1 /* Request a key from userspace 2 * 3 * Copyright (C) 2004-2007 Red Hat, Inc. All Rights Reserved. 4 * Written by David Howells (dhowells@redhat.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 * 11 * See Documentation/security/keys/request-key.rst 12 */ 13 14 #include <linux/export.h> 15 #include <linux/sched.h> 16 #include <linux/kmod.h> 17 #include <linux/err.h> 18 #include <linux/keyctl.h> 19 #include <linux/slab.h> 20 #include "internal.h" 21 #include <keys/request_key_auth-type.h> 22 23 #define key_negative_timeout 60 /* default timeout on a negative key's existence */ 24 25 /** 26 * complete_request_key - Complete the construction of a key. 27 * @auth_key: The authorisation key. 28 * @error: The success or failute of the construction. 29 * 30 * Complete the attempt to construct a key. The key will be negated 31 * if an error is indicated. The authorisation key will be revoked 32 * unconditionally. 33 */ 34 void complete_request_key(struct key *authkey, int error) 35 { 36 struct request_key_auth *rka = get_request_key_auth(authkey); 37 struct key *key = rka->target_key; 38 39 kenter("%d{%d},%d", authkey->serial, key->serial, error); 40 41 if (error < 0) 42 key_negate_and_link(key, key_negative_timeout, NULL, authkey); 43 else 44 key_revoke(authkey); 45 } 46 EXPORT_SYMBOL(complete_request_key); 47 48 /* 49 * Initialise a usermode helper that is going to have a specific session 50 * keyring. 51 * 52 * This is called in context of freshly forked kthread before kernel_execve(), 53 * so we can simply install the desired session_keyring at this point. 54 */ 55 static int umh_keys_init(struct subprocess_info *info, struct cred *cred) 56 { 57 struct key *keyring = info->data; 58 59 return install_session_keyring_to_cred(cred, keyring); 60 } 61 62 /* 63 * Clean up a usermode helper with session keyring. 64 */ 65 static void umh_keys_cleanup(struct subprocess_info *info) 66 { 67 struct key *keyring = info->data; 68 key_put(keyring); 69 } 70 71 /* 72 * Call a usermode helper with a specific session keyring. 73 */ 74 static int call_usermodehelper_keys(const char *path, char **argv, char **envp, 75 struct key *session_keyring, int wait) 76 { 77 struct subprocess_info *info; 78 79 info = call_usermodehelper_setup(path, argv, envp, GFP_KERNEL, 80 umh_keys_init, umh_keys_cleanup, 81 session_keyring); 82 if (!info) 83 return -ENOMEM; 84 85 key_get(session_keyring); 86 return call_usermodehelper_exec(info, wait); 87 } 88 89 /* 90 * Request userspace finish the construction of a key 91 * - execute "/sbin/request-key <op> <key> <uid> <gid> <keyring> <keyring> <keyring>" 92 */ 93 static int call_sbin_request_key(struct key *authkey, void *aux) 94 { 95 static char const request_key[] = "/sbin/request-key"; 96 struct request_key_auth *rka = get_request_key_auth(authkey); 97 const struct cred *cred = current_cred(); 98 key_serial_t prkey, sskey; 99 struct key *key = rka->target_key, *keyring, *session; 100 char *argv[9], *envp[3], uid_str[12], gid_str[12]; 101 char key_str[12], keyring_str[3][12]; 102 char desc[20]; 103 int ret, i; 104 105 kenter("{%d},{%d},%s", key->serial, authkey->serial, rka->op); 106 107 ret = install_user_keyrings(); 108 if (ret < 0) 109 goto error_alloc; 110 111 /* allocate a new session keyring */ 112 sprintf(desc, "_req.%u", key->serial); 113 114 cred = get_current_cred(); 115 keyring = keyring_alloc(desc, cred->fsuid, cred->fsgid, cred, 116 KEY_POS_ALL | KEY_USR_VIEW | KEY_USR_READ, 117 KEY_ALLOC_QUOTA_OVERRUN, NULL, NULL); 118 put_cred(cred); 119 if (IS_ERR(keyring)) { 120 ret = PTR_ERR(keyring); 121 goto error_alloc; 122 } 123 124 /* attach the auth key to the session keyring */ 125 ret = key_link(keyring, authkey); 126 if (ret < 0) 127 goto error_link; 128 129 /* record the UID and GID */ 130 sprintf(uid_str, "%d", from_kuid(&init_user_ns, cred->fsuid)); 131 sprintf(gid_str, "%d", from_kgid(&init_user_ns, cred->fsgid)); 132 133 /* we say which key is under construction */ 134 sprintf(key_str, "%d", key->serial); 135 136 /* we specify the process's default keyrings */ 137 sprintf(keyring_str[0], "%d", 138 cred->thread_keyring ? cred->thread_keyring->serial : 0); 139 140 prkey = 0; 141 if (cred->process_keyring) 142 prkey = cred->process_keyring->serial; 143 sprintf(keyring_str[1], "%d", prkey); 144 145 session = cred->session_keyring; 146 if (!session) 147 session = cred->user->session_keyring; 148 sskey = session->serial; 149 150 sprintf(keyring_str[2], "%d", sskey); 151 152 /* set up a minimal environment */ 153 i = 0; 154 envp[i++] = "HOME=/"; 155 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; 156 envp[i] = NULL; 157 158 /* set up the argument list */ 159 i = 0; 160 argv[i++] = (char *)request_key; 161 argv[i++] = (char *)rka->op; 162 argv[i++] = key_str; 163 argv[i++] = uid_str; 164 argv[i++] = gid_str; 165 argv[i++] = keyring_str[0]; 166 argv[i++] = keyring_str[1]; 167 argv[i++] = keyring_str[2]; 168 argv[i] = NULL; 169 170 /* do it */ 171 ret = call_usermodehelper_keys(request_key, argv, envp, keyring, 172 UMH_WAIT_PROC); 173 kdebug("usermode -> 0x%x", ret); 174 if (ret >= 0) { 175 /* ret is the exit/wait code */ 176 if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags) || 177 key_validate(key) < 0) 178 ret = -ENOKEY; 179 else 180 /* ignore any errors from userspace if the key was 181 * instantiated */ 182 ret = 0; 183 } 184 185 error_link: 186 key_put(keyring); 187 188 error_alloc: 189 complete_request_key(authkey, ret); 190 kleave(" = %d", ret); 191 return ret; 192 } 193 194 /* 195 * Call out to userspace for key construction. 196 * 197 * Program failure is ignored in favour of key status. 198 */ 199 static int construct_key(struct key *key, const void *callout_info, 200 size_t callout_len, void *aux, 201 struct key *dest_keyring) 202 { 203 request_key_actor_t actor; 204 struct key *authkey; 205 int ret; 206 207 kenter("%d,%p,%zu,%p", key->serial, callout_info, callout_len, aux); 208 209 /* allocate an authorisation key */ 210 authkey = request_key_auth_new(key, "create", callout_info, callout_len, 211 dest_keyring); 212 if (IS_ERR(authkey)) 213 return PTR_ERR(authkey); 214 215 /* Make the call */ 216 actor = call_sbin_request_key; 217 if (key->type->request_key) 218 actor = key->type->request_key; 219 220 ret = actor(authkey, aux); 221 222 /* check that the actor called complete_request_key() prior to 223 * returning an error */ 224 WARN_ON(ret < 0 && 225 !test_bit(KEY_FLAG_REVOKED, &authkey->flags)); 226 227 key_put(authkey); 228 kleave(" = %d", ret); 229 return ret; 230 } 231 232 /* 233 * Get the appropriate destination keyring for the request. 234 * 235 * The keyring selected is returned with an extra reference upon it which the 236 * caller must release. 237 */ 238 static int construct_get_dest_keyring(struct key **_dest_keyring) 239 { 240 struct request_key_auth *rka; 241 const struct cred *cred = current_cred(); 242 struct key *dest_keyring = *_dest_keyring, *authkey; 243 int ret; 244 245 kenter("%p", dest_keyring); 246 247 /* find the appropriate keyring */ 248 if (dest_keyring) { 249 /* the caller supplied one */ 250 key_get(dest_keyring); 251 } else { 252 bool do_perm_check = true; 253 254 /* use a default keyring; falling through the cases until we 255 * find one that we actually have */ 256 switch (cred->jit_keyring) { 257 case KEY_REQKEY_DEFL_DEFAULT: 258 case KEY_REQKEY_DEFL_REQUESTOR_KEYRING: 259 if (cred->request_key_auth) { 260 authkey = cred->request_key_auth; 261 down_read(&authkey->sem); 262 rka = get_request_key_auth(authkey); 263 if (!test_bit(KEY_FLAG_REVOKED, 264 &authkey->flags)) 265 dest_keyring = 266 key_get(rka->dest_keyring); 267 up_read(&authkey->sem); 268 if (dest_keyring) { 269 do_perm_check = false; 270 break; 271 } 272 } 273 274 /* fall through */ 275 case KEY_REQKEY_DEFL_THREAD_KEYRING: 276 dest_keyring = key_get(cred->thread_keyring); 277 if (dest_keyring) 278 break; 279 280 /* fall through */ 281 case KEY_REQKEY_DEFL_PROCESS_KEYRING: 282 dest_keyring = key_get(cred->process_keyring); 283 if (dest_keyring) 284 break; 285 286 /* fall through */ 287 case KEY_REQKEY_DEFL_SESSION_KEYRING: 288 dest_keyring = key_get(cred->session_keyring); 289 290 if (dest_keyring) 291 break; 292 293 /* fall through */ 294 case KEY_REQKEY_DEFL_USER_SESSION_KEYRING: 295 dest_keyring = 296 key_get(READ_ONCE(cred->user->session_keyring)); 297 break; 298 299 case KEY_REQKEY_DEFL_USER_KEYRING: 300 dest_keyring = 301 key_get(READ_ONCE(cred->user->uid_keyring)); 302 break; 303 304 case KEY_REQKEY_DEFL_GROUP_KEYRING: 305 default: 306 BUG(); 307 } 308 309 /* 310 * Require Write permission on the keyring. This is essential 311 * because the default keyring may be the session keyring, and 312 * joining a keyring only requires Search permission. 313 * 314 * However, this check is skipped for the "requestor keyring" so 315 * that /sbin/request-key can itself use request_key() to add 316 * keys to the original requestor's destination keyring. 317 */ 318 if (dest_keyring && do_perm_check) { 319 ret = key_permission(make_key_ref(dest_keyring, 1), 320 KEY_NEED_WRITE); 321 if (ret) { 322 key_put(dest_keyring); 323 return ret; 324 } 325 } 326 } 327 328 *_dest_keyring = dest_keyring; 329 kleave(" [dk %d]", key_serial(dest_keyring)); 330 return 0; 331 } 332 333 /* 334 * Allocate a new key in under-construction state and attempt to link it in to 335 * the requested keyring. 336 * 337 * May return a key that's already under construction instead if there was a 338 * race between two thread calling request_key(). 339 */ 340 static int construct_alloc_key(struct keyring_search_context *ctx, 341 struct key *dest_keyring, 342 unsigned long flags, 343 struct key_user *user, 344 struct key **_key) 345 { 346 struct assoc_array_edit *edit; 347 struct key *key; 348 key_perm_t perm; 349 key_ref_t key_ref; 350 int ret; 351 352 kenter("%s,%s,,,", 353 ctx->index_key.type->name, ctx->index_key.description); 354 355 *_key = NULL; 356 mutex_lock(&user->cons_lock); 357 358 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR; 359 perm |= KEY_USR_VIEW; 360 if (ctx->index_key.type->read) 361 perm |= KEY_POS_READ; 362 if (ctx->index_key.type == &key_type_keyring || 363 ctx->index_key.type->update) 364 perm |= KEY_POS_WRITE; 365 366 key = key_alloc(ctx->index_key.type, ctx->index_key.description, 367 ctx->cred->fsuid, ctx->cred->fsgid, ctx->cred, 368 perm, flags, NULL); 369 if (IS_ERR(key)) 370 goto alloc_failed; 371 372 set_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags); 373 374 if (dest_keyring) { 375 ret = __key_link_begin(dest_keyring, &ctx->index_key, &edit); 376 if (ret < 0) 377 goto link_prealloc_failed; 378 } 379 380 /* attach the key to the destination keyring under lock, but we do need 381 * to do another check just in case someone beat us to it whilst we 382 * waited for locks */ 383 mutex_lock(&key_construction_mutex); 384 385 key_ref = search_process_keyrings(ctx); 386 if (!IS_ERR(key_ref)) 387 goto key_already_present; 388 389 if (dest_keyring) 390 __key_link(key, &edit); 391 392 mutex_unlock(&key_construction_mutex); 393 if (dest_keyring) 394 __key_link_end(dest_keyring, &ctx->index_key, edit); 395 mutex_unlock(&user->cons_lock); 396 *_key = key; 397 kleave(" = 0 [%d]", key_serial(key)); 398 return 0; 399 400 /* the key is now present - we tell the caller that we found it by 401 * returning -EINPROGRESS */ 402 key_already_present: 403 key_put(key); 404 mutex_unlock(&key_construction_mutex); 405 key = key_ref_to_ptr(key_ref); 406 if (dest_keyring) { 407 ret = __key_link_check_live_key(dest_keyring, key); 408 if (ret == 0) 409 __key_link(key, &edit); 410 __key_link_end(dest_keyring, &ctx->index_key, edit); 411 if (ret < 0) 412 goto link_check_failed; 413 } 414 mutex_unlock(&user->cons_lock); 415 *_key = key; 416 kleave(" = -EINPROGRESS [%d]", key_serial(key)); 417 return -EINPROGRESS; 418 419 link_check_failed: 420 mutex_unlock(&user->cons_lock); 421 key_put(key); 422 kleave(" = %d [linkcheck]", ret); 423 return ret; 424 425 link_prealloc_failed: 426 mutex_unlock(&user->cons_lock); 427 key_put(key); 428 kleave(" = %d [prelink]", ret); 429 return ret; 430 431 alloc_failed: 432 mutex_unlock(&user->cons_lock); 433 kleave(" = %ld", PTR_ERR(key)); 434 return PTR_ERR(key); 435 } 436 437 /* 438 * Commence key construction. 439 */ 440 static struct key *construct_key_and_link(struct keyring_search_context *ctx, 441 const char *callout_info, 442 size_t callout_len, 443 void *aux, 444 struct key *dest_keyring, 445 unsigned long flags) 446 { 447 struct key_user *user; 448 struct key *key; 449 int ret; 450 451 kenter(""); 452 453 if (ctx->index_key.type == &key_type_keyring) 454 return ERR_PTR(-EPERM); 455 456 ret = construct_get_dest_keyring(&dest_keyring); 457 if (ret) 458 goto error; 459 460 user = key_user_lookup(current_fsuid()); 461 if (!user) { 462 ret = -ENOMEM; 463 goto error_put_dest_keyring; 464 } 465 466 ret = construct_alloc_key(ctx, dest_keyring, flags, user, &key); 467 key_user_put(user); 468 469 if (ret == 0) { 470 ret = construct_key(key, callout_info, callout_len, aux, 471 dest_keyring); 472 if (ret < 0) { 473 kdebug("cons failed"); 474 goto construction_failed; 475 } 476 } else if (ret == -EINPROGRESS) { 477 ret = 0; 478 } else { 479 goto error_put_dest_keyring; 480 } 481 482 key_put(dest_keyring); 483 kleave(" = key %d", key_serial(key)); 484 return key; 485 486 construction_failed: 487 key_negate_and_link(key, key_negative_timeout, NULL, NULL); 488 key_put(key); 489 error_put_dest_keyring: 490 key_put(dest_keyring); 491 error: 492 kleave(" = %d", ret); 493 return ERR_PTR(ret); 494 } 495 496 /** 497 * request_key_and_link - Request a key and cache it in a keyring. 498 * @type: The type of key we want. 499 * @description: The searchable description of the key. 500 * @callout_info: The data to pass to the instantiation upcall (or NULL). 501 * @callout_len: The length of callout_info. 502 * @aux: Auxiliary data for the upcall. 503 * @dest_keyring: Where to cache the key. 504 * @flags: Flags to key_alloc(). 505 * 506 * A key matching the specified criteria is searched for in the process's 507 * keyrings and returned with its usage count incremented if found. Otherwise, 508 * if callout_info is not NULL, a key will be allocated and some service 509 * (probably in userspace) will be asked to instantiate it. 510 * 511 * If successfully found or created, the key will be linked to the destination 512 * keyring if one is provided. 513 * 514 * Returns a pointer to the key if successful; -EACCES, -ENOKEY, -EKEYREVOKED 515 * or -EKEYEXPIRED if an inaccessible, negative, revoked or expired key was 516 * found; -ENOKEY if no key was found and no @callout_info was given; -EDQUOT 517 * if insufficient key quota was available to create a new key; or -ENOMEM if 518 * insufficient memory was available. 519 * 520 * If the returned key was created, then it may still be under construction, 521 * and wait_for_key_construction() should be used to wait for that to complete. 522 */ 523 struct key *request_key_and_link(struct key_type *type, 524 const char *description, 525 const void *callout_info, 526 size_t callout_len, 527 void *aux, 528 struct key *dest_keyring, 529 unsigned long flags) 530 { 531 struct keyring_search_context ctx = { 532 .index_key.type = type, 533 .index_key.description = description, 534 .index_key.desc_len = strlen(description), 535 .cred = current_cred(), 536 .match_data.cmp = key_default_cmp, 537 .match_data.raw_data = description, 538 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT, 539 .flags = (KEYRING_SEARCH_DO_STATE_CHECK | 540 KEYRING_SEARCH_SKIP_EXPIRED), 541 }; 542 struct key *key; 543 key_ref_t key_ref; 544 int ret; 545 546 kenter("%s,%s,%p,%zu,%p,%p,%lx", 547 ctx.index_key.type->name, ctx.index_key.description, 548 callout_info, callout_len, aux, dest_keyring, flags); 549 550 if (type->match_preparse) { 551 ret = type->match_preparse(&ctx.match_data); 552 if (ret < 0) { 553 key = ERR_PTR(ret); 554 goto error; 555 } 556 } 557 558 /* search all the process keyrings for a key */ 559 key_ref = search_process_keyrings(&ctx); 560 561 if (!IS_ERR(key_ref)) { 562 key = key_ref_to_ptr(key_ref); 563 if (dest_keyring) { 564 ret = key_link(dest_keyring, key); 565 if (ret < 0) { 566 key_put(key); 567 key = ERR_PTR(ret); 568 goto error_free; 569 } 570 } 571 } else if (PTR_ERR(key_ref) != -EAGAIN) { 572 key = ERR_CAST(key_ref); 573 } else { 574 /* the search failed, but the keyrings were searchable, so we 575 * should consult userspace if we can */ 576 key = ERR_PTR(-ENOKEY); 577 if (!callout_info) 578 goto error_free; 579 580 key = construct_key_and_link(&ctx, callout_info, callout_len, 581 aux, dest_keyring, flags); 582 } 583 584 error_free: 585 if (type->match_free) 586 type->match_free(&ctx.match_data); 587 error: 588 kleave(" = %p", key); 589 return key; 590 } 591 592 /** 593 * wait_for_key_construction - Wait for construction of a key to complete 594 * @key: The key being waited for. 595 * @intr: Whether to wait interruptibly. 596 * 597 * Wait for a key to finish being constructed. 598 * 599 * Returns 0 if successful; -ERESTARTSYS if the wait was interrupted; -ENOKEY 600 * if the key was negated; or -EKEYREVOKED or -EKEYEXPIRED if the key was 601 * revoked or expired. 602 */ 603 int wait_for_key_construction(struct key *key, bool intr) 604 { 605 int ret; 606 607 ret = wait_on_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT, 608 intr ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE); 609 if (ret) 610 return -ERESTARTSYS; 611 ret = key_read_state(key); 612 if (ret < 0) 613 return ret; 614 return key_validate(key); 615 } 616 EXPORT_SYMBOL(wait_for_key_construction); 617 618 /** 619 * request_key - Request a key and wait for construction 620 * @type: Type of key. 621 * @description: The searchable description of the key. 622 * @callout_info: The data to pass to the instantiation upcall (or NULL). 623 * 624 * As for request_key_and_link() except that it does not add the returned key 625 * to a keyring if found, new keys are always allocated in the user's quota, 626 * the callout_info must be a NUL-terminated string and no auxiliary data can 627 * be passed. 628 * 629 * Furthermore, it then works as wait_for_key_construction() to wait for the 630 * completion of keys undergoing construction with a non-interruptible wait. 631 */ 632 struct key *request_key(struct key_type *type, 633 const char *description, 634 const char *callout_info) 635 { 636 struct key *key; 637 size_t callout_len = 0; 638 int ret; 639 640 if (callout_info) 641 callout_len = strlen(callout_info); 642 key = request_key_and_link(type, description, callout_info, callout_len, 643 NULL, NULL, KEY_ALLOC_IN_QUOTA); 644 if (!IS_ERR(key)) { 645 ret = wait_for_key_construction(key, false); 646 if (ret < 0) { 647 key_put(key); 648 return ERR_PTR(ret); 649 } 650 } 651 return key; 652 } 653 EXPORT_SYMBOL(request_key); 654 655 /** 656 * request_key_with_auxdata - Request a key with auxiliary data for the upcaller 657 * @type: The type of key we want. 658 * @description: The searchable description of the key. 659 * @callout_info: The data to pass to the instantiation upcall (or NULL). 660 * @callout_len: The length of callout_info. 661 * @aux: Auxiliary data for the upcall. 662 * 663 * As for request_key_and_link() except that it does not add the returned key 664 * to a keyring if found and new keys are always allocated in the user's quota. 665 * 666 * Furthermore, it then works as wait_for_key_construction() to wait for the 667 * completion of keys undergoing construction with a non-interruptible wait. 668 */ 669 struct key *request_key_with_auxdata(struct key_type *type, 670 const char *description, 671 const void *callout_info, 672 size_t callout_len, 673 void *aux) 674 { 675 struct key *key; 676 int ret; 677 678 key = request_key_and_link(type, description, callout_info, callout_len, 679 aux, NULL, KEY_ALLOC_IN_QUOTA); 680 if (!IS_ERR(key)) { 681 ret = wait_for_key_construction(key, false); 682 if (ret < 0) { 683 key_put(key); 684 return ERR_PTR(ret); 685 } 686 } 687 return key; 688 } 689 EXPORT_SYMBOL(request_key_with_auxdata); 690 691 /* 692 * request_key_async - Request a key (allow async construction) 693 * @type: Type of key. 694 * @description: The searchable description of the key. 695 * @callout_info: The data to pass to the instantiation upcall (or NULL). 696 * @callout_len: The length of callout_info. 697 * 698 * As for request_key_and_link() except that it does not add the returned key 699 * to a keyring if found, new keys are always allocated in the user's quota and 700 * no auxiliary data can be passed. 701 * 702 * The caller should call wait_for_key_construction() to wait for the 703 * completion of the returned key if it is still undergoing construction. 704 */ 705 struct key *request_key_async(struct key_type *type, 706 const char *description, 707 const void *callout_info, 708 size_t callout_len) 709 { 710 return request_key_and_link(type, description, callout_info, 711 callout_len, NULL, NULL, 712 KEY_ALLOC_IN_QUOTA); 713 } 714 EXPORT_SYMBOL(request_key_async); 715 716 /* 717 * request a key with auxiliary data for the upcaller (allow async construction) 718 * @type: Type of key. 719 * @description: The searchable description of the key. 720 * @callout_info: The data to pass to the instantiation upcall (or NULL). 721 * @callout_len: The length of callout_info. 722 * @aux: Auxiliary data for the upcall. 723 * 724 * As for request_key_and_link() except that it does not add the returned key 725 * to a keyring if found and new keys are always allocated in the user's quota. 726 * 727 * The caller should call wait_for_key_construction() to wait for the 728 * completion of the returned key if it is still undergoing construction. 729 */ 730 struct key *request_key_async_with_auxdata(struct key_type *type, 731 const char *description, 732 const void *callout_info, 733 size_t callout_len, 734 void *aux) 735 { 736 return request_key_and_link(type, description, callout_info, 737 callout_len, aux, NULL, KEY_ALLOC_IN_QUOTA); 738 } 739 EXPORT_SYMBOL(request_key_async_with_auxdata); 740