(dest_keyring, key);
404 		if (ret == 0)
405 			__key_link(key, &edit);
406 		__key_link_end(dest_keyring, &ctx->index_key, edit);
407 		if (ret < 0)
408 			goto link_check_failed;
409 	}
410 	mutex_unlock(&user->cons_lock);
411 	*_key = key;
412 	kleave(" = -EINPROGRESS [%d]", key_serial(key));
413 	return -EINPROGRESS;
414 
415 link_check_failed:
416 	mutex_unlock(&user->cons_lock);
417 	key_put(key);
418 	kleave(" = %d [linkcheck]", ret);
419 	return ret;
420 
421 link_prealloc_failed:
422 	mutex_unlock(&user->cons_lock);
423 	key_put(key);
424 	kleave(" = %d [prelink]", ret);
425 	return ret;
426 
427 alloc_failed:
428 	mutex_unlock(&user->cons_lock);
429 	kleave(" = %ld", PTR_ERR(key));
430 	return PTR_ERR(key);
431 }
432 
433 /*
434  * Commence key construction.
435  */
436 static struct key *construct_key_and_link(struct keyring_search_context *ctx,
437 					  const char *callout_info,
438 					  size_t callout_len,
439 					  void *aux,
440 					  struct key *dest_keyring,
441 					  unsigned long flags)
442 {
443 	struct key_user *user;
444 	struct key *key;
445 	int ret;
446 
447 	kenter("");
448 
449 	if (ctx->index_key.type == &key_type_keyring)
450 		return ERR_PTR(-EPERM);
451 
452 	ret = construct_get_dest_keyring(&dest_keyring);
453 	if (ret)
454 		goto error;
455 
456 	user = key_user_lookup(current_fsuid());
457 	if (!user) {
458 		ret = -ENOMEM;
459 		goto error_put_dest_keyring;
460 	}
461 
462 	ret = construct_alloc_key(ctx, dest_keyring, flags, user, &key);
463 	key_user_put(user);
464 
465 	if (ret == 0) {
466 		ret = construct_key(key, callout_info, callout_len, aux,
467 				    dest_keyring);
468 		if (ret < 0) {
469 			kdebug("cons failed");
470 			goto construction_failed;
471 		}
472 	} else if (ret == -EINPROGRESS) {
473 		ret = 0;
474 	} else {
475 		goto error_put_dest_keyring;
476 	}
477 
478 	key_put(dest_keyring);
479 	kleave(" = key %d", key_serial(key));
480 	return key;
481 
482 construction_failed:
483 	key_negate_and_link(key, key_negative_timeout, NULL, NULL);
484 	key_put(key);
485 error_put_dest_keyring:
486 	key_put(dest_keyring);
487 error:
488 	kleave(" = %d", ret);
489 	return ERR_PTR(ret);
490 }
491 
492 /**
493  * request_key_and_link - Request a key and cache it in a keyring.
494  * @type: The type of key we want.
495  * @description: The searchable description of the key.
496  * @callout_info: The data to pass to the instantiation upcall (or NULL).
497  * @callout_len: The length of callout_info.
498  * @aux: Auxiliary data for the upcall.
499  * @dest_keyring: Where to cache the key.
500  * @flags: Flags to key_alloc().
501  *
502  * A key matching the specified criteria is searched for in the process's
503  * keyrings and returned with its usage count incremented if found.  Otherwise,
504  * if callout_info is not NULL, a key will be allocated and some service
505  * (probably in userspace) will be asked to instantiate it.
506  *
507  * If successfully found or created, the key will be linked to the destination
508  * keyring if one is provided.
509  *
510  * Returns a pointer to the key if successful; -EACCES, -ENOKEY, -EKEYREVOKED
511  * or -EKEYEXPIRED if an inaccessible, negative, revoked or expired key was
512  * found; -ENOKEY if no key was found and no @callout_info was given; -EDQUOT
513  * if insufficient key quota was available to create a new key; or -ENOMEM if
514  * insufficient memory was available.
515  *
516  * If the returned key was created, then it may still be under construction,
517  * and wait_for_key_construction() should be used to wait for that to complete.
518  */
519 struct key *request_key_and_link(struct key_type *type,
520 				 const char *description,
521 				 const void *callout_info,
522 				 size_t callout_len,
523 				 void *aux,
524 				 struct key *dest_keyring,
525 				 unsigned long flags)
526 {
527 	struct keyring_search_context ctx = {
528 		.index_key.type		= type,
529 		.index_key.description	= description,
530 		.index_key.desc_len	= strlen(description),
531 		.cred			= current_cred(),
532 		.match_data.cmp		= key_default_cmp,
533 		.match_data.raw_data	= description,
534 		.match_data.lookup_type	= KEYRING_SEARCH_LOOKUP_DIRECT,
535 		.flags			= (KEYRING_SEARCH_DO_STATE_CHECK |
536 					   KEYRING_SEARCH_SKIP_EXPIRED),
537 	};
538 	struct key *key;
539 	key_ref_t key_ref;
540 	int ret;
541 
542 	kenter("%s,%s,%p,%zu,%p,%p,%lx",
543 	       ctx.index_key.type->name, ctx.index_key.description,
544 	       callout_info, callout_len, aux, dest_keyring, flags);
545 
546 	if (type->match_preparse) {
547 		ret = type->match_preparse(&ctx.match_data);
548 		if (ret < 0) {
549 			key = ERR_PTR(ret);
550 			goto error;
551 		}
552 	}
553 
554 	/* search all the process keyrings for a key */
555 	key_ref = search_process_keyrings(&ctx);
556 
557 	if (!IS_ERR(key_ref)) {
558 		key = key_ref_to_ptr(key_ref);
559 		if (dest_keyring) {
560 			ret = key_link(dest_keyring, key);
561 			if (ret < 0) {
562 				key_put(key);
563 				key = ERR_PTR(ret);
564 				goto error_free;
565 			}
566 		}
567 	} else if (PTR_ERR(key_ref) != -EAGAIN) {
568 		key = ERR_CAST(key_ref);
569 	} else  {
570 		/* the search failed, but the keyrings were searchable, so we
571 		 * should consult userspace if we can */
572 		key = ERR_PTR(-ENOKEY);
573 		if (!callout_info)
574 			goto error_free;
575 
576 		key = construct_key_and_link(&ctx, callout_info, callout_len,
577 					     aux, dest_keyring, flags);
578 	}
579 
580 error_free:
581 	if (type->match_free)
582 		type->match_free(&ctx.match_data);
583 error:
584 	kleave(" = %p", key);
585 	return key;
586 }
587 
588 /**
589  * wait_for_key_construction - Wait for construction of a key to complete
590  * @key: The key being waited for.
591  * @intr: Whether to wait interruptibly.
592  *
593  * Wait for a key to finish being constructed.
594  *
595  * Returns 0 if successful; -ERESTARTSYS if the wait was interrupted; -ENOKEY
596  * if the key was negated; or -EKEYREVOKED or -EKEYEXPIRED if the key was
597  * revoked or expired.
598  */
599 int wait_for_key_construction(struct key *key, bool intr)
600 {
601 	int ret;
602 
603 	ret = wait_on_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT,
604 			  intr ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
605 	if (ret)
606 		return -ERESTARTSYS;
607 	ret = key_read_state(key);
608 	if (ret < 0)
609 		return ret;
610 	return key_validate(key);
611 }
612 EXPORT_SYMBOL(wait_for_key_construction);
613 
614 /**
615  * request_key - Request a key and wait for construction
616  * @type: Type of key.
617  * @description: The searchable description of the key.
618  * @callout_info: The data to pass to the instantiation upcall (or NULL).
619  *
620  * As for request_key_and_link() except that it does not add the returned key
621  * to a keyring if found, new keys are always allocated in the user's quota,
622  * the callout_info must be a NUL-terminated string and no auxiliary data can
623  * be passed.
624  *
625  * Furthermore, it then works as wait_for_key_construction() to wait for the
626  * completion of keys undergoing construction with a non-interruptible wait.
627  */
628 struct key *request_key(struct key_type *type,
629 			const char *description,
630 			const char *callout_info)
631 {
632 	struct key *key;
633 	size_t callout_len = 0;
634 	int ret;
635 
636 	if (callout_info)
637 		callout_len = strlen(callout_info);
638 	key = request_key_and_link(type, description, callout_info, callout_len,
639 				   NULL, NULL, KEY_ALLOC_IN_QUOTA);
640 	if (!IS_ERR(key)) {
641 		ret = wait_for_key_construction(key, false);
642 		if (ret < 0) {
643 			key_put(key);
644 			return ERR_PTR(ret);
645 		}
646 	}
647 	return key;
648 }
649 EXPORT_SYMBOL(request_key);
650 
651 /**
652  * request_key_with_auxdata - Request a key with auxiliary data for the upcaller
653  * @type: The type of key we want.
654  * @description: The searchable description of the key.
655  * @callout_info: The data to pass to the instantiation upcall (or NULL).
656  * @callout_len: The length of callout_info.
657  * @aux: Auxiliary data for the upcall.
658  *
659  * As for request_key_and_link() except that it does not add the returned key
660  * to a keyring if found and new keys are always allocated in the user's quota.
661  *
662  * Furthermore, it then works as wait_for_key_construction() to wait for the
663  * completion of keys undergoing construction with a non-interruptible wait.
664  */
665 struct key *request_key_with_auxdata(struct key_type *type,
666 				     const char *description,
667 				     const void *callout_info,
668 				     size_t callout_len,
669 				     void *aux)
670 {
671 	struct key *key;
672 	int ret;
673 
674 	key = request_key_and_link(type, description, callout_info, callout_len,
675 				   aux, NULL, KEY_ALLOC_IN_QUOTA);
676 	if (!IS_ERR(key)) {
677 		ret = wait_for_key_construction(key, false);
678 		if (ret < 0) {
679 			key_put(key);
680 			return ERR_PTR(ret);
681 		}
682 	}
683 	return key;
684 }
685 EXPORT_SYMBOL(request_key_with_auxdata);
686 
687 /*
688  * request_key_async - Request a key (allow async construction)
689  * @type: Type of key.
690  * @description: The searchable description of the key.
691  * @callout_info: The data to pass to the instantiation upcall (or NULL).
692  * @callout_len: The length of callout_info.
693  *
694  * As for request_key_and_link() except that it does not add the returned key
695  * to a keyring if found, new keys are always allocated in the user's quota and
696  * no auxiliary data can be passed.
697  *
698  * The caller should call wait_for_key_construction() to wait for the
699  * completion of the returned key if it is still undergoing construction.
700  */
701 struct key *request_key_async(struct key_type *type,
702 			      const char *description,
703 			      const void *callout_info,
704 			      size_t callout_len)
705 {
706 	return request_key_and_link(type, description, callout_info,
707 				    callout_len, NULL, NULL,
708 				    KEY_ALLOC_IN_QUOTA);
709 }
710 EXPORT_SYMBOL(request_key_async);
711 
712 /*
713  * request a key with auxiliary data for the upcaller (allow async construction)
714  * @type: Type of key.
715  * @description: The searchable description of the key.
716  * @callout_info: The data to pass to the instantiation upcall (or NULL).
717  * @callout_len: The length of callout_info.
718  * @aux: Auxiliary data for the upcall.
719  *
720  * As for request_key_and_link() except that it does not add the returned key
721  * to a keyring if found and new keys are always allocated in the user's quota.
722  *
723  * The caller should call wait_for_key_construction() to wait for the
724  * completion of the returned key if it is still undergoing construction.
725  */
726 struct key *request_key_async_with_auxdata(struct key_type *type,
727 					   const char *description,
728 					   const void *callout_info,
729 					   size_t callout_len,
730 					   void *aux)
731 {
732 	return request_key_and_link(type, description, callout_info,
733 				    callout_len, aux, NULL, KEY_ALLOC_IN_QUOTA);
734 }
735 EXPORT_SYMBOL(request_key_async_with_auxdata);
736