1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* Request a key from userspace 3 * 4 * Copyright (C) 2004-2007 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 * 7 * See Documentation/security/keys/request-key.rst 8 */ 9 10 #include <linux/export.h> 11 #include <linux/sched.h> 12 #include <linux/kmod.h> 13 #include <linux/err.h> 14 #include <linux/keyctl.h> 15 #include <linux/slab.h> 16 #include "internal.h" 17 #include <keys/request_key_auth-type.h> 18 19 #define key_negative_timeout 60 /* default timeout on a negative key's existence */ 20 21 /** 22 * complete_request_key - Complete the construction of a key. 23 * @auth_key: The authorisation key. 24 * @error: The success or failute of the construction. 25 * 26 * Complete the attempt to construct a key. The key will be negated 27 * if an error is indicated. The authorisation key will be revoked 28 * unconditionally. 29 */ 30 void complete_request_key(struct key *authkey, int error) 31 { 32 struct request_key_auth *rka = get_request_key_auth(authkey); 33 struct key *key = rka->target_key; 34 35 kenter("%d{%d},%d", authkey->serial, key->serial, error); 36 37 if (error < 0) 38 key_negate_and_link(key, key_negative_timeout, NULL, authkey); 39 else 40 key_revoke(authkey); 41 } 42 EXPORT_SYMBOL(complete_request_key); 43 44 /* 45 * Initialise a usermode helper that is going to have a specific session 46 * keyring. 47 * 48 * This is called in context of freshly forked kthread before kernel_execve(), 49 * so we can simply install the desired session_keyring at this point. 50 */ 51 static int umh_keys_init(struct subprocess_info *info, struct cred *cred) 52 { 53 struct key *keyring = info->data; 54 55 return install_session_keyring_to_cred(cred, keyring); 56 } 57 58 /* 59 * Clean up a usermode helper with session keyring. 60 */ 61 static void umh_keys_cleanup(struct subprocess_info *info) 62 { 63 struct key *keyring = info->data; 64 key_put(keyring); 65 } 66 67 /* 68 * Call a usermode helper with a specific session keyring. 69 */ 70 static int call_usermodehelper_keys(const char *path, char **argv, char **envp, 71 struct key *session_keyring, int wait) 72 { 73 struct subprocess_info *info; 74 75 info = call_usermodehelper_setup(path, argv, envp, GFP_KERNEL, 76 umh_keys_init, umh_keys_cleanup, 77 session_keyring); 78 if (!info) 79 return -ENOMEM; 80 81 key_get(session_keyring); 82 return call_usermodehelper_exec(info, wait); 83 } 84 85 /* 86 * Request userspace finish the construction of a key 87 * - execute "/sbin/request-key <op> <key> <uid> <gid> <keyring> <keyring> <keyring>" 88 */ 89 static int call_sbin_request_key(struct key *authkey, void *aux) 90 { 91 static char const request_key[] = "/sbin/request-key"; 92 struct request_key_auth *rka = get_request_key_auth(authkey); 93 const struct cred *cred = current_cred(); 94 key_serial_t prkey, sskey; 95 struct key *key = rka->target_key, *keyring, *session; 96 char *argv[9], *envp[3], uid_str[12], gid_str[12]; 97 char key_str[12], keyring_str[3][12]; 98 char desc[20]; 99 int ret, i; 100 101 kenter("{%d},{%d},%s", key->serial, authkey->serial, rka->op); 102 103 ret = install_user_keyrings(); 104 if (ret < 0) 105 goto error_alloc; 106 107 /* allocate a new session keyring */ 108 sprintf(desc, "_req.%u", key->serial); 109 110 cred = get_current_cred(); 111 keyring = keyring_alloc(desc, cred->fsuid, cred->fsgid, cred, 112 KEY_POS_ALL | KEY_USR_VIEW | KEY_USR_READ, 113 KEY_ALLOC_QUOTA_OVERRUN, NULL, NULL); 114 put_cred(cred); 115 if (IS_ERR(keyring)) { 116 ret = PTR_ERR(keyring); 117 goto error_alloc; 118 } 119 120 /* attach the auth key to the session keyring */ 121 ret = key_link(keyring, authkey); 122 if (ret < 0) 123 goto error_link; 124 125 /* record the UID and GID */ 126 sprintf(uid_str, "%d", from_kuid(&init_user_ns, cred->fsuid)); 127 sprintf(gid_str, "%d", from_kgid(&init_user_ns, cred->fsgid)); 128 129 /* we say which key is under construction */ 130 sprintf(key_str, "%d", key->serial); 131 132 /* we specify the process's default keyrings */ 133 sprintf(keyring_str[0], "%d", 134 cred->thread_keyring ? cred->thread_keyring->serial : 0); 135 136 prkey = 0; 137 if (cred->process_keyring) 138 prkey = cred->process_keyring->serial; 139 sprintf(keyring_str[1], "%d", prkey); 140 141 session = cred->session_keyring; 142 if (!session) 143 session = cred->user->session_keyring; 144 sskey = session->serial; 145 146 sprintf(keyring_str[2], "%d", sskey); 147 148 /* set up a minimal environment */ 149 i = 0; 150 envp[i++] = "HOME=/"; 151 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; 152 envp[i] = NULL; 153 154 /* set up the argument list */ 155 i = 0; 156 argv[i++] = (char *)request_key; 157 argv[i++] = (char *)rka->op; 158 argv[i++] = key_str; 159 argv[i++] = uid_str; 160 argv[i++] = gid_str; 161 argv[i++] = keyring_str[0]; 162 argv[i++] = keyring_str[1]; 163 argv[i++] = keyring_str[2]; 164 argv[i] = NULL; 165 166 /* do it */ 167 ret = call_usermodehelper_keys(request_key, argv, envp, keyring, 168 UMH_WAIT_PROC); 169 kdebug("usermode -> 0x%x", ret); 170 if (ret >= 0) { 171 /* ret is the exit/wait code */ 172 if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags) || 173 key_validate(key) < 0) 174 ret = -ENOKEY; 175 else 176 /* ignore any errors from userspace if the key was 177 * instantiated */ 178 ret = 0; 179 } 180 181 error_link: 182 key_put(keyring); 183 184 error_alloc: 185 complete_request_key(authkey, ret); 186 kleave(" = %d", ret); 187 return ret; 188 } 189 190 /* 191 * Call out to userspace for key construction. 192 * 193 * Program failure is ignored in favour of key status. 194 */ 195 static int construct_key(struct key *key, const void *callout_info, 196 size_t callout_len, void *aux, 197 struct key *dest_keyring) 198 { 199 request_key_actor_t actor; 200 struct key *authkey; 201 int ret; 202 203 kenter("%d,%p,%zu,%p", key->serial, callout_info, callout_len, aux); 204 205 /* allocate an authorisation key */ 206 authkey = request_key_auth_new(key, "create", callout_info, callout_len, 207 dest_keyring); 208 if (IS_ERR(authkey)) 209 return PTR_ERR(authkey); 210 211 /* Make the call */ 212 actor = call_sbin_request_key; 213 if (key->type->request_key) 214 actor = key->type->request_key; 215 216 ret = actor(authkey, aux); 217 218 /* check that the actor called complete_request_key() prior to 219 * returning an error */ 220 WARN_ON(ret < 0 && 221 !test_bit(KEY_FLAG_REVOKED, &authkey->flags)); 222 223 key_put(authkey); 224 kleave(" = %d", ret); 225 return ret; 226 } 227 228 /* 229 * Get the appropriate destination keyring for the request. 230 * 231 * The keyring selected is returned with an extra reference upon it which the 232 * caller must release. 233 */ 234 static int construct_get_dest_keyring(struct key **_dest_keyring) 235 { 236 struct request_key_auth *rka; 237 const struct cred *cred = current_cred(); 238 struct key *dest_keyring = *_dest_keyring, *authkey; 239 int ret; 240 241 kenter("%p", dest_keyring); 242 243 /* find the appropriate keyring */ 244 if (dest_keyring) { 245 /* the caller supplied one */ 246 key_get(dest_keyring); 247 } else { 248 bool do_perm_check = true; 249 250 /* use a default keyring; falling through the cases until we 251 * find one that we actually have */ 252 switch (cred->jit_keyring) { 253 case KEY_REQKEY_DEFL_DEFAULT: 254 case KEY_REQKEY_DEFL_REQUESTOR_KEYRING: 255 if (cred->request_key_auth) { 256 authkey = cred->request_key_auth; 257 down_read(&authkey->sem); 258 rka = get_request_key_auth(authkey); 259 if (!test_bit(KEY_FLAG_REVOKED, 260 &authkey->flags)) 261 dest_keyring = 262 key_get(rka->dest_keyring); 263 up_read(&authkey->sem); 264 if (dest_keyring) { 265 do_perm_check = false; 266 break; 267 } 268 } 269 270 /* fall through */ 271 case KEY_REQKEY_DEFL_THREAD_KEYRING: 272 dest_keyring = key_get(cred->thread_keyring); 273 if (dest_keyring) 274 break; 275 276 /* fall through */ 277 case KEY_REQKEY_DEFL_PROCESS_KEYRING: 278 dest_keyring = key_get(cred->process_keyring); 279 if (dest_keyring) 280 break; 281 282 /* fall through */ 283 case KEY_REQKEY_DEFL_SESSION_KEYRING: 284 dest_keyring = key_get(cred->session_keyring); 285 286 if (dest_keyring) 287 break; 288 289 /* fall through */ 290 case KEY_REQKEY_DEFL_USER_SESSION_KEYRING: 291 dest_keyring = 292 key_get(READ_ONCE(cred->user->session_keyring)); 293 break; 294 295 case KEY_REQKEY_DEFL_USER_KEYRING: 296 dest_keyring = 297 key_get(READ_ONCE(cred->user->uid_keyring)); 298 break; 299 300 case KEY_REQKEY_DEFL_GROUP_KEYRING: 301 default: 302 BUG(); 303 } 304 305 /* 306 * Require Write permission on the keyring. This is essential 307 * because the default keyring may be the session keyring, and 308 * joining a keyring only requires Search permission. 309 * 310 * However, this check is skipped for the "requestor keyring" so 311 * that /sbin/request-key can itself use request_key() to add 312 * keys to the original requestor's destination keyring. 313 */ 314 if (dest_keyring && do_perm_check) { 315 ret = key_permission(make_key_ref(dest_keyring, 1), 316 KEY_NEED_WRITE); 317 if (ret) { 318 key_put(dest_keyring); 319 return ret; 320 } 321 } 322 } 323 324 *_dest_keyring = dest_keyring; 325 kleave(" [dk %d]", key_serial(dest_keyring)); 326 return 0; 327 } 328 329 /* 330 * Allocate a new key in under-construction state and attempt to link it in to 331 * the requested keyring. 332 * 333 * May return a key that's already under construction instead if there was a 334 * race between two thread calling request_key(). 335 */ 336 static int construct_alloc_key(struct keyring_search_context *ctx, 337 struct key *dest_keyring, 338 unsigned long flags, 339 struct key_user *user, 340 struct key **_key) 341 { 342 struct assoc_array_edit *edit; 343 struct key *key; 344 key_perm_t perm; 345 key_ref_t key_ref; 346 int ret; 347 348 kenter("%s,%s,,,", 349 ctx->index_key.type->name, ctx->index_key.description); 350 351 *_key = NULL; 352 mutex_lock(&user->cons_lock); 353 354 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR; 355 perm |= KEY_USR_VIEW; 356 if (ctx->index_key.type->read) 357 perm |= KEY_POS_READ; 358 if (ctx->index_key.type == &key_type_keyring || 359 ctx->index_key.type->update) 360 perm |= KEY_POS_WRITE; 361 362 key = key_alloc(ctx->index_key.type, ctx->index_key.description, 363 ctx->cred->fsuid, ctx->cred->fsgid, ctx->cred, 364 perm, flags, NULL); 365 if (IS_ERR(key)) 366 goto alloc_failed; 367 368 set_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags); 369 370 if (dest_keyring) { 371 ret = __key_link_begin(dest_keyring, &ctx->index_key, &edit); 372 if (ret < 0) 373 goto link_prealloc_failed; 374 } 375 376 /* attach the key to the destination keyring under lock, but we do need 377 * to do another check just in case someone beat us to it whilst we 378 * waited for locks */ 379 mutex_lock(&key_construction_mutex); 380 381 key_ref = search_process_keyrings(ctx); 382 if (!IS_ERR(key_ref)) 383 goto key_already_present; 384 385 if (dest_keyring) 386 __key_link(key, &edit); 387 388 mutex_unlock(&key_construction_mutex); 389 if (dest_keyring) 390 __key_link_end(dest_keyring, &ctx->index_key, edit); 391 mutex_unlock(&user->cons_lock); 392 *_key = key; 393 kleave(" = 0 [%d]", key_serial(key)); 394 return 0; 395 396 /* the key is now present - we tell the caller that we found it by 397 * returning -EINPROGRESS */ 398 key_already_present: 399 key_put(key); 400 mutex_unlock(&key_construction_mutex); 401 key = key_ref_to_ptr(key_ref); 402 if (dest_keyring) { 403 ret = __key_link_check_live_key(dest_keyring, key); 404 if (ret == 0) 405 __key_link(key, &edit); 406 __key_link_end(dest_keyring, &ctx->index_key, edit); 407 if (ret < 0) 408 goto link_check_failed; 409 } 410 mutex_unlock(&user->cons_lock); 411 *_key = key; 412 kleave(" = -EINPROGRESS [%d]", key_serial(key)); 413 return -EINPROGRESS; 414 415 link_check_failed: 416 mutex_unlock(&user->cons_lock); 417 key_put(key); 418 kleave(" = %d [linkcheck]", ret); 419 return ret; 420 421 link_prealloc_failed: 422 mutex_unlock(&user->cons_lock); 423 key_put(key); 424 kleave(" = %d [prelink]", ret); 425 return ret; 426 427 alloc_failed: 428 mutex_unlock(&user->cons_lock); 429 kleave(" = %ld", PTR_ERR(key)); 430 return PTR_ERR(key); 431 } 432 433 /* 434 * Commence key construction. 435 */ 436 static struct key *construct_key_and_link(struct keyring_search_context *ctx, 437 const char *callout_info, 438 size_t callout_len, 439 void *aux, 440 struct key *dest_keyring, 441 unsigned long flags) 442 { 443 struct key_user *user; 444 struct key *key; 445 int ret; 446 447 kenter(""); 448 449 if (ctx->index_key.type == &key_type_keyring) 450 return ERR_PTR(-EPERM); 451 452 ret = construct_get_dest_keyring(&dest_keyring); 453 if (ret) 454 goto error; 455 456 user = key_user_lookup(current_fsuid()); 457 if (!user) { 458 ret = -ENOMEM; 459 goto error_put_dest_keyring; 460 } 461 462 ret = construct_alloc_key(ctx, dest_keyring, flags, user, &key); 463 key_user_put(user); 464 465 if (ret == 0) { 466 ret = construct_key(key, callout_info, callout_len, aux, 467 dest_keyring); 468 if (ret < 0) { 469 kdebug("cons failed"); 470 goto construction_failed; 471 } 472 } else if (ret == -EINPROGRESS) { 473 ret = 0; 474 } else { 475 goto error_put_dest_keyring; 476 } 477 478 key_put(dest_keyring); 479 kleave(" = key %d", key_serial(key)); 480 return key; 481 482 construction_failed: 483 key_negate_and_link(key, key_negative_timeout, NULL, NULL); 484 key_put(key); 485 error_put_dest_keyring: 486 key_put(dest_keyring); 487 error: 488 kleave(" = %d", ret); 489 return ERR_PTR(ret); 490 } 491 492 /** 493 * request_key_and_link - Request a key and cache it in a keyring. 494 * @type: The type of key we want. 495 * @description: The searchable description of the key. 496 * @callout_info: The data to pass to the instantiation upcall (or NULL). 497 * @callout_len: The length of callout_info. 498 * @aux: Auxiliary data for the upcall. 499 * @dest_keyring: Where to cache the key. 500 * @flags: Flags to key_alloc(). 501 * 502 * A key matching the specified criteria is searched for in the process's 503 * keyrings and returned with its usage count incremented if found. Otherwise, 504 * if callout_info is not NULL, a key will be allocated and some service 505 * (probably in userspace) will be asked to instantiate it. 506 * 507 * If successfully found or created, the key will be linked to the destination 508 * keyring if one is provided. 509 * 510 * Returns a pointer to the key if successful; -EACCES, -ENOKEY, -EKEYREVOKED 511 * or -EKEYEXPIRED if an inaccessible, negative, revoked or expired key was 512 * found; -ENOKEY if no key was found and no @callout_info was given; -EDQUOT 513 * if insufficient key quota was available to create a new key; or -ENOMEM if 514 * insufficient memory was available. 515 * 516 * If the returned key was created, then it may still be under construction, 517 * and wait_for_key_construction() should be used to wait for that to complete. 518 */ 519 struct key *request_key_and_link(struct key_type *type, 520 const char *description, 521 const void *callout_info, 522 size_t callout_len, 523 void *aux, 524 struct key *dest_keyring, 525 unsigned long flags) 526 { 527 struct keyring_search_context ctx = { 528 .index_key.type = type, 529 .index_key.description = description, 530 .index_key.desc_len = strlen(description), 531 .cred = current_cred(), 532 .match_data.cmp = key_default_cmp, 533 .match_data.raw_data = description, 534 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT, 535 .flags = (KEYRING_SEARCH_DO_STATE_CHECK | 536 KEYRING_SEARCH_SKIP_EXPIRED), 537 }; 538 struct key *key; 539 key_ref_t key_ref; 540 int ret; 541 542 kenter("%s,%s,%p,%zu,%p,%p,%lx", 543 ctx.index_key.type->name, ctx.index_key.description, 544 callout_info, callout_len, aux, dest_keyring, flags); 545 546 if (type->match_preparse) { 547 ret = type->match_preparse(&ctx.match_data); 548 if (ret < 0) { 549 key = ERR_PTR(ret); 550 goto error; 551 } 552 } 553 554 /* search all the process keyrings for a key */ 555 key_ref = search_process_keyrings(&ctx); 556 557 if (!IS_ERR(key_ref)) { 558 key = key_ref_to_ptr(key_ref); 559 if (dest_keyring) { 560 ret = key_link(dest_keyring, key); 561 if (ret < 0) { 562 key_put(key); 563 key = ERR_PTR(ret); 564 goto error_free; 565 } 566 } 567 } else if (PTR_ERR(key_ref) != -EAGAIN) { 568 key = ERR_CAST(key_ref); 569 } else { 570 /* the search failed, but the keyrings were searchable, so we 571 * should consult userspace if we can */ 572 key = ERR_PTR(-ENOKEY); 573 if (!callout_info) 574 goto error_free; 575 576 key = construct_key_and_link(&ctx, callout_info, callout_len, 577 aux, dest_keyring, flags); 578 } 579 580 error_free: 581 if (type->match_free) 582 type->match_free(&ctx.match_data); 583 error: 584 kleave(" = %p", key); 585 return key; 586 } 587 588 /** 589 * wait_for_key_construction - Wait for construction of a key to complete 590 * @key: The key being waited for. 591 * @intr: Whether to wait interruptibly. 592 * 593 * Wait for a key to finish being constructed. 594 * 595 * Returns 0 if successful; -ERESTARTSYS if the wait was interrupted; -ENOKEY 596 * if the key was negated; or -EKEYREVOKED or -EKEYEXPIRED if the key was 597 * revoked or expired. 598 */ 599 int wait_for_key_construction(struct key *key, bool intr) 600 { 601 int ret; 602 603 ret = wait_on_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT, 604 intr ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE); 605 if (ret) 606 return -ERESTARTSYS; 607 ret = key_read_state(key); 608 if (ret < 0) 609 return ret; 610 return key_validate(key); 611 } 612 EXPORT_SYMBOL(wait_for_key_construction); 613 614 /** 615 * request_key - Request a key and wait for construction 616 * @type: Type of key. 617 * @description: The searchable description of the key. 618 * @callout_info: The data to pass to the instantiation upcall (or NULL). 619 * 620 * As for request_key_and_link() except that it does not add the returned key 621 * to a keyring if found, new keys are always allocated in the user's quota, 622 * the callout_info must be a NUL-terminated string and no auxiliary data can 623 * be passed. 624 * 625 * Furthermore, it then works as wait_for_key_construction() to wait for the 626 * completion of keys undergoing construction with a non-interruptible wait. 627 */ 628 struct key *request_key(struct key_type *type, 629 const char *description, 630 const char *callout_info) 631 { 632 struct key *key; 633 size_t callout_len = 0; 634 int ret; 635 636 if (callout_info) 637 callout_len = strlen(callout_info); 638 key = request_key_and_link(type, description, callout_info, callout_len, 639 NULL, NULL, KEY_ALLOC_IN_QUOTA); 640 if (!IS_ERR(key)) { 641 ret = wait_for_key_construction(key, false); 642 if (ret < 0) { 643 key_put(key); 644 return ERR_PTR(ret); 645 } 646 } 647 return key; 648 } 649 EXPORT_SYMBOL(request_key); 650 651 /** 652 * request_key_with_auxdata - Request a key with auxiliary data for the upcaller 653 * @type: The type of key we want. 654 * @description: The searchable description of the key. 655 * @callout_info: The data to pass to the instantiation upcall (or NULL). 656 * @callout_len: The length of callout_info. 657 * @aux: Auxiliary data for the upcall. 658 * 659 * As for request_key_and_link() except that it does not add the returned key 660 * to a keyring if found and new keys are always allocated in the user's quota. 661 * 662 * Furthermore, it then works as wait_for_key_construction() to wait for the 663 * completion of keys undergoing construction with a non-interruptible wait. 664 */ 665 struct key *request_key_with_auxdata(struct key_type *type, 666 const char *description, 667 const void *callout_info, 668 size_t callout_len, 669 void *aux) 670 { 671 struct key *key; 672 int ret; 673 674 key = request_key_and_link(type, description, callout_info, callout_len, 675 aux, NULL, KEY_ALLOC_IN_QUOTA); 676 if (!IS_ERR(key)) { 677 ret = wait_for_key_construction(key, false); 678 if (ret < 0) { 679 key_put(key); 680 return ERR_PTR(ret); 681 } 682 } 683 return key; 684 } 685 EXPORT_SYMBOL(request_key_with_auxdata); 686 687 /* 688 * request_key_async - Request a key (allow async construction) 689 * @type: Type of key. 690 * @description: The searchable description of the key. 691 * @callout_info: The data to pass to the instantiation upcall (or NULL). 692 * @callout_len: The length of callout_info. 693 * 694 * As for request_key_and_link() except that it does not add the returned key 695 * to a keyring if found, new keys are always allocated in the user's quota and 696 * no auxiliary data can be passed. 697 * 698 * The caller should call wait_for_key_construction() to wait for the 699 * completion of the returned key if it is still undergoing construction. 700 */ 701 struct key *request_key_async(struct key_type *type, 702 const char *description, 703 const void *callout_info, 704 size_t callout_len) 705 { 706 return request_key_and_link(type, description, callout_info, 707 callout_len, NULL, NULL, 708 KEY_ALLOC_IN_QUOTA); 709 } 710 EXPORT_SYMBOL(request_key_async); 711 712 /* 713 * request a key with auxiliary data for the upcaller (allow async construction) 714 * @type: Type of key. 715 * @description: The searchable description of the key. 716 * @callout_info: The data to pass to the instantiation upcall (or NULL). 717 * @callout_len: The length of callout_info. 718 * @aux: Auxiliary data for the upcall. 719 * 720 * As for request_key_and_link() except that it does not add the returned key 721 * to a keyring if found and new keys are always allocated in the user's quota. 722 * 723 * The caller should call wait_for_key_construction() to wait for the 724 * completion of the returned key if it is still undergoing construction. 725 */ 726 struct key *request_key_async_with_auxdata(struct key_type *type, 727 const char *description, 728 const void *callout_info, 729 size_t callout_len, 730 void *aux) 731 { 732 return request_key_and_link(type, description, callout_info, 733 callout_len, aux, NULL, KEY_ALLOC_IN_QUOTA); 734 } 735 EXPORT_SYMBOL(request_key_async_with_auxdata); 736