1 /* Request a key from userspace 2 * 3 * Copyright (C) 2004-2007 Red Hat, Inc. All Rights Reserved. 4 * Written by David Howells (dhowells@redhat.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 * 11 * See Documentation/security/keys-request-key.txt 12 */ 13 14 #include <linux/module.h> 15 #include <linux/sched.h> 16 #include <linux/kmod.h> 17 #include <linux/err.h> 18 #include <linux/keyctl.h> 19 #include <linux/slab.h> 20 #include "internal.h" 21 22 #define key_negative_timeout 60 /* default timeout on a negative key's existence */ 23 24 /** 25 * complete_request_key - Complete the construction of a key. 26 * @cons: The key construction record. 27 * @error: The success or failute of the construction. 28 * 29 * Complete the attempt to construct a key. The key will be negated 30 * if an error is indicated. The authorisation key will be revoked 31 * unconditionally. 32 */ 33 void complete_request_key(struct key_construction *cons, int error) 34 { 35 kenter("{%d,%d},%d", cons->key->serial, cons->authkey->serial, error); 36 37 if (error < 0) 38 key_negate_and_link(cons->key, key_negative_timeout, NULL, 39 cons->authkey); 40 else 41 key_revoke(cons->authkey); 42 43 key_put(cons->key); 44 key_put(cons->authkey); 45 kfree(cons); 46 } 47 EXPORT_SYMBOL(complete_request_key); 48 49 /* 50 * Initialise a usermode helper that is going to have a specific session 51 * keyring. 52 * 53 * This is called in context of freshly forked kthread before kernel_execve(), 54 * so we can simply install the desired session_keyring at this point. 55 */ 56 static int umh_keys_init(struct subprocess_info *info, struct cred *cred) 57 { 58 struct key *keyring = info->data; 59 60 return install_session_keyring_to_cred(cred, keyring); 61 } 62 63 /* 64 * Clean up a usermode helper with session keyring. 65 */ 66 static void umh_keys_cleanup(struct subprocess_info *info) 67 { 68 struct key *keyring = info->data; 69 key_put(keyring); 70 } 71 72 /* 73 * Call a usermode helper with a specific session keyring. 74 */ 75 static int call_usermodehelper_keys(char *path, char **argv, char **envp, 76 struct key *session_keyring, int wait) 77 { 78 struct subprocess_info *info; 79 80 info = call_usermodehelper_setup(path, argv, envp, GFP_KERNEL, 81 umh_keys_init, umh_keys_cleanup, 82 session_keyring); 83 if (!info) 84 return -ENOMEM; 85 86 key_get(session_keyring); 87 return call_usermodehelper_exec(info, wait); 88 } 89 90 /* 91 * Request userspace finish the construction of a key 92 * - execute "/sbin/request-key <op> <key> <uid> <gid> <keyring> <keyring> <keyring>" 93 */ 94 static int call_sbin_request_key(struct key_construction *cons, 95 const char *op, 96 void *aux) 97 { 98 const struct cred *cred = current_cred(); 99 key_serial_t prkey, sskey; 100 struct key *key = cons->key, *authkey = cons->authkey, *keyring, 101 *session; 102 char *argv[9], *envp[3], uid_str[12], gid_str[12]; 103 char key_str[12], keyring_str[3][12]; 104 char desc[20]; 105 int ret, i; 106 107 kenter("{%d},{%d},%s", key->serial, authkey->serial, op); 108 109 ret = install_user_keyrings(); 110 if (ret < 0) 111 goto error_alloc; 112 113 /* allocate a new session keyring */ 114 sprintf(desc, "_req.%u", key->serial); 115 116 cred = get_current_cred(); 117 keyring = keyring_alloc(desc, cred->fsuid, cred->fsgid, cred, 118 KEY_POS_ALL | KEY_USR_VIEW | KEY_USR_READ, 119 KEY_ALLOC_QUOTA_OVERRUN, NULL, NULL); 120 put_cred(cred); 121 if (IS_ERR(keyring)) { 122 ret = PTR_ERR(keyring); 123 goto error_alloc; 124 } 125 126 /* attach the auth key to the session keyring */ 127 ret = key_link(keyring, authkey); 128 if (ret < 0) 129 goto error_link; 130 131 /* record the UID and GID */ 132 sprintf(uid_str, "%d", from_kuid(&init_user_ns, cred->fsuid)); 133 sprintf(gid_str, "%d", from_kgid(&init_user_ns, cred->fsgid)); 134 135 /* we say which key is under construction */ 136 sprintf(key_str, "%d", key->serial); 137 138 /* we specify the process's default keyrings */ 139 sprintf(keyring_str[0], "%d", 140 cred->thread_keyring ? cred->thread_keyring->serial : 0); 141 142 prkey = 0; 143 if (cred->process_keyring) 144 prkey = cred->process_keyring->serial; 145 sprintf(keyring_str[1], "%d", prkey); 146 147 rcu_read_lock(); 148 session = rcu_dereference(cred->session_keyring); 149 if (!session) 150 session = cred->user->session_keyring; 151 sskey = session->serial; 152 rcu_read_unlock(); 153 154 sprintf(keyring_str[2], "%d", sskey); 155 156 /* set up a minimal environment */ 157 i = 0; 158 envp[i++] = "HOME=/"; 159 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; 160 envp[i] = NULL; 161 162 /* set up the argument list */ 163 i = 0; 164 argv[i++] = "/sbin/request-key"; 165 argv[i++] = (char *) op; 166 argv[i++] = key_str; 167 argv[i++] = uid_str; 168 argv[i++] = gid_str; 169 argv[i++] = keyring_str[0]; 170 argv[i++] = keyring_str[1]; 171 argv[i++] = keyring_str[2]; 172 argv[i] = NULL; 173 174 /* do it */ 175 ret = call_usermodehelper_keys(argv[0], argv, envp, keyring, 176 UMH_WAIT_PROC); 177 kdebug("usermode -> 0x%x", ret); 178 if (ret >= 0) { 179 /* ret is the exit/wait code */ 180 if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags) || 181 key_validate(key) < 0) 182 ret = -ENOKEY; 183 else 184 /* ignore any errors from userspace if the key was 185 * instantiated */ 186 ret = 0; 187 } 188 189 error_link: 190 key_put(keyring); 191 192 error_alloc: 193 complete_request_key(cons, ret); 194 kleave(" = %d", ret); 195 return ret; 196 } 197 198 /* 199 * Call out to userspace for key construction. 200 * 201 * Program failure is ignored in favour of key status. 202 */ 203 static int construct_key(struct key *key, const void *callout_info, 204 size_t callout_len, void *aux, 205 struct key *dest_keyring) 206 { 207 struct key_construction *cons; 208 request_key_actor_t actor; 209 struct key *authkey; 210 int ret; 211 212 kenter("%d,%p,%zu,%p", key->serial, callout_info, callout_len, aux); 213 214 cons = kmalloc(sizeof(*cons), GFP_KERNEL); 215 if (!cons) 216 return -ENOMEM; 217 218 /* allocate an authorisation key */ 219 authkey = request_key_auth_new(key, callout_info, callout_len, 220 dest_keyring); 221 if (IS_ERR(authkey)) { 222 kfree(cons); 223 ret = PTR_ERR(authkey); 224 authkey = NULL; 225 } else { 226 cons->authkey = key_get(authkey); 227 cons->key = key_get(key); 228 229 /* make the call */ 230 actor = call_sbin_request_key; 231 if (key->type->request_key) 232 actor = key->type->request_key; 233 234 ret = actor(cons, "create", aux); 235 236 /* check that the actor called complete_request_key() prior to 237 * returning an error */ 238 WARN_ON(ret < 0 && 239 !test_bit(KEY_FLAG_REVOKED, &authkey->flags)); 240 key_put(authkey); 241 } 242 243 kleave(" = %d", ret); 244 return ret; 245 } 246 247 /* 248 * Get the appropriate destination keyring for the request. 249 * 250 * The keyring selected is returned with an extra reference upon it which the 251 * caller must release. 252 */ 253 static void construct_get_dest_keyring(struct key **_dest_keyring) 254 { 255 struct request_key_auth *rka; 256 const struct cred *cred = current_cred(); 257 struct key *dest_keyring = *_dest_keyring, *authkey; 258 259 kenter("%p", dest_keyring); 260 261 /* find the appropriate keyring */ 262 if (dest_keyring) { 263 /* the caller supplied one */ 264 key_get(dest_keyring); 265 } else { 266 /* use a default keyring; falling through the cases until we 267 * find one that we actually have */ 268 switch (cred->jit_keyring) { 269 case KEY_REQKEY_DEFL_DEFAULT: 270 case KEY_REQKEY_DEFL_REQUESTOR_KEYRING: 271 if (cred->request_key_auth) { 272 authkey = cred->request_key_auth; 273 down_read(&authkey->sem); 274 rka = authkey->payload.data[0]; 275 if (!test_bit(KEY_FLAG_REVOKED, 276 &authkey->flags)) 277 dest_keyring = 278 key_get(rka->dest_keyring); 279 up_read(&authkey->sem); 280 if (dest_keyring) 281 break; 282 } 283 284 case KEY_REQKEY_DEFL_THREAD_KEYRING: 285 dest_keyring = key_get(cred->thread_keyring); 286 if (dest_keyring) 287 break; 288 289 case KEY_REQKEY_DEFL_PROCESS_KEYRING: 290 dest_keyring = key_get(cred->process_keyring); 291 if (dest_keyring) 292 break; 293 294 case KEY_REQKEY_DEFL_SESSION_KEYRING: 295 rcu_read_lock(); 296 dest_keyring = key_get( 297 rcu_dereference(cred->session_keyring)); 298 rcu_read_unlock(); 299 300 if (dest_keyring) 301 break; 302 303 case KEY_REQKEY_DEFL_USER_SESSION_KEYRING: 304 dest_keyring = 305 key_get(cred->user->session_keyring); 306 break; 307 308 case KEY_REQKEY_DEFL_USER_KEYRING: 309 dest_keyring = key_get(cred->user->uid_keyring); 310 break; 311 312 case KEY_REQKEY_DEFL_GROUP_KEYRING: 313 default: 314 BUG(); 315 } 316 } 317 318 *_dest_keyring = dest_keyring; 319 kleave(" [dk %d]", key_serial(dest_keyring)); 320 return; 321 } 322 323 /* 324 * Allocate a new key in under-construction state and attempt to link it in to 325 * the requested keyring. 326 * 327 * May return a key that's already under construction instead if there was a 328 * race between two thread calling request_key(). 329 */ 330 static int construct_alloc_key(struct keyring_search_context *ctx, 331 struct key *dest_keyring, 332 unsigned long flags, 333 struct key_user *user, 334 struct key **_key) 335 { 336 struct assoc_array_edit *edit; 337 struct key *key; 338 key_perm_t perm; 339 key_ref_t key_ref; 340 int ret; 341 342 kenter("%s,%s,,,", 343 ctx->index_key.type->name, ctx->index_key.description); 344 345 *_key = NULL; 346 mutex_lock(&user->cons_lock); 347 348 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR; 349 perm |= KEY_USR_VIEW; 350 if (ctx->index_key.type->read) 351 perm |= KEY_POS_READ; 352 if (ctx->index_key.type == &key_type_keyring || 353 ctx->index_key.type->update) 354 perm |= KEY_POS_WRITE; 355 356 key = key_alloc(ctx->index_key.type, ctx->index_key.description, 357 ctx->cred->fsuid, ctx->cred->fsgid, ctx->cred, 358 perm, flags, NULL); 359 if (IS_ERR(key)) 360 goto alloc_failed; 361 362 set_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags); 363 364 if (dest_keyring) { 365 ret = __key_link_begin(dest_keyring, &ctx->index_key, &edit); 366 if (ret < 0) 367 goto link_prealloc_failed; 368 } 369 370 /* attach the key to the destination keyring under lock, but we do need 371 * to do another check just in case someone beat us to it whilst we 372 * waited for locks */ 373 mutex_lock(&key_construction_mutex); 374 375 key_ref = search_process_keyrings(ctx); 376 if (!IS_ERR(key_ref)) 377 goto key_already_present; 378 379 if (dest_keyring) 380 __key_link(key, &edit); 381 382 mutex_unlock(&key_construction_mutex); 383 if (dest_keyring) 384 __key_link_end(dest_keyring, &ctx->index_key, edit); 385 mutex_unlock(&user->cons_lock); 386 *_key = key; 387 kleave(" = 0 [%d]", key_serial(key)); 388 return 0; 389 390 /* the key is now present - we tell the caller that we found it by 391 * returning -EINPROGRESS */ 392 key_already_present: 393 key_put(key); 394 mutex_unlock(&key_construction_mutex); 395 key = key_ref_to_ptr(key_ref); 396 if (dest_keyring) { 397 ret = __key_link_check_live_key(dest_keyring, key); 398 if (ret == 0) 399 __key_link(key, &edit); 400 __key_link_end(dest_keyring, &ctx->index_key, edit); 401 if (ret < 0) 402 goto link_check_failed; 403 } 404 mutex_unlock(&user->cons_lock); 405 *_key = key; 406 kleave(" = -EINPROGRESS [%d]", key_serial(key)); 407 return -EINPROGRESS; 408 409 link_check_failed: 410 mutex_unlock(&user->cons_lock); 411 key_put(key); 412 kleave(" = %d [linkcheck]", ret); 413 return ret; 414 415 link_prealloc_failed: 416 mutex_unlock(&user->cons_lock); 417 key_put(key); 418 kleave(" = %d [prelink]", ret); 419 return ret; 420 421 alloc_failed: 422 mutex_unlock(&user->cons_lock); 423 kleave(" = %ld", PTR_ERR(key)); 424 return PTR_ERR(key); 425 } 426 427 /* 428 * Commence key construction. 429 */ 430 static struct key *construct_key_and_link(struct keyring_search_context *ctx, 431 const char *callout_info, 432 size_t callout_len, 433 void *aux, 434 struct key *dest_keyring, 435 unsigned long flags) 436 { 437 struct key_user *user; 438 struct key *key; 439 int ret; 440 441 kenter(""); 442 443 if (ctx->index_key.type == &key_type_keyring) 444 return ERR_PTR(-EPERM); 445 446 user = key_user_lookup(current_fsuid()); 447 if (!user) 448 return ERR_PTR(-ENOMEM); 449 450 construct_get_dest_keyring(&dest_keyring); 451 452 ret = construct_alloc_key(ctx, dest_keyring, flags, user, &key); 453 key_user_put(user); 454 455 if (ret == 0) { 456 ret = construct_key(key, callout_info, callout_len, aux, 457 dest_keyring); 458 if (ret < 0) { 459 kdebug("cons failed"); 460 goto construction_failed; 461 } 462 } else if (ret == -EINPROGRESS) { 463 ret = 0; 464 } else { 465 goto couldnt_alloc_key; 466 } 467 468 key_put(dest_keyring); 469 kleave(" = key %d", key_serial(key)); 470 return key; 471 472 construction_failed: 473 key_negate_and_link(key, key_negative_timeout, NULL, NULL); 474 key_put(key); 475 couldnt_alloc_key: 476 key_put(dest_keyring); 477 kleave(" = %d", ret); 478 return ERR_PTR(ret); 479 } 480 481 /** 482 * request_key_and_link - Request a key and cache it in a keyring. 483 * @type: The type of key we want. 484 * @description: The searchable description of the key. 485 * @callout_info: The data to pass to the instantiation upcall (or NULL). 486 * @callout_len: The length of callout_info. 487 * @aux: Auxiliary data for the upcall. 488 * @dest_keyring: Where to cache the key. 489 * @flags: Flags to key_alloc(). 490 * 491 * A key matching the specified criteria is searched for in the process's 492 * keyrings and returned with its usage count incremented if found. Otherwise, 493 * if callout_info is not NULL, a key will be allocated and some service 494 * (probably in userspace) will be asked to instantiate it. 495 * 496 * If successfully found or created, the key will be linked to the destination 497 * keyring if one is provided. 498 * 499 * Returns a pointer to the key if successful; -EACCES, -ENOKEY, -EKEYREVOKED 500 * or -EKEYEXPIRED if an inaccessible, negative, revoked or expired key was 501 * found; -ENOKEY if no key was found and no @callout_info was given; -EDQUOT 502 * if insufficient key quota was available to create a new key; or -ENOMEM if 503 * insufficient memory was available. 504 * 505 * If the returned key was created, then it may still be under construction, 506 * and wait_for_key_construction() should be used to wait for that to complete. 507 */ 508 struct key *request_key_and_link(struct key_type *type, 509 const char *description, 510 const void *callout_info, 511 size_t callout_len, 512 void *aux, 513 struct key *dest_keyring, 514 unsigned long flags) 515 { 516 struct keyring_search_context ctx = { 517 .index_key.type = type, 518 .index_key.description = description, 519 .cred = current_cred(), 520 .match_data.cmp = key_default_cmp, 521 .match_data.raw_data = description, 522 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT, 523 .flags = (KEYRING_SEARCH_DO_STATE_CHECK | 524 KEYRING_SEARCH_SKIP_EXPIRED), 525 }; 526 struct key *key; 527 key_ref_t key_ref; 528 int ret; 529 530 kenter("%s,%s,%p,%zu,%p,%p,%lx", 531 ctx.index_key.type->name, ctx.index_key.description, 532 callout_info, callout_len, aux, dest_keyring, flags); 533 534 if (type->match_preparse) { 535 ret = type->match_preparse(&ctx.match_data); 536 if (ret < 0) { 537 key = ERR_PTR(ret); 538 goto error; 539 } 540 } 541 542 /* search all the process keyrings for a key */ 543 key_ref = search_process_keyrings(&ctx); 544 545 if (!IS_ERR(key_ref)) { 546 key = key_ref_to_ptr(key_ref); 547 if (dest_keyring) { 548 construct_get_dest_keyring(&dest_keyring); 549 ret = key_link(dest_keyring, key); 550 key_put(dest_keyring); 551 if (ret < 0) { 552 key_put(key); 553 key = ERR_PTR(ret); 554 goto error_free; 555 } 556 } 557 } else if (PTR_ERR(key_ref) != -EAGAIN) { 558 key = ERR_CAST(key_ref); 559 } else { 560 /* the search failed, but the keyrings were searchable, so we 561 * should consult userspace if we can */ 562 key = ERR_PTR(-ENOKEY); 563 if (!callout_info) 564 goto error_free; 565 566 key = construct_key_and_link(&ctx, callout_info, callout_len, 567 aux, dest_keyring, flags); 568 } 569 570 error_free: 571 if (type->match_free) 572 type->match_free(&ctx.match_data); 573 error: 574 kleave(" = %p", key); 575 return key; 576 } 577 578 /** 579 * wait_for_key_construction - Wait for construction of a key to complete 580 * @key: The key being waited for. 581 * @intr: Whether to wait interruptibly. 582 * 583 * Wait for a key to finish being constructed. 584 * 585 * Returns 0 if successful; -ERESTARTSYS if the wait was interrupted; -ENOKEY 586 * if the key was negated; or -EKEYREVOKED or -EKEYEXPIRED if the key was 587 * revoked or expired. 588 */ 589 int wait_for_key_construction(struct key *key, bool intr) 590 { 591 int ret; 592 593 ret = wait_on_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT, 594 intr ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE); 595 if (ret) 596 return -ERESTARTSYS; 597 if (test_bit(KEY_FLAG_NEGATIVE, &key->flags)) { 598 smp_rmb(); 599 return key->reject_error; 600 } 601 return key_validate(key); 602 } 603 EXPORT_SYMBOL(wait_for_key_construction); 604 605 /** 606 * request_key - Request a key and wait for construction 607 * @type: Type of key. 608 * @description: The searchable description of the key. 609 * @callout_info: The data to pass to the instantiation upcall (or NULL). 610 * 611 * As for request_key_and_link() except that it does not add the returned key 612 * to a keyring if found, new keys are always allocated in the user's quota, 613 * the callout_info must be a NUL-terminated string and no auxiliary data can 614 * be passed. 615 * 616 * Furthermore, it then works as wait_for_key_construction() to wait for the 617 * completion of keys undergoing construction with a non-interruptible wait. 618 */ 619 struct key *request_key(struct key_type *type, 620 const char *description, 621 const char *callout_info) 622 { 623 struct key *key; 624 size_t callout_len = 0; 625 int ret; 626 627 if (callout_info) 628 callout_len = strlen(callout_info); 629 key = request_key_and_link(type, description, callout_info, callout_len, 630 NULL, NULL, KEY_ALLOC_IN_QUOTA); 631 if (!IS_ERR(key)) { 632 ret = wait_for_key_construction(key, false); 633 if (ret < 0) { 634 key_put(key); 635 return ERR_PTR(ret); 636 } 637 } 638 return key; 639 } 640 EXPORT_SYMBOL(request_key); 641 642 /** 643 * request_key_with_auxdata - Request a key with auxiliary data for the upcaller 644 * @type: The type of key we want. 645 * @description: The searchable description of the key. 646 * @callout_info: The data to pass to the instantiation upcall (or NULL). 647 * @callout_len: The length of callout_info. 648 * @aux: Auxiliary data for the upcall. 649 * 650 * As for request_key_and_link() except that it does not add the returned key 651 * to a keyring if found and new keys are always allocated in the user's quota. 652 * 653 * Furthermore, it then works as wait_for_key_construction() to wait for the 654 * completion of keys undergoing construction with a non-interruptible wait. 655 */ 656 struct key *request_key_with_auxdata(struct key_type *type, 657 const char *description, 658 const void *callout_info, 659 size_t callout_len, 660 void *aux) 661 { 662 struct key *key; 663 int ret; 664 665 key = request_key_and_link(type, description, callout_info, callout_len, 666 aux, NULL, KEY_ALLOC_IN_QUOTA); 667 if (!IS_ERR(key)) { 668 ret = wait_for_key_construction(key, false); 669 if (ret < 0) { 670 key_put(key); 671 return ERR_PTR(ret); 672 } 673 } 674 return key; 675 } 676 EXPORT_SYMBOL(request_key_with_auxdata); 677 678 /* 679 * request_key_async - Request a key (allow async construction) 680 * @type: Type of key. 681 * @description: The searchable description of the key. 682 * @callout_info: The data to pass to the instantiation upcall (or NULL). 683 * @callout_len: The length of callout_info. 684 * 685 * As for request_key_and_link() except that it does not add the returned key 686 * to a keyring if found, new keys are always allocated in the user's quota and 687 * no auxiliary data can be passed. 688 * 689 * The caller should call wait_for_key_construction() to wait for the 690 * completion of the returned key if it is still undergoing construction. 691 */ 692 struct key *request_key_async(struct key_type *type, 693 const char *description, 694 const void *callout_info, 695 size_t callout_len) 696 { 697 return request_key_and_link(type, description, callout_info, 698 callout_len, NULL, NULL, 699 KEY_ALLOC_IN_QUOTA); 700 } 701 EXPORT_SYMBOL(request_key_async); 702 703 /* 704 * request a key with auxiliary data for the upcaller (allow async construction) 705 * @type: Type of key. 706 * @description: The searchable description of the key. 707 * @callout_info: The data to pass to the instantiation upcall (or NULL). 708 * @callout_len: The length of callout_info. 709 * @aux: Auxiliary data for the upcall. 710 * 711 * As for request_key_and_link() except that it does not add the returned key 712 * to a keyring if found and new keys are always allocated in the user's quota. 713 * 714 * The caller should call wait_for_key_construction() to wait for the 715 * completion of the returned key if it is still undergoing construction. 716 */ 717 struct key *request_key_async_with_auxdata(struct key_type *type, 718 const char *description, 719 const void *callout_info, 720 size_t callout_len, 721 void *aux) 722 { 723 return request_key_and_link(type, description, callout_info, 724 callout_len, aux, NULL, KEY_ALLOC_IN_QUOTA); 725 } 726 EXPORT_SYMBOL(request_key_async_with_auxdata); 727